Sample records for softeners fecal cracking

  1. Improvement and Application of the Softened Strut-and-Tie Model

    NASA Astrophysics Data System (ADS)

    Fan, Guoxi; Wang, Debin; Diao, Yuhong; Shang, Huaishuai; Tang, Xiaocheng; Sun, Hai

    2017-11-01

    Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. The aims of this paper are to predict the joint carrying capacity and cracks development theoretically. Thus, a rational model needs to be developed. Based on the former considerations, the softened strut-and-tie model is selected to be introduced and analyzed. Four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. After that, the carrying capacity of beam-column joint and cracks development are predicted using the improved softened strut-and-tie model. Based on the test results, it is not difficult to find that the improved softened strut-and-tie model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nour, Ali, E-mail: ali.nour@polymtl.ca; Hydro Quebec, Montreal, Quebec, H2L 4P5; Massicotte, Bruno

    This study is aimed at proposing a simple analytical model to investigate the post-cracking behaviour of FRC panels, using an arbitrary tension softening, stress crack opening diagram, as the input. A new relationship that links the crack opening to the panel deflection is proposed. Due to the stochastic nature of material properties, the random fibre distribution, and other uncertainties that are involved in concrete mix, this relationship is developed from the analysis of beams having the same thickness using the Monte Carlo simulation (MCS) technique. The softening diagrams obtained from direct tensile tests are used as the input for themore » calculation, in a deterministic way, of the mean load displacement response of round panels. A good agreement is found between the model predictions and the experimental results.« less

  3. Application of trilinear softening functions based on a cohesive crack approach to the simulation of the fracture behaviour of fibre reinforced cementitious materials.

    NASA Astrophysics Data System (ADS)

    Enfedaque, A.; Alberti, M. G.; Gálvez, J. C.

    2017-09-01

    The relevance of fibre reinforced cementitious materials (FRC) has increased due to the appearance of regulations that establish the requirements needed to take into account the contribution of the fibres in the structural design. However, in order to exploit the properties of such materials it is a key aspect being able to simulate their behaviour under fracture conditions. Considering a cohesive crack approach, several authors have studied the suitability of using several softening functions. However, none of these functions can be directly applied to FRC. The present contribution analyses the suitability of multilinear softening functions in order to obtain simulation results of fracture tests of a wide variety of FRC. The implementation of multilinear softening functions has been successfully performed by means of a material user subroutine in a commercial finite element code obtaining accurate results in a wide variety of FRC. Such softening functions were capable of simulating a ductile unloading behaviour as well as a rapid unloading followed by a reloading and afterwards a slow unloading. Moreover, the implementation performed has been proven as versatile, robust and efficient from a numerical point of view.

  4. Fracture simulation of elastomer blended polypropylene based on elastoviscoplastic constitutive equation with craze and tensile softening law

    NASA Astrophysics Data System (ADS)

    Mae, H.

    2006-08-01

    The strong strain-rate dependence, neck propagation and craze evolution characterize the large plastic deformation and fracture behavior of polymer. In the latest study, Kobayashi, Tomii and Shizawa suggested the elastoviscoplastic constitutive equation based on craze evolution and annihilation and then applied it to the plane strain issue of polymer. In the previous study, the author applied their suggested elastoviscoplastic constitutive equation with craze effect to the three dimensional shell and then showed that the load displacement history was in good agreement with the experimental result including only microscopic crack such as crazes. For the future industrial applications, the macroscopic crack has to be taken into account. Thus, the main objective of this study is to propose the tensile softening equation and then add it to the elastoviscoplastic constitutive equation with craze effect so that the load displacement history can be roughly simulated during the macroscopic crack propagation. The tested material in this study is the elastomer blended polypropylene used in the interior and exterior of automobiles. First, the material properties are obtained based on the tensile test results at wide range of strain rates: 10 - 4-102 (1/sec). Next, the compact tension test is conducted and then the tensile softening parameters are fixed. Then, the dart impact test is carried out in order to obtain the load displacement history and also observe the macroscopic crack propagation at high strain rate. Finally, the fracture behavior is simulated and then compared with the experimental results. It is shown that the predictions of the constitutive equation with the proposed tensile softening equation are in good agreement with the experimental results for the future industrial applications.

  5. Fecal impaction

    MedlinePlus

    ... problems Examine you carefully. Recommend changes in your diet, how to use laxatives and stool softeners, special exercises, lifestyle changes, and other special techniques to retrain your bowel. Follow you closely to make sure the program works for you.

  6. A non-viscous-featured fractograph in metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Shao, Y.; Yao, K. F.

    2016-02-01

    A fractograph of non-viscous feature but pure shear-offsets was found in three-point bending samples of a ductile Pd-Cu-Si metallic glass. A sustainable shear band multiplication with large plasticity during notch propagation was observed. Such non-viscous-featured fractograph was formed by a crack propagation manner of continual multiple shear bands formation in front of the crack-tip, instead of the conventional rapid fracture along shear bands. With a 2D model of crack propagation by multiple shear bands, we showed that such fracture process was achieved by a faster stress relaxation than shear-softening effect in the sample. This study confirmed that the viscous fracture along shear bands could be not a necessary process in ductile metallic glasses fracture, and could provide new ways to understand the plasticity in the shear-softened metallic glasses.

  7. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  8. Influence of Localized Plasticity on IASCC Sensitivity of Austenitic Stainless Steels under PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric

    The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans <111>, that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.

  9. Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

    NASA Astrophysics Data System (ADS)

    Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1995-07-01

    This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

  10. 46 CFR 164.015-4 - Inspections and tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Pounds/feet3 54.0 54.0 52.0 Volume loss on heat aging (maximum). 164.015-4(d) Percent 5.0 5.0 4.0... .06 Flexibility at 0 ±2F 164.015-4(j) No cracking No cracking Oil resistance 164.015-4(k) (1) (1) (1) Odor 164.015-4(l) (2) (2) (2) 1 No softening or swelling. 2 Not objectionable. (b) Density. The density...

  11. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion.

    PubMed

    Luo, Xiaofan; Ou, Runqing; Eberly, Daniel E; Singhal, Amit; Viratyaporn, Wantinee; Mather, Patrick T

    2009-03-01

    In this paper, we report on the development of a new and broadly applicable strategy to produce thermally mendable polymeric materials, demonstrated with an epoxy/poly(-caprolactone) (PCL) phase-separated blend. The initially miscible blend composed of 15.5 wt % PCL undergoes polymerization-induced phase separation during cross-linking of the epoxy, yielding a "bricks and mortar" morphology wherein the epoxy phase exists as interconnected spheres (bricks) interpenetrated with a percolating PCL matrix (mortar). The fully cured material is stiff, strong, and durable. A heating-induced "bleeding" behavior was witnessed in the form of spontaneous wetting of all free surfaces by the molten PCL phase, and this bleeding is capable of repairing damage by crack-wicking and subsequent recrystallization with only minor concomitant softening during that process. The observed bleeding is attributed to volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). In controlled thermal-mending experiments, heating of a cracked specimen led to PCL extrusion from the bulk to yield a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals formed at the site of the crack, restoring a significant portion of the mechanical strength. When a moderate force was applied to assist crack closure, thermal-mending efficiencies exceeded 100%. We further observed that the DEB phenomenon enables strong and facile adhesion of the same material to itself and to a variety of materials, without any requirement for macroscopic softening or flow.

  12. High-temperature low cycle fatigue behavior of a gray cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less

  13. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.

  14. Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model

    NASA Astrophysics Data System (ADS)

    Rinehart, Alex J.; Bishop, Joseph E.; Dewers, Thomas

    2015-04-01

    We examine the use of a linear softening cohesive fracture model (LCFM) to predict single-trace fracture growth in short-rod (SR) and notched 3-point-bend (N3PB) test configurations in Indiana Limestone. The broad goal of this work is to (a) understand the underlying assumptions of LCFM and (b) use experimental similarities and deviations from the LCFM to understand the role of loading paths of tensile fracture propagation. Cohesive fracture models are being applied in prediction of structural and subsurface fracture propagation in geomaterials. They lump the inelastic processes occurring during fracture propagation into a thin zone between elastic subdomains. LCFM assumes that the cohesive zone initially deforms elastically to a maximum tensile stress (σmax) and then softens linearly from the crack opening width at σmax to zero stress at a critical crack opening width w1. Using commercial finite element software, we developed LCFMs for the SR and N3PB configurations. After fixing σmax with results from cylinder splitting tests and finding an initial Young's modulus (E) with unconfined compressive strength tests, we manually calibrate E and w1 in the SR model against an envelope of experimental data. We apply the calibrated LCFM parameters in the N3PB geometry and compare the model against an envelope of N3PB experiments. For accurate simulation of fracture propagation, simulated off-crack stresses are high enough to require inclusion of damage. Different elastic moduli are needed in tension and compression. We hypothesize that the timing and location of shear versus extensional micromechanical failures control the qualitative macroscopic force-versus-displacement response in different tests. For accurate prediction, the LCFM requires a constant style of failure, which the SR configuration maintains until very late in deformation. The N3PB configuration does not maintain this constancy. To be broadly applicable between geometries and failure styles, the LCFM would require additional physics, possibly including elastoplastic damage in the bulk material and more complicated cohesive softening models.

  15. Shear band formation in plastic bonded explosive (PBX)

    NASA Astrophysics Data System (ADS)

    Dey, T. N.; Johnson, J. N.

    1998-07-01

    Adiabatic shear bands can be a source of ignition and lead to detonation. At low to moderate deformation rates, 10-1000 s-1, two other mechanisms can also give rise to shear bands. These mechanisms are: 1) softening caused by micro-cracking and 2) a constitutive response with a non-associated flow rule as is observed in granular material such as soil. Brittle behavior at small strains and the granular nature of HMX suggest that PBX-9501 constitutive behavior may be similar to sand. A constitutive model for the first of these mechanisms is studied in a series of calculations. This viscoelastic constitutive model for PBX-9501 softens via a statistical crack model. A sand model is used to provide a non-associated flow rule and detailed results will be reported elsewhere. Both models generate shear band formation at 1-2% strain at nominal strain rates at and below 1000 s-1. Shear band formation is suppressed at higher strain rates. Both mechanisms may accelerate the formation of adiabatic shear bands.

  16. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    NASA Astrophysics Data System (ADS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  17. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Pingping; Cui, Zhiwei; Kesler, Michael S.

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain inmore » the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.« less

  18. Shear Band Formation in Plastic-Bonded Explosives (PBX)

    NASA Astrophysics Data System (ADS)

    Dey, Thomas N.; Johnson, James N.

    1997-07-01

    Adiabatic shear bands can be a source of ignition and lead to detonation. At low to moderate deformation rates, 10--1000 s-1, two other mechanisms can also give rise to shear bands. These mechanisms are: softening caused by micro-cracking and (2) a constitutive response with a non-associated flow rule as is observed in granular material such as soil. Brittle behavior at small strains and the granular nature of HMX suggest that PBX-9501 constitutive behavior may be similar to sand. A constitutive model for each of these mechanims is studied in a series of calculations. A viscoelastic constitutive model for PBX-9501 softens via a statistical crack model, based on the work of Dienes (1986). A sand model is used to provide a non-associated flow rule. Both models generate shear band formation at 1--2% strain at nominal strain rates at and below 1000 s-1. Shear band formation is suppressed at higher strain rates. The sand model gives qualitative agreement for location and orientation of shear bands observed in a punch experiment. Both mechanisms may accelerate the formation of adiabatic shear bands.

  19. Natural ageing responses of duplex structured Mg-Li based alloys

    PubMed Central

    Li, C. Q.; Xu, D. K.; Wang, B. J.; Sheng, L. Y.; Qiao, Y. X.; Han, E. H.

    2017-01-01

    Natural ageing responses of duplex structured Mg-6%Li and Mg-6%Li-6%Zn-1.2%Y alloys have been investigated. Microstructural analyses revealed that the precipitation and coarsening process of α-Mg particles could occur in β-Li phases of both two alloys during ageing process. Since a certain amount of Mg atoms in β-Li phases were consumed for the precipitation of abundant tiny MgLiZn particles, the size of α-Mg precipitates in Mg-6%Li-6%Zn-1.2%Y alloy was relatively smaller than that in Mg-6%Li alloy. Micro hardness measurements demonstrated that with the ageing time increasing, the α-Mg phases in Mg-6%Li alloy could have a constant hardness value of 41 HV, but the contained β-Li phases exhibited a slight age-softening response. Compared with the Mg-6%Li alloy, the age-softening response of β-Li phases in Mg-6%Li-6%Zn-1.2%Y alloy was much more profound. Meanwhile, a normal age-hardening response of α-Mg phases was maintained. Tensile results indicated that obvious ageing-softening phenomenon in terms of macro tensile strength occurred in both two alloys. Failure analysis demonstrated that for the Mg-6%Li alloy, cracks were preferentially initiated at α-Mg/β-Li interfaces. For the Mg-6%Li-6%Zn-1.2%Y alloy, cracks occurred at both α-Mg/β-Li interfaces and slip bands in α-Mg and β-Li phases. PMID:28053318

  20. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  1. Encopresis.

    PubMed

    Patel, D R; Pratt, H D

    1999-01-01

    Encopresis is fecal soiling associated with functional constipation in a child. Constipation and encopresis are common problems in children. Encopresis is most common between ages 3 and 7 years. Infants and pre-school children present with a history of constipation and withholding maneuvers. The school-age child may have constipation and fecal soiling for some time prior to detection. In some children encopresis is associated with enuresis and urinary tract infection. Family education is the essential first step in management, followed by disimpaction of stool and complete evacuation of the rectum. Reaccumulation of stool should be prevented by appropriate use of laxatives and stool softeners. This is followed by a gradual weaning of the laxative regimen and instituting toilet training. Relapses may occur. Up to 50-60% of children achieve acceptable bowel control, free of soiling, within a year.

  2. Resistance Curves in the Tensile and Compressive Longitudinal Failure of Composites

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Catalanotti, Giuseppe; Davila, Carlos G.; Lopes, Claudio S.; Bessa, Miguel A.; Xavier, Jose C.

    2010-01-01

    This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites. These crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the analytical and numerical simulation of fracture in composite materials. The method proposed is based on the identification of the crack tip location by the use of Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using FEM-based methods in compact tension carbon-epoxy specimens. However, it is also shown that the Digital Image Correlation based technique can be used to extract crack resistance curves in compact compression tests for which FEM-based techniques are inadequate.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorenko, V.K.; Sergeev, V.V.; Shkanov, I.N.

    The influence of the structural, phase, and size factors, and the bonding of hard tungsten alloys to titanium alloy bases on the mechanism by which the system fails under alternating loads is studied. The failure mechanism of materials with detonation coatings applied by different methods is discussed in regard to the classical sequence of fatigue phenomena, i.e., hardening-softening and crack nucleation and growth.

  4. Numerical Assessment of Rockbursting.

    DTIC Science & Technology

    1987-05-27

    static equilibrium, nonlinear elasticity, strain-softening • material , unstable propagation of pre-existing cracks , and finally - surface...structure of LINOS, which is common to most of the large finite element codes, the library of element and material subroutines can be easily expanded... material model subroutines , are tested by comparing finite element results with analytical or numerical results derived for hypo-elastic and

  5. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    DOE PAGES

    Lai, Shigang; Shi, Li; Fok, Alex; ...

    2017-01-01

    Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less

  6. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Shigang; Shi, Li; Fok, Alex

    Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC) is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancingmore » crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.« less

  7. Tension fracture of laminates for transport fuselage. Part 2: Large notches

    NASA Technical Reports Server (NTRS)

    Walker, Tom H.; Ilcewicz, Larry B.; Polland, D. R.; Poe, C. C., Jr.

    1993-01-01

    Tests were conducted on over 200 center-crack specimens to evaluate: (a) the tension-fracture performance of candidate materials and laminates for commercial fuselage applications; and (b) the accuracy of several failure criteria in predicting response. Crack lengths of up to 12 inches were considered. Other variables included fiber/matrix combination, layup, lamination manufacturing process, and intraply hybridization. Laminates fabricated using the automated tow-placement process provided significantly higher tension-fracture strengths than nominally identical tape laminates. This confirmed earlier findings for other layups, and possibly relates to a reduced stress concentration resulting from a larger scale of repeatable material inhomogeneity in the tow-placed laminates. Changes in material and layup result in a trade-off between small-notch and large-notch strengths. Toughened resins and 0 deg-dominate layups result in higher small-notch strengths but lower large-notch strengths than brittle resins, 90 deg and 45 deg dominated layups, and intraply S2-glass hybrid material forms. Test results indicate that strength-prediction methods that allow for a reduced order singularity of the crack-tip stress field are more successful at predicting failure over a range of notch sizes than those relying on the classical square-root singularity. The order of singularity required to accurately predict large-notch strength from small-notch data was affected by both material and layup. Measured crack-tip strain distributions were generally higher than those predicted using classical methods. Traditional methods of correcting for finite specimen width were found to be lacking, confirming earlier findings with other specimen geometries. Fracture tests of two stiffened panels, identical except for differing materials, with severed central stiffeners resulted in nearly identical damage progression and failure sequences. Strain-softening laws implemented within finite element models appear attractive to account for load redistribution in configured structure due to damage-induced crack tip softening

  8. A unified phase-field theory for the mechanics of damage and quasi-brittle failure

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Ying

    2017-06-01

    Being one of the most promising candidates for the modeling of localized failure in solids, so far the phase-field method has been applied only to brittle fracture with very few exceptions. In this work, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics. Specifically, the crack phase-field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context. The energy dissipation functional due to crack evolution and the stored energy functional of the bulk are characterized by a crack geometric function of polynomial type and an energetic degradation function of rational type, respectively. Standard arguments of thermodynamics then yield the macroscopic balance equation coupled with an extra evolution law of gradient type for the crack phase-field, governed by the aforesaid constitutive functions. The classical phase-field models for brittle fracture are recovered as particular examples. More importantly, the constitutive functions optimal for quasi-brittle failure are determined such that the proposed phase-field theory converges to a cohesive zone model for a vanishing length scale. Those general softening laws frequently adopted for quasi-brittle failure, e.g., linear, exponential, hyperbolic and Cornelissen et al. (1986) ones, etc., can be reproduced or fit with high precision. Except for the internal length scale, all the other model parameters can be determined from standard material properties (i.e., Young's modulus, failure strength, fracture energy and the target softening law). Some representative numerical examples are presented for the validation. It is found that both the internal length scale and the mesh size have little influences on the overall global responses, so long as the former can be well resolved by sufficiently fine mesh. In particular, for the benchmark tests of concrete the numerical results of load versus displacement curve and crack paths both agree well with the experimental data, showing validity of the proposed phase-field theory for the modeling of damage and quasi-brittle failure in solids.

  9. [How much does partially hydrolyzed guar gum affect the weight, moisture and hardness of feces?].

    PubMed

    Sakata, Yukiko; Shimbo, Shinichiro

    2006-04-01

    The ministry of Health, Labor and Welfare recommends Japanese people to intake a certain amount of dietary fiber, believing that incorporating more dietary fiber into our diet can reduce the risk of colorectal cancer. The present study aimed to demonstrate and confirm the theory's validity by applying it to reality-to what extent is the intake of partially hydrolyzed guar gum (PHGG) useful in promoting bowel movements, and what problems are involved? We therefore investigated to what extent PHGG affects the weight, moisture and hardness of feces when healthy female students consumed PHGG as a supplement. During two fourteen-day sessions in spring and autumn, 9 healthy female students took the same diets. During the first session, the students were provided a strict dietary formula, while during the second session, they were administered an amount of 12.5 g/day PHGG (purity 80%, equivalent to 10 g of dietary fiber) dissolved in adequate amount of water at the end of each meal. Feces of the subjects were collected and weighted just after defection. A moisture meter was used to measure fecal moisture and a rheometer was used to measure fecal hardness. Fecal conditions and intestinal motility were also examined. (1) Due to the PHGG intake, the fecal bulk increased in 4 subjects and decreased in 2 subjects, significantly, out of 9. (2) Due to the PHGG intake, the fecal condition softened in 3 subjects while significantly hardening in 4 subjects. (3) The PHGG intake induced an increased of fecal moisture in 5 subjects, while moisture decreased in 2 subjects. (4) Fecal hardness measured more than 150 g/cm when it is classified as "frozen hard". (5) A significant inverse correlation could be seen between fecal hardness and fecal bulk, and between fecal hardness and its moisture. When PHGG was administered a significant inverse correlation could be seen between fecal hardness and its moisture. The conclusion is that the PHGG intake resulted in increase of the fecal bulk for 4 subjects and fecal moisture for 5 out of 9 subjects, but decrease of fecal hardness in 3 subjects; the benefit of bowel movements provided by the PHGG intake, however, varied greatly among the subjects.

  10. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  11. Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

    NASA Astrophysics Data System (ADS)

    Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava

    2018-04-01

    A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.

  12. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.

    PubMed

    Kieser, Jules A; Weller, Sarah; Swain, Michael V; Neil Waddell, J; Das, Raj

    2013-07-01

    Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs. The presence of fibrous pull-out and grooving of the outer tensile surface associated with periosteal stretching suggests that the periosteum under tension is able to sustain very high strain and bridge the mouth of the extending butterfly crack, thereby contributing to the observed strain-softening behaviour. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  14. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Inspection of the Engineering Condition of Underwater Concrete Structures.

    DTIC Science & Technology

    1989-04-01

    corrosion of rebar Spalling of concrete surface IIl Detect hidden and beginning Location of rebar damage Beginning corrosion of rebar ...honeycombs MD Moderate defects: spalling of concrete minor corrosion of exposed rebar rust stains along rebar with or without visible cracking softening of...velocity. . Replenishment of the attacking chemical hgents. h. Higher temperatures. i. Corrosion of reinforcing steel. 46. Note that concrete which

  15. Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading

    PubMed Central

    Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J.; Jumaat, Mohd Zamin

    2016-01-01

    Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed. PMID:28773430

  16. Mechanics Model for Simulating RC Hinges under Reversed Cyclic Loading.

    PubMed

    Shukri, Ahmad Azim; Visintin, Phillip; Oehlers, Deric J; Jumaat, Mohd Zamin

    2016-04-22

    Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.

  17. Waste handling: A study of tributyl phosphate compatibility with nonmetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, C.F.; Briedenbach, P.J.

    1989-01-01

    The need for numerous seals, plastic tubing, instrument components, and miles of plastic pipe for transferring process waste streams containing tributyl phosphate (TBP) and petroleum solvents led to an investigation of compatibility. TBP is a solvent for many plastics and elastomers and causes softening, crazing, or cracking of most nonmetallics tested. In this regard it may be considered an external plasticizer for some polymers. TBP also is a surfactant in aqueous solution. Dimension changes and property changes associated with softening will preclude the use of some materials as gaskets. Teflon/trademark/ and Kalrez/trademark/ gaskets appear to be compatible with TBP. Mixedmore » results were obtained with EPDM elastomers, but EPDM O-rings are less costly than Kalrez/trademark/ and are being applied in some areas. Exposure of CPVC rigid piping led to crazing and, ultimately, catastrophic stress cracking, thus precluding its use in the waste services described. High-density polyethylene and PVDF plastic piping were unaffected by the test exposures and are useable for process and process waste service. Applications include 25-30 miles of polyethylene pipe and a large number of EPDM gaskets in the filter assembly of an effluent treatment system at the Savannah River Plant. 3 refs., 7 figs., 3 tabs.« less

  18. Vibration analysis of partially cracked plate submerged in fluid

    NASA Astrophysics Data System (ADS)

    Soni, Shashank; Jain, N. K.; Joshi, P. V.

    2018-01-01

    The present work proposes an analytical model for vibration analysis of partially cracked rectangular plates coupled with fluid medium. The governing equation of motion for the isotropic plate based on the classical plate theory is modified to accommodate a part through continuous line crack according to simplified line spring model. The influence of surrounding fluid medium is incorporated in the governing equation in the form of inertia effects based on velocity potential function and Bernoulli's equations. Both partially and totally submerged plate configurations are considered. The governing equation also considers the in-plane stretching due to lateral deflection in the form of in-plane forces which introduces geometric non-linearity into the system. The fundamental frequencies are evaluated by expressing the lateral deflection in terms of modal functions. The assessment of the present results is carried out for intact submerged plate as to the best of the author's knowledge the literature lacks in analytical results for submerged cracked plates. New results for fundamental frequencies are presented as affected by crack length, fluid level, fluid density and immersed depth of plate. By employing the method of multiple scales, the frequency response and peak amplitude of the cracked structure is analyzed. The non-linear frequency response curves show the phenomenon of bending hardening or softening and the effect of fluid dynamic pressure on the response of the cracked plate.

  19. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M

    2017-08-01

    Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.

  20. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    NASA Astrophysics Data System (ADS)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  1. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite. These microstructural features, such as precipitates, dispersed particles, and GB orientations and distributions can be optimized for desired behavior of metallic composites.

  2. Shear damage mechanisms in a woven, Nicalon-reinforced ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keith, W.P.; Kedward, K.T.

    The shear response of a Nicalon-reinforced ceramic-matrix composite was investigated using Iosipescu tests. Damage was characterized by X-ray, optical, and SEM techniques. The large inelastic strains which were observed were attributed to rigid body sliding of longitudinal blocks of material. These blocks are created by the development and extension of intralaminar cracks and ply delaminations. This research reveals that the debonding and sliding characteristics of the fiber-matrix interface control the shear strength, strain softening, and cyclic degradation of the material.

  3. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  4. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

    PubMed

    Arreaga-Salas, David E; Avendaño-Bolívar, Adrian; Simon, Dustin; Reit, Radu; Garcia-Sandoval, Aldo; Rennaker, Robert L; Voit, Walter

    2015-12-09

    Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for cochlear implants, nerve cuff electrodes, penetrating cortical probes, spinal stimulators, blanket electrodes for the gut, stomach, and visceral organs and a host of other custom nerve-interfacing devices.

  5. A Technique for Mapping Characteristic Lengths to Preserve Energy Dissipated via Strain Softening in a Multiscale Analysis

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).

  6. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.

  7. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    NASA Astrophysics Data System (ADS)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  8. [Constipation in children].

    PubMed

    Dito, L

    2002-01-01

    Constipation is a common disease in paediatric age, with an incidence ranging from 0.3 to 8% in paediatric patients, and from 10 to 25% among paediatric gastroenterological patients. In 90-95% of cases constipation is a functional, and often due to an exclusively milky diet or, in advanced age, to an inadequate fibres intake. Among the organic forms causing constipation, especially in new-born age, Hirshsprung disease, anorectal malformations, intestinal atresiae and stenosis are frequent. Moreover, recent studies have shown that constipation is often the symptom of a cow's milk proteins intolerance, that leadis to colorectal mucosa inflammation, with peristalsis decrease and fecal slackness. In these patients a milk's proteins free diet recovers constipation. In most persistent forms, total intestinal transit time (TITT), anorectal manometry, sphynteric muscles electromyografy and defecofraphy are useful to the diagnosis. In more than 90% of cases simple diet revisions, fecal softening, evacuative suppositories and enemas recovers constipation, some times a psychological approach is useful. Furthermore, excellent results can be obtained by giving low doses of polietiltnglycol (PEG), which has been recently introduced for the treatment of functional chronic constipation.

  9. A Critical Assessment of Cyclic Softening and Hardening Behavior in a Near- α Titanium Alloy During Thermomechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Prasad, Kartik; Sarkar, Rajdeep; Rao, K. Bhanu Sankara; Sundararaman, M.

    2016-10-01

    Thermomechanical fatigue behavior of Ti-alloy Timetal 834 has been studied at two temperature intervals viz. 573 K to 723 K (300 °C to 450 °C) and 723 K to 873 K (450 °C to 600 °C) under mechanical strain-controlled cycling. Among the temperatures studied, the alloy exhibited initial cyclic softening followed by cyclic hardening at 723 K (450 °C) in the temperature interval of 573 K to 723 K (300 °C to 450 °C). However, continuous cyclic hardening was observed at 723 K (450 °C) in 723 K to 873 K (450 °C to 600 °C). At 573 K (300 °C) and 873 K (600 °C), cyclic softening was observed in the cyclic stress response curves in both the temperature intervals. The dislocation substructure was observed to be planar in both the modes of TMF loading. Based on TEM microstructures and few unconventional fatigue tests, the observed cyclic hardening is attributed to dynamic strain aging. The reduced fatigue life at 723 K to 873 K (450 °C to 600 °C) under OP-TMF loading was attributed to the combined effect of cyclic hardening (leading to early strain localization and crack initiation), oxidation, and development of tensile mean stresses.

  10. Low Cycle Fatigue Properties of Extruded Mg10GdxNd Alloys

    NASA Astrophysics Data System (ADS)

    Tober, Gerhard; Maier, Petra; Müller, Sören; Hort, Norbert

    The Rare Earth (RE) containing magnesium alloys Mg10Gd and Mg10Gd1Nd show after extrusion very good low cycle fatigue (LCF) properties. Considering extruded AZ31 as a possible benchmark alloy, life times as a function of LCF stress values are similar to the alloys investigated in this study. Mechanical properties determined in tension and compression show smaller values for both RE containing alloys. Therefore the LCF behavior is analyzed by the stress-strain hysteresis evaluation resulting in cyclic creep and plastic hardening or softening. LCF tests were strain controlled with amplitude of 0.5 % and 0.8 % at a frequency of 5Hz. The fracture surfaces are examined by SEM, where the area of crack propagation and overload were of main interest. Micrographs of longitudinal cross sections reveal twinning along the region of crack propagation. The correlation between the amount of twins and the number of cycles is discussed.

  11. Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt.%Si Coatings: Effects of Laser Power

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.

    2013-06-01

    Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.

  12. Damage instability and Earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.

    2017-12-01

    Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.

  13. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  14. Numerical Implementation of a Multiple-ISV Thermodynamically-Based Work Potential Theory for Modeling Progressive Damage and Failure in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2011-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.

  15. A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.

    2012-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.

  16. The Microstructure Evolution and Deformation Behavior of AZ80 During Gradient Increment Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ren, Lingbao; Quan, Gaofeng; Boehlert, Carl J.; Zhou, Mingyang; Guo, Yangyang; Fan, Lingling

    2018-06-01

    Cyclic loading-unloading uniaxial tension experiments were conducted at temperatures ranging between 293 K and 623 K and a strain rate of 10-3 s-1 to study the cyclic accumulated plastic deformation (CAP) behavior of extruded AZ80. The 673 K/4-h heat treatment to the as-extruded AZ80 led to a noticeable decrease in yield strength which was associated with both dissolution of the β-Mg17Al12 phase and growth of the matrix grain size. The critical number of cycles needed to soften the material (N c) decreased from 5 to 4 when the cyclic strain amplitude (ɛ a) increased from 3.3 to 5.0 pct for the as-extruded AZ80. The average cyclic hardening rate (Θ) increased from 11 to 23 MPa/cycle after heat treatment, and this was attributed to the more pronounced twinning process in the coarse-grained microstructure. During the 293 K to 473 K CAP deformation, the increasing accumulated cyclic tension strain may have accelerated the propagation of secondary twinning leading to the Lüders-like post-yield softening. Twinning was prevalent at low temperature (293 K to 473 K) in the ɛ a = 3.0 pct CAP deformation for the heat-treated alloy, and twin-assisted precipitation occurred during the 523 K CAP deformation, which implied that the high diffusivity in the twin boundary accelerated the heterogeneous nucleation of precipitates. The preferred cracking locations changed from twin boundaries to grain boundaries when the CAP deformation temperature increased from 473 K to 523 K. As for the 623 K CAP deformation, cavities initiated at the grain boundaries, and the volume fraction of the cracks/cavities increased from 0.01 to 0.05 with increasing temperature.

  17. Softening non-metallic crystals by inhomogeneous elasticity.

    PubMed

    Howie, P R; Thompson, R P; Korte-Kerzel, S; Clegg, W J

    2017-09-14

    High temperature structural materials must be resistant to cracking and oxidation. However, most oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they are to be resistant to cracking. It is shown, using density functional theory, that if a crystal's unit cell elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with observations in layered compounds, such as Ti 3 SiC 2 , Nb 2 Co 7 , W 2 B 5 , Ta 2 C and Ta 4 C 3 . The mechanism by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in a complex metallic alloy, even though the electronegativity differences within the unit cell are less than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a greater oxidation resistance and hence a higher temperature capability to be used.

  18. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  19. The role of damage-softened material behavior in the fracture of composites and adhesives

    NASA Technical Reports Server (NTRS)

    Ungsuwarungsri, T.; Knauss, W. G.

    1986-01-01

    Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer.

  20. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a lack of preexisting flaws assumed by the analysis. Some interactions between adjacent ply groups are attributed to local stress concentrations. These two effects are not captured by the analysis due to its global nature. The analysis is conservative in these cases and agrees well with data after the observed onset of cracking.

  1. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreña-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g- 1) and fecal sterols (0.3-1690.18 μg g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate that defining a relationship among sources and fecal sterols levels is highly difficult and this could be the result of the absorption or migration through an intricate conduit, crack, or fracture karst system. Nevertheless, the “source-levels approach”, used in this study, was consistent for the northeast edge and the middle western part of the RC. New and more extensive research should be done to assess the environmental fate of fecal sterols, especially considering the intricate karstic system and its compound retention capacity.

  2. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico.

    PubMed

    Arcega-Cabrera, F; Velázquez-Tavera, N; Fargher, L; Derrien, M; Noreña-Barroso, E

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g(-1)) and fecal sterols (0.3-1690.18 μg g(-1)). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate that defining a relationship among sources and fecal sterols levels is highly difficult and this could be the result of the absorption or migration through an intricate conduit, crack, or fracture karst system. Nevertheless, the "source-levels approach", used in this study, was consistent for the northeast edge and the middle western part of the RC. New and more extensive research should be done to assess the environmental fate of fecal sterols, especially considering the intricate karstic system and its compound retention capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nonlinear response and crack propagation in Articular Cartilage modeled as a biopolymer double network

    NASA Astrophysics Data System (ADS)

    Sindermann, Andrew; Bartell, Lena; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    Articular cartilage (AC) is a soft tissue that covers the ends of bones to distribute mechanical load in joints. It is primarily composed of water, type II collagen, and large aggregating proteoglycans called aggrecan. Its fracture toughness is extremely high compared to synthetic materials, but the underlying physical mechanism is not well understood. Here we investigate how the toughness of AC depends on its microscale composition and structure by modeling it as a double network made of collagen and aggrecan embedded in a background gel, and by using rigidity percolation theory to characterize its mechanical response to shear and compressive (or tensile) strains. Our calculations of the mechanical moduli, as well as network-wide heat maps of local strains and energy show shear-stiffening and compression-softening with increasing applied strain, in good qualitative agreement with known experimental results. Notches are then introduced in the network to study crack propagation under shear and tensile strains for various applied loads. Preliminary results indicate a loading threshold above which the network will undergo catastrophic failure by fracturing. Our results may help to formulate a Griffith-like criterion for crack propagation and fracture in soft tissues. This work was partially supported by a Cottrell College Science Award from the Research Corporation for Science Advancement.

  4. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  5. Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment.

    PubMed

    Xu, Wenchen; Yang, Chuan; Yu, Haiping; Jin, Xueze; Guo, Bin; Shan, Debin

    2018-04-16

    This study proposed a novel method to heal microcrack within Mg alloy tubes using high density eddy current pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 10 9  A/m 2 ) and short duration eddy current was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.

  6. Two compounds in bed bug feces are sufficient to elicit off-host aggregation by bed bugs, Cimex lectularius.

    PubMed

    Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A

    2017-01-01

    After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    PubMed Central

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber’s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking. PMID:28793595

  8. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation.

    PubMed

    Choi, Jeong-Il; Lee, Bang Yeon

    2015-09-30

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber's suitability as a reinforcing fiber. Single fiber pullout tests were performed and then the tensile strength of fiber was measured according to fiber orientation. The test results showed that basalt fiber has a strong chemical bond with the cementitious matrix, 1.88 times higher than that of polyvinyl alcohol fibers with it. However, other properties of basalt fiber such as slip-hardening coefficient and strength reduction coefficient were worse than PVA and polyethylene fibers in terms of fiber bridging capacity. Theoretical fiber-bridging curves showed that the basalt fiber reinforcing system has a higher cracking strength than the PVA fiber reinforcing system, but the reinforcing system showed softening behavior after cracking.

  9. Anisotropic lattice softening near the structural phase transition in the thermosalient crystal 1,2,4,5-tetrabromobenzene.

    PubMed

    Zakharov, Boris A; Michalchuk, Adam A L; Morrison, Carole A; Boldyreva, Elena V

    2018-03-28

    The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation. The energy is released spontaneously, and crystals jump across distances that exceed the crystal size by orders of magnitude. In the present work, the anisotropy of lattice strain is followed across the phase transition by single-crystal X-ray diffraction, focusing on the structural evolution from 273 to 343 K. A pronounced lattice softening is observed close to the transition point, with the structure becoming more rigid immediately after the phase transition. The diffraction studies are further supported by theoretical analysis of pairwise intermolecular energies and zone-centre lattice vibrations. Only three modes are found to monotonically soften up to the phase transition, with complex behaviour exhibited by the remaining lattice modes. The thermosalient effect is delayed with respect to the structural transformation itself. This can originate from the martensitic mechanism of the transformation, and the accumulation of stress associated with vibrational switching across the phase transition. The finding of this study sheds more light on the nature of the thermosalient effect in 1,2,4,5-tetrabromobenzene and can be applicable also to other thermosalient compounds.

  10. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    NASA Astrophysics Data System (ADS)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  11. High-temperature low-cycle-fatigue and crack-growth behaviors of three superalloys: HASTELLOY X, HAYNES 230, and HAYNES 188

    NASA Astrophysics Data System (ADS)

    Lu, Yulin

    Low cycle fatigue (LCF) and fatigue crack growth (FCG) experiments on three superalloys HASTELLOY X, HAYNES 230, and HAYNES 188 have been conducted at temperatures from 649 to 982°C. Hold times were imposed at the maximum strain or load to investigate the hold-time effect. In general, the fatigue life decreased as the temperature or hold time increased. However, for the HAYNES 230 alloy at total strain ranges higher than 1.0% and without a hold time, the LCF life was longer at 927°C than at 816°C. This "abnormal" behavior was found to result from the smaller plastic strain amplitude at half-life at 927°C than that at 816°C. An increase in the temperature and/or the introduction of a hold time decreased the hardening rate and increased the softening rate for all the three alloys. The introduction of a hold time and/or the increase of the test temperature progressively changed the fracture mode from the transgranular to mixed trans/inter-granular, then to intergranular feature. Within the two phases of the fatigue process, crack initiation was more severely influenced by the change of the hold time and/or temperature. The FCG data of HASTELLOY X and HAYNES 230 alloys were analyzed with an emphasis on hold-time and temperature effects. The crack grew faster at a higher temperature and a longer hold time. Fracture-mechanics parameters, C*, Ct, and (Ct)avg, were applied to correlate the crack-growth rates. The fatigue-cracking path was mainly transgranular at 816 and 927°C. The cracking path became dominantly intergranular if the hold time increased to 2 min, indicating that the time-dependent damage mechanisms were in control. The Ct and (Ct)avg parameters were capable of consolidating time dependent crack growth rate from different temperatures and alloys. The tests were conducted in air. Therefore, the fracture surfaces were frequently covered with a dark layer of oxides, making fracture feature difficult to identify under scanning-electron-microscopy. To overcome this problem, an oxide-stripping technique has been developed. The sample is first boiled in a potassium permanganate solution for 1 h, and then electrolytically cleaned in an alkaline solution for 5 min.

  12. Adapted diffusion processes for effective forging dies

    NASA Astrophysics Data System (ADS)

    Paschke, H.; Nienhaus, A.; Brunotte, K.; Petersen, T.; Siegmund, M.; Lippold, L.; Weber, M.; Mejauschek, M.; Landgraf, P.; Braeuer, G.; Behrens, B.-A.; Lampke, T.

    2018-05-01

    Hot forging is an effective production method producing safety relevant parts with excellent mechanical properties. The economic efficiency directly depends on the occurring wear of the tools, which limits service lifetime. Several approaches of the presenting research group aim at minimizing the wear caused by interacting mechanical and thermal loads by using enhanced nitriding technology. Thus, by modifying the surface zone layer it is possible to create a resistance against thermal softening provoking plastic deformation and pronounced abrasive wear. As a disadvantage, intensely nitrided surfaces may possibly include the risk of increased crack sensitivity and therefore feature the chipping of material at the treated surface. Recent projects (evaluated in several industrial applications) show the high technological potential of adapted treatments: A first approach evaluated localized treatments by preventing areas from nitrogen diffusion with applied pastes or other coverages. Now, further ideas are to use this principle to structure the surface with differently designed patterns generating smaller ductile zones beneath nitrided ones. The selection of suitable designs is subject to certain geo-metrical requirements though. The intention of this approach is to prevent the formation and propagation of cracks under thermal shock conditions. Analytical characterization methods for crack sensitivity of surface zone layers and an accurate system of testing rigs for thermal shock conditions verified the treatment concepts. Additionally, serial forging tests using adapted testing geometries and finally, tests in the industrial production field were performed. Besides stabilizing the service lifetime and decreasing specific wear mechanisms caused by thermal influences, the crack behavior was influenced positively. This leads to a higher efficiency of the industrial production process and enables higher output in forging campaigns of industrial partners.

  13. Evaluation of fracture toughness of ZrO 2 and Si 3N 4 engineering ceramics following CO 2 and fibre laser surface treatment

    NASA Astrophysics Data System (ADS)

    Shukla, P. P.; Lawrence, J.

    2011-02-01

    The fracture toughness property ( K1C) of Si 3N 4 and ZrO 2 engineering ceramics was investigated by means of CO 2 and a fibre laser surface treatment. Near surface modifications in the hardness were investigated by employing the Vickers indentation method. Crack lengths and the crack geometry were then measured by using the optical microscopy. A co-ordinate measuring machine was used to investigate the diamond indentations and to measure the lengths of the cracks. Thereafter, computational and analytical methods were employed to determine the K1C. An increase in the K1C of both ceramics was found by the CO 2 and the fibre laser surface treatment in comparison to the as-received surfaces. The K1C of the CO 2 laser radiated surface of the Si 3N 4 was over 3% higher in comparison to that of the fibre laser treated surface. This was by softening of the near surface layer of the Si 3N 4 which comprised of lowering of hardness, which in turn increased the crack resistance. The effects were not similar in ZrO 2 ceramic to that of the Si 3N 4 as the fibre laser radiation in this case had produced an increase of 34% compared to that of the CO 2 laser radiation. This occurred due to propagation of lower crack resulting from the Vickers indentation test during the fibre laser surface treatment which inherently affected the end K1C through an induced compressive stress layer. The K1C modification of the two ceramics treated by the CO 2 and the fibre laser was also believed to be influenced by the different laser wavelength and its absorption co-efficient, the beam delivery system as well as the differences in the brightness of the two lasers used.

  14. Crack propagation and arrest in CFRP materials with strain softening regions

    NASA Astrophysics Data System (ADS)

    Dilligan, Matthew Anthony

    Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified. Utilizing the developed model, a sensitivity study is conducted to assess the current proposed arrest configuration. Optimum distribution and sizing of the arrest zones is investigated, and general design guidelines are developed.

  15. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  16. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel

    NASA Astrophysics Data System (ADS)

    Lee, Byung Ho; Kim, In Sup

    1995-10-01

    The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.

  17. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  18. Initial rigid response and softening transition of highly stretchable kirigami sheet materials.

    PubMed

    Isobe, Midori; Okumura, Ko

    2016-04-27

    We study, experimentally and theoretically, the mechanical response of sheet materials on which line cracks or cuts are arranged in a simple pattern. Such sheet materials, often called kirigami (the Japanese words, kiri and gami, stand for cut and paper, respectively), demonstrate a unique mechanical response promising for various engineering applications such as stretchable batteries: kirigami sheets possess a mechanical regime in which sheets are highly stretchable and very soft compared with the original sheets without line cracks, by virtue of out-of-plane deformation. However, this regime starts after a transition from an initial stiff regime governed by in-plane deformation. In other words, the softness of the kirigami structure emerges as a result of a transition from the two-dimensional to three-dimensional deformation, i.e., from stretching to bending. We clarify the physical origins of the transition and mechanical regimes, which are revealed to be governed by simple scaling laws. The results could be useful for controlling and designing the mechanical response of sheet materials including cell sheets for medical regeneration and relevant to the development of materials with tunable stiffness and mechanical force sensors.

  19. A framework for analysis of large database of old art paintings

    NASA Astrophysics Data System (ADS)

    Da Rugna, Jérome; Chareyron, Ga"l.; Pillay, Ruven; Joly, Morwena

    2011-03-01

    For many years, a lot of museums and countries organize the high definition digitalization of their own collections. In consequence, they generate massive data for each object. In this paper, we only focus on art painting collections. Nevertheless, we faced a very large database with heterogeneous data. Indeed, image collection includes very old and recent scans of negative photos, digital photos, multi and hyper spectral acquisitions, X-ray acquisition, and also front, back and lateral photos. Moreover, we have noted that art paintings suffer from much degradation: crack, softening, artifact, human damages and, overtime corruption. Considering that, it appears necessary to develop specific approaches and methods dedicated to digital art painting analysis. Consequently, this paper presents a complete framework to evaluate, compare and benchmark devoted to image processing algorithms.

  20. Survey of four damage models for concrete.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leelavanichkul, Seubpong; Brannon, Rebecca Moss

    2009-08-01

    Four conventional damage plasticity models for concrete, the Karagozian and Case model (K&C), the Riedel-Hiermaier-Thoma model (RHT), the Brannon-Fossum model (BF1), and the Continuous Surface Cap Model (CSCM) are compared. The K&C and RHT models have been used in commercial finite element programs many years, whereas the BF1 and CSCM models are relatively new. All four models are essentially isotropic plasticity models for which 'plasticity' is regarded as any form of inelasticity. All of the models support nonlinear elasticity, but with different formulations. All four models employ three shear strength surfaces. The 'yield surface' bounds an evolving set of elasticallymore » obtainable stress states. The 'limit surface' bounds stress states that can be reached by any means (elastic or plastic). To model softening, it is recognized that some stress states might be reached once, but, because of irreversible damage, might not be achievable again. In other words, softening is the process of collapse of the limit surface, ultimately down to a final 'residual surface' for fully failed material. The four models being compared differ in their softening evolution equations, as well as in their equations used to degrade the elastic stiffness. For all four models, the strength surfaces are cast in stress space. For all four models, it is recognized that scale effects are important for softening, but the models differ significantly in their approaches. The K&C documentation, for example, mentions that a particular material parameter affecting the damage evolution rate must be set by the user according to the mesh size to preserve energy to failure. Similarly, the BF1 model presumes that all material parameters are set to values appropriate to the scale of the element, and automated assignment of scale-appropriate values is available only through an enhanced implementation of BF1 (called BFS) that regards scale effects to be coupled to statistical variability of material properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.« less

  1. Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model

    NASA Astrophysics Data System (ADS)

    Abdia, M.; Molladavoodi, H.; Salarirad, H.

    2017-12-01

    The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.

  2. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    PubMed

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  3. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis

    PubMed Central

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-01-01

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935

  4. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  5. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  6. Damage percolation during stretch flange forming of aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.

    2005-12-01

    A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.

  7. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  8. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  9. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  10. Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening.

    PubMed

    Qian, Ming; Zhang, Yike; Yan, Xiangyan; Han, Mingyu; Li, Jinjin; Li, Fang; Li, Furui; Zhang, Dong; Zhao, Caiping

    2016-11-18

    Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin degradation during fruit softening. However, the roles of PG family members in fruit softening remain unclear. We identified 45 PpPG genes in the peach genome which are clustered into six subclasses. PpPGs consist of four to nine exons and three to eight introns, and the exon/intron structure is basically conserved in all but subclass E. Only 16 PpPG genes were expressed in ripening fruit, and their expression profiles were analyzed during storage in two peach cultivars with different softening characteristics. Eight PGs ( PpPG1 , - 10 , - 12 , - 13 , - 15 , - 23 , - 21 , and - 22 ) in fast-softening "Qian Jian Bai" (QJB) fruit and three PGs ( PpPG15 , - 21 , and - 22 ) in slow-softening "Qin Wang" (QW) fruit exhibited softening-associated patterns; which also were affected by ethylene treatment. Our results suggest that the different softening characters in QW and QJB fruit is related to the amount of PG members. While keeping relatively lower levels during QW fruit softening, the expression of six PGs ( PpPG1 , - 10 , - 12 , - 11 , - 14 , and - 35 ) rapidly induced by ethylene. PpPG24 , - 25 and - 38 may not be involved in softening of peach fruit.

  11. Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Zhang, Wei; Gong, Jianming; Wahab, Magd Abdel

    2018-07-01

    In this paper, Low Cycle Fatigue (LCF) and Creep-Fatigue Interaction (CFI) behavior of 9Cr-0.5Mo-1.8 W-V-Nb heat-resistant steel (ASME Grade P92 steel) at elevated temperature of 600 °C are investigated. Strain controlled LCF tests are conducted in fully reversed triangular waveform at different strain amplitudes ranging from 0.2% to 0.8%. CFI tests are conducted at 0.4% strain amplitude in trapezoid waveform with tensile hold time varying from 1 min to 60 min and compressive hold time varying from 1 min to 10 min. During LCF and CFI loadings, the evolution of cyclic stress, mean stress and stress relaxation behavior are investigated. It turns out that the softening behavior and lifetime degradation are dependent on strain amplitude, hold time and hold direction. In addition, the microstructure evolution and fracture behavior are characterized by optical, scanning and transmission electron microscope. The initial rapid softening behavior is attributed to the quick elimination of low angle boundaries, whereas no obvious microstructure alteration appears in the stable stage. Fracture behavior analysis reveals creep voids in long-term CFI tests facilitates the initiation and propagation of secondary cracks. The different responses of outer surface oxidation layer during cycling provides an explanation for severer damage of compressive hold and also accounts for the observed various fracture behavior of failed samples.

  12. Physical Properties of Polyester Fabrics Treated with Nano, Micro and Macro Emulsion Silicones

    NASA Astrophysics Data System (ADS)

    Parvinzadeh, M.; Hajiraissi, R.

    2007-08-01

    The processing of textile to achieve a particular handle is one of the most important aspects of finishing technology. Fabrics softeners are liquid composition added to washing machines during the rinse cycle to make clothes feel better to the touch. The first fabric softeners were developed by the textile industry during the early twentieth century. In this research polyester fabrics were treated with nano, micro and macro emulsion silicone softeners. Some of the physical properties of the treated fabric samples are discussed. The drapeability of treated samples was improved after treatment with nano silicone softeners. The colorimetric measurement of softener-treated fabrics is evaluated with a reflectance spectrophotometer. Moisture regain of treated samples is increased due to coating of silicone softeners. There is some increase in the weight of softener-treated samples. Samples treated with nano emulsion silicones gave better results compared to micro- and macro-emulsion treated ones.

  13. Constitutive relationships of prestressed steel fiber concrete membrane elements

    NASA Astrophysics Data System (ADS)

    Hoffman, Norman S.

    Steel Fiber Concrete (SFC) displays certain tensile and shear characteristics which are beneficial for concrete that is loaded in a state of shear stress. For example, prestressed bridge beams carry shear load in their web by utilizing shear stirrups. If the properties of SFC can be better understood, then it may be possible to replace the shear stirrups with SFC. The first step in understanding this behavior is to develop a constitutive model for prestressed SFC. Two groups of full-scale prestressed steel fiber concrete (SFC) panels, with a nominal strength of 6 ksi, were tested in the Universal Element Testing machine at Thomas TC Hsu Structural Testing Laboratory to establish the effect of fiber and the level of prestress on the constitutive laws of fiber concrete and prestressing tendon. The specimens contained from 5 to 20 fully tensioned, low-relaxation grade 270 tendons. Fiber content ranged from 0.5% to 1.5% using high performance hooked end fibers. The first group of five panels, designated Group TEF, was used to determine the basic constitutive properties of prestressed SEC for use in the Softened Membrane Model (SMM). The constitutive model consists of smeared tensile and compressive stress strain relationships. An equation for softening with respect of both fiber content and tensile strain is presented. Also presented is a new equation for prestressed SFC in tension. It is notable that the behavior of prestressed SFC in tension displayed significant post-cracking tensile strength for fiber contents ranging from 0.5% to 1.5% by volume. Prior research on SFC using unreinforced dog-bone specimens, or prismatic specimens reinforced with only a single isolated tendon, are not capable of capturing SFC behavior afforded by the stress state, multiple load paths, and confinement situation available in full-scale panel assemblies. The second set of 5 test panels, designated Group TAF, was used to examine the properties of prestressed SFC under the conditions of pure shear. The constitutive model was incorporated into the softened membrane model framework and an analytic model was developed that was used to accurately predict the behavior of the specimens loaded in pure shear.

  14. FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Sham, T. -L.

    This report describes a modification to the elastic-perfectly plastic (EPP) strain limits design method to account for cyclic softening in Gr. 91 steel. The report demonstrates that the unmodified EPP strain limits method described in current ASME code case is not conservative for materials with substantial cyclic softening behavior like Gr. 91 steel. However, the EPP strain limits method can be modified to be conservative for softening materials by using softened isochronous stress-strain curves in place of the standard curves developed from unsoftened creep experiments. The report provides softened curves derived from inelastic material simulations and factors describing the transformationmore » of unsoftened curves to a softened state. Furthermore, the report outlines a method for deriving these factors directly from creep/fatigue tests. If the material softening saturates the proposed EPP strain limits method can be further simplified, providing a methodology based on temperature-dependent softening factors that could be implemented in an ASME code case allowing the use of the EPP strain limits method with Gr. 91. Finally, the report demonstrates the conservatism of the modified method when applied to inelastic simulation results and two bar experiments.« less

  15. A novel eco-friendly technique for efficient control of lime water softening process.

    PubMed

    Ostovar, Mohamad; Amiri, Mohamad

    2013-12-01

    Lime softening is an established type of water treatment used for water softening. The performance of this process is highly dependent on lime dosage. Currently, lime dosage is adjusted manually based on chemical tests, aimed at maintaining the phenolphthalein (P) and total (M) alkalinities within a certain range (2 P - M > or = 5). In this paper, a critical study of the softening process has been presented. It has been shown that the current method is frequently incorrect. Furthermore, electrical conductivity (EC) has been introduced as a novel indicator for effectively characterizing the lime softening process.This novel technique has several advantages over the current alkalinities method. Because no chemical reagents are needed for titration, which is a simple test, there is a considerable reduction in test costs. Additionally, there is a reduction in the treated water hardness and generated sludge during the lime softening process. Therefore, it is highly eco-friendly, and is a very cost effective alternative technique for efficient control of the lime softening process.

  16. Synthesis of silicone softener and its characteristics on cotton fabric.

    PubMed

    Robati, D

    2007-02-15

    This study was undertaken to examine the unresolved questions surrounding the influence of silicon softener on cotton fabrics. Results showed that the synthesized silicon softener was comparable with other tested conventional softener, According to present investigations the emulsions E1 and E2 is not economical and it is not evenly qualified and it become two phased after 24 h. But emulsion E3 was even and more economical. Moreover, it has high stability. In addition, measurement of kinetic and static friction show that the general effect of silicon softener on cotton cloth is the decrease of friction. Also, it was concluded that with increasing the add on percentage of softener, the crease of reflection angle did not change bending length and static and kinetic friction index significantly.

  17. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    PubMed

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (<700MPa Young's modulus, >35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGES

    Yu, Dunji; An, Ke; Chen, Xu; ...

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  19. A simple cohesive zone model that generates a mode-mixity dependent toughness

    DOE PAGES

    Reedy, Jr., E. D.; Emery, J. M.

    2014-07-24

    A simple, mode-mixity dependent toughness cohesive zone model (MDG c CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDG c CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thinmore » adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. As a result, this dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.« less

  20. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  1. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  2. Compositional changes in cell wall polysaccharides from five sweet cherry (Prunus avium L.) cultivars during on-tree ripening.

    PubMed

    Basanta, María F; Ponce, Nora M A; Salum, María L; Raffo, María D; Vicente, Ariel R; Erra-Balsells, Rosa; Stortz, Carlos A

    2014-12-24

    Excessive softening is a major cause of postharvest deterioration during transportation and storage of fresh cherries. In continuing our studies to identify the factors determining the textural differences between sweet cherry fruit genotypes, we evaluated the solubilization, depolymerization, and monosaccharide composition of pectin and hemicelluloses from five sweet cherry cultivars ('Chelan', 'Sumele', 'Brooks', 'Sunburst', and 'Regina') with contrasting firmness and cracking susceptibility at two developmental stages (immature and ripe). In contrast to what is usually shown in most fruits, cherry softening could occur is some cultivars without marked increases in water-soluble pectin. Although polyuronide and hemicellulose depolymerization was observed in the water-soluble and dilute-alkali-soluble fractions, only moderate association occurs between initial polymer size and cultivar firmness. In all the genotypes the Na2CO3-soluble polysaccharides (NSF) represented the most abundant and dynamic wall fraction during ripening. Firm cultivars showed upon ripening a lower neutral sugars/uronic acid ratio in the NSF, suggesting that they have a lower proportion of highly branched polyuronides. The similar molar ratios of arabinose plus galactose to rhamnose [(Ara+Gal)/Rha] suggest that the cultivars differed in their relative proportion of homogalacturonan (HG) and rhamnogalacturonan I (RG-I) rather than in the size of the RG side chains; with greater proportions of HG in firmer cherries. Ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was useful to identify the depolymerization patterns of weakly bound pectins, but gave less accurate results on ionically bound pectins, and was unable to find any pattern on covalently bound pectins.

  3. Life cycle assessment of central softening of very hard drinking water.

    PubMed

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2012-08-30

    Many consumers prefer softened water due to convenience issues such as avoidance of removing limescale deposits from household appliances and surfaces, and to reduce consumption of cleaning agents and laundry detergents leading to lower household expenses. Even though central softening of drinking water entailed an increased use of energy, sand and chemicals at the waterworks, the distributed and softened drinking water supported a decrease in consumption of energy and chemical agents in the households along with a prolonged service life of household appliances which heat water. This study used Life Cycle Assessment (LCA) to quantify the environmental impacts of central softening of drinking water considering both the negative effects at the waterworks and the positive effects imposed by the changed water quality in the households. The LCA modeling considered central softening of drinking water from the initial hardness of the region of study (Copenhagen, Denmark) which is 362 mg/L as CaCO(3) to a final hardness as CaCO(3) of 254 (a softening depth of 108) mg/L or 145 (a softening depth of 217) mg/L. Our study showed that the consumer preference can be met together with reducing the impact on the environment and the resource consumption. Environmental impacts decreased by up to 3 mPET (milli Personal Equivalent Targeted) and the break-even point from where central softening becomes environmentally beneficial was reached at a softening depth of only 22 mg/L as CaCO(3). Both energy-related and chemically related environmental impacts were reduced as well as the consumption of resources. Based on scarcity criteria, nickel was identified as the most problematic non-renewable resource in the system, and savings of up to 8 mPR (milli Person Reserve) were found. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    PubMed

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  5. Rigid proteins and softening of biological membranes—with application to HIV-induced cell membrane softening

    NASA Astrophysics Data System (ADS)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-01

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  6. Investigation of the Effect of Oil Modification on Critical Characteristics of Asphalt Binders

    NASA Astrophysics Data System (ADS)

    Golalipour, Amir

    Thermally induced cracking of asphalt pavement continues to be a serious issue in cold climate regions as well as in areas which experience extreme daily temperature differentials. Low temperature cracking of asphalt pavements is attributed to thermal stresses and strains developed during cooling cycles. Improving asphalt binder low temperature fracture and stiffness properties continues to be a subject of particular concern. Therefore, significant amount of research has been focused on improving asphalt binder properties through modification. In recent years, wide ranges of oil based modifications have been introduced to improve asphalt binder performance, especially at the low service temperatures. Although, significant use of these oils is seen in practice, knowledge of the fundamental mechanisms of oil modification and their properties for achieving optimum characteristics is limited. Hence, this study focuses on better understanding of the effect of oil modifiers which would help better material selection and achieve optimum performance in terms of increasing the life span of pavements. In this study, the effect of oil modification on the rheological properties of the asphalt binder is investigated. To examine the effect of oil modification on binder characteristics, low temperature properties as well as high temperature performance of oil modified binders were evaluated. It is found that oils vary in their effects on asphalt binder performance. However, for all oils used in the study, adding an oil to binder can improve binder low temperature performance, and this result mainly attributed to the softening effect. In addition to that, a simple linear model is proposed to predict the performance grade of oil modified binder based on the properties of its constituents at high and low temperatures. Another part of this study focuses on the oil modification effect on asphalt binder thermal strain and stresses. A viscoelastic analytical procedure is combined with experimentally derived failure stress and strain envelopes to determine the controlling failure mechanism, strain tolerance or critical stress, in thermal cracking of oil modified binders. The low temperature failure results depict that oil modification has a good potential of improving the cracking resistance of asphalt binders during thermal cycles.

  7. Anomalous softening of yield strength in tantalum at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Qiumin, E-mail: j-qm@163.com; Wu, Qiang; Xu, Ji-an

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening inmore » tantalum.« less

  8. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    EPA Science Inventory

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  9. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    PubMed

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

    PubMed Central

    Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.

    2016-01-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  11. Effect of dynamics on the elastic softening of vacancies in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Koun; Ishisada, Jun

    2014-02-21

    Recently, elastic softening at temperatures below 20 K has been observed in nondoped floating zone silicon. From the experimental analysis, it has been suggested that this softening is caused by an intrinsic vacancy defect through the Jahn-Teller (JT) effect. We have theoretically studied the relations between softening and the vacancies. The ground state of the JT distortion is stiff. However, by considering atomistic dynamical and anharmonic effects, it is found that low-energy excitations exist in the E-mode distortion and that different polarizations of the E-distortion can be easily interchanged. The calculated energy barriers for the reorientation of JT distortions aremore » consistent with other experiments and calculations. This low-lying mode can be the cause of softening in the elastic responses.« less

  12. Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Ebrahimi, G. R.; Momeni, A.; Ezatpour, H. R.

    2018-02-01

    Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.

  13. Influence of softening sequencing on electrocoagulation treatment of produced water.

    PubMed

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    PubMed Central

    Liu, Xuesong; Berto, Filippo

    2018-01-01

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140

  15. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    PubMed

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  16. Development of technical means for directional hydraulic fracturing with shearing loading of borehole walls

    NASA Astrophysics Data System (ADS)

    Rybalkin, LA; Patutin, AV; Patutin, DV

    2018-03-01

    During the process of mineral deposits’ mining one of the most important conditions for safe and economically profitable work of a mining enterprise is obtaining timely information on the stress state of the developed massif. One of the most common methods of remote study of the geomechanical state of the rock massif is hydraulic fracturing of the formation. Directional hydraulic fracturing is a type of the method employed to form cracks across production wells. This technology was most widely used in the gas industry to extract gas from shale formations. In mining, this technology is used to set up filtration screens, to integrate degassing, to soften the hard roof of coal seams. Possible practical appliance is the expansion of the application field of this technology to intensify the production of viscous oil, to leach non-ferrous metals, to create in the rock massif anti-filtration screens for various purposes, as well as to measure stresses acting along the wells.

  17. Flow behavior of Ti-24Al-11Nb at high strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbison, L.S.; Koss, D.A.; Bourcier, R.J.

    The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloymore » is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.« less

  18. Constitutive modeling of fiber-reinforced cement composites

    NASA Astrophysics Data System (ADS)

    Boulfiza, Mohamed

    The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts a diffused damage is more appropriate in the pre-peak regime whereas, NLFM is more suitable in the post-peak stage where the opening and propagation of a major crack will control the response of the material and not a deformation in a continuum sense as opposed to the pre-cracking zone. Tensile and compressive tests have been carried out for the sole purpose of calibrating the constitutive models proposed and/or developed in this thesis for FRC materials. The suitability of the models in predicting the response of different structural members has been performed by comparing the models' forecasts with experimental results carried out by the author, as well as experimental results from the literature. The different models proposed in this thesis have the possibility to account for the presence of fibers in the matrix, and give fairly good results for both high fiber volume fractions (vsb{f}≥2%) and low fiber volume fractions (vsb{f}<2%). Use of interface elements in a finite element code has been shown to be a powerful tool in analyzing the behavior of concrete substrate-FRC repair materials by the introduction of a zero thickness layer of interface elements to account for the interface properties which usually control the effectiveness of the repair material. ftnsp1NLFM: Non Linear Fracture Mechanics.

  19. Water Conditioner

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A home use water treatment incorporates technology developed to purify water aboard Space Shuttle Orbiters. The General Ionics Model IQ Bacteriostatic Water Softener softens water and inhibits bacteria growth in the filtering unit. Ionics used NASA silver ion technology as a basis for development of a silver carbon dense enough to remain on top of the water softening resin bed.

  20. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  1. Analysis of papaya cell wall-related genes during fruit ripening indicates a central role of polygalacturonases during pulp softening.

    PubMed

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening.

  2. Experimental evidence of zone-center optical phonon softening by accumulating holes in thin Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabuyanagi, Shoichi; Nishimura, Tomonori; Yajima, Takeaki

    2016-01-15

    We discuss the impact of free carriers on the zone-center optical phonon frequency in germanium (Ge). By taking advantage of the Ge-on-insulator structure, we measured the Raman spectroscopy by applying back-gate bias. Phonon softening by accumulating holes in Ge film was clearly observed. This fact strongly suggests that the phonon softening in heavily-doped Ge is mainly attributed to the free carrier effect rather than the dopant atom counterpart. Furthermore, we propose that the free carrier effect on phonon softening is simply understandable from the viewpoint of covalent bonding modification by free carriers.

  3. Cost-benefit analysis of central softening for production of drinking water.

    PubMed

    Van der Bruggen, B; Goossens, H; Everard, P A; Stemgée, K; Rogge, W

    2009-01-01

    Softening drinking water before distribution yields advantages with environmental impact, such as lower household products consumption, less scaling in piping and machines, and the avoidance of decentralized, domestic softeners. Central softening is under consideration in Flanders by the largest water supplier, VMW (Dutch acronym for "Flemish Company for Water Supply"), to deliver soft (15 degrees F) water to their customers. A case study is presented for a region with hard water (47 degrees F). The chosen technique is the pellet reactor, based on precipitation of CaCO(3) by NaOH addition. This softening operation has possibly large impact on the environment and the water consumption pattern. A cost-benefit analysis has been made to estimate the added value of central softening, by investigating the impact on the drinking water company, on their customers, on employment, on environment, on health, etc. The analysis for the region of study revealed benefits for customers which were higher than the costs for the drinking water company. However, pricing of drinking water remains an important problem. A sensitivity analysis of these results has also been made, to evaluate the impact of important hypothesis, and to be able to expand this study to other regions. The conclusions for this part show that softening is beneficial if water hardness is to be decreased by at least 5 degrees F.

  4. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach

    PubMed Central

    Patel, Deepak K.

    2016-01-01

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294

  5. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach.

    PubMed

    Patel, Deepak K; Waas, Anthony M

    2016-07-13

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  6. A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon

    PubMed Central

    Jung, Jihye; Choi, Sang Chul; Jung, Sunghee; Cho, Byung-Kwan; Ahn, Gwang-Hwan; Ryu, Stephen B.

    2017-01-01

    Persimmon (Diospyros kaki Thunb.), which is a climacteric fruit, softens in 3–5 weeks after harvest. However, little is known regarding the transcriptional changes that underlie persimmon ripening. In this study, high-throughput de novo RNA sequencing was performed to examine differential expression between freshly harvested (FH) and softened (ST) persimmon fruit peels. Using the Illumina HiSeq platform, we obtained 259,483,704 high quality reads and 94,856 transcripts. After the removal of redundant sequences, a total of 31,258 unigenes were predicted, 1,790 of which were differentially expressed between FH and ST persimmon (1,284 up-regulated and 506 down-regulated in ST compared with FH). The differentially expressed genes (DEGs) were further subjected to KEGG pathway analysis. Several pathways were found to be up-regulated in ST persimmon, including “amino sugar and nucleotide sugar metabolism.” Pathways down-regulated in ST persimmon included “photosynthesis” and “carbon fixation in photosynthetic organisms.” Expression patterns of genes in these pathways were further confirmed using quantitative real-time RT-PCR. Ethylene gas production during persimmon softening was monitored with gas chromatography and found to be correlated with the fruit softening. Transcription involved in ethylene biosynthesis, perception and signaling was up-regulated. On the whole, this study investigated the key genes involved in metabolic pathways of persimmon fruit softening, especially implicated in increased sugar metabolism, decreased photosynthetic capability, and increased ethylene production and other ethylene-related functions. This transcriptome analysis provides baseline information on the identity and modulation of genes involved in softening of persimmon fruits and can underpin the future development of technologies to delay softening in persimmon. PMID:28955353

  7. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth.

    PubMed

    Ng, Jovyn K T; Schröder, Roswitha; Sutherland, Paul W; Hallett, Ian C; Hall, Miriam I; Prakash, Roneel; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W

    2013-11-19

    There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.

  8. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum

    PubMed Central

    Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Thakur, Archana; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2011-01-01

    Excessive softening of fruits during the ripening process leads to deterioration. This is of significant global importance as softening-mediated deterioration leads to huge postharvest losses. N-glycan processing enzymes are reported to play an important role during climacteric fruit softening: however, to date these enzymes have not been characterized in non-climacteric fruit. Two ripening-specific N-glycan processing enzymes, α-mannosidase (α-Man) and β-D-N-acetylhexosaminidase (β-Hex), have been identified and targeted to enhance the shelf life in non-climacteric fruits such as capsicum (Capsicum annuum). The purification, cloning, and functional characterization of α-Man and β-Hex from capsicum, which belong to glycosyl hydrolase (GH) families 38 and 20, respectively, are described here. α-Man and β-Hex are cell wall glycoproteins that are able to cleave terminal α-mannose and β-D-N-acetylglucosamine residues of N-glycans, respectively. α-Man and β-Hex transcripts as well as enzyme activity increase with the ripening and/or softening of capsicum. The function of α-Man and β-Hex in capsicum softening is investigated through RNA interference (RNAi) in fruits. α-Man and β-Hex RNAi fruits were approximately two times firmer compared with the control and fruit deterioration was delayed by approximately 7 d. It is shown that silencing of α-Man and β-Hex enhances fruit shelf life due to the reduced degradation of N-glycoproteins which resulted in delayed softening. Altogether, the results provide evidence for the involvement of N-glycan processing in non-climacteric fruit softening. In conclusion, genetic engineering of N-glycan processing can be a common strategy in both climacteric and non-climacteric species to reduce the post-harvest crop losses. PMID:21030387

  9. Changes in cell wall pectins and their relation to postharvest mesocarp softening of "Hass" avocados (Persea americana Mill.).

    PubMed

    Defilippi, Bruno G; Ejsmentewicz, Troy; Covarrubias, María Paz; Gudenschwager, Orianne; Campos-Vargas, Reinaldo

    2018-05-17

    The avocado is a climacteric fruit and begins a softening process after harvest. During ripening, the mesocarp changes in texture, and this affects fruit quality and cold storage capacity. Softening is commonly associated with cell wall disassembly in climacteric fruits. However, changes in the cell wall structure and composition during avocado softening are poorly understood. To understand this process, cell wall pectins in "Hass" avocado fruit were studied during ripening at 20 °C after harvest and after cold storage. Additionally, avocados were treated with 1-MCP to evaluate the delay in softening. Biochemical analysis showed a decrease in galacturonic acid (GalA) in alcohol-insoluble residues (AIR) and water-soluble pectin concomitant to softening, paralleled by an increase in polygalacturonase (PG) activity. In the same way, the β-galactosidase activity increased in soft avocado fruit, along with a reduction in galactose in cell wall material and the Na 2 CO 3 -soluble fraction. The arabinose content in the cell wall material did not change during softening. However, there was a change in arabinose ratios between the different fractions of pectin, mainly in the fractions soluble in water and in Na 2 CO 3 . The cold storage of avocado fruit did not induce softening of the fruit, but the content of GalA showed a substantial decrease, accompanied by an increase in PG activity. Thus, our work supports the hypothesis that the solubilization of neutral sugars such as arabinose and rhamnose, as well as the loss of galactose content mediated by the enzyme β-galactosidase, were the main factors that began the coordinated action of cell wall remodeling enzymes that resulted in the loss of firmness of avocado fruit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth

    PubMed Central

    2013-01-01

    Background There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. Results ‘Scifresh’ (slow softening) and ‘Royal Gala’ (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. ‘Scifresh’ apples showed reduced loss of firmness and greater dry matter accumulation compared with ‘Royal Gala’ during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in ‘Scifresh’ were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of ‘Scifresh’ showed larger, more angular shaped cells than ‘Royal Gala’, with less airspaces and denser tissue. Stronger cell adhesion in ripe ‘Scifresh’ resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in ‘Royal Gala’. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in ‘Scifresh’. Conclusions Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process. PMID:24252512

  11. Analysis of Papaya Cell Wall-Related Genes during Fruit Ripening Indicates a Central Role of Polygalacturonases during Pulp Softening

    PubMed Central

    Fabi, João Paulo; Broetto, Sabrina Garcia; da Silva, Sarah Lígia Garcia Leme; Zhong, Silin; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2014-01-01

    Papaya (Carica papaya L.) is a climacteric fleshy fruit that undergoes dramatic changes during ripening, most noticeably a severe pulp softening. However, little is known regarding the genetics of the cell wall metabolism in papayas. The present work describes the identification and characterization of genes related to pulp softening. We used gene expression profiling to analyze the correlations and co-expression networks of cell wall-related genes, and the results suggest that papaya pulp softening is accomplished by the interactions of multiple glycoside hydrolases. The polygalacturonase cpPG1 appeared to play a central role in the network and was further studied. The transient expression of cpPG1 in papaya results in pulp softening and leaf necrosis in the absence of ethylene action and confirms its role in papaya fruit ripening. PMID:25162506

  12. Investigation on Static Softening Behaviors of a Low Carbon Steel Under Ferritic Rolling Condition

    NASA Astrophysics Data System (ADS)

    Dong, Haifeng; Cai, Dayong; Zhao, Zhengzheng; Wang, Zhiyong; Wang, Yuhui; Yang, Qingxiang; Liao, Bo

    2010-03-01

    The study aims to postulate a theoretical hypothesis for the finishing period of ferritic rolling technique of the low carbon steel. The static softening behavior during multistage hot deformation of a low carbon steel has been studied by double hot compression tests at 700-800 °C and strain rate of 1 s-1 using a Gleeble-3500 simulator. Interrupted deformation is conducted with interpass times varying from 1 to 100 s after achieving a true strain of 0.5 in the first stage. The results indicate that the flow stress value at the second deformation is lower than that at the first one, and the flow stress drops substantially. The static softening effects increase with the increase of deformation temperature, holding temperature, and interpass time. The value of the ferritic static softening activation energy is obtained, and the static softening kinetics is modeled by the Avrami equation.

  13. ON THE LATE-TIME SPECTRAL SOFTENING FOUND IN X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan-Zhu; Liang, En-Wei; Lu, Zu-Jia

    2016-02-20

    Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around the circumburst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening we now systematically search the X-ray afterglows detected by the X-ray telescope aboard Swift and collect 12 GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal andmore » spectral features. For some well-observed bursts with high-quality data, the time-resolved spectra could be well-produced within the scattering scenario by taking into account the X-ray absorption from the circumburst medium. We also find that during spectral softening the power-law index in the high-energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.« less

  14. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  15. Metadynamic and static recrystallization softening behavior of a bainite steel

    NASA Astrophysics Data System (ADS)

    Li, Lixin; Zheng, Liangyu; Ye, Ben; Tong, Zeqiong

    2018-01-01

    The metadynamic recrystallization (MDRX) and static recrystallization (SRX) softening behavior of a bainite steel was investigated by two-pass isothermal compression experiments at temperatures of 1173, 1273, 1373, and 1473 K and strain rates of 0.01, 0.1, 1, and 10 s-1 with inter-pass times of 1, 5, 10, and 30 s on a Gleeble-1500 thermo-mechanical simulator. Kinetic equations were developed to evaluate the softening fractions caused by MDRX and SRX. A comparison between the experimental and predicted softening fractions showed that the proposed kinetic equations can provide a precise estimation of the MDRX and SRX behavior of the studied steel. The results based on the kinetic equations indicated that the MDRX and SRX softening fraction increases with the increase in strain rate, deformation temperature, inter-pass time, and pre-strain; the activation energy of MDRX is much smaller than that of SRX; and the no-recrystallization temperature of the investigated steel is 1179.4 K.

  16. Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: Surface smoothness and softness properties.

    PubMed

    Zia, Khalid Mahmood; Tabassum, Shazia; Barkaat-ul-Hasin, Syed; Zuber, Mohammad; Jamil, Tahir; Jamal, Muhammad Asghar

    2011-04-01

    A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Preparation of rich handles soft cellulosic fabric using amino silicone based softener, part II: colorfastness properties.

    PubMed

    Zuber, Mohammad; Zia, Khalid Mahmood; Tabassum, Shazia; Jamil, Tahir; Barkaat-Ul-Hasin, Syed; Khosa, Muhammad Kaleem

    2011-07-01

    The preparation of amino silicone based softeners with different emulsifiers was carried out and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. The softened fabrics have high surface area, so poorly performance in washing and rubbing fastness. It is obvious from the results of colorfastness to rubbing and washing that some of the samples of the dyed fabric treated with prepared softeners have shown some poor rating as compared to the untreated fabrics. However the other two samples have shown acceptable rubbing fastness results without losing softness and permanent handle. It can be observed that washing of the printed treated fabric remains unaffected almost in all the studied samples. Moreover, the application of the prepared softeners has imparted anti pilling property to the fabric. It can be seen that there is a remarkable increase in weights of treated fabrics as compared to the untreated fabrics. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part II. Behavior at 150 °C

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; van Aken, D. C.; Allison, J. E.

    1995-12-01

    The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ' strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles.

  19. Polymer compositions based on PXE

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2015-09-15

    New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.

  20. Spatial variations in deformation mechanisms along the Main Central thrust zone: Implications for the evolution of the MCT in the Darjeeling -Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali; Mitra, Gautam

    2014-12-01

    In the Darjeeling-Sikkim Himalaya, we recognize two distinct MCT sheets: the structurally higher MCT1 and the lower MCT2. Microstructural studies from three different segments along the transport direction of the MCT2 fault zone suggest that the fault has undergone strain softening by different mechanisms. The geometry of the tapered crystalline orogenic wedge resulted in variation of overburden along the MCT2. Strain softening by different deformation mechanisms accommodated translation of ⩾100 km along a thin MCT2 fault zone. As the mylonitic trailing part of the MCT2 in Pelling had the greatest overburden, deformation took place by dislocation creep in quartz and by microfracturing in feldspar. Reaction softening of feldspar produced an intrinsically weak matrix that primarily controlled the deformation, resulting in a strain softening fault zone. At Soreng MCT2 zone, under intermediate crustal conditions, finer-grained recrystallized quartz and micaceous matrix deformed by grain-size sensitive diffusion creep mechanisms resulting in strain softening. The fault rocks at Sivitar had the least overburden and record a prominent mineralogical change from the protolith; strain softening occurred by pressure solution slip, possibly by a combination of grain-size reduction by cataclasis and an increase in fluid activity.

  1. Beneficial effects of softened fabrics on atopic skin.

    PubMed

    Hermanns, J F; Goffin, V; Arrese, J E; Rodriguez, C; Piérard, G E

    2001-01-01

    There is general concern about the possible cutaneous adverse effects of wearing garments treated with household laundry products, particularly on atopic skin. Our objective was to compare softened and non- softened fabrics in a forearm wet and dry test, under conditions simulating real-life conditions. Twenty atopic volunteers entered a single-blind 12-day (3 sessions per day) forearm wetting and drying test. Cotton fabrics were machine washed and liquid fabric conditioner was added or not to the final rinse. To simulate conditions of skin damage, a dilute solution of sodium lauryl sulphate was applied under occlusion to the forearm of each volunteer before the start of the study. Skin effects were evaluated by visual grading (redness, dryness and smoothness), squamometry and in vivo instrumental measurements (capacitance, transepidermal water loss and colorimetry). Rubbing of atopic skin with fabrics generally resulted in discrete to moderate alterations of the structure of the stratum corneum. Both for control and pre-irritated skin, all measured parameters indicated that softened fabric was less aggressive to the skin than unsoftened fabric. In the case of pre-irritated skin, the recovery of the skin was significantly faster when rubbed with softened than with unsoftened fabrics. In conclusion, softened fabrics help mitigate the skin condition in atopic patients. Copyright 2001 S. Karger AG, Basel.

  2. The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening1[W][OA

    PubMed Central

    Tacken, Emma; Ireland, Hilary; Gunaseelan, Kularajathevan; Karunairetnam, Sakuntala; Wang, Daisy; Schultz, Keith; Bowen, Judith; Atkinson, Ross G.; Johnston, Jason W.; Putterill, Jo; Hellens, Roger P.; Schaffer, Robert J.

    2010-01-01

    Fruit softening in apple (Malus × domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples. PMID:20237022

  3. Softened food reduces weight loss in the streptozotocin-induced male mouse model of diabetic nephropathy.

    PubMed

    Nørgaard, Sisse A; Sand, Fredrik W; Sørensen, Dorte B; Abelson, Klas Sp; Søndergaard, Henrik

    2018-01-01

    The streptozotocin (STZ)-induced diabetic mouse is a widely used model of diabetes and diabetic nephropathy (DN). However, it is a well-known issue that this model is challenged by high weight loss, which despite supportive measures often results in high euthanization rates. To overcome these issues, we hypothesized that supplementing STZ-induced diabetic mice with water-softened chow in addition to normal chow would reduce weight loss, lower the need for supportive treatment, and reduce the number of mice reaching the humane endpoint of 20% weight loss. In a 15 week STZ-induced DN study we demonstrated that diabetic male mice receiving softened chow had reduced acute weight loss following STZ treatment ( p = 0.045) and additionally fewer mice were euthanized due to weight loss. By supplementing the diabetic mice with softened chow, no mice reached 20% weight loss whereas 37.5% of the mice without this supplement reached this humane endpoint ( p = 0.0027). Excretion of corticosterone metabolites in faeces was reduced in diabetic mice on softened chow ( p = 0.0007), suggesting lower levels of general stress. Finally, it was demonstrated that the water-softened chow supplement did not significantly affect the induction of key disease parameters, i.e. %HbA1C and albuminuria nor result in abnormal teeth wear. In conclusion, supplementation of softened food is refining the STZ-induced diabetic mouse model significantly by reducing stress, weight loss and the number of animals sacrificed due to humane endpoints, while maintaining the key phenotypes of diabetes and nephropathy.

  4. Experimental Investigation of Bio-Sealants Used for Pavement Preservation and Development of a New Strength Test for Asphalt Binders at Low Temperature

    NASA Astrophysics Data System (ADS)

    Ghosh, Debaroti

    Surface treatment using sealants as a mean of pavement preservation is an important tool for cost-effectively extending service life of pavement. Sealants have become an important tool for cost-effectively extending the service life pavements. Due to the combined negative effects of asphalt aging and thermal cracking, it is always more challenging to choose an appropriate preservation technique for pavements built in cold-regions. Asphalt aging and thermal cracking negatively affect pavements built in cold climates. Therefore, it is important to evaluate the effects of sealants in laboratory conditions before application in the field to ensure effective performance. However, preservation activities cannot effectively address major distresses, such as low-temperature cracking, that can occur when the pavement was built from the very beginning with less durable materials. Therefore, an essential requirement to mitigate low-temperature cracking of pavements for asphalt materials used in the construction of pavement built in cold- regions is ensuring proper fracture properties of the asphalt materials used in construction. This study has two parts. In the first part, a laboratory evaluation of the effects of adding bio-sealants to both asphalt binder and mixture is performed. The goal is to obtain relevant properties of treated asphalt materials to understand the mechanism by which sealants improve pavement performance. For asphalt binders, a dynamic shear rheometer and a bending beam rheometer were used to obtain rheological properties of treated and untreated asphalt binders. For asphalt mixtures, field cores from both untreated and treated sections were collected and thin beam specimens were prepared from the cores to compare the creep and strength properties of the field-treated and laboratory-treated mixture. It is observed that the oil-based sealants have a significant softening effect on the control binder compared to the water-based sealant and traditional emulsion. Oil-based sealants increased rutting and fatigue potential of the binder and helped the low-temperature cracking resistance. For asphalt mixtures, different trends are observed for the field samples compared to the laboratory prepared samples. Similar to binder results, significant differences are observed between the asphalt mixtures treated with oil-based and water-based sealants, respectively. Additional analyses were performed to better understand the sealant effects. Fourier transform infrared spectroscopy (FTIR) analysis showed that the sealant products could not be detected in mixture samples collected from the surface of the treated section. Semi-empirical Hirsch model was able to predict asphalt mixture creep stiffness from binder stiffness. The results of a distress survey of the test sections correlated well with the laboratory findings. In the second part, a news binder strength testing method is proposed with the goal to provide an effective tool for selecting asphalt binders that are crack resistant. A modified Bending Beam Rheometer (BBR) is used to perform three-point bending strength tests, at constant loading rate, on asphalt binder beams at low temperature. Based on the results, a protocol for selecting the most crack resistant material from binders with similar rheological properties is proposed.

  5. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE PAGES

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...

    2017-01-30

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  6. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  7. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  8. Lattice softening in body-centered-cubic lithium-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Winter, I. S.; Tsuru, T.; Chrzan, D. C.

    2017-08-01

    A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.

  9. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening

    PubMed Central

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A

    2009-01-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria × ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit. PMID:19820312

  10. The polygalacturonase FaPG1 gene plays a key role in strawberry fruit softening.

    PubMed

    García-Gago, Juan A; Posé, Sara; Muñoz-Blanco, Juan; Quesada, Miguel A; Mercado, José A

    2009-08-01

    The loss of firm texture is one of the most characteristic physiological processes that occur during the ripening of fleshy fruits. It is generally accepted that the disassembly of primary cell wall and middle lamella is the main factor involved in fruit softening. In this process, polygalacturonase (PG) has been implicated in the degradation of the polyuronide network in several fruits. However, the minor effect of PG downregulation on tomato softening, reported during the nineties, minimized the role of this enzyme in softening. Further works in other fruits are challenging this general assumption, as is occurring in strawberry. The strawberry (Fragaria x ananassa) fruit undergoes an extensive and fast softening that limit its shelf life and postharvest. Traditionally, it has also been considered that PG plays a minor role on this process, due to the low PG activity found in ripened strawberry fruits. Transgenic strawberry plants expressing an antisense sequence of the ripening-specific PG gene FaPG1 have been generated to get an insight into the role of this gene in softening. Half of the transgenic lines analyzed yielded fruits significantly firmer than control, without being affected other fruit parameters such as weight, color or soluble solids. The increase on firmness was maintained after several days of posharvest. In these firmer lines, FaPG1 was silenced to 95%, but total PG activity was only minor reduced. At the cell wall level, transgenic fruits contained a higher amount of covalently bound pectins whereas the soluble fraction was diminished. A microarray analysis of genes expressed in ripened receptacle did not show any significant change between control and transgenic fruits. Thus, contrary to the most accepted view, it is concluded that PG plays a key role on pectin metabolism and softening of strawberry fruit.

  11. Hypersensitive Ethylene Signaling and ZMdPG1 Expression Lead to Fruit Softening and Dehiscence

    PubMed Central

    Li, Min; Zhang, Yanmin; Zhang, Zongying; Ji, Xiaohao; Zhang, Rui; Liu, Daliang; Gao, Liping; Zhang, Jing; Wang, Biao; Wu, Yusen; Wu, Shujing; Chen, Xiaoliu; Feng, Shouqian; Chen, Xuesen

    2013-01-01

    ‘Taishanzaoxia’ fruit rapid softening and dehiscence during ripening stage and this process is very sensitive to endogenous ethylene. In this study, we cloned five ethylene signal transcription factors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1 and ZMdERF2) and one functional gene, ZMdPG1, encoding polygalacturonase that could loose the cell connection which associated with fruit firmness decrease and fruit dehiscence to illustrate the reasons for this specific fruit phenotypic and physiological changes. Expression analysis showed that ZMdERF1 and ZMdEIL2 transcription were more abundant in ‘Taishanzaoxia’ softening fruit and dehiscent fruit and their expression was inhibited by an ethylene inhibitor 1-methylcyclopropene. Therefore, ZMdERF1 and ZMdEIL2 expression were responses to endogenous ethylene and associated with fruit softening and dehiscence. ZMdPG1 expression was induced when fruit softening and dehiscence but this induction can be blocked by 1-MCP, indicating that ZMdPG1 was essential for fruit softening and dehiscence and its expression was mediated by the endogenously occurred ethylene. ZMdPG1 overexpression in Arabidopsis led to silique early dehiscence while suppressing ZMdPG1 expression by antisense ZMdPG1 prevented silique naturally opening. The result also suggested that ZMdPG1 related with the connection between cells that contributed to fruit softening and dehiscence. ZMdERF1 was more closely related with ethylene signaling but it was not directly regulated the ZMdPG1, which might be regulated by the synergic pattern of ethylene transcription factors because of both the ZMdERF1 and ZMdERF2 could interact with ZMdEIL2. PMID:23527016

  12. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia

    PubMed Central

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-01-01

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825

  13. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.

    PubMed

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-10-06

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  14. Heterotrophic plate count and consumer's health under special consideration of water softeners.

    PubMed

    Hambsch, Beate; Sacré, Clara; Wagner, Ivo

    2004-05-01

    The phenomenon of bacterial growth in water softeners is well known since years. To upgrade the hygienic safety of water softeners, the German DIN Standard 19636 was developed, to assure that the distribution system could not be contaminated by these devices and that the drinking water to be used in the household still meets the microbiological standards according to the German drinking water guidelines, i.e. among others heterotrophic plate count (HPC) below 100 CFU/ml. Moreover, the standard for the water softeners includes a test for contamination with Pseudomonas aeruginosa which has to be disinfected during the regeneration phase. This is possible by sanitizing the resin bed during regeneration by producing chlorine. The results of the last 10 years of tests of water softeners according to DIN 19636 showed that it is possible to produce water softeners that comply with that standard. Approximately 60% of the tested models were accepted. P. aeruginosa is used as an indicator for potentially pathogenic bacteria being able to grow also in low nutrient conditions which normally prevail in drinking water. Like other heterotrophs, the numbers of P. aeruginosa increase rapidly as stagnation occurs. Normally P. aeruginosa is not present in the distributed drinking water. However, under certain conditions, P. aeruginosa can be introduced into the drinking water distribution system, for instance, during construction work. The occurrence of P. aeruginosa is shown in different cases in treatment plants, public drinking water systems and in-house installations. The compliance with DIN 19636 provides assurance that a water softener will not be a constant source of contamination, even if it is once inoculated with a potentially pathogenic bacterium like P. aeruginosa. Copyright 2003 Elsevier B.V.

  15. Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies.

    PubMed

    O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D

    2016-10-15

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.

  16. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...

    2015-04-13

    The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less

  17. Development of criteria for the use of asphalt-rubber as a Stress-Absorbing Membrane Interlayer (SAMI)

    NASA Astrophysics Data System (ADS)

    Newcomb, D. E.; McKeen, R. G.

    1983-12-01

    This report documents over 2 years of research efforts to characterize asphalt-rubber mixtures to be used in Stress-Absorbing Membrane Interlayers (SAMI). The purpose of these SAMIs is to retard or prevent reflection cracking in asphalt-concrete overlays. Several laboratory experiments and one field trial were conducted to define significant test methods and parameters for incorporation into construction design and specification documents. Test methods used in this study included a modified softening point test, force-ductility, and Schweyer viscosity. Variables investigated included (1) Laboratory-mixing temperature; (2) Rubber type; (3) Laboratory storage time; (4) Laboratory storage condition; (5) Laboratory batch replication; (6) Laboratory mixing time; (7) Field mixing time; (8) Laboratory test temperature; (9) Force-Ductility elongation rates; and (10) Asphalt grade. It was found that mixing temperature, mixing time, rubber type, and asphalt grade all have significant effects upon the behavior of asphalt-rubber mixtures. Significant variability was also noticed in different laboratory batch replications. Varying laboratory test temperature and force-ductility elongation rate revealed further differences in asphalt-rubber mixtures.

  18. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    NASA Astrophysics Data System (ADS)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  19. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranularmore » failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.« less

  20. Localization in Naturally Deformed Systems - the Default State?

    NASA Astrophysics Data System (ADS)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting materials typical of most rocks. Such perturbations are of themselves only larger examples of variation in the fundamental defect distribution and response; that is the boundary conditions that induce heterogeneous response are reflections of the microphysical behaviour seen in aggregate as strain accommodating softening or stabilization processes such as grain size reduction and independent grain displacements. Additionally, cyclic interplay between inelastic rupture and subsequent plastic material softening resulting from the concomitant introduction of exogenous material in the form of igneous melts, deformation-induced melts and fluid precipitates (veins). This two-stage process determines the siting and temporary stabilization of the shear phenomena, and indicates that material hardening and non-associated flow over some characteristic time are precursors to any particular instability, with stabilization of localized shear correlated with system softening tied to redistribution of strain energy dissipation within what is effectively a reconstituted material.

  1. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-11-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.

  2. Low-temperature softening in body-centered cubic alloys

    NASA Technical Reports Server (NTRS)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  3. The Work Softening Behavior of Pure Mg Wire during Cold Drawing.

    PubMed

    Sun, Liuxia; Bai, Jing; Xue, Feng; Chu, Chenglin; Meng, Jiao

    2018-04-13

    We performed multiple-pass cold drawing for pure Mg wire which showed excellent formability (~138% accumulative true strain) at room temperature. Different from the continuous work hardening occurring during cold drawing of Mg alloy wires, for pure Mg, an initially rapid increase in hardness and strength was followed by significant work softening and finally reached a steady-state level, approximately 40~45 HV. The work softening can be attributed to the dynamic recovery and recrystallization of pure Mg at room temperature. Meanwhile, an abrupt change in texture component also was detected with the transition from work hardening to softening in the strain range of 28~34%. During the whole drawing, the strongest texture component gradually transformed from as-extruded basal to <10 1 ¯ 0> fiber (~28% accumulative true strain), and then rapidly returned to the weak basal texture.

  4. The safety and effectiveness of different methods of earwax removal: a systematic review and economic evaluation.

    PubMed

    Clegg, A J; Loveman, E; Gospodarevskaya, E; Harris, P; Bird, A; Bryant, J; Scott, D A; Davidson, P; Little, P; Coppin, R

    2010-06-01

    Build-up of earwax is a common reason for attendance in primary care. Current practice for earwax removal generally involves the use of a softening agent, followed by irrigation of the ear if required. However, the safety and benefits of the different methods of removal are not known for certain. To conduct evidence synthesis of the clinical effectiveness and cost-effectiveness of the interventions currently available for softening and/or removing earwax and any adverse events (AEs) associated with the interventions. Eleven electronic resources were searched from inception to November 2008, including: The Cochrane Library; MEDLINE (OVID), PREMEDLINE In-Process & Other Non-Indexed Citations (OVID), EMBASE (OVID); and CINAHL. Two reviewers screened titles and abstracts for eligibility. Inclusion criteria were applied to the full text or retrieved papers and data were extracted by two reviewers using data extraction forms developed a priori. Any differences were resolved by discussion or by a third reviewer. Study criteria included: interventions - all methods of earwax removal available and combinations of these methods; participants - adults/children presenting requiring earwax removal; outcomes - measures of hearing, adequacy of clearance of wax, quality of life, time to recurrence or further treatment, AEs and measures of cost-effectiveness; design - randomised controlled trials (RCTs) and controlled clinical trials (CCTs) for clinical effectiveness, cohort studies for AEs and cost-effectiveness, and costing studies for cost-effectiveness. For the economic evaluation, a deterministic decision tree model was developed to evaluate three options: (1) the use of softeners followed by irrigation in primary care; (2) softeners followed by self-irrigation; and (3) a 'no treatment' option. Outcomes were assessed in terms of benefits to patients and costs incurred, with costs presented by exploratory cost-utility analysis. Twenty-six clinical trials conducted in primary care (14 studies), secondary care (8 studies) or other care settings (4 studies), met the inclusion criteria for the review - 22 RCTs and 4 CCTs. The range of interventions included 16 different softeners, with or without irrigation, and in various different comparisons. Participants, outcomes, timing of intervention, follow-up and methodological quality varied between studies. On measures of wax clearance Cerumol, sodium bicarbonate, olive oil and water are all more effective than no treatment; triethanolamine polypeptide (TP) is better than olive oil; wet irrigation is better than dry irrigation; sodium bicarbonate drops followed by irrigation by nurse is more effective than sodium bicarbonate drops followed by self-irrigation; softening with TP and self-irrigation is more effective than self-irrigation only; and endoscopic de-waxing is better than microscopic de-waxing. AEs appeared to be minor and of limited extent. Resuts of the exploratory economic model found that softeners followed by self-irrigation were more likely to be cost-effective [24,433 pounds per quality-adjusted life-year (QALY)] than softeners followed by irrigation at primary care (32,130 pounds per QALY) when compared with no treatment. Comparison of the two active treatments showed that the additional gain associated with softeners followed by irrigation at primary care over softeners followed by self-irrigation was at a cost of 340,000 pounds per QALY. When compared over a lifetime horizon to the 'no treatment' option, the ICERs for softeners followed by self-irrigation and of softeners followed by irrigation at primary care were 24,450 pounds per QALY and 32,136 pounds per QALY, respectively. The systematic review found limited good-quality evidence of the safety, benefits and costs of the different strategies, making it difficult to differentiate between the various methods for removing earwax and rendering the economic evaluation as speculative. Although softeners are effective, which specific softeners are most effective remains uncertain. Evidence on the effectiveness of methods of irrigation or mechanical removal was equivocal. Further research is required to improve the evidence base, such as a RCT incorporating an economic evaluation to assess the different ways of providing the service, the effectiveness of the different methods of removal and the acceptability of the different approaches to patients and practitioners.

  5. Cohesive model applied to fracture propagation in Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Rinehart, A. J.; Bishop, J. E.

    2014-12-01

    We apply a cohesive fracture (CF) model to results of short-rod (SR), notched 3-point-bend (N3PB) tests, and Brazil tests in Indiana Limestone. Calibration and validation of the model are performed within a commercial finite element modeling platform. By using a linear traction-displacement softening response for a defined fracture-opening displacement (w1) following peak tensile stress (σcrit), the CF model numerically lumps different spatially distributed inelastic processes occurring at and around fracture tips into a thin zone within an elastic domain. Both the SR and the N3PB test specimen geometries use a notch partway through the sample to control the location of fracture propagation. We develop a mesh for both the SR and N3PB geometries with a narrow cohesive zone in the center of notches. From the Brazil tests, we find a tensile splitting stress (σsplit) of 5.9 MPa. We use a σsplit as the peak tensile stress (σcrit) for all simulations. The Young's modulus (E) and the critical crack opening distance (w1) of the CF model are calibrated against the SR data. The model successfully captures the elastic, yield, peak, and initial and late failure behavior and compares favorably against the N3PB tests. Differences in force-displacement and crack propagation are primarily caused by: more mixed-mode (shear and opening) crack propagation in N3PB than in SR tests, causing a higher peak; and transition from compression (high E) to tension (low E) in a larger volume of the N3PB sample than in the SR geometry. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Swelling and Softening of the Cowpea Chlorotic Mottle Virus in Response to pH Shifts

    PubMed Central

    Wilts, Bodo D.; Schaap, Iwan A.T.; Schmidt, Christoph F.

    2015-01-01

    Cowpea chlorotic mottle virus (CCMV) forms highly elastic icosahedral protein capsids that undergo a characteristic swelling transition when the pH is raised from 5 to 7. Here, we performed nano-indentation experiments using an atomic force microscope to track capsid swelling and measure the shells’ Young’s modulus at the same time. When we chelated Ca2+ ions and raised the pH, we observed a gradual swelling of the RNA-filled capsids accompanied by a softening of the shell. Control experiments with empty wild-type virus and a salt-stable mutant revealed that the softening was not strictly coupled to the swelling of the protein shells. Our data suggest that a pH increase and Ca2+ chelation lead primarily to a loosening of contacts within the protein shell, resulting in a softening of the capsid. This appears to render the shell metastable and make swelling possible when repulsive forces among the capsid proteins become large enough, which is known to be followed by capsid disassembly at even higher pH. Thus, softening and swelling are likely to play a role during inoculation. PMID:25992732

  7. Cation Exchange Water Softeners

    EPA Pesticide Factsheets

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  8. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...

  9. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...

  10. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...

  11. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening or GAC10... Haloacetic acids (five) (HAA5) Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with...

  12. Water Softener NOI Meeting Summary

    EPA Pesticide Factsheets

    A public meeting webinar was held on cation exchange water softeners to explain the specification development process, clarify the Notification of Intent (NOI), discuss stakeholder feedback, and gather input on a path forward for labeling this product.

  13. Influence of Excessive Moisture in the Subgrade on the Durability and Load-Bearing Capacity of Road Pavements

    NASA Astrophysics Data System (ADS)

    Mieczkowski, P.; Budziński, B.

    2018-05-01

    When well performed, pavement renewal or alteration shall ensure the desired properties of the road during the assumed period of operation. Presence of water in the subgrade can be one of the main factors affecting the structural capacity of pavement and can result in cracking of the bituminous layers, even after a very short period of trafficking. Reconstruction of one of regional roads in Poland has been chosen to serve as an example of inappropriate approach to the problem of the presence of water in the road structure. The project included construction of new layers of pavement and increasing the design life of the whole pavement structure to 4.06 million ESAL of 100 kN (as per the Standard Catalogue of Typical Flexible and Semi-rigid Road Pavement Structures, issue of 1997). After a relatively short period of trafficking (3-5 years) localised alligator cracking appeared on the surface along with structural deformations. The pavement condition assessment including FWD tests was carried out to reveal excessive deflections (over 500 μm) which classify the road for renewal. The analysis of data showed that the main cause of distress was softening of the subgrade caused by an ingress of precipitation water under the pavement layers through the roadway and shoulder edges. The deficiencies of the performed reconstruction occurred both in the roadway (including small step-outs in the cement-treated layer) and partly in the shoulders where the existing soil was in places replaced with impervious material, with the existing (cohesive) material left in place on a major part of the overall length.

  14. Thermography detection on the fatigue damage

    NASA Astrophysics Data System (ADS)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.

  15. Vibrational Softening of a Protein on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balog, Erica; Perahia, David; Smith, Jeremy C

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  16. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit.

    PubMed

    Wang, Miao-Miao; Zhu, Qing-Gang; Deng, Chu-Li; Luo, Zheng-Rong; Sun, Ning-Jing; Grierson, Donald; Yin, Xue-Ren; Chen, Kun-Song

    2017-11-01

    Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO 2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 μL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO 2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkβ-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO 2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Tailbone trauma - aftercare

    MedlinePlus

    ... or naproxen (Aleve, Naprosyn, and others). You can buy these medicines without a prescription. DO NOT use these medicines ... of fluids to avoid constipation. Use stool softener medicine if needed. You can buy stool softeners at the drugstore. Activity As your ...

  18. Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.

    PubMed

    Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana

    2016-01-13

    Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers.

  19. Regularized finite element modeling of progressive failure in soils within nonlocal softening plasticity

    NASA Astrophysics Data System (ADS)

    Huang, Maosong; Qu, Xie; Lü, Xilin

    2017-11-01

    By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.

  20. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent the surface/edge micro-cracks (i.e. sources of crack initiation). The low load (<10mN) nanoindentations using Hysitron Triboindenter RTM have been applied to estimate the zone of crack-propagation related plastic deformation and amorphization around the radial or the lateral cracks. The gradual reduction in hardness due to local stress field and phase change around the crack has been established using electron back scattered diffraction (EBSD), atomic force microscopy (AFM) and Raman spectroscopy, respectively, at nano- and micro-scale. The load (P) vs. displacement (h) curves depict characteristic phase transformation events (eg. elbow or pop-out) depending on the sign of residual stress in the silicon lattice. The formation of Si-XII/III phases (elastic phases) in large volumes during indentation of compressed Si lattice have been discussed as an option to eliminate the edge micro-cracks formed during wafer sawing by ductile flow. The stress gradient at an interface, which can be a grain-boundary (GB), twin or a interface between silicon and precipitate, has been evaluated for crack path modification. An direct-silicon-bonded (DSB) based ideal [110]/[100] interface has been examined to study the effect of crystallographic orientation variation across a planar silicon 2D boundary. Using constant source diffusion/annealing process, Fe and Cu impurities have been incorporated in model [110]/[100]GB to provide equivalence to a real decorated multi-crystalline grain boundary. We found that Fe precipitates harden the undecorated GB structure, whereas Cu precipitates introduce dislocation-induced plasticity to soften it. Aluminum Schottky diodes have been evaporated on the DSB samples to sensitively detect the instantaneous current response from the phase-transformed Si under nanoindenter tip. The impact of metallic impurity and their precipitates on characteristic phase transformations (i.e. pop-in or pop-out) demonstrate that scattered distribution of large Cu-precipitates (upto 50 nm) compresses Si-lattice to facilitate Si-XII/III formations, i.e. high pressure ductile phases. Sweeping voltage measurements at a given load determine that Si lattice has to be stressed beyond 1 mN to complete the Si-I (semiconducting) to Si-II (ohmic) phase changes. Above 1 mN load DSB sample has a varistor-like behavior due to higher grain-boundary resistance from interfacial states. The precipitate defect structure stimulated stresses at the bulk Si lattice or grain boundary modify the rate of elastic energy release at the crack-tip and associated phase change and hardness values in response to external loading. The systematic approach in this thesis elucidates that the interfacial surface area between Si-lattice and precipitate plays pivotal role in defining extent of stresses in the silicon, i.e. smaller precipitates in higher densities are severe than few larger volume precipitates. The finding of high-pressure ductile phase formation during loading of compressed silicon structure has been suggested to PV industry as a prospective candidate for reducing the wafer breakage and allowing larger handling stresses.

  1. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  2. Power-law viscous materials for analogue experiments: New data on the rheology of highly-filled silicone polymers

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Schrank, C.; Cruden, A.

    2008-03-01

    The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ˜3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.

  3. Strontium Removal: Full-Scale Ohio Demonstrations

    EPA Science Inventory

    The objectives of this presentation are to present a brief overview of past bench-scale research to evaluate the impact lime softening on strontium removal from drinking water and present full-scale drinking water treatment studies to impact of lime softening and ion exchange sof...

  4. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  5. Applications for reuse of lime sludge from water softening.

    DOT National Transportation Integrated Search

    2005-07-15

    Lime sludge, an inert material mostly composed of calcium carbonate, is the result of : softening hard water for distribution as drinking water. A large city such as Des Moines, : Iowa, produces about 30,700 tons of lime sludge (dry weight basis) ann...

  6. MLC-based penumbra softener of EDW borders to reduce junction inhomogeneities.

    PubMed

    Szpala, Stanislaw; Kohli, Kirpal

    2017-05-01

    Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs. The movement of each leaf was individually synchronized with the movement of the dynamic Y jaw to soften the penumbra in the same manner along the entire field border, in spite of the presence of the dose gradient of the EDW. Junction homogeneity upon field misalignment for side-matched EDWs was examined with the MV imager. The fluence inhomogeneities were reduced from about 30% per mm of shift of the field borders for the conventional EDW to about 2% per mm for the softened-penumbra plan. The junction in a four-field monoisocentric breast plan delivered to the Rando phantom was assessed with film. The dose inhomogeneities across the junction in the superior-inferior direction were reduced from about 20% to 25% per mm for the conventional fields to about 5% per mm. The dose near the softened junction of the breast plan with no shifts did not deviate from the conventional plan by more than about 4%. The newly-developed softened-penumbra junction of EDW (and/or open) fields was shown to reduce sensitivity to misalignments without increasing complexity of the planning or delivery. This methodology needs to be adopted by the manufacturers for clinical use. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Describing Quality and Sensory Attributes of 3 Mango (Mangifera indica L.) Cultivars at 3 Ripeness Stages Based on Firmness.

    PubMed

    Nassur, Rita de Cássia Mirela Resende; González-Moscoso, Sara; Crisosto, Gayle M; Lima, Luiz Carlos de Oliveira; Vilas Boas, Eduardo Valério de Barros; Crisosto, Carlos H

    2015-09-01

    To determine the ideal ripening stage for consumption of the mango cultivars, "Ataulfo," "Haden," and "Tommy Atkins"; fruits at 3 flesh firmness levels (ripeness stages) were evaluated by a trained panel using descriptive analysis after instrumental measurements were made. After harvest, all fruits were ripened to allow softening and quality and sensory attribute changes. Ripening changes during softening of Ataulfo mangos were expressed by a characteristic increase in the perception of "tropical fruit" and "peach" aromas, an increase in "juiciness," "sweetness," and "tropical fruit" flavor, while "fibrousness," "chewiness," and "sourness" decreased. Similar desirable sensory changes were also detected during softening of Haden mangos; an increase in tropical fruit and peach aromas, sweetness and tropical fruit flavor, and a decrease in chewiness, sourness, and bitterness. Softening of Tommy Atkins mangos was followed by reduced chewiness and sourness and increased peach aroma. Softening of all cultivars was followed by decreased sourness and titratable acidity (TA) and increased soluble solids concentration (SSC) and SSC:TA ratio. The results indicate that mango ripening leads to increased expression of sensory attributes such as tropical fruit and peach aromas, tropical flavor, and sweetness that have been related to improved eating quality and these final changes in sensory quality attributes are specific for each cultivar. For example, Ataulfo and Haden mangos had greater improvement in quality and sensory attributes related to fruit eating quality during ripening-softening than Tommy Atkins. In our consumer test, these quality-sensory attributes expressed during ripening that were perceived by the trained panel were also validated, supporting the need for a controlled ripening protocol in mangos. © 2015 Institute of Food Technologists®

  8. The Evolution of Protective Covers for Army Aviation and Missile Systems

    DTIC Science & Technology

    2010-02-01

    reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF • Thermal aging: oxidation...structural change, chemical reaction • Softening, melting and sublimination • Viscosity reduction and evaporation • Physical expansion • Decreased MTBF

  9. Vitamin D Status of Submariners during Patrol

    DTIC Science & Technology

    1989-01-31

    osteomalacia in adults5. Davis and Morris6𔄁 have reported that the calcium metabolism of submariners is deficient, and they attribute this alteration to...question. In severe vitamin D deficiencies in adults osteomalacia results with attendant softening of the bones. Ulis softening increases the

  10. Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella.

    PubMed

    Gwanpua, Sunny George; Verlinden, Bert E; Hertog, Maarten L A T M; Nicolai, Bart M; Hendrickx, Marc; Geeraerd, Annemie

    2016-11-15

    Kanzi is a recently developed apple cultivar that has an extremely low ethylene production, and maintains its crispiness during ripening. To identify key determinants of the slow softening behaviour of Kanzi apples, a comparative analysis of pectin biochemistry and tissue fracture pattern during different ripening stages of Kanzi apples was performed against Golden Delicious, a rapid softening cultivar. While substantial pectin depolymerisation and solubilisation was observed during softening in Golden Delicious apples, no depolymerisation or increased solubilisation was observed in Kanzi apples. Moreover, tissue failure during ripening was mainly by cell breakage in Kanzi apples and, in contrast, by cell separation in Golden Delicious apples. Kanzi apples had lower activity of beta-galactosidase, with no decline in the extent of branching of the pectin chain. A sudden decrease in firmness observed during senescence in Kanzi apples was not due to middle lamella dissolution, as tissue failure still occurred by cell breakage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High temperature lithium cells with solid polymer electrolytes

    DOEpatents

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  12. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE PAGES

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    2017-05-05

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  13. Design, properties, and weldability of advanced oxidation-resistant FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gussev, M. N.; Field, K. G.; Yamamoto, Y.

    FeCrAl alloys are promising as corrosion- and oxidation-resistance materials for extreme high-temperature applications. However, further alloy design and improvement requires a delicate balance between workability, weldability, propensity for '-phase formation, among other factors. Here, a series of advanced oxidant resistant FeCrAl alloys were produced and investigated. Variants with Al (+2%), Nb (+1%), and TiC (0.1, 0.3, and 1%) additions over the reference alloy (Fe-13%Cr-5%Al) were characterized in detail before and after controlled laser beam welding using tensile tests with digital image correlation, SEM-EBSD analysis, and fractography. All investigated alloys demonstrated yield stress in the weldment over 500 MPa; no welding-inducedmore » cracking was observed. However, it was shown that the increase in the Al-content over 5% was detrimental leading to a brittle fracture mechanism and decreased ductility in the weldment. At the same time, Nb and TiC additions were beneficial for preventing grain growth and reducing local softening (yield stress reduction) in the heat-affected zone. The 1% TiC addition also effectively refined grain size in the weldment.« less

  14. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  15. The effects of three different food acids on the attrition-corrosion wear of human dental enamel

    NASA Astrophysics Data System (ADS)

    Zhang, Yichi; Arsecularatne, Joseph A.; Hoffman, Mark

    2015-07-01

    With increased consumption of acidic drinks and foods, the wear of human teeth due to attrition in acidic environments is an increasingly important issue. Accordingly, the present paper investigates in vitro the wear of human enamel in three different acidic environments. Reciprocating wear tests in which an enamel cusp slides on an enamel flat surface were carried out using acetic, citric and lactic acid lubricants (at pH 3-3.5). Distilled water was also included as a lubricant for comparison. Focused ion beam milling and scanning electron microscopy imaging were then used to investigate the enamel subsurfaces following wear tests. Nanoindentation was used to ascertain the changes in enamel mechanical properties. The study reveals crack generation along the rod boundaries due to the exposure of enamel to the acidic environments. The wear mechanism changes from brittle fracture in distilled water to ploughing or shaving of the softened layer in acidic environments, generating a smooth surface with the progression of wear. Moreover, nanoindentation results of enamel samples which were exposed to the above acids up to a duration of the wear tests show decreasing hardness and Young’s modulus with exposure time.

  16. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.

  17. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  18. Zeolite A imidazolate frameworks

    NASA Astrophysics Data System (ADS)

    Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M.

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  19. Zeolite A imidazolate frameworks.

    PubMed

    Hayashi, Hideki; Côté, Adrien P; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and beta-cages for FAU, alpha- and beta-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  20. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  1. Initiation and propagation of mixed mode fractures in granite and sandstone

    NASA Astrophysics Data System (ADS)

    Rück, Marc; Rahner, Roman; Sone, Hiroki; Dresen, Georg

    2017-10-01

    We investigate mixed mode fracture initiation and propagation in experimentally deformed granite and sandstone. We performed a series of asymmetric loading tests to induce fractures in cylindrical specimens at confining pressures up to 20 MPa. Loading was controlled using acoustic emission (AE) feedback control, which allows studying quasi-static fracture propagation for several hours. Location of acoustic emissions reveals distinct differences in spatial-temporal fracture evolution between granite and sandstone samples. Before reaching peak stress in experiments performed on granite, axial fractures initiate first at the edge of the indenter and then propagate through the entire sample. Secondary inclined fractures develop during softening of the sample. In sandstone, inclined shear fractures nucleate at peak stress and propagate through the specimen. AE source type analysis shows complex fracturing in both materials with pore collapse contributing significantly to fracture growth in sandstone samples. We compare the experimental results with numerical models to analyze stress distribution and energy release rate per unit crack surface area in the samples at different stages during fracture growth. We thereby show that for both rock types the energy release rate increases approximately linearly during fracture propagation. The study illuminates how different material properties modify fracture initiation direction under similar loading conditions.

  2. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  3. Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.

    2018-05-01

    The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.

  4. Not changing minds but softening hearts.

    PubMed

    Morey, Jerad

    2013-01-01

    When a political decision threatened to divide communities, the Minnesota Council of Churches found a way not to change minds but to soften hearts. The Respectful Conversations Project built empathy and improved relationships, and is still helping to bring peace to communities and strengthening civic engagement in the state.

  5. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization

    PubMed Central

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from ‘Taishanzaoxia’ apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in ‘Taishanzaoxia’. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening. PMID:26719904

  6. Multimodal Strategies Allowing Corrective Feedback to Be Softened during Webconferencing-Supported Interactions

    ERIC Educational Resources Information Center

    Wigham, Ciara R.; Vidal, Julie

    2016-01-01

    This paper focuses on corrective feedback and examines how trainee-teachers use different semiotic resources to soften feedback sequences during synchronous online interactions. The ISMAEL corpus of webconferencing-supported L2 interactions in French provided data for this qualitative study. Using multimodal transcriptions, the analysis describes…

  7. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    EPA Science Inventory

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  8. 40 CFR 141.134 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproduct precursors and enhanced coagulation or enhanced softening. Systems must report the information... quarterly for TOC under the requirements of § 141.132(d) and required to meet the enhanced coagulation or... compliance with the enhanced coagulation or enhanced softening percent removal requirements in § 141.135(b...

  9. 40 CFR 141.134 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... byproduct precursors and enhanced coagulation or enhanced softening. Systems must report the information... quarterly for TOC under the requirements of § 141.132(d) and required to meet the enhanced coagulation or... compliance with the enhanced coagulation or enhanced softening percent removal requirements in § 141.135(b...

  10. 40 CFR 141.134 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproduct precursors and enhanced coagulation or enhanced softening. Systems must report the information... quarterly for TOC under the requirements of § 141.132(d) and required to meet the enhanced coagulation or... compliance with the enhanced coagulation or enhanced softening percent removal requirements in § 141.135(b...

  11. LEACHING OF METALS FROM HOUSEHOLD PLUMBING MATERIALS: IMPACT OF HOME WATER SOFTENERS

    EPA Science Inventory

    A pilot plant study was conducted to evaluate the effects of household ion exchange softening on the leaching of metals from home plumbing materials. The study was conducted in two phases on two different water qualities. Phase I was conducted using a finished tap water having a...

  12. 21 CFR 172.215 - Coumarone-indene resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mixture of indene, indan (hydrindene), substituted benzenes, and related compounds. (2) It contains no... additive meets the following specifications: (1) Softening point, ring and ball: 126 °C minimum as determined by ASTM method E28-67 (Reapproved 1982), “Standard Test Method for Softening Point by Ring-and...

  13. 21 CFR 172.215 - Coumarone-indene resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mixture of indene, indan (hydrindene), substituted benzenes, and related compounds. (2) It contains no... additive meets the following specifications: (1) Softening point, ring and ball: 126 °C minimum as determined by ASTM method E28-67 (Reapproved 1982), “Standard Test Method for Softening Point by Ring-and...

  14. 21 CFR 172.215 - Coumarone-indene resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... mixture of indene, indan (hydrindene), substituted benzenes, and related compounds. (2) It contains no... additive meets the following specifications: (1) Softening point, ring and ball: 126 °C minimum as determined by ASTM method E28-67 (Reapproved 1982), “Standard Test Method for Softening Point by Ring-and...

  15. Evaluation of the impact of lime softening waste disposal in natural environments

    EPA Science Inventory

    Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on w...

  16. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  17. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  18. A multicentre randomised controlled trial and economic evaluation of ion-exchange water softeners for the treatment of eczema in children: the Softened Water Eczema Trial (SWET).

    PubMed

    Thomas, K S; Koller, K; Dean, T; O'Leary, C J; Sach, T H; Frost, A; Pallett, I; Crook, A M; Meredith, S; Nunn, A J; Burrows, N; Pollock, I; Graham-Brown, R; O'Toole, E; Potter, D; Williams, H C

    2011-02-01

    To determine whether installation of an ion-exchange water softener in the home could improve atopic eczema in children and, if so, to establish its likely cost and cost-effectiveness. An observer-blind, parallel-group randomised controlled trial of 12 weeks duration followed by a 4-week observational period. Eczema was assessed by research nurses blinded to intervention at baseline, 4 weeks, 12 weeks and 16 weeks. The primary outcome was analysed as intent-to-treat, using the randomised allocation rather than actual treatment received. A secondary per-protocol analysis excluded participants who failed to receive their allocated treatment and who were deemed to be protocol violators. Secondary and primary care referral centres in England (UK) serving a variety of ethnic and social groups and including children living in both urban and periurban homes. Three hundred and thirty-six children (aged 6 months to 16 years) with moderate/severe atopic eczema, living in homes in England supplied by hard water (≥ 200 mg/l calcium carbonate). Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care (group A) for 12 weeks or usual eczema care alone (group B) for 12 weeks. This was followed by a 4-week observational period, during which water softeners were switched off/removed from group A homes and installed in group B homes. Standard procedure was to soften all water in the home, but to provide mains (hard) water at a faucet-style tap in the kitchen for drinking and cooking. Participants were therefore exposed to softened water for bathing and washing of clothes, but continued to drink mains (hard) water. Usual care was defined as any treatment that the child was currently using in order to control his or her eczema. New treatment regimens used during the trial period were documented. Primary outcome was the difference between group A and group B in mean change in disease severity at 12 weeks compared with baseline, as measured using the Six Area, Six Sign Atopic Dermatitis (SASSAD) score. This is an objective severity scale completed by blinded observers (research nurses) unaware of the allocated intervention. Secondary outcomes included use of topical medications, night-time movement, patient-reported eczema severity and a number of quality of life measures. A planned subgroup analysis was conducted, based on participants with at least one mutation in the gene encoding filaggrin (a protein in the skin thought to be important for normal skin barrier function). Target recruitment was achieved (n = 336). The analysed population included 323 children who had complete data. The mean change in primary outcome (SASSAD) at 12 weeks was -5.0 [standard deviation (SD) 8.8] for the water softener group (group A) and -5.7 (SD 9.8) for the usual care group (group B) [mean difference 0.66, 95% confidence interval (CI) -1.37 to 2.69, p = 0.53]. The per-protocol analysis supported the main analysis, and there was no evidence that the treatment effect varied between children with and without mutations in the filaggrin gene. No between-group differences were found in the three secondary outcomes that were assessed blindly (use of topical medications; night-time movement; proportion showing reasonable, good or excellent improvement). Small, but statistically significant, differences in favour of the water softener were found in three of the secondary outcomes that were assessed by participants [Patient-Oriented Eczema Measure (POEM); well-controlled weeks (WCWs); Dermatitis Family Index (DFI)]. The results of the economic evaluation, and the uncertainty surrounding them, suggest that ion-exchange water softeners are unlikely to be a cost-effective intervention for children with atopic eczema from an NHS perspective. Water softeners provided no additional benefit to usual care in this study population. Small, but statistically significant, differences were found in some secondary outcomes as reported by parents, but it is likely that such improvements were the result of response bias. Whether or not the wider benefits of installing a water softener in the home are sufficient to justify the purchase of a softener is something for individual householders to consider on a case-by-case basis. This trial demonstrated overwhelming demand for non-pharmacological interventions for the treatment of eczema, and this is something that should be considered when prioritising future research in the field. Current Controlled Trials ISRCTN71423189. This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 15, No. 8. See the HTA programme website for further project information. Results of this trial are also published at www.plosmedicine.org.

  19. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    PubMed

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P < 0.001) with the potential pathogenic bacteria. Collectively, the findings in this study reveal the diversity, abundance, and possible sources of fecal bacteria in the Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  20. Layer by Layer, Nano-particle "Only" Surface Modification of Filtration Membranes

    NASA Astrophysics Data System (ADS)

    Escobar-Ferrand, Luis

    Layer by Layer (LbL) deposition using primarily inorganic silica nanoparticles is employed for the modification of polymeric micro and ultrafiltration (MF/UF) membranes to produce thin film composites (TFC) with potential nanofiltration (NF) and reverse osmosis (RO) capabilities.. A variety of porous substrate membranes with different membrane surface characteristics are employed, but exhibiting in common that wicking of water does not readily occur into the pore structure, including polycarbonate track etched (PCTE), polyethersulfone (PES) and sulfonated PES (SPEES) MF/UF membranes. Both spherical (cationic/anionic) and eccentric elongated (anionic) silica nanoparticles are deposited using conditions similar to those reported by Lee et al. Appropriate selection of the pH's for anionic and cationic particle deposition enables the construction of nanoparticle only layers 100--1200 nm in thickness atop the original membrane substrates. The surface layer thickness varies monotonically with the number of bilayers (anionic/cationic deposition cycles) as expected. The deposition process is optimized to eliminate drying induced cracking and to improve mechanical durability via thickness control and post-deposition hydro-thermal treatment. The hydrodynamic permeability of these TFC membranes is measured to evaluate their performance under typical NF operating conditions using dead-end permeation experiments and their performance compared quantitatively with realistic hydrodynamic models, with favorable results. For track etched polycarbonate MF substrates, surface modification causes a permeability reduction of approximately two orders of magnitude with respect to the bare substrates, to values comparable to those for typical commercial NF membranes. Good quantitative agreement with hydrodynamic models with no adjustable parameters was also established for this case, providing indirect confirmation that the LbL deposited surface layers are largely defect (crack) free. Imaging of our TFC membranes after permeation tests confirmed that no significant mechanical damage resulted, indicating integrity and robustness of the LbL deposited surface layers in typical applications. The selectivity of these novel TFC membranes was also tested using standard "rejection" tests normally used to characterize NF and RO membranes for their capabilities in typical applications, such as water softening or desalination. We report the dextran standards molecular weight "cut-off" (MWCO) using mixed dextrans from 1.5 to 500 KDa in dead-end stir cells, and the percentage of rejection of standard bivalent and monovalent salt solutions using steady cross flow permeation experiments. The results confirm rejection of at least 60% of even the smallest dextrans, an estimated dextran MWCO of 20 KDa, and rejection of 10% and 20% for monovalent (NaCl) and bivalent (MgSO4) salts, respectively, for all the TFC membranes studied, while the unmodified membranes showed no rejection capability at all. The work supports that nanoparticle based LbL surface modification of MF/UF membranes can produce filtration quality media for important water purification applications, such as nanofiltration (NF) softening processes, natural organic matter (NOM) elimination and possibly reverse osmosis (RO) desalination.

  1. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber/matrix structure, allowing them to function in a synergistic fashion yet remain physically separated. This latter aspect is critical since it enables the control of overall composite properties and functions by separately tuning each component. Utilizing the intrinsic versatility of this approach, composites with novel properties and functions (in addition to "regular" shape memory) have been developed, including (1) shape memory elastomeric composites (SMECs; Chapter 4), (2) triple-shape polymeric composites (TSPCs; Chapter 5), and (3) electrically conductive nanocomposites (Chapter 6). Then in Chapter 7, by combining the success in both thermoplastic based self-healing and shape memory polymer composites, we demonstrate a thermally triggered self-healing coating. This coating features a unique "shape memory assisted self-healing" mechanism in which crack closure (via shape memory) and crack re-bonding (via melting and diffusion of the thermoplastic healing agent) are achieved simultaneously upon a single heating step, leading to both structural and functional (corrosion resistance) recovery. Finally, Chapter 8 presents for the first time the preparation of functionally graded shape memory polymers (SMPs) that, unlike conventional SMPs, have a range of glass transition temperatures that are spatially graded. This was achieved using a temperature gradient curing method that imposes different vitrification limits at different positions along the gradient. The resulting material is capable of responding to a wide range of thermal triggers and a good candidate for low-cost, material based temperature sensors. All the aforementioned materials and methods show great potential for practical applications due to their high performance, low cost and broad applicability. Some recommendations for future research and development are given in Chapter 9.

  2. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.

    2011-07-01

    Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.

  3. Advanced Chemical Precipitation Softening. Training Module 2.217.4.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation and maintenance of a chemical precipitation softening system. Included are objectives, instructor guides, student handouts and transparency masters. This is the third level of a three module series. This module considers…

  4. Heat resistant soy adhesives for structural wood products

    Treesearch

    Christopher G. Hunt; Charles Frihart; Jane O' Dell

    2009-01-01

    Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening and depolymerization of biobased polymers at elevated temperatures should be an advantage of biobased adhesives compared to fossil fuel-based adhesives. Because load-bearing bonded wood assemblies must support the structure during a fire, the limited softening...

  5. Intermediate Chemical Precipitation Softening. Training Module 2.216.3.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation and maintenance of a chemical precipitation softening system. Included are objectives, instructor guides, student handouts and transparency masters. This is the second level of a three module series. The module considers…

  6. Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.

    PubMed

    Uto, K; Aoyagi, T; DeForest, C A; Ebara, M

    2018-05-01

    Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.

  7. 21 CFR 172.215 - Coumarone-indene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), substituted benzenes, and related compounds. (2) It contains no more than 0.25 percent tar bases. (3) 95...) Softening point, ring and ball: 126 °C minimum as determined by ASTM method E28-67 (Reapproved 1982), “Standard Test Method for Softening Point by Ring-and-Ball Apparatus,” which is incorporated by reference...

  8. Strain softening during tension in cold drawn Cu–Ag alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.L., E-mail: lilichang@sdu.edu.cn; Wen, S.; Li, S.L.

    2015-10-15

    Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed tomore » be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.« less

  9. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperaturemore » softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.« less

  10. Marine and Freshwater Fecal Indicators and Source Identification

    EPA Science Inventory

    Fecal indicators are organisms or chemical constituents found in fecal material or wastewater that can be measured to demonstrate the presence of fecal pollution. Fecal waste from humans and other animals can contaminant surface waters and pose a serious threat to the environmen...

  11. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes.

    PubMed

    Meli, Vijaykumar S; Ghosh, Sumit; Prabha, T N; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2010-02-09

    In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.

  12. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  13. Contact with beach sand, concentrations of fecal indicators, and enteric illness risk

    EPA Science Inventory

    Recent studies ofbeach sand fecal contamination have triggered interest among scientists and in the media. Although evidence shows that beach sand can harbor fecal indicator organisms as well as fecal pathogens, illness risk associated with beach sand contact and fecal indicators...

  14. Fecal consistency as related to dietary composition in lactating Holstein cows.

    PubMed

    Ireland-Perry, R L; Stallings, C C

    1993-04-01

    A trial was designed to study the relationships of dietary fiber and protein percentage and source to fecal consistency in lactating cattle. Thirty Holstein cows were assigned randomly to one of six TMR through four 21-d periods. The TMR were formulated to contain 17 or 25% ADF and CP of 15 or 22% with soybean meal supplementation or 22% with a combination of corn gluten and soybean meals. Two forage combinations were corn silage with or without alfalfa. Fecal consistency was evaluated using a four-point visual observation scale. Lower dietary fiber reduced fecal pH, score, NDF, and ADF but increased fecal DM and starch. A higher percentage of soybean meal lowered fecal DM and fecal score. Forage source affected fecal DM, NDF, ADF, and starch, but not pH or score. Prediction of fecal score from dietary components and cow parameters resulted in dietary DM percentage and 4% FCM as the most related variables. Accurate prediction of fecal consistency score from dietary and cow parameters was not possible.

  15. Effect of calcium and phosphorus, residual lactose, and salt-to-moisture ratio on the melting characteristics and hardness of cheddar cheese during ripening.

    PubMed

    Chevanan, N; Muthukumarappan, K

    2007-05-01

    Meltability, melt profile parameters, and hardness of cheddar cheese prepared with varying levels of calcium (Ca) and phosphorus (P) content, residual lactose content, and salt-to-moisture ratio were studied at 0, 1, 2, 4, 6, and 8 mo of ripening. Meltability, melt profile parameters, and hardness of cheddar cheeses measured at 0, 1, 2, 4, 6, and 8 mo of ripening showed significant interaction between the levels of Ca and P, residual lactose, salt-to-moisture ratio, and ripening time for most of the properties studied. cheddar cheese prepared with high Ca and P (0.67% Ca and 0.53% P) resulted in up to 6.2%, 4.5%, 9.6%, 5.0%, and 22.8% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 23.5%, 9.6%, and 3.2% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low Ca and P (0.53% Ca and 0.39% P). cheddar cheese prepared with high lactose (1.4%) content resulted in up to 7.7%, 7.0%, 4.9%, 4.2%, and 24.6% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 14.7%, 12.7%, and 2.8% decrease in meltability, flow rate, and extent of flow respectively compared to the cheddar cheese prepared with low lactose (0.78%) content. cheddar cheese prepared with high salt-to-moisture ratio (6.4%) resulted in up to 21.8%, 11.3%, 12.9%, 4.1%, and 29.4% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 13.2%, 28.6%, and 2.6% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low salt-to-moisture ratio (4.8%) during ripening.

  16. Strain localization in models and nature: bridging the gaps.

    NASA Astrophysics Data System (ADS)

    Burov, E.; Francois, T.; Leguille, J.

    2012-04-01

    Mechanisms of strain localization and their role in tectonic evolution are still largely debated. Indeed, the laboratory data on strain localization processes are not abundant, they do not cover the entire range of possible mechanisms and have to be extrapolated, sometimes with greatest uncertainties, to geological scales while the observations of localization processes at outcrop scale are scarce, not always representative, and usually are difficult to quantify. Numerical thermo-mechanical models allow us to investigate the relative importance of some of the localization processes whether they are hypothesized or observed at laboratory or outcrop scale. The numerical models can test different observationally or analytically derived laws in terms of their applicability to natural scales and tectonic processes. The models are limited, however, in their capacity of reproduction of physical mechanisms, and necessary simplify the softening laws leading to "numerical" localization. Numerical strain localization is also limited by grid resolution and the ability of specific numerical codes to handle large strains and the complexity of the associated physical phenomena. Hence, multiple iterations between observations and models are needed to elucidate the causes of strain localization in nature. We here investigate the relative impact of different weakening laws on localization of deformation using large-strain thermo-mechanical models. We test using several "generic" rifting and collision settings, the implications of structural softening, tectonic heritage, shear heating, friction angle and cohesion softening, ductile softening (mimicking grain-size reduction) as well as of a number of other mechanisms such as fluid-assisted phase changes. The results suggest that different mechanisms of strain localization may interfere in nature, yet it most cases it is not evident to establish quantifiable links between the laboratory data and the best-fitting parameters of the effective softening laws that allow to reproduce large scale tectonic evolution. For example, one of most effective and widely used mechanisms of "numerical" strain localization is friction angle softening. Yet, namely this law appears to be most difficult to justify from physical and observational grounds.

  17. Effects of Sampling Conditions and Environmental Factors on Fecal Volatile Organic Compound Analysis by an Electronic Nose Device

    PubMed Central

    Berkhout, Daniel J. C.; Benninga, Marc A.; van Stein, Ruby M.; Brinkman, Paul; Niemarkt, Hendrik J.; de Boer, Nanne K. H.; de Meij, Tim G. J.

    2016-01-01

    Prior to implementation of volatile organic compound (VOC) analysis in clinical practice, substantial challenges, including methodological, biological and analytical difficulties are faced. The aim of this study was to evaluate the influence of several sampling conditions and environmental factors on fecal VOC profiles, analyzed by an electronic nose (eNose). Effects of fecal sample mass, water content, duration of storage at room temperature, fecal sample temperature, number of freeze–thaw cycles and effect of sampling method (rectal swabs vs. fecal samples) on VOC profiles were assessed by analysis of totally 725 fecal samples by means of an eNose (Cyranose320®). Furthermore, fecal VOC profiles of totally 1285 fecal samples from 71 infants born at three different hospitals were compared to assess the influence of center of origin on VOC outcome. We observed that all analyzed variables significantly influenced fecal VOC composition. It was feasible to capture a VOC profile using rectal swabs, although this differed significantly from fecal VOC profiles of similar subjects. In addition, 1285 fecal VOC-profiles could significantly be discriminated based on center of birth. In conclusion, standardization of methodology is necessary before fecal VOC analysis can live up to its potential as diagnostic tool in clinical practice. PMID:27886068

  18. IDENTIFICATION OF CHICKEN-SPECIFIC FECAL MICROBIAL SEQUENCES USING A METAGENOMIC APPROACH

    EPA Science Inventory

    In this study, we applied a genome fragment enrichment (GFE) method to select for genomic regions that differ between different fecal metagenomes. Competitive DNA hybridizations were performed between chicken fecal DNA and pig fecal DNA (C-P) and between chicken fecal DNA and an ...

  19. TRACKING FECAL CONTAMINATION WITH BACTEROIDALES MOLECULAR MARKERS: AN ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION IN THE TILLAMOOK BASIN, OREGON

    EPA Science Inventory

    Although amplification of source-specific molecular markers from Bacteroidales fecal bacteria can identify several different kinds of fecal contamination in water, it remains unclear how this technique relates to fecal indicator measurements in natural waters. The objectives of t...

  20. Softening and Hardening of Alloys of the Al - Zn System Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Skvortsov, A. I.; Polev, V. V.

    2017-11-01

    The proportion of hardening and softening under plastic deformation at room temperature in metals and alloys of the Al - Zn system has been studied as dependent on the regime of preliminary heat treatment. The influence of the strain rate on the dependence of alloy hardness on the degree of plastic deformation is estimated.

  1. Advanced Ion Exchange Softening. Training Module 2.212.4.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts and transparency masters. This is the third level of a three module series. This module considers the theory of ion…

  2. The Water Softener-A Relevant, Unifying Example of Many Common Chemical Principles and Calculations.

    ERIC Educational Resources Information Center

    Fulkrod, John E.

    1985-01-01

    Determining the pounds of sodium chloride needed for a water softener to replace all the calcium/magnesium ions in a month's water supply for a typical local household is used as an exercise to integrate several chemistry concepts. The solution to this problem and suggestions for related laboratory experiments are offered. (JN)

  3. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  4. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  5. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  6. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  7. 40 CFR 141.553 - My system practices lime softening-is there any special provision regarding my combined filter...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... there any special provision regarding my combined filter effluent? 141.553 Section 141.553 Protection of... Filter Effluent Requirements § 141.553 My system practices lime softening—is there any special provision regarding my combined filter effluent? If your system practices lime softening, you may acidify...

  8. Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide

    DTIC Science & Technology

    2015-06-01

    harden or soften B6O. The hardening or softening depends on the location and the type of a dopant . When the doping creates a B4C-like local...Lett. 2005;86:041911. 9. Nifise E. Study of sintering and structure property relationships in boron suboxide – alkaline earth metal oxide, cobalt

  9. Comparison of Fecal Collection Methods for Microbiota Studies in Bangladesh

    PubMed Central

    Chen, Jun; Kibriya, Muhammad G.; Chen, Yu; Islam, Tariqul; Eunes, Mahbubul; Ahmed, Alauddin; Naher, Jabun; Rahman, Anisur; Amir, Amnon; Shi, Jianxin; Abnet, Christian C.; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Ahsan, Habibul; Sinha, Rashmi

    2017-01-01

    ABSTRACT To our knowledge, fecal microbiota collection methods have not been evaluated in low- and middle-income countries. Therefore, we evaluated five different fecal sample collection methods for technical reproducibility, stability, and accuracy within the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Fifty participants from the HEALS provided fecal samples in the clinic which were aliquoted into no solution, 95% ethanol, RNAlater, postdevelopment fecal occult blood test (FOBT) cards, and fecal immunochemical test (FIT) tubes. Half of the aliquots were frozen immediately at −80°C (day 0) and the remaining samples were left at ambient temperature for 96 h and then frozen (day 4). Intraclass correlation coefficients (ICC) were calculated for the relative abundances of the top three phyla, for two alpha diversity measures, and for four beta diversity measures. The duplicate samples had relatively high ICCs for technical reproducibility at day 0 and day 4 (range, 0.79 to 0.99). The FOBT card and samples preserved in RNAlater and 95% ethanol had the highest ICCs for stability over 4 days. The FIT tube had lower stability measures overall. In comparison to the “gold standard” method using immediately frozen fecal samples with no solution, the ICCs for many of the microbial metrics were low, but the rank order appeared to be preserved as seen by the Spearman correlation. The FOBT cards, 95% ethanol, and RNAlater were effective fecal preservatives. These fecal collection methods are optimal for future cohort studies, particularly in low- and middle-income countries. IMPORTANCE The collection of fecal samples in prospective cohort studies is essential to provide the opportunity to study the effect of the human microbiota on numerous health conditions. However, these collection methods have not been adequately tested in low- and middle-income countries. We present estimates of technical reproducibility, stability at ambient temperature for 4 days, and accuracy comparing a “gold standard” for fecal samples in no solution, 95% ethanol, RNAlater, postdevelopment fecal occult blood test cards, and fecal immunochemical test tubes in a study conducted in Bangladesh. Fecal occult blood test cards and fecal samples stored in 95% ethanol or RNAlater adequately preserve fecal samples in this setting. Therefore, new studies in low- and middle-income countries should include collection of fecal samples using fecal occult blood test cards, 95% ethanol, or RNAlater for prospective cohort studies. PMID:28258145

  10. Influence of dietary fiber type and amount on energy and nutrient digestibility, fecal characteristics, and fecal fermentative end-product concentrations in captive exotic felids fed a raw beef-based diet.

    PubMed

    Kerr, K R; Morris, C L; Burke, S L; Swanson, K S

    2013-05-01

    Little nutritional or metabolic information has been collected from captive exotic cats fed raw diets. In particular, fiber types and concentrations for use in raw meat-based diets for captive exotic felids have not been well studied. Our objective was to evaluate the effects of fiber type and concentration on apparent total tract energy and macronutrient digestibility, fecal characteristics, and fecal fermentative end-products in captive exotic felids. Four animals of each captive exotic species (jaguar (Panthera onca), cheetah (Acinonyz jubatus), Malayan tiger (Panthera tigris corbetti), and Siberian tiger (Panthera tigris altaica) were randomized in four 4 × 4 Latin square designs (1 Latin square per species) to 1 of the 4 raw beef-based dietary treatments (94.7 to 96.7% beef trimmings): 2 or 4% cellulose or 2 or 4% beet pulp. Felid species, fiber type, and fiber concentration all impacted digestibility and fecal fermentative end-products. Inclusion of beet pulp increased (P ≤ 0.05) fecal short-chain fatty acids and fecal output in all cats. Inclusion of 2 and 4% cellulose, and 4% beet pulp increased (P ≤ 0.05) fecal bulk and diluted fecal branched-chain fatty acid concentrations compared with 2% beet pulp. Apparent total tract DM, OM, fat, and GE digestibility coefficients decreased (P ≤ 0.05) linearly with BW of cats. Additionally, fecal moisture, fecal score, and concentrations of fermentative end-products increased (P ≤ 0.05) with BW. Although the response of many outcomes was dependent on cat size, in general, beet pulp increased wet fecal weight, fecal scores, and fecal metabolites, and reduced fecal pH. Cellulose generally reduced DM and OM digestibility, but increased dry fecal weight and fecal percent DM. Although beet pulp and cellulose fibers were tested individually in this study, these data indicate that the optimum fiber type and concentration for inclusion in captive exotic felid diets is likely a combination of fermentable and nonfermentable fibers, with the optimal fiber blend being dependent on species. Smaller cats, such as cheetahs and jaguars, tolerated fermentable fibers, whereas larger cats, such as Malayan and Siberian tigers, appeared to require more insoluble fibers that limit fermentation and provide fecal bulk. Further research is required to test whether these trends hold true when fed in combination.

  11. Classification of Antibiotic Resistance Patterns of Indicator Bacteria by Discriminant Analysis: Use in Predicting the Source of Fecal Contamination in Subtropical Waters

    PubMed Central

    Harwood, Valerie J.; Whitlock, John; Withington, Victoria

    2000-01-01

    The antibiotic resistance patterns of fecal streptococci and fecal coliforms isolated from domestic wastewater and animal feces were determined using a battery of antibiotics (amoxicillin, ampicillin, cephalothin, chlortetracycline, oxytetracycline, tetracycline, erythromycin, streptomycin, and vancomycin) at four concentrations each. The sources of animal feces included wild birds, cattle, chickens, dogs, pigs, and raccoons. Antibiotic resistance patterns of fecal streptococci and fecal coliforms from known sources were grouped into two separate databases, and discriminant analysis of these patterns was used to establish the relationship between the antibiotic resistance patterns and the bacterial source. The fecal streptococcus and fecal coliform databases classified isolates from known sources with similar accuracies. The average rate of correct classification for the fecal streptococcus database was 62.3%, and that for the fecal coliform database was 63.9%. The sources of fecal streptococci and fecal coliforms isolated from surface waters were identified by discriminant analysis of their antibiotic resistance patterns. Both databases identified the source of indicator bacteria isolated from surface waters directly impacted by septic tank discharges as human. At sample sites selected for relatively low anthropogenic impact, the dominant sources of indicator bacteria were identified as various animals. The antibiotic resistance analysis technique promises to be a useful tool in assessing sources of fecal contamination in subtropical waters, such as those in Florida. PMID:10966379

  12. DYNAMICS OF AQUATIC FECAL CONTAMINATION, FECAL SOURCE IDENTIFICATION, AND CORRELATION OF BACTEROIDALES HOST-SPECIFIC MARKERS DETECTION WITH FECAL PATHOGENS

    EPA Science Inventory

    Fecal pollution impairs the health and productivity of coastal waters and causes human disease. PCR of host-specific 16S rDNA sequences from anaerobic Bacteroidales bacteria offers a promising method of tracking fecal contamination and identifying its source(s). Before Bacteroida...

  13. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATION RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Contamination of watersheds by fecal bacteria is a frequent cause for surface waters to be placed on the national impaired waters list. However, since the presence of fecal bacteria does not always indicate human fecal input, it is necessary to distinguish between fecal sources. ...

  14. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    USDA-ARS?s Scientific Manuscript database

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...

  15. A Microbial Signature Approach to Identify Fecal Pollution in the Waters Off an Urbanized Coast of Lake Michigan

    PubMed Central

    Newton, Ryan J.; Bootsma, Melinda J.; Morrison, Hilary G.; Sogin, Mitchell L.

    2014-01-01

    Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee's urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore. PMID:23475306

  16. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shearmore » flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.« less

  17. Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1

    PubMed Central

    Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.

    2002-01-01

    Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178

  18. Nonlinear finite element simulation of non-local tension softening for high strength steel material

    NASA Astrophysics Data System (ADS)

    Tong, F. M.

    The capability of current finite element softwares in simulating the stress-strain relation beyond the elastic-plastic region has been limited by the inability for non- positivity in the computational finite elements' stiffness matrixes. Although analysis up to the peak stress has been proved adequate for analysis and design, it provides no indication of the possible failure predicament that is to follow. Therefore an attempt was made to develop a modelling technique capable of capturing the complete stress-deformation response in an analysis beyond the limit point. This proposed model characterizes a cyclic loading and unloading procedure, as observed in a typical laboratory uniaxial cyclic test, along with a series of material properties updates. The Voce equation and a polynomial function were proposed to define the monotonic elastoplastic hardening and softening behaviour respectively. A modified form of the Voce equation was used to capture the reloading response in the softening region. To accommodate the reduced load capacity of the material at each subsequent softening point, an optimization macro was written to control this optimum load at which the material could withstand. This preliminary study has ignored geometrical effect and is thus incapable of capturing the localized necking phenomenon that accompanies many ductile materials. The current softening model is sufficient if a global measure is considered. Several validation cases were performed to investigate the feasibility of the modelling technique and the results have been proved satisfactory. The ANSYS finite element software is used as the platform at which the modelling technique operates.

  19. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  20. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    PubMed

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  1. Bio-softening of mature coconut husk for facile coir recovery.

    PubMed

    Suganya, D S; Pradeep, S; Jayapriya, J; Subramanian, S

    2007-06-01

    Bio-softening of the mature coconut husk using Basidiomyceteous fungi was attempted to recover the soft and whiter fibers. The process was faster and more efficient in degrading lignin and toxic phenolics. Phanerochaete chrysosporium, Pleurotus eryngii and Ceriporiopsis subvermispora were found to degrade lignin efficiently without any appreciable loss of cellulose, yielding good quality fiber ideal for dyeing.

  2. Water softening process

    DOEpatents

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  3. Removal of Strontium from Drinking Water by Conventional ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.

  4. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    PubMed Central

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; Garcia-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-01

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data. PMID:28788466

  5. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  6. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  7. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials.

    PubMed

    Elías-Zúñiga, Alex; Baylón, Karen; Ferrer, Inés; Serenó, Lídia; García-Romeu, Maria Luisa; Bagudanch, Isabel; Grabalosa, Jordi; Pérez-Recio, Tania; Martínez-Romero, Oscar; Ortega-Lara, Wendy; Elizalde, Luis Ernesto

    2014-01-16

    In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model's theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  8. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  9. Dimensioning Principles in Potash and Salt: Stability and Integrity

    NASA Astrophysics Data System (ADS)

    Minkley, W.; Mühlbauer, J.; Lüdeling, C.

    2016-11-01

    The paper describes the principal geomechanical approaches to mine dimensioning in salt and potash mining, focusing on stability of the mining system and integrity of the hydraulic barrier. Several common dimensioning are subjected to a comparative analysis. We identify geomechanical discontinuum models as essential physical ingredients for examining the collapse of working fields in potash mining. The basic mechanisms rely on the softening behaviour of salt rocks and the interfaces. A visco-elasto-plastic material model with strain softening, dilatancy and creep describes the time-dependent softening behaviour of the salt pillars, while a shear model with velocity-dependent adhesive friction with shear displacement-dependent softening is used for bedding planes and discontinuities. Pillar stability critically depends on the shear conditions of the bedding planes to the overlying and underlying beds, which provide the necessary confining pressure for the pillar core, but can fail dynamically, leading to large-scale field collapses. We further discuss the integrity conditions for the hydraulic barrier, most notably the minimal stress criterion, the violation of which leads to pressure-driven percolation as the mechanism of fluid transport and hence barrier failure. We present a number of examples where violation of the minimal stress criterion has led to mine floodings.

  10. Constitutive modeling and dynamic softening mechanism during hot deformation of an ultra-pure 17%Cr ferritic stainless steel stabilized with Nb

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao

    2014-09-01

    The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.

  11. Influence of Breed Size, Age, Fecal Quality, and Enteropathogen Shedding on Fecal Calprotectin and Immunoglobulin A Concentrations in Puppies During the Weaning Period.

    PubMed

    Grellet, A; Heilmann, R M; Polack, B; Feugier, A; Boucraut-Baralon, C; Grandjean, D; Grützner, N; Suchodolski, J S; Steiner, J M; Chastant-Maillard, S

    2016-07-01

    Fecal calprotectin and immunoglobulin A (IgA) are markers of intestinal inflammation and immunity in adult dogs. Fecal calprotectin and IgA concentrations in puppies are not influenced by fecal moisture in puppies but by enteropathogen shedding. Three hundred and twenty-four puppies. Fecal consistency was assessed by gross examination. Fecal moisture was evaluated before and after lyophilization. Canine parvovirus and coronavirus were detected in feces by qPCR and qRT-PCR respectively. Giardia intestinalis antigen was quantified by ELISA. The standard McMaster flotation technique was used to detect eggs and oocysts in feces. Fecal calprotectin and IgA concentrations were quantified by in-house radioimmunoassays. For each marker (IgA and calprotectin), a strong positive correlation was observed between concentration in fresh feces and concentration in fecal dry matter. 75.6% of the puppies were found to be infected by at ≥1 of the enteropathogens evaluated. Fecal calprotectin concentration was significantly influenced by age (P = .001), with higher concentrations in younger puppies, but not by viral (P = .863) or parasitic infection (P = .791). Fecal IgA concentration was significantly influenced by enteropathogen shedding (P = .01), with a lower fecal IgA concentration in puppies shedding at ≥1 enteropathogen compared to puppies without any enteropathogen shedding, but not by age. Fecal calprotectin and IgA are of no diagnostic value to detect presence of enteropathogens in clinically healthy puppies or puppies with abnormal feces, but could help to better understand the maturation of digestive tract. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of haynes 230 alloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.

  13. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  14. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  15. Finite-temperature interatomic exchange and magnon softening in Fe overlayers on Ir(001)

    NASA Astrophysics Data System (ADS)

    Rodrigues, D. C. M.; Szilva, A.; Klautau, A. B.; Bergman, A.; Eriksson, O.; Etz, C.

    2016-07-01

    We evaluate how thermal effects soften the magnon dispersion in 6 layers of Fe(001) on top of Ir(001). We perform a systematic study considering noncollinear spin arrangement and calculate configuration-dependent exchange parameters Jij n c following the methodology described by Szilva et al. [Phys. Rev. Lett. 111, 127204 (2013)], 10.1103/PhysRevLett.111.127204. In addition, Monte Carlo simulations were performed in order to estimate the noncollinear spin arrangement as a function of temperature. Hence the Jij n c's related to these configurations were calculated and used in an atomistic spin dynamics approach to evaluate the magnon spectra. Our results show good agreement with recent room-temperature measurements, and highlights how thermal effects produce magnon softening in this, and similar, systems.

  16. Fecal Occult Blood Test (FOBT): MedlinePlus Lab Test Information

    MedlinePlus

    ... medlineplus.gov/labtests/fecaloccultbloodtestfobt.html Fecal Occult Blood Test (FOBT) To use the sharing features on this ... enable JavaScript. What is a Fecal Occult Blood Test? A fecal occult blood test (FOBT) looks at ...

  17. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  18. Fecal Source Identification with Real-Time Quantitative PCR

    EPA Science Inventory

    Waterborne diseases that originate from fecal pollution remain a significant public health issue. Current fecal indicator technologies recommended by the U.S. Environmental Protection Agency for water quality testing do not discriminate between different animal sources of fecal ...

  19. Thermal-mechanical modeling of laser ablation hybrid machining

    NASA Astrophysics Data System (ADS)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.

  20. Effect of selected gastrointestinal parasites and viral agents on fecal S100A12 concentrations in puppies as a potential comparative model.

    PubMed

    Heilmann, Romy M; Grellet, Aurélien; Grützner, Niels; Cranford, Shannon M; Suchodolski, Jan S; Chastant-Maillard, Sylvie; Steiner, Jörg M

    2018-04-17

    Previous data suggest that fecal S100A12 has clinical utility as a biomarker of chronic gastrointestinal inflammation (idiopathic inflammatory bowel disease) in both people and dogs, but the effect of gastrointestinal pathogens on fecal S100A12 concentrations is largely unknown. The role of S100A12 in parasite and viral infections is also difficult to study in traditional animal models due to the lack of S100A12 expression in rodents. Thus, the aim of this study was to evaluate fecal S100A12 concentrations in a cohort of puppies with intestinal parasites (Cystoisospora spp., Toxocara canis, Giardia sp.) and viral agents that are frequently encountered and known to cause gastrointestinal signs in dogs (coronavirus, parvovirus) as a comparative model. Spot fecal samples were collected from 307 puppies [median age (range): 7 (4-13) weeks; 29 different breeds] in French breeding kennels, and fecal scores (semiquantitative system; scores 1-13) were assigned. Fecal samples were tested for Cystoisospora spp. (C. canis and C. ohioensis), Toxocara canis, Giardia sp., as well as canine coronavirus (CCV) and parvovirus (CPV). S100A12 concentrations were measured in all fecal samples using an in-house radioimmunoassay. Statistical analyses were performed using non-parametric 2-group or multiple-group comparisons, non-parametric correlation analysis, association testing between nominal variables, and construction of a multivariate mixed model. Fecal S100A12 concentrations ranged from < 24-14,363 ng/g. Univariate analysis only showed increased fecal S100A12 concentrations in dogs shedding Cystoisospora spp. (P = 0.0384) and in dogs infected with parvovirus (P = 0.0277), whereas dogs infected with coronavirus had decreased fecal S100A12 concentrations (P = 0.0345). However, shedding of any single enteropathogen did not affect fecal S100A12 concentrations in multivariate analysis (all P > 0.05) in this study. Only fecal score and breed size had an effect on fecal S100A12 concentrations in multivariate analysis (P < 0.0001). An infection with any single enteropathogen tested in this study is unlikely to alter fecal S100A12 concentrations, and these preliminary data are important for further studies evaluating fecal S100A12 concentrations in dogs or when using fecal S100A12 concentrations as a biomarker in patients with chronic idiopathic gastrointestinal inflammation.

  1. Surface morphology study in high speed milling of soda lime glass

    NASA Astrophysics Data System (ADS)

    Konneh, Mohamed; Bagum, Mst. Nasima; Ali, Mohammad Yeakub; Amin, A. K. M. Nurul

    2018-05-01

    Soda lime glass has a wide range of applications in optical, bio-medical and semi-conductor industries. It is undeniably a challenging task to produce micro finish surface on an amorphous brittle solid like soda lime glass due to its low fracture toughness. In order to obtain such a finish surface, ductile machining has been exploited, as this usually cause's plastic flow which control crack propagation. At sub-micro scale cutting parameters, researchers achieved nano finish surface in micro milling operation using coated tool. However it is possible to enhance the rate of material removal (RMR) of soda lime glass at flexible cutting condition. High speed cutting at micro meter level, extend of thermal softening might be prominent than the strain gradient strengthening. The purpose of this study was to explore the effects of high cutting speed end milling parameters on the surface texture of soda lime glass using uncoated carbide tool. The spindle speed, depth of cut and feed rate were varied from 20,000 to 40,000 rpm, 10 to 30 mm/min and 30 to 50 µm respectively. Mathematical model of roughness has been developed using Response Surface Methodology (RSM). Experimental verification confirmed that surface roughness (Ra) 0.38 µm is possible to achieve at increased RMR, 4.71 mm3/min.

  2. Life prediction of thermally highly loaded components: modelling the damage process of a rocket combustion chamber hot wall

    NASA Astrophysics Data System (ADS)

    Schwarz, W.; Schwub, S.; Quering, K.; Wiedmann, D.; Höppel, H. W.; Göken, M.

    2011-09-01

    During their operational life-time, actively cooled liners of cryogenic combustion chambers are known to exhibit a characteristic so-called doghouse deformation, pursued by formation of axial cracks. The present work aims at developing a model that quantitatively accounts for this failure mechanism. High-temperature material behaviour is characterised in a test programme and it is shown that stress relaxation, strain rate dependence, isotropic and kinematic hardening as well as material ageing have to be taken into account in the model formulation. From fracture surface analyses of a thrust chamber it is concluded that the failure mode of the hot wall ligament at the tip of the doghouse is related to ductile rupture. A material model is proposed that captures all stated effects. Basing on the concept of continuum damage mechanics, the model is further extended to incorporate softening effects due to material degradation. The model is assessed on experimental data and quantitative agreement is established for all tests available. A 3D finite element thermo-mechanical analysis is performed on a representative thrust chamber applying the developed material-damage model. The simulation successfully captures the observed accrued thinning of the hot wall and quantitatively reproduces the doghouse deformation.

  3. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    NASA Astrophysics Data System (ADS)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  4. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  5. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less

  6. Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu

    2015-12-01

    For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.

  7. Electromechanical fatigue in IPMC under dynamic energy harvesting conditions

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Arvind; Roy Mahapatra, D.

    2011-04-01

    Ionic polymer-metal composites (IPMCs) are an interesting subset of smart, multi-functional materials that have shown promises in energy conversion technologies. Being electromechanically coupled, IPMCs can function as dynamic actuators and sensors, transducers for energy conversion and harvesting, as well as artificial muscles for medical and industrial applications. Like all natural materials, even IPMCs undergo fatigue under dynamic load conditions. Here, we investigate the electromechanical fatigue induced in the IPMCs due to the application of cyclic mechanical bending deformation under hydrodynamic energy harvesting condition. Considering the viscoelastic nature of the IPMC, we employ an analytical approach to modeling electromechanical fatigue primarily under the cyclic stresses induced in the membrane. The polymer-metal composite undergoes cyclic softening throughout the fatigue life without attaining a saturated state of charge migration. However, it results in (1) degradation of electromechanical performance; (2) nucleation and growth of microscopic cracks in the metal electrodes; (3) delamination of metal electrodes at the polymer-electrode interface. To understand these processes, we employ a phenomenological approach based on experimentally measured relaxation properties of the IPMC membrane. Electromechanical performance improves significantly with self-healing like properties for a certain range of relaxation time. This is due to reorientation of the backbone polymer chains which eventually leads to a regenerative process with increased charge transport.

  8. Thermal degradation of the tensile properties of undirectionally reinforced FP-AI203/EZ 33 magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Grimes, H. H.

    1982-01-01

    The effects of isothermal and cyclic exposure on the room temperature axial and transverse tensile strength and dynamic flexural modulus of 35 volume percent and 55 volume percent FP-Al2O3/EZ 33 magnesium composites were studied. The composite specimens were continuously heated in a sand bath maintained at 350 C for up to 150 hours or thermally cycled between 50 and 250 C or 50 and 350 C for up to 3000 cycles. Each thermal cycle lasted for a total of six minutes with a hold time of two minutes at the maximum temperature. Results indicate to significant loss in the room temperature axial tensile strength and dynamic flexural modulus of composites thermally cycled between 50 and 250 C or of composites isothermally heated at 350 C for up to 150 hours from the strength and modulus data for the untreated, as fabricated composites. In contrast, thermal cycling between 50 and 350 C caused considerable loss in both room temperature strength and modulus. Fractographic analysis and measurement of composite transverse strength and matrix hardness of thermally cycled and isothermally heated composites indicated matrix softening and fiber/matrix debonding due to void growth at the interface and matrix cracking as the likely causes of the strength and modulus loss behavior.

  9. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    NASA Astrophysics Data System (ADS)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  10. Synthesis and Characterization of Perfluoroalkyl Heterocyclic Elastomers

    DTIC Science & Technology

    Perfluoro -4,9,14,19-tetraoxadocosane diimidate-dihydroxybenzidine polymers have been prepared from carefully purified monomers. DTA measurements show...attained was 0.28. Polymers prepared from dihydroxybenzidine and methyl perfluoro -4,9-dioxadodecanediimidate soften at about 65C. with a Tg near 21C...of 3,3’-diamino-4,4’-dihydroxybenzophenone with methyl perfluorosebacimidate . The polymer softens at 205C., forms films and has excellent thermal

  11. Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement

    EPA Science Inventory

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, cr...

  12. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    PubMed

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    PubMed

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  14. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    PubMed

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  15. Fecal calprotectin concentrations in adult dogs with chronic diarrhea.

    PubMed

    Grellet, Aurélien; Heilmann, Romy M; Lecoindre, Patrick; Feugier, Alexandre; Day, Michael J; Peeters, Dominique; Freiche, Valérie; Hernandez, Juan; Grandjean, Dominique; Suchodolski, Jan S; Steiner, Jorg M

    2013-05-01

    To evaluate fecal calprotectin concentrations in healthy dogs and dogs with chronic diarrhea, to identify cutoff values for fecal calprotectin concentrations for use in differentiating dogs with chronic diarrhea and a canine chronic enteropathy clinical activity index (CCECAI) < 12 from dogs with chronic diarrhea and a CCECAI ≥ 12, and to evaluate the association between histologic evidence of intestinal mucosal changes and fecal calprotectin concentrations in dogs with chronic diarrhea. Fecal samples from 96 adult dogs (27 dogs with chronic diarrhea and 69 healthy control dogs). Severity of clinical signs was evaluated on the basis of the CCECAI scoring system. Endoscopy was performed in all dogs with chronic diarrhea, and mucosal biopsy specimens were evaluated histologically. Fecal calprotectin concentration was quantified via radioimmunoassay. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea than in healthy control dogs. Fecal calprotectin concentrations were also significantly higher in dogs with a CCECAI ≥ 12, compared with concentrations for dogs with a CCECAI between 4 and 11. Fecal calprotectin concentrations were significantly higher in dogs with chronic diarrhea associated with histologic lesions, compared with concentrations in control dogs, and were significantly correlated with the severity of histologic intestinal lesions. Among dogs with chronic diarrhea, the best cutoff fecal calprotectin concentration for predicting a CCECAI ≥ 12 was 48.9 μg/g (sensitivity, 53.3%; specificity, 91.7%). Fecal calprotectin may be a useful biomarker in dogs with chronic diarrhea, especially dogs with histologic lesions.

  16. 21 CFR 866.5180 - Fecal calprotectin immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5180 Fecal calprotectin immunological test system. (a) Identification. A fecal calprotectin... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fecal calprotectin immunological test system. 866...

  17. Challenges in fecal donor selection and screening for fecal microbiota transplantation: A review.

    PubMed

    Woodworth, Michael H; Carpentieri, Cynthia; Sitchenko, Kaitlin L; Kraft, Colleen S

    2017-05-04

    Fecal microbiota transplantation is best understood as an effective and inexpensive therapy for recurrent Clostridium difficile infection but fecal donor selection and screening should be periodically revised. Here, we review current recommendations for selection and screening of fecal donors for fecal microbiota transplantation. We recommend considering diabetes mellitus, prior cardiovascular events, and clinical healthcare exposure as fecal donor exclusion criteria until more is known about the association of these conditions with the human gut microbiome. We review the non-bacterial members of the human gut microbiome, associations of the gut microbiome with colorectal malignancies, the human gut resistome and how these may impact future donor screening recommendations. Collaboration between clinicians, clinical laboratory scientists, industry and regulatory agencies will be critically important for continued improvement in donor selection and screening.

  18. Antisense Down-Regulation of the FaPG1 Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening1[W

    PubMed Central

    Quesada, Miguel A.; Blanco-Portales, Rosario; Posé, Sara; García-Gago, Juan A.; Jiménez-Bermúdez, Silvia; Muñoz-Serrano, Andrés; Caballero, José L.; Pliego-Alfaro, Fernando; Mercado, José A.; Muñoz-Blanco, Juan

    2009-01-01

    The strawberry (Fragaria × ananassa ‘Chandler’) fruit undergoes a fast softening during ripening. Polygalacturonase (PG) activity is low during this process, but two ripening-related PG genes, FaPG1 and FaPG2, have been cloned. Both genes were up-regulated during fruit ripening and were also negatively regulated by auxin. To further assess the role of FaPG1 on strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the 35S promoter (APG lines) were obtained. Sixteen out of 30 independent transgenic lines showed fruit yields similar to those of the control. Several quality parameters were measured in ripe fruits from these 16 lines. Fruit weight was slightly reduced in four lines, and most of them showed an increase in soluble solid content. Half of these lines yielded fruits significantly firmer than did the control. Four APG lines were selected, their ripened fruits being on average 163% firmer than the control. The postharvest softening of APG fruits was also diminished. Ripened fruits from the four selected lines showed a 90% to 95% decrease in FaPG1 transcript abundance, whereas the level of FaPG2 was not significantly altered. Total PG activity was reduced in three of these lines when compared with control fruits. Cell wall extracts from APG fruits showed a reduction in pectin solubilization and an increase in pectins covalently bound to the cell wall. A comparative transcriptomic analysis of gene expression between the ripened receptacle of the control and those of the APG fruits (comprising 1,250 receptacle expressed sequence tags) did not show any statistically significant change. These results indicate that FaPG1 plays a central role in strawberry softening. PMID:19395408

  19. Lower cell wall pectin solubilisation and galactose loss during early fruit development in apple (Malus x domestica) cultivar 'Scifresh' are associated with slower softening rate.

    PubMed

    Ng, Jovyn K T; Schröder, Roswitha; Brummell, David A; Sutherland, Paul W; Hallett, Ian C; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W

    2015-03-15

    Substantial differences in softening behaviour can exist between fruit even within the same species. Apple cultivars 'Royal Gala' and 'Scifresh' soften at different rates despite having a similar genetic background and producing similar amounts of ethylene during ripening. An examination of cell wall metabolism from the fruitlet to the ripe stages showed that in both cultivars pectin solubilisation increased during cell expansion, declined at the mature stage and then increased again during ripening. This process was much less pronounced in the slower softening 'Scifresh' than in 'Royal Gala' at every developmental stage examined, consistent with less cell separation and softening in this cultivar. Both cultivars also exhibited a progressive loss of pectic galactan and arabinan side chains during development. The cell wall content of arabinose residues was similar in both cultivars, but the galactose residue content in 'Scifresh' remained higher than that of 'Royal Gala' at every developmental stage. The higher content of cell wall galactose residue in 'Scifresh' cell walls correlated with a lower β-galactosidase activity and more intense immunolabelling of RG-I galactan side chains in both microscopy sections and glycan microarrays. A high cell wall galactan content has been associated with reduced cell wall porosity, which may restrict access of cell wall-modifying enzymes and thus maintain better structural integrity later in development. The data suggest that the composition and structure of the cell wall at very early development stages may influence subsequent cell wall loosening, and may even predispose the wall's ensuing properties. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Effect of Lesion Baseline Severity and Mineral Distribution on Remineralization and Progression of Human and Bovine Dentin Caries Lesions.

    PubMed

    Lippert, Frank; Churchley, David; Lynch, Richard J

    2015-01-01

    The aims of this laboratory study were to compare the effects of lesion baseline severity, mineral distribution and substrate on remineralization and progression of caries lesions created in root dentin. Lesions were formed in dentin specimens prepared from human and bovine dentin using three protocols, each utilizing three demineralization periods to create lesions of different mineral distributions (subsurface, moderate softening, extreme softening) and severity within each lesion type. Lesions were then either remineralized or demineralized further and analyzed using transverse microradiography. At lesion baseline, no differences were found between human and bovine dentin for integrated mineral loss (x0394;Z). Differences in mineral distribution between lesion types were apparent. Human dentin lesions were more prone to secondary demineralization (x0394;x0394;Z) than bovine dentin lesions, although there were no differences in x0394;L. Likewise, smaller lesions were more susceptible to secondary demineralization than larger ones. Subsurface lesions were more acid-resistant than moderately and extremely softened lesions. After remineralization, differences between human and bovine dentin lesions were not apparent for x0394;x0394;Z although bovine dentin lesions showed greater reduction in lesion depth L. For lesion types, responsiveness to remineralization (x0394;x0394;Z) was in the order extremely softened>moderately softened>subsurface. More demineralized lesions exhibited greater remineralization than shallower ones. In summary, some differences exist between human and bovine dentin and their relative responsiveness to de- and remineralization. These differences, however, were overshadowed by the effects of lesion baseline mineral distribution and severity. Thus, bovine dentin appears to be a suitable substitute for human dentin in mechanistic root caries studies. © 2015 S. Karger AG, Basel.

  1. A Randomised Controlled Trial of Ion-Exchange Water Softeners for the Treatment of Eczema in Children

    PubMed Central

    Thomas, Kim S.; Dean, Tara; O'Leary, Caroline; Sach, Tracey H.; Koller, Karin; Frost, Anthony; Williams, Hywel C.

    2011-01-01

    Background Epidemiological studies and anecdotal reports suggest a possible link between household use of hard water and atopic eczema. We sought to test whether installation of an ion-exchange water softener in the home can improve eczema in children. Methods and Findings This was an observer-blind randomised trial involving 336 children (aged 6 months to 16 years) with moderate/severe atopic eczema. All lived in hard water areas (≥200 mg/l calcium carbonate). Participants were randomised to either installation of an ion-exchange water softener plus usual eczema care, or usual eczema care alone. The primary outcome was change in eczema severity (Six Area Six Sign Atopic Dermatitis Score, SASSAD) at 12 weeks, measured by research nurses who were blinded to treatment allocation. Analysis was based on the intent-to-treat population. Eczema severity improved for both groups during the trial. The mean change in SASSAD at 12 weeks was −5.0 (20% improvement) for the water softener group and −5.7 (22% improvement) for the usual care group (mean difference 0.66, 95% confidence interval −1.37 to 2.69, p = 0.53). No between-group differences were noted in the use of topical corticosteroids or calcineurin inhibitors. Conclusions Water softeners provided no additional benefit to usual care in this study population. Small but statistically significant differences were found in some secondary outcomes as reported by parents, but it is likely that such improvements were the result of response bias, since participants were aware of their treatment allocation. A detailed report for this trial is also available at http://www.hta.ac.uk. Trial registration Current Controlled Trials ISRCTN71423189 Please see later in the article for the Editors' Summary PMID:21358807

  2. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  3. Impact of brushing force on abrasion of acid-softened and sound enamel.

    PubMed

    Wiegand, A; Köwing, L; Attin, T

    2007-11-01

    The study aimed to analyse the effects of different brushing loads on abrasion of acid-softened and sound enamel surfaces. Sound and acid-softened surfaces of each 10 human enamel samples were submitted to brushing abrasion in an automatic brushing machine at 1.5 N (A), 2.5 N (B), 3.5 N (C) or 4.5 N (D) brushing load. Prior to abrasion, demineralisation of half of each enamel surface was performed by storage in hydrochloric acid (pH 2.0) for 60s. Brushing was carried out (1000 strokes) using a manual toothbrush and toothpaste slurry in a ratio of 1:3. Enamel loss was measured after 10, 20, 50, 100, 150, 200, 250, 300, 350 and 1000 brushing strokes (BS). Pre- and post-brushing values of Knoop indentation length (5 indentations each sample) were measured and mean enamel loss was calculated from the change in indentation depth. Within- and between-group comparisons were performed by ANOVA and t-test followed by Bonferroni-correction. Enamel loss of acid-softened surfaces was significantly influenced by the brushing load applied and was mostly significantly higher in group D (10-1000 BS: 225-462 nm) compared to A (10-1000 BS: 164-384), B (10-1000 BS: 175-370 nm) and C (10-1000 BS: 191-396 nm). Abrasion of acid-softened enamel was fourfold higher compared to sound surfaces. Sound enamel was significantly influenced by the brushing force at 20-200 brushing strokes only, but revealed no significant differences between groups A-D. Brushing load influences abrasion of briefly eroded enamel, but might be of minor importance for abrasion of sound enamel surfaces.

  4. Integral strategy for evaluation of fecal indicator performance in bird-influenced saline inland waters.

    PubMed

    Kirschner, Alexander K T; Zechmeister, Thomas C; Kavka, Gerhard G; Beiwl, Christian; Herzig, Alois; Mach, Robert L; Farnleitner, Andreas H

    2004-12-01

    Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.

  5. Integral Strategy for Evaluation of Fecal Indicator Performance in Bird-Influenced Saline Inland Waters

    PubMed Central

    Kirschner, Alexander K. T.; Zechmeister, Thomas C.; Kavka, Gerhard G.; Beiwl, Christian; Herzig, Alois; Mach, Robert L.; Farnleitner, Andreas H.

    2004-01-01

    Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems. PMID:15574941

  6. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays.

    PubMed

    Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H

    2009-01-01

    Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.

  7. Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Rose, Cheryl A.; Song, Kyongchan

    2008-01-01

    The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed. Simple equations are developed for determining the separation of the critical energy release rates and the strengths that define the independent contributions of each bilinear softening law in the superposition. It is shown that the R-curve measured with a Compact Tension specimen test can be reproduced by superposing two bilinear softening laws. It is also shown that an accurate representation of the R-curve is essential for predicting the initiation and propagation of fracture in composite laminates.

  8. Fecal incontinence decreases sexual quality of life, but does not prevent sexual activity in women.

    PubMed

    Imhoff, Laurel R; Brown, Jeanette S; Creasman, Jennifer M; Subak, Leslee L; Van den Eeden, Stephen K; Thom, David H; Varma, Madhulika G; Huang, Alison J

    2012-10-01

    The impact of anal incontinence on women's sexual function is poorly understood. The aim of this study was to investigate the relationship between anal incontinence and sexual activity and functioning in women. This is a cross-sectional study. This investigation was conducted in a community-based integrated health care delivery system. Included were 2269 ethnically diverse women aged 40 to 80 years. Self-administered questionnaires assessed accidental leakage of gas (flatal incontinence) and fluid/mucus/stool (fecal incontinence) in the past 3 months. Additional questionnaires assessed sexual activity, desire and satisfaction, as well as specific sexual problems (difficulty with arousal, lubrication, orgasm, or pain). Multivariable logistic regression models compared sexual function in women with 1) isolated flatal incontinence, 2) fecal incontinence (with or without flatal incontinence), and 3) no fecal/flatal incontinence, controlling for potential confounders. Twenty-four percent of women reported fecal incontinence and 43% reported isolated flatal incontinence in the previous 3 months. The majority were sexually active (62% of women without fecal/flatal incontinence, 66% with isolated flatal incontinence, and 60% with fecal incontinence; p = 0.06). In comparison with women without fecal/flatal incontinence, women with fecal incontinence were more likely to report low sexual desire (OR: 1.41 (CI: 1.10-1.82)), low sexual satisfaction (OR: 1.56 (CI: 1.14-2.12)), and limitation of sexual activity by physical health (OR: 1.65 (CI: 1.19-2.28)) after adjustment for confounders. Among sexually active women, women with fecal incontinence were more likely than women without fecal/flatal incontinence to report difficulties with lubrication (OR: 2.66 (CI: 1.76-4.00)), pain (OR: 2.44 (CI: 1.52-3.91)), and orgasm (OR: 1.68 (CI: 1.12-2.51)). Women with isolated flatal incontinence reported sexual functioning similar to women without fecal/flatal incontinence. The cross-sectional design prevented evaluation of causality. Although most women with fecal incontinence are at high risk for several aspects of sexual dysfunction, the presence of fecal incontinence does not prevent women from engaging in sexual activity. This indicates that sexual function is important to women with anal incontinence and should be prioritized during therapeutic management.

  9. Conservative Measures for Managing Constipation in Patients Living With a Colostomy.

    PubMed

    Kuczynska, Barbara; Bobkiewicz, Adam; Studniarek, Adam; Szmyt, Krzsztof; Krokowicz, Łukasz; Matysiak, Konrad; Szmeja, Jacek; Walkowiak, Jarosław; Drews, Michał; Banasiewicz, Tomasz

    The purpose of this study was to determine the effect of a conservative regimen for the treatment of constipation in persons living with a colostomy. Prospective, noncontrolled, single-center study. The study sample comprised 35 patients with a colostomy who were diagnosed with constipation. Subjects with morphologic changes causing constipation such as stomal stenosis and neoplastic and inflammatory changes were excluded. The study was conducted in the Proctology and Stoma Outpatient Clinic at Poznan University of Medical Sciences. Patients at our Stoma Outpatient Clinic underwent baseline evaluation, and those with symptoms of constipation (prolonged periods between bowel movements, passage of pasty or hardened fecal effluent, and associated symptoms such as abdominal discomfort or bloating, flatulence, and pain with passage of effluent into the stoma) received individualized dietary recommendations that typically included an increase in dietary fiber and fluid intake, along with increased fluid intake. The outcomes of dietary changes were evaluated during a follow-up visit 3 months later. If dietary changes alone did not improve constipation symptoms, we prescribed a psyllium-based bulk-forming agent, an osmotic stool softener, and a probiotic, with or without a prokinetic agent such as metoclopramide taken 3 times daily. Dietary interventions alone were deemed successful in 60% of study subjects (n = 21); the remaining 14 patients required additional treatment. Dietary modifications alone relieved constipation in more than half of a group of 35 patients with constipation. We therefore recommend a trial of dietary modifications prior to the initiation of pharmacotherapy in patients with a colostomy.

  10. FINGERPRINTING OF FECAL ENTEROCOCCI BY MATRIX ASSISTED LASER DESORPTION IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    The fecal enterococci group has been suggested as an indicator of fecal contamination in freshwater and marine water systems and as a potential target for bacterial source tracking of fecal pollution. While many studies have described the diversity of enterococci in environmenta...

  11. Monitoring Fecal Indicators and Pathogens in Watersheds: Implementing a Quantitative Microbial Risk Assessment Approach

    EPA Science Inventory

    - Many of the nation's rivers, lakes, and estuaries are impaired with fecal indicator bacteria. - Fecal contamination from point and non-point sources is responsible for the presence of fecal pathogens in source and recreational waters - Effective compliance with TMDL regulatio...

  12. Analysis of HEMCL Railgun Insulator Damage

    DTIC Science & Technology

    2006-06-01

    pyrolytic epoxy degradation and glass fiber softening and liquification in the insulator, it is determined that rail-to-rail plasmas are present behind...produces epoxy decomposition products in the form of gases, oils , waxes and chars solid (heavily cross-linked residues) [4]. The nature of the... pyrolytic decomposition product (wax) of the epoxy as in the fired specimens. Figures 6 and 7 are typical examples of glass fiber softening and

  13. Comparison of Collection Methods for Fecal Samples in Microbiome Studies

    PubMed Central

    Vogtmann, Emily; Chen, Jun; Amir, Amnon; Shi, Jianxin; Abnet, Christian C.; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Sinha, Rashmi

    2017-01-01

    Prospective cohort studies are needed to assess the relationship between the fecal microbiome and human health and disease. To evaluate fecal collection methods, we determined technical reproducibility, stability at ambient temperature, and accuracy of 5 fecal collection methods (no additive, 95% ethanol, RNAlater Stabilization Solution, fecal occult blood test cards, and fecal immunochemical test tubes). Fifty-two healthy volunteers provided fecal samples at the Mayo Clinic in Rochester, Minnesota, in 2014. One set from each sample collection method was frozen immediately, and a second set was incubated at room temperature for 96 hours and then frozen. Intraclass correlation coefficients (ICCs) were calculated for the relative abundance of 3 phyla, 2 alpha diversity metrics, and 4 beta diversity metrics. Technical reproducibility was high, with ICCs for duplicate fecal samples between 0.64 and 1.00. Stability for most methods was generally high, although the ICCs were below 0.60 for 95% ethanol in metrics that were more sensitive to relative abundance. When compared with fecal samples that were frozen immediately, the ICCs were below 0.60 for the metrics that were sensitive to relative abundance; however, the remaining 2 alpha diversity and 3 beta diversity metrics were all relatively accurate, with ICCs above 0.60. In conclusion, all fecal sample collection methods appear relatively reproducible, stable, and accurate. Future studies could use these collection methods for microbiome analyses. PMID:27986704

  14. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces.

    PubMed

    Phua, Lee Cheng; Koh, Poh Koon; Cheah, Peh Yean; Ho, Han Kiat; Chan, Eric Chun Yong

    2013-10-15

    Gas chromatography mass spectrometry (GC/MS)-based fecal metabonomics represents a powerful systems biology approach for elucidating metabolic biomarkers of lower gastrointestinal tract (GIT) diseases. Unlike metabolic profiling of fecal water, the profiling of complete fecal material remains under-explored. Here, a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) method was developed and validated for the global metabonomic profiling of human feces. Fecal and fecal water metabotypes were also profiled and compared. Additionally, the unclear influence of blood in stool on the fecal metabotype was investigated unprecedentedly. Eighty milligram of lyophilized feces was ultrasonicated with 1mL of methanol:water (8:2) for 30min, followed by centrifugation, drying of supernatant, oximation and trimethylsilylation for 45min. Lyophilized feces demonstrated a more comprehensive metabolic coverage than fecal water, based on the number of chromatographic peaks. Principal component analysis (PCA) indicated occult blood (1mgHb/g feces) exerted a negligible effect on the fecal metabotype. Conversely, a unique metabotype related to feces spiked with gross blood (100mgHb/g feces) was revealed (PCA, R(2)X=0.837, Q(2)=0.794), confirming the potential confounding effect of gross GIT bleeding on the fecal metabotype. This pertinent finding highlights the importance of prudent interpretation of fecal metabonomic data, particularly in GIT diseases where bleeding is prevalent. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less

  17. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    PubMed Central

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-01-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 ≥ −0.86) as well as calcium release (r2 ≥ −0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42–0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo. PMID:22029364

  18. Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1

    PubMed Central

    Rose, Jocelyn K.C.; Hadfield, Kristen A.; Labavitch, John M.; Bennett, Alan B.

    1998-01-01

    The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon. PMID:9625688

  19. A STUDY OF THE RADIATION-INDUCED SOFTENING OF PLANT TISSUES. Report No. 7 (Progress) for Period July 1, 1959-September 30, 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Z.I.

    1961-10-31

    Studies of the effect of gamma irradiation on four varieties of sweet cherries indicate an average radiation-induced softening threshold dosage of about 53 x lO/sup 3/ rad and about a 30% softening at the recommended 232 x lO/ sup 3/ rad "pasteurization dosage." No detrimental flavor or color changes and only slight and transient respiratory abnormalities were found. (auth) l667 At 75/sup o/F there was no eradication or arrestment of all fungi within fresh Michigan blueberries at any of the doses tested between 0.5 to 5 x 10/sup 5/ rads. After 28 days storage, all berries showed fungal growth inmore » nearly equal amounts to the non-irradiated controls regardless of the dose applied. When stored at 75/ sup o/F injury to the berries in the form of softening and produciion of abnormal red color in the flesh occurred at 5 x lO/sup 5/ and 3 x l0/sup 5/ rads after 16 days and only slightly at 2.5 x lO/sup 5/ rads after 28 days. In vitro inactivation of some blueberry decay pathogens was well below 5 x lO/sup 5/ rads. (auth)« less

  20. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding.

    PubMed

    Kwan, Charles C F; Wang, Zhirui

    2013-08-13

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.

  1. Cyclic Deformation of Ultra-Fine Grained Commercial Purity Aluminum Processed by Accumulative Roll-Bonding

    PubMed Central

    Kwan, Charles C.F.; Wang, Zhirui

    2013-01-01

    Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446

  2. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    PubMed Central

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.

    2016-01-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. PMID:27652338

  3. Application of the specular and diffuse reflection analysis for in vitro diagnostics of dental erosion: correlation with enamel softening, roughness, and calcium release

    NASA Astrophysics Data System (ADS)

    Rakhmatullina, Ekaterina; Bossen, Anke; Höschele, Christoph; Wang, Xiaojie; Beyeler, Barbara; Meier, Christoph; Lussi, Adrian

    2011-10-01

    We present assembly and application of an optical reflectometer for the analysis of dental erosion. The erosive procedure involved acid-induced softening and initial substance loss phases, which are considered to be difficult for visual diagnosis in a clinic. Change of the specular reflection signal showed the highest sensitivity for the detection of the early softening phase of erosion among tested methods. The exponential decrease of the specular reflection intensity with erosive duration was compared to the increase of enamel roughness. Surface roughness was measured by optical analysis, and the observed tendency was correlated with scanning electron microscopy images of eroded enamel. A high correlation between specular reflection intensity and measurement of enamel softening (r2 >= -0.86) as well as calcium release (r2 >= -0.86) was found during erosion progression. Measurement of diffuse reflection revealed higher tooth-to-tooth deviation in contrast to the analysis of specular reflection intensity and lower correlation with other applied methods (r2 = 0.42-0.48). The proposed optical method allows simple and fast surface analysis and could be used for further optimization and construction of the first noncontact and cost-effective diagnostic tool for early erosion assessment in vivo.

  4. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Marian, Jaime

    2018-06-01

    Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.

  5. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    PubMed

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  6. Circular economy in drinking water treatment: reuse of ground pellets as seeding material in the pellet softening process.

    PubMed

    Schetters, M J A; van der Hoek, J P; Kramer, O J I; Kors, L J; Palmen, L J; Hofs, B; Koppers, H

    2015-01-01

    Calcium carbonate pellets are produced as a by-product in the pellet softening process. In the Netherlands, these pellets are applied as a raw material in several industrial and agricultural processes. The sand grain inside the pellet hinders the application in some high-potential market segments such as paper and glass. Substitution of the sand grain with a calcite grain (100% calcium carbonate) is in principle possible, and could significantly improve the pellet quality. In this study, the grinding and sieving of pellets, and the subsequent reuse as seeding material in pellet softening were tested with two pilot reactors in parallel. In one reactor, garnet sand was used as seeding material, in the other ground calcite. Garnet sand and ground calcite performed equally well. An economic comparison and a life-cycle assessment were made as well. The results show that the reuse of ground calcite as seeding material in pellet softening is technologically possible, reduces the operational costs by €38,000 (1%) and reduces the environmental impact by 5%. Therefore, at the drinking water facility, Weesperkarspel of Waternet, the transition from garnet sand to ground calcite will be made at full scale, based on this pilot plant research.

  7. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations

    DOE PAGES

    Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; ...

    2016-09-01

    Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less

  8. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Blacks Run, Rockingham County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Blacks Run, in Rockingham County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Blacks Run. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Blacks Run watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Blacks Run. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Blacks Run. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 7,000 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 33,000 to 260,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 95-percent reduction in the current fecal coliform load delivered from the watershed to Blacks Run would result in compliance with the designated water-quality goals and associated TMDL.

  9. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 25 to 800 colonies per 100 milliliters, and peak concentrations during storm-flow periods ranged from 19,000 to 340,000 colonies per 100 milliliters. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were cats, deer, dogs, ducks, geese, humans, muskrats, and raccoons. According to model results, an 89-percent reduction in the current fecal coliform load delivered from the watershed to Accotink Creek would result in compliance with the designated water-quality goals and associated TMDL.

  10. Use of the Hydrological Simulation Program-FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Christians Creek, Augusta County, Virginia

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Christians Creek, in Augusta County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Christians Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Christians Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Christians Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Christians Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Christians Creek. The calibrated streamflow model simulated observed streamflow characteristics with respect to total annual runoff, seasonal runoff, average daily streamflow, and hourly stormflow. The calibrated fecal coliform model simulated the patterns and range of observed fecal coliform bacteria concentrations. Observed fecal coliform bacteria concentrations during low-flow periods ranged from 40 to 2,000 colonies per 100 milliliters, and peak concentrations during stormflow periods ranged from 23,000 to 730,000 colonies per 100 milliliters. Additionally, fecal coliform bacteria concentrations were generally higher upstream and lower downstream. Simulated source-specific contributions of fecal coliform bacteria to instream load were matched to the observed contributions from the dominant sources, which were beaver, cats, cattle, deer, dogs, ducks, geese, horses, humans, muskrats, poultry, raccoons, and sheep. According to model results, a 96-percent reduction in the current fecal coliform load delivered from the watershed to Christians Creek would result in compliance with the designated water-quality goals and associated TMDL.

  11. Storm loads of culturable and molecular fecal indicators in an inland urban stream.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D

    2015-10-15

    Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rapid QPCR-based assay for fecal Bacteroides spp. as a tool for assessing fecal contamination in recreational waters.

    PubMed

    Converse, Reagan R; Blackwood, A Denene; Kirs, Marek; Griffith, John F; Noble, Rachel T

    2009-11-01

    Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.

  13. Evaluation of fecal elastase and serum cholecystokinin in dogs with a false positive fecal elastase test.

    PubMed

    Steiner, J M; Rehfeld, J F; Pantchev, N

    2010-01-01

    An assay for the measurement of pancreatic elastase in dog feces has been introduced. The goal of this study was to evaluate the rate of false-positive fecal-elastase test results in dogs with suspected exocrine pancreatic insufficiency (EPI) and to assess serum cholecystokinin (CCK) concentrations in dogs with a false positive fecal elastase test result. Twenty-six fecal and serum samples from dogs suspected of EPI, for which samples had been submitted to a commercial laboratory (Vet Med Labor) for analysis. Prospective study. Serum trypsin-like immunoreactivity (TLI) was measured in 26 dogs with a decreased fecal elastase concentration of <10 microg/g feces. Serum CCK concentrations were measured in 21 of these dogs. Of 26 dogs with a decreased fecal elastase concentration, 6 (23%) had serum TLI concentrations within or above the reference range. Serum CCK concentrations were significantly higher in dogs with a true positive fecal elastase test result (median: 1.1 pmol/L; range: 0.1-3.3 pmol/L) than in those with a false positive fecal elastase test result (median: 0.1 pmol/L; range: 0.1-0.9 pmol/L; P value = .0163). The rate of false positive fecal elastase test results was high in this group of dogs, suggesting that diagnosis of EPI must be confirmed by other means. The decreased CCK concentration in dogs with a false positive fecal elastase test result could suggest that false positive results are because of decreased stimulation of exocrine pancreatic function caused by other conditions.

  14. Fecal microbiota transplant

    MedlinePlus

    ... difficile - fecal transplant; Pseudomembranous colitis - fecal transplant References Ferri FF. Clostridium difficile infection. In: Ferri FF, ed. Ferri's Clinical Advisor 2017. Philadelphia, PA: ...

  15. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  16. Health burden of gastrointestinal symptoms resulting from swimming in fecally-contaminated recreational waters.

    EPA Science Inventory

    Millions of people swim and recreate in oceans and lakes every year. Fecal contamination of these waters can occur from sewage discharges, runoff, and other point and non-point sources. Measures of fecal indicator contamination (e.g., the fecal indicator bacteria E. coli and Ent...

  17. Laboratory Testing of Donors and Stool Samples for Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection

    PubMed Central

    Neish, Emma M.; Miller, Nancy S.; Dhere, Tanvi; Burd, Eileen M.; Carpentieri, Cynthia; Sitchenko, Kaitlin L.

    2017-01-01

    ABSTRACT Fecal microbiota transplantation is an efficacious and inexpensive therapy for recurrent Clostridium difficile infection, yet its safety is thought to depend on appropriate fecal donor screening. FDA guidance for regulation of this procedure is in flux, but screening and manufacture of fecal material from asymptomatic donors present many challenges to clinical laboratories. This minireview summarizes FDA regulatory changes, principles of donor selection, and recommended laboratory screening practices for fecal microbiota transplantation. PMID:28077694

  18. Effect of dredge spoil deposition on fecal coliform counts in sediments at a disposal site.

    PubMed Central

    Babinchak, J A; Graikoski, J T; Dudley, S; Nitkowski, M F

    1977-01-01

    The most-probable-number of fecal coliforms in sediments was monitored at the New London dump site in Long Island Sound during the deposition of dredge spoil from the Thames River. Although the geometric mean for fecal coliforms at five stations in the river was 14,000/100 ml before dredging commenced, the deposition of this material did not increase the incidence of fecal coliforms at 17 spoil stations and 13 control stations in the disposal and surrounding areas. Fecal coliforms appear to occur only in the surface sediment material and are diluted by the subsurface material during the dredging operation. Fecal coliform analyses of bottom waters during high and low tides indicated that the flow of water from the Thames River played a major role in determining the most-probable-number of fecal coliforms in the sediments at the disposal site. PMID:329761

  19. COMPARISON OF THE TEMPORAL VARIABILITY OF ENTEROCOCCAL CLUSTERS IN IMPACTED STREAMS USING A MULTIPLEX POLYMERASE CHAIN REACTION PROCEDURE

    EPA Science Inventory

    Understanding how fecal indicator bacteria and/or fecal indicator genotypes vary over time is important to determine the sources of fecal contamination. Enterococcus is one of the two indicators recommended by the EPA to monitor freshwaters for fecal contamination. Along with E...

  20. Fecal /sup 13/C analysis for the detection and quantitation of intestinal malabsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, P.D.; MacLean, W.C. Jr.; Watkins, J.B.

    Use of /sup 14/CO/sub 2/ breath tests and fecal analyses for the detection and quantitation of intestinal malabsorption has been extensively documented in adult subjects. The use of radioisotopes has extended the range of breath test applications to include pediatric and geriatric subjects. Here we report a fecal /sup 13/C analysis that can be used in conjunction with /sup 14/CO/sub 2/ breath tests. Twenty-four-hour fecal samples were collected before and after the administration of a labeled substrate. Simultaneous cholyglycine /sup 13/CO/sub 2/ breath tests and fecal assays were performed in five children. One child with bacterial overgrowth had an abnormalmore » breath test and a normal fecal test. Of three children with ileal dysfunction, only one had an abnormal breath test, whereas the fecal test was abnormal in all three. Both the breath test and fecal test were abnormal for a child who had undergone an ileal resection. Both tests were normal for a child with ulcerative colitis.« less

  1. Human and Animal Fecal Contamination of Community Water Sources, Stored Drinking Water and Hands in Rural India Measured with Validated Microbial Source Tracking Assays

    PubMed Central

    Schriewer, Alexander; Odagiri, Mitsunori; Wuertz, Stefan; Misra, Pravas R.; Panigrahi, Pinaki; Clasen, Thomas; Jenkins, Marion W.

    2015-01-01

    We examined pathways of exposure to fecal contamination of human and animal origin in 24 villages in Odisha, India. In a cross-sectional study during the monsoon season, fecal exposure via community water sources (N = 123) and in the home (N = 137) was assessed using human- and nonhuman-associated Bacteroidales microbial source tracking (MST) markers and fecal coliforms (FCs). Detection rates and marker concentrations were examined to pinpoint pathways of human fecal exposure in the public and domestic domains of disease transmission in study communities. Human fecal markers were detected much more frequently in the domestic domain (45% of households) than in public domain sources (8% of ponds; 4% of groundwater drinking sources). Animal fecal markers were widely detected in both domains (74% of ponds, 96% of households, 10% of groundwater drinking sources), indicating ubiquitous risks of exposure to animal feces and zoonotic pathogens. This study confirms an often suggested contamination link from hands to stored water in the home in developing countries separately for mothers' and children's hands and both human and animal fecal contamination. In contrast to MST markers, FCs provided a poor metric to assess risks of exposure to fecal contamination of human origin in this rural setting. PMID:26149868

  2. Vegetable Contamination by the Fecal Bacteria of Poultry Manure: Case Study of Gardening Sites in Southern Benin

    PubMed Central

    Atidégla, Séraphin C.; Huat, Joël; Agbossou, Euloge K.; Saint-Macary, Hervé; Glèlè Kakai, Romain

    2016-01-01

    A study was conducted in southern Benin to assess the contamination of vegetables by fecal coliforms, Escherichia coli, and fecal streptococci as one consequence of the intensification of vegetable cropping through fertilization with poultry manure. For this purpose, on-farm trials were conducted in 2009 and 2010 at Yodo-Condji and Ayi-Guinnou with three replications and four fertilization treatments including poultry manure and three vegetable crops (leafy eggplant, tomato, and carrot). Sampling, laboratory analyses, and counts of fecal bacteria in the samples were performed in different cropping seasons. Whatever the fertilization treatment, the logs of mean fecal bacteria count per g of fresh vegetables were variable but higher than AFNOR criteria. The counts ranged from 8 to 10 fecal coliforms, from 5 to 8 fecal streptococci, and from 2 to 6 Escherichia coli, whereas AFNOR criteria are, respectively, 0, 1, and 0. The long traditional use of poultry manure and its use during the study helped obtain this high population of fecal pathogens. Results confirmed that the contamination of vegetables by fecal bacteria is mainly due to the use of poultry manure. The use of properly composted poultry manure with innovative cropping techniques should help reduce the number and incidence of pathogens. PMID:27069914

  3. Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility

    NASA Astrophysics Data System (ADS)

    Morris, Rachel; Fagan-Murphy, Aidan; MacEachern, Sarah J.; Covill, Derek; Patel, Bhavik Anil

    2016-03-01

    Various investigations have focused on understanding the relationship between mucosal serotonin (5-HT) and colonic motility, however contradictory studies have questioned the importance of this intestinal transmitter. Here we described the fabrication and use of a fecal pellet electrochemical sensor that can be used to simultaneously detect the release of luminal 5-HT and colonic motility. Fecal pellet sensor devices were fabricated using carbon nanotube composite electrodes that were housed in 3D printed components in order to generate a device that had shape and size that mimicked a natural fecal pellet. Devices were fabricated where varying regions of the pellet contained the electrode. Devices showed that they were stable and sensitive for ex vivo detection of 5-HT, and no differences in the fecal pellet velocity was observed when compared to natural fecal pellets. The onset of mucosal 5-HT was observed prior to the movement of the fecal pellet. The release of mucosal 5-HT occurred oral to the fecal pellet and was linked to the contraction of the bowel wall that drove pellet propulsion. Taken, together these findings provide new insights into the role of mucosal 5-HT and suggest that the transmitter acts as a key initiator of fecal pellet propulsion.

  4. Influence of refrigeration and formalin on the floatability of Giardia duodenalis cysts.

    PubMed

    Moitinho, M d; Bertoli, M; Guedes, T A; Ferreira, C S

    1999-01-01

    Giardia duodenalis cysts obtained from fresh fecal samples, fecal samples kept under refrigeration and fecal samples treated with formalin were studied as to their floatability on sucrose solutions with the following specific gravities: 1,040 kg/m3; 1,050 kg/m3; 1, 060 kg/m3; 1,070 kg/m3; 1,080 kg/m3; 1,090 kg/m3; 1,100 kgm3; 1,150 kg/m3; 1,200 kg/m3; and 1,250 kg/m3, contained within counting-chambers 0.17 mm high. Cysts that floated on and those settled down as sediments were counted, and had their percentages estimated. Sucrose solutions of 1,200 kg/m3 specific gravity (the average specific gravity of diluting liquids employed in floatation techniques) caused to float 77.7%, 78.4% and 6.6% of the G. duodenalis cysts obtained, respectively, from fresh fecal samples, fecal samples kept under refrigeration, and fecal samples treated with formalin. Cysts obtained both from fresh fecal samples and fecal samples kept under refrigeration presented similar results concerning floatability. It was observed, however, that the treatment of feces with formalin diminished the cysts floatability under the various specific gravities studied. This results should influence, the recommendations for transport and storage of fecal samples used for parasitological coproscopy.

  5. Recurrence of fecal coliforms and Salmonella species in biosolids following thermophilic anaerobic digestion.

    PubMed

    Iranpour, Reza; Cox, Huub H J

    2006-09-01

    The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.

  6. Gut bacteria mediate aggregation in the German cockroach

    PubMed Central

    Wada-Katsumata, Ayako; Zurek, Ludek; Nalyanya, Godfrey; Roelofs, Wendell L.; Zhang, Aijun; Schal, Coby

    2015-01-01

    Aggregation of the German cockroach, Blattella germanica, is regulated by fecal aggregation agents (pheromones), including volatile carboxylic acids (VCAs). We demonstrate that the gut microbial community contributes to production of these semiochemicals. Chemical analysis of the fecal extract of B. germanica revealed 40 VCAs. Feces from axenic cockroaches (no microorganisms in the alimentary tract) lacked 12 major fecal VCAs, and 24 of the remaining compounds were represented at extremely low amounts. Olfactory and aggregation bioassays demonstrated that nymphs strongly preferred the extract of control feces over the fecal extract of axenic cockroaches. Additionally, nymphs preferred a synthetic blend of 6 fecal VCAs over a solvent control or a previously identified VCA blend. To test whether gut bacteria contribute to the production of fecal aggregation agents, fecal aerobic bacteria were cultured, isolated, and identified. Inoculation of axenic cockroaches with individual bacterial taxa significantly rescued the aggregation response to the fecal extract, and inoculation with a mix of six bacterial isolates was more effective than with single isolates. The results indicate that the commensal gut microbiota contributes to production of VCAs that act as fecal aggregation agents and that cockroaches discriminate among the complex odors that emanate from a diverse microbial community. Our results highlight the pivotal role of gut bacteria in mediating insect–insect communication. Moreover, because the gut microbial community reflects the local environment, local plasticity in fecal aggregation pheromones enables colony-specific odors and fidelity to persistent aggregation sites. PMID:26644557

  7. Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography

    PubMed Central

    Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki

    2013-01-01

    Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680

  8. Infliximab in pediatric inflammatory bowel disease rapidly decreases fecal calprotectin levels

    PubMed Central

    Hämäläinen, Anssi; Sipponen, Taina; Kolho, Kaija-Leena

    2011-01-01

    AIM: To study the response to infliximab in pediatric inflammatory bowel disease (IBD), as reflected in fecal calprotectin levels. METHODS: Thirty-six pediatric patients with IBD [23 Crohn’s disease (CD), 13 ulcerative colitis (UC); median age 14 years] were treated with infliximab. Fecal calprotectin was measured at baseline, and 2 and 6 wk after therapy, and compared to blood inflammatory markers. Maintenance medication was unaltered until the third infusion but glucocorticoids were tapered off if the patient was doing well. RESULTS: At introduction of infliximab, median fecal calprotectin level was 1150 μg/g (range 54-6032 μg/g). By week 2, the fecal calprotectin level had declined to a median 261 μg/g (P < 0.001). In 37% of the patients, fecal calprotectin was normal (< 100 μg/g) at 2 wk. By week 6, there was no additional improvement in the fecal calprotectin level (median 345 μg/g). In 22% of the patients, fecal calprotectin levels increased by week 6 to pretreatment levels or above, suggesting no response (or a loss of early response). Thus, in CD, the proportion of non-responsive patients by week 6 seemed lower, because only 9% showed no improvement in their fecal calprotectin level when compared to the respective figure of 46% of the UC patients (P < 0.05). CONCLUSION: When treated with infliximab, fecal calprotectin levels reflecting intestinal inflammation normalized rapidly in one third of pediatric patients suggesting complete mucosal healing. PMID:22215940

  9. Nutrient digestibility and fecal characteristics are different among captive exotic felids fed a beef-based raw diet.

    PubMed

    Vester, Brittany M; Burke, Sarah L; Dikeman, Cheryl L; Simmons, Lee G; Swanson, Kelly S

    2008-03-01

    Nutrient digestibility has not been well characterized in exotic felids. The objective of this experiment was to evaluate differences in nutrient digestibility and fecal characteristics in five large exotic captive felid species, including bobcats, jaguars, cheetahs, Indochinese tigers, and Siberian tigers. All animals were individually housed and adapted to a beef-based raw diet (Nebraska Brand((R)) Special Beef Feline, North Platte, NE) for 16 d. Total fecal collections were conducted from days 17 to 20. Fecal samples were weighed and scored on collection. Diet and fecal samples were evaluated for dry matter, organic matter, protein, fat, and energy to determine total tract digestibility. Fresh fecal samples were collected to determine fecal pH, ammonia, phenol, indole, short-chain fatty acid, and branched-chain fatty acid concentrations. Fecal scores were greater (P<0.01) in Indochinese tigers when compared with all other species, and cheetahs had greater (P<0.01) fecal scores than jaguars and bobcats. Fat digestibility was greater (P<0.01) in Siberian tigers, Indochinese tigers, and bobcats (96%) compared with cheetahs and jaguars (94%). Digestible energy was greater (P<0.05) in bobcats and Indochinese tigers at 93.5 and 92.9%, respectively, compared with cheetahs and jaguars, 91.6%. Fecal pH was greater (P<0.01) in bobcats compared with all other species evaluated. Indole concentrations were greater (P<0.05) in cheetahs and jaguars compared with bobcats and Indochinese tigers. Fecal ammonia concentrations were increased (P<0.05) in cheetahs compared with all other species. The beef-based raw diet was highly digestible; however, differences in fat and digestible energy suggest that species should be considered when determining caloric needs of exotic felids. Zoo Biol 27:126-136, 2008. (c) 2008 Wiley-Liss, Inc.

  10. Evaluation of a Rapid Fecal PCR Test for Detection of Mycobacterium avium subsp. paratuberculosis in Dairy Cattle▿

    PubMed Central

    Wells, Scott J.; Collins, Michael T.; Faaberg, Kay S.; Wees, Carrie; Tavornpanich, Saraya; Petrini, Kristine R.; Collins, James E.; Cernicchiaro, Natalia; Whitlock, Robert H.

    2006-01-01

    A high-throughput TaqMan PCR assay for detection of bovine paratuberculosis was evaluated by using fecal samples from 1,808 dairy cattle in seven naturally infected herds and 347 dairy cattle in seven herds considered free of paratuberculosis. Fecal, blood, and milk samples were submitted to laboratories where the PCR-based assay, three different fecal culture procedures for Mycobacterium avium subsp. paratuberculosis (centrifugation, sedimentation, and the BACTEC filter concentration method), two serologic enzyme-linked immunosorbent assays (ELISAs), and one milk ELISA were performed. Results from testing of dairy cattle in herds free of M. avium subsp. paratuberculosis showed that the PCR assay's specificity was 99.7%. Twenty-three percent of the dairy cows that were fecal culture positive by at least one of the three methods were positive by the PCR assay. By Bayesian non-“gold standard” analysis methods, the TaqMan PCR assay had a higher specificity than the serum ELISAs (99.3%; 95% confidence interval [CI] = 98.6 to 99.7%) and a test sensitivity similar to that of the serum ELISAs (29%; 95% CI = 24 to 35%). By classical methods, the estimated relative sensitivity of the fecal PCR assay was 4% for light and moderate fecal shedders (compared to 12 to 13% for the ELISAs) and 76% for heavy fecal shedders (compared to 67% for the milk ELISA). The PCR assay has higher sensitivity for detection of heavy fecal shedders than the evaluated milk ELISA but lower sensitivity than a serum or milk ELISA for detection of light and moderate fecal shedders. This assay can be used as a quick test for detection of cattle with heavy fecal shedding, those cattle with the highest risk of transmitting infection to susceptible cattle. PMID:16928884

  11. Multipathway Quantitative Assessment of Exposure to Fecal Contamination for Young Children in Low-Income Urban Environments in Accra, Ghana: The SaniPath Analytical Approach

    PubMed Central

    Wang, Yuke; Moe, Christine L.; Null, Clair; Raj, Suraja J.; Baker, Kelly K.; Robb, Katharine A.; Yakubu, Habib; Ampofo, Joseph A.; Wellington, Nii; Freeman, Matthew C.; Armah, George; Reese, Heather E.; Peprah, Dorothy; Teunis, Peter F. M.

    2017-01-01

    Abstract. Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108–1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination. PMID:29031283

  12. Levels of plasma and fecal glucocorticoid metabolites following an ACTH challenge in male and female coyotes (Canis latrans).

    PubMed

    Stevenson, Erika T; Gese, Eric M; Neuman-Lee, Lorin A; French, Susannah S

    2018-03-01

    Knowledge of endocrine stress responses can be advantageous for understanding how animals respond to their environment. One tool in wildlife endocrinology is to measure the adrenocortical activity as a parameter of disturbance of animals. Fecal glucocorticoid metabolites (GCMs) provide a noninvasive assessment of adrenocortical activity. Using an adrenocorticotropic hormone (ACTH) challenge administered to 28 captive coyotes (Canis latrans), we measured the levels of plasma cortisol, and fecal cortisol and corticosterone metabolites (i.e., GCMs). Our goal was to determine the dose-response in the plasma and fecal samples following the injection and determine if there were effects of sex, age, and time of day. Specifically, animals were anesthetized for ~ 90 min with treatment animals intravenously injected with exogenous ACTH and control animals receiving saline. We collected blood samples prior to injection and at 4 different time points post-injection. We also collected fecal samples 2 days pre- and 2 days post-injection to measure fecal GCMs and determine if an endocrine stress response could be detected in fecal samples. We found a definite response in cortisol levels in the plasma for coyotes to the ACTH challenge. There was a response in fecal corticosterone 1 day post-injection, but the control males showed a similar response indicating a handling effect. Fecal cortisol levels did not indicate a response to the ACTH challenge, and were significantly lower than corticosterone concentrations. We also found significant sex, but not age or diurnal, differences in fecal GCMs. Radioimmunoassays for fecal corticosterone levels appeared to be a reliable indicator of physiological stress in coyotes.

  13. Temperature-Controlled Delivery of Radiofrequency Energy in Fecal Incontinence: A Randomized Sham-Controlled Clinical Trial.

    PubMed

    Visscher, Arjan P; Lam, Tze J; Meurs-Szojda, Maria M; Felt-Bersma, Richelle J F

    2017-08-01

    Controlled delivery of radiofrequency energy has been suggested as treatment for fecal incontinence. The aim of this study was to determine whether the clinical response to the radiofrequency energy procedure is superior to sham in patients with fecal incontinence. This was a randomized sham-controlled clinical trial from 2008 to 2015. This study was conducted in an outpatient clinic. Forty patients with fecal incontinence in whom maximal conservative management had failed were randomly assigned to receiving either radiofrequency energy or sham procedure. Fecal incontinence was measured using the Vaizey incontinence score (range, 0-24). The impact of fecal incontinence on quality of life was measured by using the fecal incontinence quality-of-life score (range, 1-4). Measurements were performed at baseline and at 6 months. Anorectal function was evaluated using anal manometry and anorectal endosonography at baseline and at 3 months. At baseline, Vaizey incontinence score was 16.8 (SD 2.9). At t = 6 months, the radiofrequency energy group improved by 2.5 points on the Vaizey incontinence score compared with the sham group (13.2 (SD 3.1), 15.6 (SD 3.3), p = 0.02). The fecal incontinence quality-of-life score at t = 6 months was not statistically different. Anorectal function did not show any alteration. Patients with severe fecal incontinence were included in the study, thus making it difficult to generalize the results. Both radiofrequency energy and sham procedure improved the fecal incontinence score, the radiofrequency energy procedure more than sham. Although statistically significant, the clinical impact for most of the patients was negligible. Therefore, the radiofrequency energy procedure should not be recommended for patients with fecal incontinence until patient-related factors associated with treatment success are known. See Video Abstract at http://links.lww.com/DCR/A373.

  14. Predicting Fecal Indicator Bacteria Fate and Removal in Urban Stormwater at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Wolfand, J.; Hogue, T. S.; Luthy, R. G.

    2016-12-01

    Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Of the many stormwater pollutants, fecal indicator bacteria are particularly important to track because they are directly linked to pathogens which jeopardize public health; yet, their fate and transport in urban stormwater is poorly understood. Monitoring fecal bacteria in stormwater is possible, but due to the high variability of fecal indicators both spatially and temporally, single grab or composite samples do not fully capture fecal indicator loading. Models have been developed to predict fecal indicator bacteria at the watershed scale, but they are often limited to agricultural areas, or areas that receive frequent rainfall. Further, it is unclear whether best management practices (BMPs), such as bioretention or engineered wetlands, are able to reduce bacteria to meet water quality standards at watershed outlets. This research seeks to develop a model to predict fecal indicator bacteria in urban stormwater in a semi-arid climate at the watershed scale. Using the highly developed Ballona Creek watershed (89 mi2) located in Los Angeles County as a case study, several existing mechanistic models are coupled with a hydrologic model to predict fecal indicator concentrations (E. coli, enterococci, fecal coliform, and total coliform) at the outfall of Ballona Creek watershed, Santa Monica Bay. The hydrologic model was developed using InfoSWMM Sustain, calibrated for flow from WY 1998-2006 (NSE = 0.94; R2 = 0.95), and validated from WY 2007-2015 (NSE = 0.93; R2 = 0.95). The developed coupled model is being used to predict fecal indicator fate and transport and evaluate how BMPs can be optimized to reduce fecal indicator loading to surface waters and recreational beaches.

  15. The diagnostic value of a new fecal marker, matrix metalloprotease-9, in different types of inflammatory bowel diseases.

    PubMed

    Farkas, Klaudia; Saródi, Zoltán; Bálint, Anita; Földesi, Imre; Tiszlavicz, László; Szűcs, Mónika; Nyári, Tibor; Tajti, János; Nagy, Ferenc; Szepes, Zoltán; Bor, Renáta; Annaházi, Anita; Róka, Richárd; Molnár, Tamás

    2015-03-01

    Only limited data are available regarding the diagnostic accuracy of fecal matrix metalloprotease-9 [MMP-9] for inflammatory bowel disease [IBD]. The aims of our study were to assess the diagnostic accuracy of fecal MMP-9 in patients with active Crohn's disease [CD], ulcerative colitis [UC], and pouchitis, and to compare the diagnostic accuracy of fecal MMP-9 and fecal calprotectin [CP] in IBD. Stool and blood samples were collected in 50 CD, 54 UC, and 34 ileal pouch-anal anastomosis patients before control endoscopies were performed. Biopsies were taken for histologic purposes. The activities of CD, UC, and pouchitis were defined with the use of clinical, endoscopic, and histologic activity scores. Fecal CP and MMP-9 levels were quantified by enzyme-linked immunosorbent assay. Active CD, UC, and pouchitis were detected in 38%, 54%, and 29% of the patients, respectively. A significant correlation was revealed between fecal CP and the clinical activities of CD and UC, and between fecal CP and the endoscopic activity of UC and pouchitis. Fecal MMP-9 did not correlate with any of the activity indices of CD; however, strong associations were shown between fecal MMP-9 and clinical, endoscopic, and histologic activities of both UC and pouchitis. This is the first study assessing the diagnostic accuracy of MMP-9 in different types of IBD. Our results showed that fecal MMP-9 has high sensitivity in the detection of endoscopically active UC and pouchitis. These non-invasive methods help assess intestinal inflammation. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Composite Materials and Sandwich Structures - A Primer

    DTIC Science & Technology

    2010-05-01

    cooling through a temperature range characteristic of the plastic. In the softened stage the plastic can be formed in a desired shape by molding or...which components are placed in a mold , and the composite is built up and worked by hand. Hybrid- A composite laminate comprised of laminae of two or...ply orientation is symmetrical about the laminate mid- plane. Thermoplastic - A plastic that can be repeatedly softened by heating, and hardened by

  17. Nonlinear softening of unconsolidated granular earth materials

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; Johnson, Paul A.

    2017-09-01

    Unconsolidated granular earth materials exhibit softening behavior due to external perturbations such as seismic waves, namely, the wave speed and elastic modulus decrease upon increasing the strain amplitude above dynamics strains of about 10-6 under near-surface conditions. In this letter, we describe a theoretical model for such behavior. The model is based on the idea that shear transformation zones—clusters of grains that are loose and susceptible to contact changes, particle displacement, and rearrangement—are responsible for plastic deformation and softening of the material. We apply the theory to experiments on simulated fault gouge composed of glass beads and demonstrate that the theory predicts nonlinear resonance shifts, reduction of the P wave modulus, and attenuation, in agreement with experiments. The theory thus offers insights on the nature of nonlinear elastic properties of a granular medium and potentially into phenomena such as triggering on earthquake faults.

  18. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  19. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten

    DOE PAGES

    Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...

    2018-02-13

    The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less

  20. Micro-Raman study on the softening and stiffening of phonons in rutile titanium dioxide film: Competing effects of structural defects, crystallite size, and lattice strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K.; Singh, Fouran, E-mail: fouran@gmail.com; Sulania, I.

    2014-04-14

    Softening and stiffening of phonons in rutile titanium dioxide films are investigated by in situ micro-Raman studies during energetic ion irradiation. The in situ study minimized other possible mechanisms of phonon dynamics. Initial softening and broadening of Raman shift are attributed to the phonon confinement by structural defects and loss of stoichiometry. The stiffening of A{sub 1g} mode is ascribed to large distortion of TiO{sub 6} octahedra under the influence of lattice strain in the (110) plane, which gives rise to lengthening of equatorial Ti-O bond and shortening of apical Ti-O bond. The shortening of apical Ti-O bond induces stiffeningmore » of A{sub 1g} mode in the framework of the bond-order-length-strength correlation mechanism.« less

  1. Monitoring electrostatically-induced deflection, strain and doping in suspended graphene using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Metten, Dominik; Froehlicher, Guillaume; Berciaud, Stéphane

    2017-03-01

    Electrostatic gating offers elegant ways to simultaneously strain and dope atomically thin membranes. Here, we report on a detailed in situ Raman scattering study on graphene, suspended over a Si/SiO2 substrate. In such a layered structure, the intensity of the Raman G- and 2D-mode features of graphene are strongly modulated by optical interference effects and allow an accurate determination of the electrostatically-induced membrane deflection, up to irreversible collapse. The membrane deflection is successfully described by an electromechanical model, which we also use to provide useful guidelines for device engineering. In addition, electrostatically-induced tensile strain is determined by examining the softening of the Raman features. Due to a small residual charge inhomogeneity, we find that non-adiabatic anomalous phonon softening is negligible compared to strain-induced phonon softening. These results open perspectives for innovative Raman scattering-based readout schemes in two-dimensional nanoresonators.

  2. Development of Water Softening Method of Intake in Magnitogorsk

    NASA Astrophysics Data System (ADS)

    Meshcherova, E. A.; Novoselova, J. N.; Moreva, J. A.

    2017-11-01

    This article contains an appraisal of the drinking water quality of Magnitogorsk intake. A water analysis was made which led to the conclusion that the standard for general water hardness was exceeded. As a result, it became necessary to develop a number of measures to reduce water hardness. To solve this problem all the necessary studies of the factors affecting the value of increased water hardness were carried out and the water softening method by using an ion exchange filter was proposed. The calculation of the cation-exchanger filling volume of the proposed filter is given in the article, its overall dimensions are chosen. The obtained calculations were confirmed by the results of laboratory studies by using the test installation. The research and laboratory tests results make the authors conclude that the proposed method should be used to obtain softened water for the requirements of SanPin.

  3. Microtubules soften due to cross-sectional flattening

    DOE PAGES

    Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.; ...

    2018-06-01

    We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less

  4. Microtubules soften due to cross-sectional flattening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.

    We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less

  5. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.

    PubMed

    Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier

    2013-06-06

    We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization.

  6. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Wu, Chia-Chang; Chen, Chih-Yuan; Yang, Jer-Ren; Chiu, Po-Kay; Fang, Jason

    2007-08-01

    A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ɛ martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

  7. Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate

    DOE PAGES

    Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2016-01-06

    At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb 0.5Gd 0.5PO 4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb 0.5Gd 0.5PO 4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c 1133 + c 1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics canmore » be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less

  8. Phonon Softening due to Melting of the Ferromagnetic Order in Elemental Iron

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Birol, Turan; Haule, Kristjan

    2018-05-01

    We study the fundamental question of the lattice dynamics of a metallic ferromagnet in the regime where the static long-range magnetic order is replaced by the fluctuating local moments embedded in a metallic host. We use the ab initio density functional theory + embedded dynamical mean-field theory functional approach to address the dynamic stability of iron polymorphs and the phonon softening with an increased temperature. We show that the nonharmonic and inhomogeneous phonon softening measured in iron is a result of the melting of the long-range ferromagnetic order and is unrelated to the first-order structural transition from the bcc to the fcc phase, as is usually assumed. We predict that the bcc structure is dynamically stable at all temperatures at normal pressure and is thermodynamically unstable only between the bcc-α and the bcc-δ phases of iron.

  9. Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.

    2018-01-01

    In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.

  10. Malabsorption and nutritional balance in the ICU: fecal weight as a biomarker: a prospective observational pilot study.

    PubMed

    Wierdsma, Nicolette J; Peters, Job H C; Weijs, Peter J M; Keur, Martjin B; Girbes, Armand R J; van Bodegraven, Ad A; Beishuizen, Albertus

    2011-01-01

    Malabsorption, which is frequently underdiagnosed in critically ill patients, is clinically relevant with regard to nutritional balance and nutritional management. We aimed to validate the diagnostic accuracy of fecal weight as a biomarker for fecal loss and additionally to assess fecal macronutrient contents and intestinal absorption capacity in ICU patients. This was an observational pilot study in a tertiary mixed medical-surgical ICU in hemodynamically stable adult ICU patients, without clinically evident gastrointestinal malfunction. Fecal weight (grams/day), fecal energy (by bomb calorimetry in kcal/day), and macronutrient content (fat, protein, and carbohydrate in grams/day) were measured. Diagnostic accuracy expressed in terms of test sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and receiver operator curves (ROCs) were calculated for fecal weight as a marker for energy malabsorption. Malabsorption was a priori defined as < 85% intestinal absorption capacity. Forty-eight patients (63 ± 15 years; 58% men) receiving full enteral feeding were included. A cut-off fecal production of > 350 g/day (that is, diarrhea) was linked to the optimal ROC (0.879), showing a sensitivity and PPV of 80%, respectively. Specificity and NPV were both 96%. Fecal weight (grams/day) and intestinal energy-absorption capacity were inversely correlated (r = -0.69; P < 0.001). Patients with > 350 g feces/day had a significantly more-negative energy balance compared with patients with < 350 g feces/day (loss of 627 kcal/day versus neutral balance; P = 0.012). A fecal weight > 350 g/day in ICU patients is a biomarker applicable in daily practice, which can act as a surrogate for fecal energy loss and intestinal energy absorption. Daily measurement of fecal weight is a feasible means of monitoring the nutritional status of critically ill patients and, in those identified as having malabsorption, can monitor responses to changes in dietary management.

  11. Malabsorption and nutritional balance in the ICU: fecal weight as a biomarker: a prospective observational pilot study

    PubMed Central

    2011-01-01

    Introduction Malabsorption, which is frequently underdiagnosed in critically ill patients, is clinically relevant with regard to nutritional balance and nutritional management. We aimed to validate the diagnostic accuracy of fecal weight as a biomarker for fecal loss and additionally to assess fecal macronutrient contents and intestinal absorption capacity in ICU patients. Methods This was an observational pilot study in a tertiary mixed medical-surgical ICU in hemodynamically stable adult ICU patients, without clinically evident gastrointestinal malfunction. Fecal weight (grams/day), fecal energy (by bomb calorimetry in kcal/day), and macronutrient content (fat, protein, and carbohydrate in grams/day) were measured. Diagnostic accuracy expressed in terms of test sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and receiver operator curves (ROCs) were calculated for fecal weight as a marker for energy malabsorption. Malabsorption was a priori defined as < 85% intestinal absorption capacity. Results Forty-eight patients (63 ± 15 years; 58% men) receiving full enteral feeding were included. A cut-off fecal production of > 350 g/day (that is, diarrhea) was linked to the optimal ROC (0.879), showing a sensitivity and PPV of 80%, respectively. Specificity and NPV were both 96%. Fecal weight (grams/day) and intestinal energy-absorption capacity were inversely correlated (r = -0.69; P < 0.001). Patients with > 350 g feces/day had a significantly more-negative energy balance compared with patients with < 350 g feces/day (loss of 627 kcal/day versus neutral balance; P = 0.012). Conclusions A fecal weight > 350 g/day in ICU patients is a biomarker applicable in daily practice, which can act as a surrogate for fecal energy loss and intestinal energy absorption. Daily measurement of fecal weight is a feasible means of monitoring the nutritional status of critically ill patients and, in those identified as having malabsorption, can monitor responses to changes in dietary management. PMID:22071233

  12. RNA-Based Methods Increase the Detection of Fecal Bacteria and Fecal Identifiers in Environmental Waters

    EPA Science Inventory

    We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...

  13. SPECIFICITY AND SENSITIVITY OF FECAL BACTEROIDETES HUMAN-SPECIFIC PRIMERS WITH FECAL AND WASTEWATER SAMPLES FROM THE U.S. MIDWEST AND NORTHEAST REGIONS

    EPA Science Inventory

    Numerous watersheds throughout the United States are impaired due to fecal contamination. Fecal Bacteroidetes is a group of anaerobic bacteria present in high concentrations in animal feces that has shown promise as a microbial source tracking indicator of human and othe...

  14. Cost-Effectiveness Analysis of Six Strategies to Treat Recurrent Clostridium difficile Infection

    PubMed Central

    Lapointe-Shaw, Lauren; Tran, Kim L.; Coyte, Peter C.; Hancock-Howard, Rebecca L.; Powis, Jeff; Poutanen, Susan M.; Hota, Susy

    2016-01-01

    Objective To assess the cost-effectiveness of six treatment strategies for patients diagnosed with recurrent Clostridium difficile infection (CDI) in Canada: 1. oral metronidazole; 2. oral vancomycin; 3.oral fidaxomicin; 4. fecal transplantation by enema; 5. fecal transplantation by nasogastric tube; and 6. fecal transplantation by colonoscopy. Perspective Public insurer for all hospital and physician services. Setting Ontario, Canada. Methods A decision analytic model was used to model costs and lifetime health effects of each strategy for a typical patient experiencing up to three recurrences, over 18 weeks. Recurrence data and utilities were obtained from published sources. Cost data was obtained from published sources and hospitals in Toronto, Canada. The willingness-to-pay threshold was $50,000/QALY gained. Results Fecal transplantation by colonoscopy dominated all other strategies in the base case, as it was less costly and more effective than all alternatives. After accounting for uncertainty in all model parameters, there was an 87% probability that fecal transplantation by colonoscopy was the most beneficial strategy. If colonoscopy was not available, fecal transplantation by enema was cost-effective at $1,708 per QALY gained, compared to metronidazole. In addition, fecal transplantation by enema was the preferred strategy if the probability of recurrence following this strategy was below 8.7%. If fecal transplantation by any means was unavailable, fidaxomicin was cost-effective at an additional cost of $25,968 per QALY gained, compared to metronidazole. Conclusion Fecal transplantation by colonoscopy (or enema, if colonoscopy is unavailable) is cost-effective for treating recurrent CDI in Canada. Where fecal transplantation is not available, fidaxomicin is also cost-effective. PMID:26901316

  15. A proposal to standardize reporting units for fecal immunochemical tests for hemoglobin.

    PubMed

    Fraser, Callum G; Allison, James E; Halloran, Stephen P; Young, Graeme P

    2012-06-06

    Fecal immunochemical tests for hemoglobin are replacing traditional guaiac fecal occult blood tests in population screening programs for many reasons. However, the many available fecal immunochemical test devices use a range of sampling methods, differ with regard to hemoglobin stability, and report hemoglobin concentrations in different ways. The methods for sampling, the mass of feces collected, and the volume and characteristics of the buffer used in the sampling device also vary among fecal immunochemical tests, making comparisons of test performance characteristics difficult. Fecal immunochemical test results may be expressed as the hemoglobin concentration in the sampling device buffer and, sometimes, albeit rarely, as the hemoglobin concentration per mass of feces. The current lack of consistency in units for reporting hemoglobin concentration is particularly problematic because apparently similar hemoglobin concentrations obtained with different devices can lead to very different clinical interpretations. Consistent adoption of an internationally accepted method for reporting results would facilitate comparisons of outcomes from these tests. We propose a simple strategy for reporting fecal hemoglobin concentration that will facilitate the comparison of results between fecal immunochemical test devices and across clinical studies. Such reporting is readily achieved by defining the mass of feces sampled and the volume of sample buffer (with confidence intervals) and expressing results as micrograms of hemoglobin per gram of feces. We propose that manufacturers of fecal immunochemical tests provide this information and that the authors of research articles, guidelines, and policy articles, as well as pathology services and regulatory bodies, adopt this metric when reporting fecal immunochemical test results.

  16. Cost-Effectiveness Analysis of Six Strategies to Treat Recurrent Clostridium difficile Infection.

    PubMed

    Lapointe-Shaw, Lauren; Tran, Kim L; Coyte, Peter C; Hancock-Howard, Rebecca L; Powis, Jeff; Poutanen, Susan M; Hota, Susy

    2016-01-01

    To assess the cost-effectiveness of six treatment strategies for patients diagnosed with recurrent Clostridium difficile infection (CDI) in Canada: 1. oral metronidazole; 2. oral vancomycin; 3.oral fidaxomicin; 4. fecal transplantation by enema; 5. fecal transplantation by nasogastric tube; and 6. fecal transplantation by colonoscopy. Public insurer for all hospital and physician services. Ontario, Canada. A decision analytic model was used to model costs and lifetime health effects of each strategy for a typical patient experiencing up to three recurrences, over 18 weeks. Recurrence data and utilities were obtained from published sources. Cost data was obtained from published sources and hospitals in Toronto, Canada. The willingness-to-pay threshold was $50,000/QALY gained. Fecal transplantation by colonoscopy dominated all other strategies in the base case, as it was less costly and more effective than all alternatives. After accounting for uncertainty in all model parameters, there was an 87% probability that fecal transplantation by colonoscopy was the most beneficial strategy. If colonoscopy was not available, fecal transplantation by enema was cost-effective at $1,708 per QALY gained, compared to metronidazole. In addition, fecal transplantation by enema was the preferred strategy if the probability of recurrence following this strategy was below 8.7%. If fecal transplantation by any means was unavailable, fidaxomicin was cost-effective at an additional cost of $25,968 per QALY gained, compared to metronidazole. Fecal transplantation by colonoscopy (or enema, if colonoscopy is unavailable) is cost-effective for treating recurrent CDI in Canada. Where fecal transplantation is not available, fidaxomicin is also cost-effective.

  17. Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction

    USGS Publications Warehouse

    Hartup, Barry K.; Olsen, Glenn H.; Czekala, Nancy M.

    2005-01-01

    We used radioimmunoassay to determine fecal corticoid concentrations and assess potential stress in 10 endangered whooping cranes (Grus americana) undergoing reintroduction to the wild. Fecal samples were collected shortly after hatching at a captive facility in Maryland, during field training in Wisconsin, and throughout a human-led migration to Florida. After a 14-day decline following hatching, fecal corticoid concentrations stabilized at baseline levels for the duration of the captive period, despite exposure to potentially stressful stimuli. Shipment of the cranes to the field training site was correlated with an eight- to 34-fold increase in fecal corticoid concentrations, which returned to baseline levels within 1 week. Increases were positively correlated with age but not body weight at the time of shipping. Fecal corticoid concentrations during the training period increased slightly and exhibited greater variation than levels observed at the captive facility, but were well within expected norms based on previous studies. Fecal corticoid concentrations increased twofold following premigration physical examinations and placement of radiotransmitters, and persisted for up to 4 days before they returned to baseline levels. Though fecal corticoid concentrations and variation during the migration period were similar to training levels, there was an overall decline in fecal corticoid concentrations during the artificial migration. Acute stressors, such as capture, restraint, and severe storms, were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall reintroduction process of costume-rearing, ultralight aircraft habituation, training, and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress.

  18. Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl.

    PubMed

    Wasser, Samuel K; Hunt, Kathleen E

    2005-06-01

    There is an urgent need for noninvasive methods to study reproduction and environmental stress in at-risk species such as the northern spotted owl (Strix occidentalis caurina). Two related owl species (barred owl and great horned owl) were used as surrogates to validate hormone assays for fecal metabolites of progesterone, 17beta-estradiol, testosterone, and corticosterone. Infusions of radiolabeled hormones showed that the owls excreted most hormone within 6 h. Feces and urine contained roughly equal amounts of hormone, and most fecal hormone metabolites were quite polar. The testosterone and corticosterone assays in this study bound to the major excreted metabolites of these hormones, but two progesterone assays did not appreciably bind to the major progesterone metabolites. All assays showed excellent parallelism with hydrolyzed and unhydrolyzed samples and with previously dried or undried fecal samples. Thus, samples do not require hydrolysis or prior drying. Samples from a female barred owl had significantly higher fecal estrogen, lower fecal testosterone, and higher fecal estrogen/testosterone ratio than samples from two male barred owls. The fecal estrogen/testosterone ratio was the most accurate predictor of owl gender, particularly if two or more samples are available from the same individual. Fecal corticosterone metabolites also demonstrated considerable utility for wild northern spotted owls. Fecal glucocorticoid levels varied by gender and breeding stage, being highest in male northern spotted owls early in the breeding season and highest in females when nestlings were fledging. Collectively, these studies show that noninvasive fecal hormone measurements show great promise for noninvasive assessment of reproduction and stress in wild owls.

  19. Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations▿†

    PubMed Central

    Shanks, Orin C.; Kelty, Catherine A.; Archibeque, Shawn; Jenkins, Michael; Newton, Ryan J.; McLellan, Sandra L.; Huse, Susan M.; Sogin, Mitchell L.

    2011-01-01

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity but also in food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provide adequate detail about variability in the community structures of fecal bacteria within and across cattle populations. Using massively parallel pyrosequencing of a hypervariable region of the rRNA coding region, we profiled the fecal microbial communities of cattle from six different feeding operations where cattle were subjected to consistent management practices for a minimum of 90 days. We obtained a total of 633,877 high-quality sequences from the fecal samples of 30 adult beef cattle (5 individuals per operation). Sequence-based clustering and taxonomic analyses indicate less variability within a population than between populations. Overall, bacterial community composition correlated significantly with fecal starch concentrations, largely reflected in changes in the Bacteroidetes, Proteobacteria, and Firmicutes populations. In addition, network analysis demonstrated that annotated sequences clustered by management practice and fecal starch concentration, suggesting that the structures of bovine fecal bacterial communities can be dramatically different in different animal feeding operations, even at the phylum and family taxonomic levels, and that the feeding operation is a more important determinant of the cattle microbiome than is the geographic location of the feedlot. PMID:21378055

  20. Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers.

    PubMed

    Tamura, Motoi; Hori, Sachiko; Nakagawa, Hiroyuki

    2011-01-01

    Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota.

  1. Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers

    PubMed Central

    TAMURA, Motoi; HORI, Sachiko; NAKAGAWA, Hiroyuki

    2011-01-01

    Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota. PMID:25045313

  2. Human and Animal Fecal Contamination of Community Water Sources, Stored Drinking Water and Hands in Rural India Measured with Validated Microbial Source Tracking Assays.

    PubMed

    Schriewer, Alexander; Odagiri, Mitsunori; Wuertz, Stefan; Misra, Pravas R; Panigrahi, Pinaki; Clasen, Thomas; Jenkins, Marion W

    2015-09-01

    We examined pathways of exposure to fecal contamination of human and animal origin in 24 villages in Odisha, India. In a cross-sectional study during the monsoon season, fecal exposure via community water sources (N = 123) and in the home (N = 137) was assessed using human- and nonhuman-associated Bacteroidales microbial source tracking (MST) markers and fecal coliforms (FCs). Detection rates and marker concentrations were examined to pinpoint pathways of human fecal exposure in the public and domestic domains of disease transmission in study communities. Human fecal markers were detected much more frequently in the domestic domain (45% of households) than in public domain sources (8% of ponds; 4% of groundwater drinking sources). Animal fecal markers were widely detected in both domains (74% of ponds, 96% of households, 10% of groundwater drinking sources), indicating ubiquitous risks of exposure to animal feces and zoonotic pathogens. This study confirms an often suggested contamination link from hands to stored water in the home in developing countries separately for mothers' and children's hands and both human and animal fecal contamination. In contrast to MST markers, FCs provided a poor metric to assess risks of exposure to fecal contamination of human origin in this rural setting. © The American Society of Tropical Medicine and Hygiene.

  3. Occurrence of fecal coliform bacteria in selected streams in Wyoming, 1990-99

    USGS Publications Warehouse

    Clark, Melanie L.; Norris, Jodi R.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Department of Environmental Quality (WDEQ), is collecting water samples for analysis of fecal coliform bacteria at 18 stream sites as part of a statewide network. Contamination by bacteria of fecal origin in streams where contact recreation is a designated water use is a concern because of potential public-health risk from the presence of enteric pathogens. Fecal coliform concentrations are temporally and spatially variable in Wyoming streams-concentrations ranged from less than 1 to 45,000 colonies per 100 milliliters of water during 1990-99. Fecal coliform concentrations were less than the water-quality criterion of 400 colonies per 100 milliliters in 83 percent of the samples, indicating fecal coliform contamination is not a widespread problem in these Wyoming streams. However, 14 of the 18 monitoring sites had at least one sample in which the fecal coliform concentration exceeded 400 colonies per 100 milliliters at some time during the 10-year period. Fecal coliform concentrations generally are higher during April through September than during October through March. The higher concentrations coincide with the time period when the public-health risk is higher because summer months are when contact recreation use is more likely occurring. Fecal coliform concentrations were positively correlated with discharge and stream temperature and generally were negatively correlated with pH, specific conductance, and dissolved oxygen.

  4. What have we learned after more than 30 years of research into the effects of sunlight, water type, nutrients, temperature and biotic interactions on decay of fecal indicators and pathogens?

    EPA Science Inventory

    Many waterborne pathogens originate in the gastrointestinal tract of humans or other animals (the primary habitat), and enter water bodies (secondary habitat) via direct fecal deposition, runoff, or sewage discharges. Fecal indicator bacteria (FIB) such as fecal coliforms, entero...

  5. Quantitative CrAssphage PCR Assays for Human Fecal ...

    EPA Pesticide Factsheets

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.

  6. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.

    2016-05-01

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.

  7. Using fecal glucocorticoids for stress assessment in Mourning Doves

    USGS Publications Warehouse

    Washburn, Brian E.; Millspaugh, Joshua J.; Schulz, John H.; Jones, Susan B.; Mong, T.

    2003-01-01

    Fecal glucocorticoid assays provide a potentially useful, noninvasive means to study physiological responses of wildlife to various stressors. The objective of our study was to validate a method for measuring glucocorticoid metabolites in Mourning Dove (Zenaida macroura) feces. We validated the assay using standard procedures (e.g., parallelism, recovery of exogenous corticosterone) to demonstrate that the assay accurately and precisely measured glucocorticoid metabolites in Mourning Dove fecal extracts. We conducted adrenocorticotropin (ACTH) challenge experiments to validate the assay's ability to determine biologically important changes in fecal glucocorticoids. Fecal glucocorticoid levels increased significantly approximately 2-3 hr after administration of ACTH at 50 IU per kg body mass to wild Mourning Doves held in captivity. In contrast, fecal glucocorticoid metabolites did not increase in control birds, birds that received saline injections, or a lower dose of ACTH (1 IU per kg body mass). Variation in overall fecal glucocorticoid metabolite levels may have been influenced by season and the length of time birds were held in captivity. Non-invasive fecal glucocorticoid metabolite analyses, in combination with demographic information, may have considerable utility for monitoring the effects of natural and anthropogenic disturbances on Mourning Dove populations.

  8. Seasonal Variations in Survival of Indicator Bacteria in Soil and Their Contribution to Storm-water Pollution

    PubMed Central

    Van Donsel, Dale J.; Geldreich, Edwin E.; Clarke, Norman A.

    1967-01-01

    Survival of a fecal coliform (Escherichia coli) and a fecal streptococcus (Streptococcus faecalis var. liquifaciens) was studied through several years at shaded and exposed outdoor soil plots. Death rates for both organisms were calculated for the different seasons at both sites. The 90% reduction times for the fecal coliform ranged from 3.3 days in summer to 13.4 days in autumn. For the fecal streptococcus, 90% reduction times were from 2.7 days in summer to 20.1 days in winter. During summer, the fecal coliform survived slightly longer than the fecal streptococcus; during autumn, survival was the same; and in spring and winter the fecal streptococcus survived much longer than the fecal coliform. Both organisms were isolated from storm-water runoff collected below a sampling site when counts were sufficiently high in soil. Isolation was more frequent during prolonged rains, lasting up to 10 days, than during short rain storms. There was evidence of aftergrowth of nonfecal coliforms in the soil as a result of temperature and rainfall variations. Such aftergrowth may contribute to variations in bacterial count of storm-water runoff which have no relation to the sanitary history of the drainage area. PMID:16349746

  9. Model of cohesive properties and structural phase transitions in non-metallic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, J.A.; Vogl, P.

    1986-01-01

    We have developed a simple, yet microscopic and universal model for cohesive properties of solids. This model explains the physical mechanisms determining the chemical and predicts semiquantitatively static and dynamic cohesive properties. It predicts a substantial softening of the long-wavelength transverse optical phonons across the pressure induced phase transition from the zincblenda to rocksalt structure in II-VI compounds. The origin of this softening is shown to be closely related to ferroelectricity.

  10. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    NASA Astrophysics Data System (ADS)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  11. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    PubMed

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Visceral and Somatic Disorders: Tissue Softening with Frequency-Specific Microcurrent

    PubMed Central

    Oschman, James L.

    2013-01-01

    Abstract Frequency-specific microcurrent (FSM) is an emerging technique for treating many health conditions. Pairs of frequencies of microampere-level electrical stimulation are applied to particular places on the skin of a patient via combinations of conductive graphite gloves, moistened towels, or gel electrode patches. A consistent finding is a profound and palpable tissue softening and warming within seconds of applying frequencies appropriate for treating particular conditions. Similar phenomena are often observed with successful acupuncture, cranial-sacral, and other energy-based techniques. This article explores possible mechanisms involved in tissue softening. In the 1970s, neuroscientist and osteopathic researcher Irvin Korr developed a “γ-loop hypothesis” to explain the persistence of increased systemic muscle tone associated with various somatic dysfunctions. This article summarizes how physiologists, neuroscientists, osteopaths, chiropractors, and fascial researchers have expanded on Korr's ideas by exploring various mechanisms by which injury or disease increase local muscle tension or systemic muscle tone. Following on Korr's hypothesis, it is suggested that most patients actually present with elevated muscle tone or tense areas due to prior traumas or other disorders, and that tissue softening indicates that FSM or other methods are affecting the cause of their pathophysiology. The authors believe this concept and the research it has led to will be of interest to a wide range of energetic, bodywork, and movement therapists. PMID:22775307

  13. Sweet cherry softening accompanied with moisture migration and loss during low-temperature storage.

    PubMed

    Zhu, Danshi; Liang, Jieyu; Liu, He; Cao, Xuehui; Ge, Yonghong; Li, Jianrong

    2018-08-01

    Hardness is one of the important qualities influencing consumer appeal and marketing of fresh sweet cherry (Prunus avium L.). Moisture loss is one of the main causative factors of cherry softening. In this work, moisture loss and softening process of sweet cherry during postharvest storage at 0 and 4 °C were studied. In addition, low-field 1 H nuclear magnetic resonance (LF-NMR) was used to analyze water distribution and migration in sweet cherry during storage at 4 °C. Moisture content correlated significantly (p < 0.01) with both skin and flesh hardness of cherry fruit at the two storage temperatures. According to the transverse relaxation curve, relaxation time, as T 21 (0.01-10 ms), T 22 (10-150 ms), and T 23 (150-1000 ms) were ascribed to cell wall protons, cytoplasmic water, and vacuolar water respectively. Contents of cytoplasmic (p < 0.05) and vacuolar water (p < 0.01) changed significantly with storage time. Magnetic resonance imaging results illustrated that water distributes uniformly in fresh tissue. With prolonged storage time, free water content increased gradually, and then internal damage occurred. Sweet cherry softening closely correlated with moisture loss during low-temperature storage. LF-NMR is a useful technique to investigate moisture migration of fruits and vegetables. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. The role of land use and environmental factors on microbial pollution of mountainous limestone aquifers

    NASA Astrophysics Data System (ADS)

    Allocca, V.; Celico, F.; Petrella, E.; Marzullo, G.; Naclerio, G.

    2008-07-01

    Limestone aquifers in Southern Italy are often affected by bacterial contamination produced by pasture and agriculture. The main goals of this study were (1) to analyze the role of land use and environmental factors on microbial contamination and, (2) to identify, at field scale, the most suitable indicator of fecal pollution, by comparing fecal coliforms and fecal enterococci. Analyzing surface and spring water, it was noted that both fecal indicators showed a significant decrease during the period characterized by freezing and/or freeze-thaw intervals. The data analysis shows that fecal coliforms are characterized by a significant decrease in population (3 orders of magnitude, at least) during the freezing period, while fecal enterococci are temporarily inhibited. A taxonomic classification of fecal enterococci detected in spring water samples was performed by the API 20 Strep system and by sequencing of the ribosomal 16S DNA genes. The results showed that freezing conditions did not cause any significant change on the set of enterococcal species.

  15. [Fecal bacteriotherapy for the treatment of recurrent Clostridium difficile colitis used in the Clinic of Infectious Diseases of the University Hospital Brno in 2010-2014 - a prospective study].

    PubMed

    Polák, P; Freibergerová, M; Husa, P; Juránková, J; Svačinka, R; Mikešová, L; Kocourková, H; Mihalčin, M; Skalická, R; Stebel, R; Porubčanová, M

    2015-10-01

    The aim of the study is to assess the efficacy of fecal bacteriotherapy in the treatment of Clostridium difficile colitis. A prospective study of fecal bacteriotherapy in 80 adult patients hospitalized in the Clinic of Infectious Diseases, University Hospital Brno between 1 January 2010 and 31 December 2014. During the study period, 80 patients were treated with fecal bacteriotherapy. The majority of the study group received fecal bacteriotherapy via a nasojejunal tube (n=78) and two patients via a rectal enema. Six patients were instilled with 20 g of feces, with a success rate of 50 %. The outcomes of nine patients were unevaluable. In the rest of 65 patients, the success rate with 40 g of feces was 83.1 %. There were no severe adverse events or mortality associated with fecal bacteriotherapy. Fecal bacteriotherapy is a safe and effective treatment modality in Clostridium difficile colitis.

  16. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli (Spearman's Rho value of 0.976). The majority of the fecal coliforms were Escherichia coli during the synoptic study. Fecal-indicator-bacteria concentrations were not correlated to streamflow, water temperature, dissolved oxygen, pH, specific conduc-tance, and alkalinity. Fecal-indicator-bacteria concentrations were moderately correlated with turbidity (Spearman's Rho values of 0.662 and 0.640 for fecal coliform and Escherichia coli, respectively) and sediment (Spearman's Rho values of 0.628 and 0.636 for fecal coliform and Escherichia coli, respectively). Escherichia coli isolates analyzed by discriminant analysis of ribotype patterns for samples from the Bighorn River at Basin, Wyoming, and Bitter Creek near Garland, Wyoming, in the Bighorn River Basin were determined to be from nonhuman and human sources. Using a confidence interval of 90 percent, more of the isolates from both sites were classified as being from nonhuman than human sources; however, both samples had additional isolates that were classified as unknown sources. --------------------------------------------------------------------------------

  17. Chapter A7. Section 7.2. Fecal Indicator Viruses

    USGS Publications Warehouse

    Bushon, Rebecca N.

    2003-01-01

    More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.

  18. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). •OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue. PMID:26865506

  19. Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding.

    PubMed

    Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda

    2012-12-01

    Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P < or = 0.05) with fecal viral shedding. Because some cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically infected with FCoV may be a more feasible approach.

  20. Long-term durability of sacral nerve stimulation therapy for chronic fecal incontinence.

    PubMed

    Hull, Tracy; Giese, Chad; Wexner, Steven D; Mellgren, Anders; Devroede, Ghislain; Madoff, Robert D; Stromberg, Katherine; Coller, John A

    2013-02-01

    Limited data have been published regarding the long-term results of sacral nerve stimulation, or sacral neuromodulation, for severe fecal incontinence. The aim was to assess the outcome of sacral nerve stimulation with the use of precise tools and data collection, focusing on the long-term durability of the therapy. Five-year data were analyzed. Patients entered in a multicenter, prospective study for fecal incontinence were followed at 3, 6, and 12 months and annually after device implantation. Patients with chronic fecal incontinence in whom conservative treatments had failed or who were not candidates for more conservative treatments were selected. Patients with ≥ 50% improvement over baseline in fecal incontinence episodes per week during a 14-day test stimulation period received sacral nerve stimulation therapy. Patients were assessed with a 14-day bowel diary and Fecal Incontinence Quality of Life and Fecal Incontinence Severity Index questionnaires. Therapeutic success was defined as ≥ 50% improvement over baseline in fecal incontinence episodes per week. All adverse events were collected. A total of 120 patients (110 women; mean age, 60.5 years) underwent implantation. Seventy-six of these patients (63%) were followed a minimum of 5 years (maximum, longer than 8 years) and are the basis for this report. Fecal incontinence episodes per week decreased from a mean of 9.1 at baseline to 1.7 at 5 years, with 89% (n = 64/72) having ≥ 50% improvement (p < 0.0001) and 36% (n = 26/72) having complete continence. Fecal Incontinence Quality of Life scores also significantly improved for all 4 scales between baseline and 5 years (n = 70; p < 0.0001). Twenty-seven of the 76 (35.5%) patients required a device revision, replacement, or explant. The therapeutic effect and improved quality of life for fecal incontinence is maintained 5 years after sacral nerve stimulation implantation and beyond. Device revision, replacement, or explant rate was acceptable, but future efforts should be aimed at improvement.

  1. Fecal total iron concentration is inversely associated with fecal Lactobacillus in preschool children.

    PubMed

    Kalipatnapu, Sasank; Kuppuswamy, Sivaraman; Venugopal, Giriprasad; Kaliaperumal, Venkatesh; Ramadass, Balamurugan

    2017-08-01

    Iron deficiency is associated with stunting and poor performance in children. Oral iron supplementation is widely promoted to correct iron deficiency. However, excess iron may be toxic to beneficial luminal gut bacteria and could support growth of pathobionts. The aim of this study is to analyze the fecal total iron concentration and fecal Lactobacillus levels in a cohort of stunted and normal children. The study was undertaken in two different locations. One of them is a rural area, and the other is a semi-urban-slum area; both areas are located in the Vellore district of Tamilnadu state. Twenty children (10 stunted and 10 normal growth) aged 2 to 5 years from each area were recruited. Both groups were nearly identical demographically. Fecal samples were collected. Fecal total iron was estimated, and fecal DNA was extracted and subjected to 16S rDNA-targeted real-time PCR to determine the relative predominance of Lactobacillus and Escherichia coli. The fecal total iron concentration in rural children (3656 μg/g wet wt. of feces) was significantly higher when compared with semi-urban-slum children (114.9 μg/g wet wt. of feces, P < 0.005). Inversely, fecal Lactobacillus in rural children (median 3.18 × 10 -3 relative difference compared with total bacteria) was significantly lower when compared with semi-urban-slum children (median 59.33 × 10 -3 , p < 0.005). There was no significant change observed between normal and stunted children. E. coli levels remained unaffected. The present study documents an inverse relationship between fecal iron concentration and fecal Lactobacillus concentration in children belonging to two different localities independent of their nutritional status. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Profile of preoperative fecal organic acids closely predicts the incidence of postoperative infectious complications after major hepatectomy with extrahepatic bile duct resection: Importance of fecal acetic acid plus butyric acid minus lactic acid gap.

    PubMed

    Yokoyama, Yukihiro; Mizuno, Takashi; Sugawara, Gen; Asahara, Takashi; Nomoto, Koji; Igami, Tsuyoshi; Ebata, Tomoki; Nagino, Masato

    2017-10-01

    To investigate the association between preoperative fecal organic acid concentrations and the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection for biliary malignancies. The fecal samples of 44 patients were collected before undergoing hepatectomy with bile duct resection for biliary malignancies. The concentrations of fecal organic acids, including acetic acid, butyric acid, and lactic acid, and representative fecal bacteria were measured. The perioperative clinical characteristics and the concentrations of fecal organic acids were compared between patients with and without postoperative infectious complications. Among 44 patients, 13 (30%) developed postoperative infectious complications. Patient age and intraoperative bleeding were significantly greater in patients with postoperative infectious complications compared with those without postoperative infectious complications. The concentrations of fecal acetic acid and butyric acid were significantly less, whereas the concentration of fecal lactic acid tended to be greater in the patients with postoperative infectious complications. The calculated gap between the concentrations of fecal acetic acid plus butyric acid minus lactic acid gap was less in the patients with postoperative infectious complications (median 43.5 vs 76.1 μmol/g of feces, P = .011). Multivariate analysis revealed that an acetic acid plus butyric acid minus lactic acid gap <60 μmol/g was an independent risk factor for postoperative infectious complications with an odds ratio of 15.6; 95% confidence interval 1.8-384.1. The preoperative fecal organic acid profile (especially low acetic acid, low butyric acid, and high lactic acid) had a clinically important impact on the incidence of postoperative infectious complications in patients undergoing major hepatectomy with extrahepatic bile duct resection. Copyright © 2017. Published by Elsevier Inc.

  3. Diagnosis of paratuberculosis by fecal culture and ELISA on milk and serum samples in two types of Chilean dairy goat herds.

    PubMed

    Salgado, Miguel; Kruze, Juan; Collins, Michael T

    2007-01-01

    Fecal culture has been the primary method used to diagnose paratuberculosis in goats. It is laborious, slow, and expensive. Validation of enzyme-linked immunosorbent assays (ELISAs) on milk samples could make paratuberculosis testing more widely available for goat farmers. The aim of this study was to determine the accuracy of serum and milk ELISAs for paratuberculosis, relative to fecal culture, in Chilean dairy goats. Eight dairy goat herds were selected. Feces, blood, and milk samples were collected from all female goats >2 years old. Fecal samples were cultured using Herrold egg yolk medium with mycobactin J and antibiotics. Serum and milk samples were tested using a commercial ELISA kit for Mycobacterium avium subsp. paratuberculosis antibody detection. A total of 383 goats were tested by ELISA and fecal culture. The sensitivity of ELISA on serum and milk relative to fecal culture was 74.3% (95% CI: 59.8-88.8) and 60% (95% CI: 43.8-76.2), respectively. The corresponding values for ELISA specificity based on the percentage of non- M. avium subsp. paratuberculosis-infected goats testing ELISA-negative were 98.6% (95% CI: 96.6-100) and 99.3% (95% CI: 97.9-100) on serum and milk, respectively. Proportions of positive results for serum and fecal samples were significantly different, whereas the proportions of positive results for milk and fecal samples were not significantly different. The milk ELISA had a moderate level of agreement with fecal culture results (Kappa = 0.57). The paratuberculosis ELISA on goat milk samples may be a cost-effective, accurate alternative to fecal culture.

  4. Analysis of the Gull Fecal Microbial Community Reveals the Dominance of Catellicoccus marimammalium in Relation to Culturable Enterococci

    PubMed Central

    Koskey, Amber M.; Fisher, Jenny C.; Traudt, Mary F.; Newton, Ryan J.

    2014-01-01

    Gulls are prevalent in beach environments and can be a major source of fecal contamination. Gulls have been shown to harbor a high abundance of fecal indicator bacteria (FIB), such as Escherichia coli and enterococci, which can be readily detected as part of routine beach monitoring. Despite the ubiquitous presence of gull fecal material in beach environments, the associated microbial community is relatively poorly characterized. We generated comprehensive microbial community profiles of gull fecal samples using Roche 454 and Illumina MiSeq platforms to investigate the composition and variability of the gull fecal microbial community and to measure the proportion of FIB. Enterococcaceae and Enterobacteriaceae were the two most abundant families in our gull samples. Sequence comparisons between short-read data and nearly full-length 16S rRNA gene clones generated from the same samples revealed Catellicoccus marimammalium as the most numerous taxon among all samples. The identification of bacteria from gull fecal pellets cultured on membrane-Enterococcus indoxyl-β-d-glucoside (mEI) plates showed that the dominant sequences recovered in our sequence libraries did not represent organisms culturable on mEI. Based on 16S rRNA gene sequencing of gull fecal isolates cultured on mEI plates, 98.8% were identified as Enterococcus spp., 1.2% were identified as Streptococcus spp., and none were identified as C. marimammalium. Illumina deep sequencing indicated that gull fecal samples harbor significantly higher proportions of C. marimammalium 16S rRNA gene sequences (>50-fold) relative to typical mEI culturable Enterococcus spp. C. marimammalium therefore can be confidently utilized as a genetic marker to identify gull fecal pollution in the beach environment. PMID:24242244

  5. Assessment of Fecal Exposure Pathways in Low-Income Urban Neighborhoods in Accra, Ghana: Rationale, Design, Methods, and Key Findings of the SaniPath Study

    PubMed Central

    Robb, Katharine; Null, Clair; Teunis, Peter; Yakubu, Habib; Armah, George; Moe, Christine L.

    2017-01-01

    Abstract. Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks. PMID:28722599

  6. Multivariate logistic regression for predicting total culturable virus presence at the intake of a potable-water treatment plant: novel application of the atypical coliform/total coliform ratio.

    PubMed

    Black, L E; Brion, G M; Freitas, S J

    2007-06-01

    Predicting the presence of enteric viruses in surface waters is a complex modeling problem. Multiple water quality parameters that indicate the presence of human fecal material, the load of fecal material, and the amount of time fecal material has been in the environment are needed. This paper presents the results of a multiyear study of raw-water quality at the inlet of a potable-water plant that related 17 physical, chemical, and biological indices to the presence of enteric viruses as indicated by cytopathic changes in cell cultures. It was found that several simple, multivariate logistic regression models that could reliably identify observations of the presence or absence of total culturable virus could be fitted. The best models developed combined a fecal age indicator (the atypical coliform [AC]/total coliform [TC] ratio), the detectable presence of a human-associated sterol (epicoprostanol) to indicate the fecal source, and one of several fecal load indicators (the levels of Giardia species cysts, coliform bacteria, and coprostanol). The best fit to the data was found when the AC/TC ratio, the presence of epicoprostanol, and the density of fecal coliform bacteria were input into a simple, multivariate logistic regression equation, resulting in 84.5% and 78.6% accuracies for the identification of the presence and absence of total culturable virus, respectively. The AC/TC ratio was the most influential input variable in all of the models generated, but producing the best prediction required additional input related to the fecal source and the fecal load. The potential for replacing microbial indicators of fecal load with levels of coprostanol was proposed and evaluated by multivariate logistic regression modeling for the presence and absence of virus.

  7. Exploration of Fecal Microbiota Transplantation in the Treatment of Refractory Diarrhea After Renal Transplantation.

    PubMed

    Gu, B; Bo, G Z; Ke, C

    2018-06-01

    Exploration of fecal microbiota transplantation in the treatment of refractory diarrhea after renal transplantation. Summarize the etiology of 120 cases with diarrhea after renal transplantation from 2014 to 2017 in our hospital. There were 4 recipients of refractory diarrhea who accepted fecal microbiota transplantation with informed consent, and we collected clinical data of stool and bacterial culture, gut microbiota analysis, graft function, electrolytes, immunosuppressant concentrations of prognostic evaluation of patients with fecal transplantation. The absorption of electrolyte is slightly higher and concentration of tacrolimus and creatinine were not significantly changed compared with before. Fecal microbiota transplantation provides a new choice to refractory diarrhea after renal transplantation as an innovative treatment, but the effectiveness of fecal microbiota transplantation needs long-term observation and further evaluation through large sample data. Copyright © 2018. Published by Elsevier Inc.

  8. Fecal progestagens to detect and monitor pregnancy in captive female cheetahs (Acinonyx jubatus).

    PubMed

    Adachi, Itsuki; Kusuda, Satoshi; Kawai, Hitomi; Ohazama, Megumi; Taniguchi, Atsushi; Kondo, Natsuko; Yoshihara, Masato; Okuda, Ryuta; Ishikawa, Tatsuya; Kanda, Iwai; Doi, Osamu

    2011-04-01

    The purposes of the present study were to establish a noninvasive monitoring assay of fecal progestagen measurement to detect pregnancy and to identify the components of fecal progestagens in early, middle and late pregnancy in cheetahs. Feces were collected from 7 female cheetahs and analyzed from 30 days before the last copulation to parturition in 9 pregnancies. Blood was collected from one cheetah. Fecal progestagen and serum progesterone concentrations were determined by enzyme immunoassay (EIA). The profiles of the fecal progestagen concentrations were similar to the serum progesterone profile. Fecal progestagen and serum progesterone concentrations remained at the baseline until copulation. In the mean fecal progestagen profile during pregnancy (92.8 ± 0.4 days; from the last copulation to parturition), the concentrations increased 3-4 days after the last copulation and remained high until parturition. To investigate changes in the components of progestagen metabolites in the tripartite periods of gestation, fecal progestagens were analyzed by HPLC-EIA. Marked immunoreactive peaks consistent with 5α-pregnan-3α/β-ol-20-one and 5α-pregnan-3,20-dione and small peaks consistent with 5β-pregnan-3α/β-ol-20-one were detected. There were no distinct difference in the components of progestagens among the first, second and third trimesters of pregnancy. The hormone assay, as an indicator of fecal 5α-reduced pregnanes, is useful for detecting pregnancy and monitoring pregnant luteal activity in cheetahs.

  9. A comparison of fecal percent dry matter and number of Cryptosporidium parvum oocysts shed to observational fecal consistency scoring in dairy calves.

    PubMed

    Bellosa, Mary L; Nydam, Daryl V; Liotta, Janice L; Zambriski, Jennifer A; Linden, Thomas C; Bowman, Dwight D

    2011-04-01

    Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10⁶, and 2.8 × 10⁶, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.

  10. Influence of seasonal environmental variables on the distribution of presumptive fecal Coliforms around an Antarctic research station.

    PubMed

    Hughes, Kevin A

    2003-08-01

    Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal.

  11. Distribution and variability of fecal-indicator bacteria in Scioto and Olentangy rivers in the Columbus, Ohio, area

    USGS Publications Warehouse

    Myers, Donna N.

    1992-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, to determine the distribution and variability of fecal-indicator bacteria in Scioto and Olentangy Rivers. Fecal-indicator bacteria are among the contaminants of concern to recreational users of these rivers in the Columbus area. Samples were collected to be analyzed for fecal-coliform and Escherichia coli (E. coli) bacteria and selected water-quality constituents and physical properties at 10 sites-- 4 on the Olentangy River and 6 on the Scioto River during the recreational seasons in 1987, 1988, and 1989. Measurements of streamflow also were made at these sites at various frequencies during base flow and runoff. The concentrations of fecal-coliform and E. coli bacteria in the Scioto and Olentangy Rivers spanned a range of five orders of magnitude, from less than 20 to greater than 2,000,000 col/100 mL (colonies per 100 milliliters). In addition, the concentrations of fecal coliform and E. coli bacteria are well correlated (r=0.97) in the study area. At times, relatively high concentrations, for fecal-indicator bacteria (concentrations greater than 51,000 col/100 mL for fecal-coliform and E. coli ) were found in Olentangy River at Woody Hayes Drive and at Goodale Street, and in Scioto River at Greenlawn Avenue and at Columbus. Intermediate concentrations of fecal-indicator bacteria (from 5,100 to 50,000 col/100 mL for fecal coliform and (from 510 to 50,000 col/100 mL for E. coli ) were found in Scioto River at Town Street and below O'Shaughnessy Dam near Dublin, Ohio, and in Olentangy River at Henderson Road. The lowest (median) concentrations of fecal-indicator bacteria (from 20 to 5,000 col/100 mL for fecal coliform and from 20 to 500 col/100 mL for E. coli ) were found at Olentangy River near Worthington, Ohio, Scioto River at Dublin Road Water Treatment Plant and below Griggs Reservoir. Fecal-coliform concentrations exceeded the geometric mean and single-sample Ohio Water Quality Standards for recreation less frequently than E. coli concentrations. The E. coli numerical water-quality standards are more difficult to meet than the fecal coliform standards because they are as much as an order of magnitude lower in some instances. The geometric mean bathing-water and primary-contact standards for fecal-coliform and E. coli bacteria were exceeded in more samples for Olentangy River at Goodale Street than for any other site. The single-sample bathing-water standard for fecal-coliform bacteria was exceeded in 83 percent of all samples and for E. coli in 91 percent of samples for Olentangy River at Goodale Street. Compared to Olentangy River at Goodale Street, geometric means and single-samples exceeded the bathing-water standards somewhat less frequently for Scioto River at Town Street and far less frequently for Scioto River at Dublin Road Water Treatment Plant. In contrast to results for fecal-indicator bacteria, the differences between sites for pH and for concentrations for total alkalinity, total chloride, total nonfilterable residue, total nitrate plus nitrite as nitrogen, total phosphorus, and total organic carbon were small. The large contribution of streamflow and discharge of fecal-indicator bacteria from Olentangy River to Scioto River has a major effect on the Scioto River downstream from the confluence of Olentangy River during periods of rainfall and runoff. Fecal-indicator discharges were calculated for times before, during, and at 24-hour intervals for 48 to 72 hours after two runoff-producing storms. Fecal-coliform and E. coli concentrations were lower in samples collected before runoff and during receding streamflows at 24- to 48-hours after the storms than in samples collected during runoff. The fecal-indicator discharges entering Scioto River from Olentangy River ranged from 22.6 to nearly 100 percent of the total for two storms studied. Controlling nonpoint, unregulated,

  12. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  13. Proceedings of the Army Symposium on Solid Mechanics, 1976 - Composite Materials: The Influence of Mechanics of Failure on Design

    DTIC Science & Technology

    1976-09-01

    SOFTENING STRIP DESIGN CONCEPTS Initial studies of softening strip design concepts were presented by Eisenmann (8) in boron/epoxy laminates. His...Metals," Foreign Object Impact Damage to Composites, ASTM-STP-568, 1974. 8. Eisenmann , J. R., and Kaminski, B. E., "Fracture Control for Composite...REFERENCES 1. Waddoups, M.E., Eisenmann , J.R., and Kaminski, B.E., Journal of Composite Materials, Vol. 5, October 1971, pp. 446-454. 2. Whitney

  14. Observation of a pretransitional effect near a virtual smectic-A--smectic-C* transition.

    PubMed

    Shibahara, S; Takanishi, Y; Yamamoto, J; Ogasawara, T; Ishikawa, K; Yokoyama, H; Takezoe, H

    2001-06-01

    Unusual softening of the layer compression modulus B has been observed near the phase boundary where the smectic-C* phase vanishes in a naphtalene-based liquid crystal mixture. From the systematic study of x-ray and layer compression measurements, this unusual effect is attributed to the pretransitional softening near a virtual smectic-A-smectic-C* phase transition in the smectic-A phase, which no longer appears on the thermoequilibrium phase diagram. This phenomenon is similar but not equivalent to supercritical behavior.

  15. Use of Sacral Nerve Stimulation for the Treatment of Overlapping Constipation and Fecal Incontinence

    PubMed Central

    Sreepati, Gouri; James-Stevenson, Toyia

    2017-01-01

    Patient: Female, 51 Final Diagnosis: Fecal incontinence Symptoms: Constipation • fecal incontinence Medication: — Clinical Procedure: Sacral nerve stimulator Specialty: Gastroenterology and Hepatology Objective: Rare co-existance of disease or pathology Background: Fecal incontinence and constipation are common gastrointestinal complaints, but rarely occur concurrently. Management of these seemingly paradoxical processes is challenging, as treatment of one symptom may exacerbate the other. Case Report: A 51-year-old female with lifelong neurogenic bladder secondary to spina bifida occulta presented with progressive symptoms of daily urge fecal incontinence as well as hard bowel movements associated with straining and a sensation of incomplete evacuation requiring manual disimpaction. Pelvic floor testing showed poor ability to squeeze the anal sphincter, which indicated sphincter weakness as a major contributor to her fecal incontinence symptoms. Additionally, on defecography she was unable to widen her posterior anorectal angle or relax the anal sphincter during defecation consistent with dyssynergic defecation. A sacral nerve stimulator was placed for management of her fecal incontinence. Interestingly, her constipation also dramatically improved with sacral neuromodulation. Conclusions: This unique case highlights the emerging role of sacral nerve stimulation in the treatment of complex pelvic floor dysfunction with improvement in symptoms beyond fecal incontinence in a patient with dyssynergic-type constipation. PMID:28265107

  16. Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation

    PubMed Central

    Wallace, Meghan A.; D, Carey-Ann; Burnham; Virgin, Herbert W.; Stappenbeck, Thaddeus S.

    2014-01-01

    Summary The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control1-5. In many cases, the microbiota is the presumed culprit of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice6,7. In conventionally raised mice, the microbiome is transmitted from the dam2,8,9. Here we show that microbially–driven dichotomous fecal IgA levels in WT mice within the same facility mimic the effects of chromosomal mutations. We observed in multiple facilities that vertically-transmissible bacteria in IgA-Low mice dominantly lowered fecal IgA levels in IgA-High mice after cohousing or fecal transplantation. In response to injury, IgA-Low mice showed increased damage that was transferable by fecal transplantation and driven by fecal IgA differences. We found that bacteria from IgA-Low mice degraded the secretory component (SC) of SIgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose fecal IgA as one marker of microbial variability and conclude that cohousing and/or fecal transplantation enables analysis of progeny from different dams. PMID:25686606

  17. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filtration counting of fecal coliforms in water.

    PubMed

    Grabow, W O; Hilner, C A; Coubrough, P

    1981-08-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.

  18. Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State

    NASA Astrophysics Data System (ADS)

    Lin, Hong; An, Yanpeng; Hao, Fuhua; Wang, Yulan; Tang, Huiru

    2016-02-01

    Obesity resulting from interactions of genetic and environmental factors becomes a serious public health problem worldwide with alterations of the metabolic phenotypes in multiple biological matrices involving multiple metabolic pathways. To understand the contributions of gut microbiota to obesity development, we analyzed dynamic alterations in fecal metabonomic phenotype using NMR and fecal microorganism composition in rats using pyrosequencing technology during the high-fat diet (HFD) feeding for 81 days (pre-obesity state). Integrated analysis of these two phenotypic datasets was further conducted to establish correlations between the altered rat fecal metabonome and gut microbiome. We found that one-week HFD feeding already caused significant changes in rat fecal metabonome and such changes sustained throughout 81-days feeding with the host and gut microbiota co-metabolites clearly featured. We also found that HFD caused outstanding decreases in most fecal metabolites implying enhancement of gut absorptions. We further established comprehensive correlations between the HFD-induced changes in fecal metabonome and fecal microbial composition indicating contributions of gut microbiota in pathogenesis and progression of the HFD-induced obesity. These findings provided essential information about the functions of gut microbiota in pathogenesis of metabolic disorders which could be potentially important for developing obesity prevention and treatment therapies.

  19. Fecal corticosterone reflects serum corticosterone in Florida sandhill cranes.

    PubMed

    Ludders, J W; Langenberg, J A; Czekala, N M; Erb, H N

    2001-07-01

    Florida sandhill cranes (Grus canadensis pratensis) were conditioned to confinement 6 hr/day for 7 days. On day 8, each bird's jugular vein was catheterized, blood samples were drawn, and each crane was confined for 6 hr. Using a randomized, restricted cross-over design, cranes were injected intravenously with either 0.9% NaCl solution or ACTH (cosyntropin; Cortrosyn; 0.25 mg). During the 6 hr of confinement, fecal samples (feces and urine) were collected from each of five cranes immediately after defecation. Individual fecal samples were collected approximately at hourly intervals and assayed for corticosterone. We showed previously that serum corticosterone did not vary significantly following saline injection, but peaked significantly 60 min after ACTH injection. Maximal fecal corticosterone concentrations (ng/g) were greater (P < 0.10; median 1087 ng/g) following ACTH stimulation compared to maximal fecal corticosterone concentrations at the end of acclimation (day 7; median 176) and following saline treatment (median 541). In cranes under controlled conditions, fecal corticosterone concentration reflects serum corticosterone levels, fecal corticosterone, Grus canadensis pratensis, sandhill cranes, serum corticosterone levels.

  20. Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Chun, Y. B.; Kang, S. H.; Noh, S.; Kim, T. K.; Lee, D. W.; Cho, S.; Jeong, Y. H.

    2014-12-01

    As part of an alloy development program for Korean reduced-activation ferritic-martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile-brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.

  1. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  2. Effective properties of dispersed phase reinforced composite materials with perfect and imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Han, Ru

    This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.

  3. A physical interpretation of softening of pressure-sensitive and anisotropic materials

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wang, Z. R.

    2010-07-01

    Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.

  4. Apparent Softening of Wet Graphene Membranes on a Microfluidic Platform.

    PubMed

    Ferrari, Gustavo A; de Oliveira, Alan B; Silvestre, Ive; Matos, Matheus J S; Batista, Ronaldo J C; Fernandes, Thales F D; Meireles, Leonel M; Eliel, Gomes S N; Chacham, Helio; Neves, Bernardo R A; Lacerda, Rodrigo G

    2018-05-22

    Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

  5. Crystal structure and superconductivity in atomic hydrogen: Deformation between I41/amd and Fddd

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Oda, T.; Suzuki, N.; Shimizu, K.

    2017-10-01

    We investigated crystal structures of solid metallic hydrogen using the potential energy surface trekking for structure search. We applied this technique to a tetragonal I41/amd structure at pressures of 500 and 600 GPa and obtained the transformation into multiple orthorhombic Fddd structures, which are formed by distortions in the ab plane of I41/amd. The potential barriers are easily surmounted by few trekking steps, which indicates that in solid metallic hydrogen crystal structure is softened with respect to the distortion and is easily fluctuated among the I41/amd and Fddd structures. Calculated superconducting critical temperatures show 269 K for I41/amd and 263 K for Fddd at 500 GPa. The structures are softened and the electron-phonon coupling are enhanced with pressurization to 600 GPa. As the results, the superconducting critical temperature is increased to 281 K for I41/amd, whereas it is decreased to 252 K for Fddd owing to its larger phonon softening than that of I41/amd.

  6. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  7. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    PubMed

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  8. A comprehensive study of bubble inflation in vacuum-assisted thermoforming based on whole-field strain measurements

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Lacrampe, M.-F.; Krawczak, P.

    2018-05-01

    This paper focuses on the potential use of stereo-DIC in thermoforming conditions to monitor large deformations of softened thermoplastic sheets posteriori to the sagging phenomenon. The study concerns HIPS sheets which are softened by the radiative heat-transfer mode then stretched by inflation of compressed-air for 1.5 s to form a large and quasi-spherical dome of 250 mm in diameter. While the bubble-inflation operation leads to large deformations of the softened sheet, it shows transitional geometrical instabilities due to the initial surface sagging. When the temperature-induced surface deformations are inaccessible by the stereoscopic system during the heating operation, the geometrical instabilities limit the identification of the reference of displacements which affects the accuracy of results based on image-correlation computations. To compare between the principal strains assessed from bubble-inflation tests conducted at different thermal conditions, a method for filtering these instabilities is developed in this study.

  9. Clinical anatomy of fecal incontinence in women.

    PubMed

    Kadam-Halani, Priyanka K; Arya, Lily A; Andy, Uduak U

    2017-10-01

    Fecal incontinence is a devastating condition that has a severe impact on quality of life. This condition disproportionately affects women and its incidence is increasing with the aging United States population. Fecal continence is maintained by coordination of a functioning anal sphincter complex, intact sensation of the anorectum, rectal compliance, and the ability to consciously control defecation. Particularly important are the puborectalis sling of the levator ani muscle complex and intact innervation of the central and peripheral nervous systems. An understanding of the intricate anatomy required to maintain continence and regulate defecation will help clinicians to provide appropriate medical and surgical management and diminish the negative impact of fecal incontinence. In this article, we describe the anatomic and neural basis of fecal continence and normal defecation as well as changes that occur with fecal incontinence in women. Clin. Anat. 30:901-911, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Fecal-indicator bacteria in streams alonga gradient of residential development

    USGS Publications Warehouse

    Frenzel, Steven A.; Couvillion, Charles S.

    2002-01-01

    Fecal-indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal-coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal-indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal-indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal-indicator bacteria concentrations were highly variable over a two-day period of stable streamflow, which may have implications for testing of compliance to water-quality standards.

  11. Sensitivity of double centrifugation sugar fecal flotation for detecting intestinal helminths in coyotes (Canis latrans).

    PubMed

    Liccioli, Stefano; Catalano, Stefano; Kutz, Susan J; Lejeune, Manigandan; Verocai, Guilherme G; Duignan, Padraig J; Fuentealba, Carmen; Ruckstuhl, Kathreen E; Massolo, Alessandro

    2012-07-01

    Fecal analysis is commonly used to estimate prevalence and intensity of intestinal helminths in wild carnivores, but few studies have assessed the reliability of fecal flotation compared to analysis of intestinal tracts. We investigated sensitivity of the double centrifugation sugar fecal flotation and kappa agreement between fecal flotation and postmortem examination of intestines for helminths of coyotes (Canis latrans). We analyzed 57 coyote carcasses that were collected between October 2010 and March 2011 in the metropolitan area of Calgary and Edmonton, Alberta, Canada. Before analyses, intestines and feces were frozen at -80 C for 72 hr to inactivate Echinococcus eggs, protecting operators from potential exposure. Five species of helminths were found by postmortem examination, including Toxascaris leonina, Uncinaria stenocephala, Ancylostoma caninum, Taenia sp., and Echinococcus multilocularis. Sensitivity of fecal flotation was high (0.84) for detection of T. leonina but low for Taenia sp. (0.27), E. multilocularis (0.46), and U. stenocephala (0.00). Good kappa agreement between techniques was observed only for T. leonina (0.64), for which we detected also a significant correlation between adult female parasite intensity and fecal egg counts (R(s)=0.53, P=0.01). Differences in sensitivity may be related to parasite characteristics that affect recovery of eggs on flotation. Fecal parasitologic analyses are highly applicable to study the disease ecology of urban carnivores, and they often provide important information on environmental contamination and potential of zoonotic risks. However, fecal-based parasitologic surveys should first assess the sensitivity of the techniques to understand their biases and limitations.

  12. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    PubMed

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  13. Fecal retention in childhood: Evaluation on ultrasonography.

    PubMed

    Hatori, Reiko; Tomomasa, Takeshi; Ishige, Takashi; Tatsuki, Maiko; Arakawa, Hirokazu

    2017-04-01

    To assess the usefulness of rectal diameter measurement on ultrasonography as a diagnostic tool for fecal retention in children. One hundred children (median age, 5.0 years), consisting of 80 with functional constipation and 20 without constipation, participated in the study. All patients underwent physical examination that included digital rectal examination. Forty-five children underwent ultrasonography in three differential planes: transection above the symphysis; under the ischial spine; and at the bladder neck. The measurement of the rectal diameter at the transection above the symphysis could most easily detect fecal retention and had the closest correlations with retention among the three planes. Rectal diameter was wider at all measuring points (35.2 vs 20.9 mm above the symphysis, P < 0.0001; 35.7 vs 24.0 mm under the ischial spine, P < 0.0001; and 19.4 vs 8.7 mm at the bladder neck, P < 0.0001) in children with fecal retention than in those with no fecal retention. With regard to presence of constipation, children with fecal retention had a wider rectal diameter above the symphysis than those with no fecal retention (children with functional constipation, 35.3 vs 20.0 mm, P < 0.0001; children without constipation: 32.6 vs 14.6 mm, P = 0.0026). The cut-off for the rectal diameter measured above the symphysis to identify fecal retention was 27 mm, with high sensitivity and specificity (95.5% and 94.1%, respectively). Ultrasound rectal diameter measurement can be used to detect fecal retention in children. © 2016 Japan Pediatric Society.

  14. Fecal incontinence in men: Causes and clinical and manometric features

    PubMed Central

    Muñoz-Yagüe, Teresa; Solís-Muñoz, Pablo; Ciriza de los Ríos, Constanza; Muñoz-Garrido, Francisco; Vara, Jesús; Solís-Herruzo, José Antonio

    2014-01-01

    AIM: To determine the causes and characteristics of fecal incontinence in men and to compare these features with those presented by a group of women with the same problem. METHODS: We analyzed the medical history, clinical and manometric data from 119 men with fecal incontinence studied in our unit and compared these data with those obtained from 645 women studied for the same problem. Response to treatment was evaluated after 6 mo of follow-up. RESULTS: Fifteen percent of patients studied in our unit for fecal incontinence were male. Men took longer than women before asking for medical help. Ano-rectal surgery was the most common risk factor for men related to fecal incontinence. Chronic diarrhea was present in more than 40% of patients in both groups. Decreased resting and external anal sphincter pressures were more frequent in women. No significant differences existed between the sexes regarding rectal sensitivity and recto-anal inhibitory reflex. In 17.8% of men, all presenting soiling, manometric findings did not justify fecal incontinence. Response to treatment was good in both groups, as 80.4% of patients improved and fecal incontinence disappeared in 13.2% of them. CONCLUSION: In our series, it was common that men waited longer in seeking medical help for fecal incontinence. Ano-rectal surgery was the major cause of this problem. Chronic diarrhea was a predisposing factor in both sexes. Manometric differences between groups were limited to an increased frequency of hypotony of the external anal sphincter in women. Fecal incontinence was controllable in most patients. PMID:24976729

  15. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-07

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

  16. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  17. Thermal pretreatment of a high lignin SSF digester residue to increase its softening point

    DOE PAGES

    Howe, Daniel; Garcia-Perez, Manuel; Taasevigen, Danny; ...

    2016-03-24

    Residues high in lignin and ash generated from the simultaneous saccharification and fermentation of corn stover were thermally pretreated in an inert (N 2) atmosphere to study the effect of time and temperature on their softening points. These residues are difficult to feed into gasifiers due to premature thermal degradation and formation of reactive liquids in the feed lines, leading to plugging. The untreated and treated residues were characterized by proximate and ultimate analysis, and then analyzed via TGA, DSC, 13C NMR, Py-GC–MS, CHNO/S, and TMA. Interpretation of the compositional analysis indicates that the weight loss observed during pretreatment ismore » mainly due to the thermal decomposition and volatilization of the hemicelluloses and amorphous cellulose fractions. Fixed carbon increases in the pretreated material, mostly due to a concentration effect rather than the formation of new extra poly-aromatic material. The optimal processing time and temperature to minimize the production of carbonyl groups in the pretreated samples was 300 °C at a time of 30 min. Results showed that the softening point of the material could be increased from 187 °C to 250 °C, and that under the experimental conditions studied, pretreatment temperature plays a more important role than time. The increase in softening point was mainly due to the formation of covalent bonds in the lignin structures and the removal of low molecular weight volatile intermediates.« less

  18. Specific Changes of Exocarp and Mesocarp Occurring during Softening Differently Affect Firmness in Melting (MF) and Non Melting Flesh (NMF) Fruits

    PubMed Central

    Onelli, E.; Ghiani, A.; Gentili, R.; Serra, S.; Musacchi, S.; Citterio, S.

    2015-01-01

    Melting (MF) and non melting flesh (NMF) peaches differ in their final texture and firmness. Their specific characteristics are achieved by softening process and directly dictate fruit shelf life and quality. Softening is influenced by various mechanisms including cell wall reorganization and water loss. In this work, the biomechanical properties of MF Spring Crest’s and NMF Oro A’s exocarp and mesocarp along with the amount and localization of hydroxycinnamic acids and flavonoids were investigated during fruit ripening and post-harvest. The objective was to better understand the role played by water loss and cell wall reorganization in peach softening. Results showed that in ripe Spring Crest, where both cell turgor loss and cell wall dismantling occurred, mesocarp had a little role in the fruit reaction to compression and probe penetration response was almost exclusively ascribed to the epidermis which functioned as a mechanical support to the pulp. In ripe Oro A’s fruit, where cell wall disassembly did not occur and the loss of cell turgor was observed only in mesocarp, the contribution of exocarp to fruit firmness was consistent but relatively lower than that of mesocarp, suggesting that in addition to cell turgor, the integrity of cell wall played a key role in maintaining NMF fruit firmness. The analysis of phenols suggested that permeability and firmness of epidermis were associated with the presence of flavonoids and hydroxycinnamic acids. PMID:26709823

  19. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  20. Human Fecal Source Identification: Real-Time Quantitative PCR Method Standardization

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  1. National Risk Management Research Laboratory (NRMRL) Microbial Research

    EPA Science Inventory

    Experimental design: Three host-specific PCR assays were tested against fecal and water samples. Host-specificity assays were performed against targeted and nontargeted fecal sources. Detection limits were performed against diluted fecal and water DNA extracts. Groundwater an...

  2. Fecal corticoid monitoring in whooping cranes trained to follow ultralight aircraft

    USGS Publications Warehouse

    Hartup, B.K.; Czekala, Nancy M.; Olsen, Glenn H.; Langenberg, J.A.; Chavez-Ramirez, Felipe

    2005-01-01

    The use of fecal corticoid assays to measure stress in North American cranes has been limited to laboratory validation and a single field project involving reintroduced sandhill cranes (Ludders et aI., 1998, 2001; Hartup et aI., 2004). In 2001, we documented trends in corticoid concentrations among a cohort of ten costume-reared whooping cranes subjected to ultralight aircraft training and migration. All samples were analyzed by a validated corticosterone 1251 radioimmunoassay for determination of corticoid levels. Fecal corticoid concentrations in chicks exhibited a logarithmic decline over the first 14 days after hatching (r = 0.86, p < 0.001). Fecal corticoid concentrations then stabilized at baseline levels (median 68 ng/g, range 17-186 ng/g, n = 116) during the subsequent six weeks of costume-rearing and aircraft habituation in captivity. Fecal corticoid concentrations of eight cranes increased 8-34 fold during shipment in crates to Wisconsin for field training. Increases in fecal corticoid concentrations were positively correlated with age (r = 0.81, p = 0.01), but not body weight (r = 0.44, P = 0.28) at the time of shipping. Fecal corticoid concentrations returned to baseline levels within seven days, and were sustained throughout the remainder of the training period (median 77 ng/g, range 22- 292 ng/g, n=190). Elevations in fecal corticoid concentrations were observed one (p = 0.035) and four days (p = 0.003) following physical examination and placement of leg bands compared to three days prior to the procedures (median 176 ng/g, range 116 - 553 ng/g, n = 19). Fecal corticoid concentrations decreased to pre-procedure levels within seven days. Fecal corticoid concentrations and variation during the 50 day migration period were similar to training levels in Wisconsin, except for a one day increase observed following a violent storm and escape from the temporary holding pen the preceding night (median 243 ng/g, range 228 - 280 ng/g, n = 7). There was an overall decline in fecal corticoid concentrations from the cranes during the migration (r= 0.42, p < 0.001). Acute stressors such as capture and restraint and severe storms were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall process of costume-rearing, ultralight aircraft habituation, training and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress.

  3. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.

    2015-01-01

    The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of phytodetritus, phytodetritus from Phaeocystis spp., picoplankton in phytodetritus, the summer export pulse (SEP) of phytodetritus in the subtropical North Pacific, benthic community responses to phytodetritus; (5) other components of the biological pump, including fish fecal pellets and fish-mediated export, sinking carcasses of animals and macrophytes, feces from marine mammals, transparent exopolymer particles (TEP); (6) the biological pump and climate, including origins of the biological pump, the biological pump and glacial/interglacial cycles, the biological pump and contemporary climate variations, and the biological pump and anthropogenic climate change. The review concludes with potential future modifications in the biological pump due to climate change.

  4. Use of a nitinol stent to palliate a colorectal neoplastic obstruction in a dog

    PubMed Central

    Culp, William T. N.; MacPhail, Catriona M.; Perry, James A.; Jensen, Tracey D.

    2015-01-01

    Case Description A 12-year-old castrated male Labrador Retriever was evaluated for clinical signs associated with colorectal obstruction. Clinical Findings The dog had a 2-week history of tenesmus and hematochezia. On rectal examination, an annular colorectal mass was palpable extending orad into the pelvic canal. The original diagnosis of the colorectal mass was a mucosal adenoma. The dog was maintained on a low-residue diet and fecal softeners for a period of 13 months after initial diagnosis. At that time, medical management was no longer effective. Treatment and Outcome Placement of a colonic stent was chosen to palliate the clinical signs associated with colorectal obstruction. By use of fluoroscopic and colonoscopic guidance, a nitinol stent was placed intraluminally to open the obstructed region. Placement of the stent resulted in improvement of clinical signs, although tenesmus and obstipation occurred periodically after stent placement. At 212 days after stent placement, the patient had extensive improvement in clinical signs with minimal complications; however, clinical signs became severe at 238 days after stent placement, and the dog was euthanized. Histologic evaluation of the rectal tumor from samples obtained during necropsy revealed that the tumor had undergone malignant transformation to a carcinoma in situ. Clinical Relevance A stent was successfully placed in the colon and rectum to relieve obstruction associated with a tumor originally diagnosed as a benign neoplasm. Placement of colorectal stents may be an option for the palliation of colorectal obstruction secondary to neoplastic disease; however, clinical signs may persist, and continuation of medical management may be necessary. PMID:21756178

  5. Reproductive effects on fecal nitrogen as an index of diet quality: an experimental assessment

    USGS Publications Warehouse

    Monteith, Kyle B.; Monteith, Kevin L.; Bowyer, R. Terry; Leslie,, David M.; Jenks, Jonathan A.

    2014-01-01

    Concentration of fecal nitrogen has been used widely as an indicator of dietary quality for free-ranging ruminants. Differences in digestive function between species of dimorphic ungulates render interspecific comparisons of fecal nitrogen unreliable; however, whether intraspecific sexual differences in digestive function also bias this nutritional index is unknown. Our objective was to compare sex-specific variation in concentration of fecal nitrogen using male, nonlactating female, and lactating female white-tailed deer (Odocoileus virginianus) on high- and low-quality diets. During weekly trials over spring and summer (2008-2009), we monitored intake rates, collected feces twice daily, and used micro-Kjeldahl procedures to determine percent fecal nitrogen. We also determined nitrogen content of feces following a neutral detergent fiber (NDF) rinse during pre-, peak, and postlactation. Fecal nitrogen reflected general differences in dietary quality between diets; however, fecal nitrogen of lactating females in both dietary groups was lower than for males or nonlactating females throughout lactation. Nitrogen concentration following an NDF rinse also was lower for lactating females during peak lactation. We hypothesize that the remodeling of the digestive tract and increased rumination by lactating females may enhance their ability to extract nitrogen from their forage. These adjustments may expand the foraging options of lactating females by increasing their ability to process low-quality foods, but also affects the interpretation of fecal nitrogen during the season of lactation.

  6. Ovarian cycle approach by rectal temperature and fecal progesterone in a female killer whale, Orcinus orca.

    PubMed

    Kusuda, Satoshi; Kakizoe, Yuka; Kanda, Koji; Sengoku, Tomoko; Fukumoto, Yohei; Adachi, Itsuki; Watanabe, Yoko; Doi, Osamu

    2011-01-01

    This study aimed to validate the measurements of body temperature and fecal progesterone concentrations as minimally invasive techniques for assessing ovarian cycle in a single sexually mature female killer whale. Rectal temperature data, fecal and blood samples were collected in the dorsal position using routine husbandry training on a voluntary basis. The correlations between rectal temperature and plasma progesterone concentration and between fecal and plasma progesterone concentrations were investigated. Fecal progesterone metabolites were identified by a combination of high-performance liquid chromatography and enzyme immunoassay. Plasma progesterone concentrations (range: 0.2-18.6 ng/ml) and rectal temperature (range: 35.3-35.9°C) changed cyclically, and cycle lengths were an average (±SD) of 44.9±4.0 days (nine cycles) and 44.6±5.9 days (nine cycles), respectively. Rectal temperature positively correlated with the plasma progesterone concentrations (r=0.641, P<0.01). There was a visual trend for fecal progesterone profiles to be similar to circulating plasma progesterone profiles. Fecal immunoreactive progestagen analysis resulted in a marked immunoreactive peak of progesterone. The data from the single killer whale indicate that the measurement of rectal temperature is suitable for minimally invasive assessment of the estrous cycle and monitoring the fecal progesterone concentration is useful to assess ovarian luteal activity. © 2010 Wiley-Liss, Inc.

  7. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh.

    PubMed

    Ercumen, Ayse; Pickering, Amy J; Kwong, Laura H; Arnold, Benjamin F; Parvez, Sarker Masud; Alam, Mahfuja; Sen, Debashis; Islam, Sharmin; Kullmann, Craig; Chase, Claire; Ahmed, Rokeya; Unicomb, Leanne; Luby, Stephen P; Colford, John M

    2017-08-01

    Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log 10 in soil, 0.40 log 10 in stored water and 0.61 log 10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present.

  8. Animal Feces Contribute to Domestic Fecal Contamination: Evidence from E. coli Measured in Water, Hands, Food, Flies, and Soil in Bangladesh

    PubMed Central

    2017-01-01

    Fecal-oral pathogens are transmitted through complex, environmentally mediated pathways. Sanitation interventions that isolate human feces from the environment may reduce transmission but have shown limited impact on environmental contamination. We conducted a study in rural Bangladesh to (1) quantify domestic fecal contamination in settings with high on-site sanitation coverage; (2) determine how domestic animals affect fecal contamination; and (3) assess how each environmental pathway affects others. We collected water, hand rinse, food, soil, and fly samples from 608 households. We analyzed samples with IDEXX Quantitray for the most probable number (MPN) of E. coli. We detected E. coli in source water (25%), stored water (77%), child hands (43%), food (58%), flies (50%), ponds (97%), and soil (95%). Soil had >120 000 mean MPN E. coli per gram. In compounds with vs without animals, E. coli was higher by 0.54 log10 in soil, 0.40 log10 in stored water and 0.61 log10 in food (p < 0.05). E. coli in stored water and food increased with increasing E. coli in soil, ponds, source water and hands. We provide empirical evidence of fecal transmission in the domestic environment despite on-site sanitation. Animal feces contribute to fecal contamination, and fecal indicator bacteria do not strictly indicate human fecal contamination when animals are present. PMID:28686435

  9. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1.

    PubMed

    Jeong, Dana; Kim, Dong-Hyeon; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Kim, Hong-Seok; Seo, Kun-Ho

    2017-02-22

    Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 10 8 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p < 0.05). Interestingly, the fecal water content was significantly higher in the fecal samples of the LKF_DN1 group than in those of the control group (p < 0.05). The numbers of total bacteria, Firmicutes, Bacteroidetes, Lactobacillus, and Prevotella were significantly higher in the LKF_DN1 group than in the control group (p < 0.05). In contrast, the number of opportunistic pathogens, including Proteobacteria and Enterobacteriaceae, and the percentage of genus Clostridium among the total bacteria were significantly reduced in the LKF_DN1 group (p < 0.05). Our data suggest that regular L. kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.

  10. Longitudinal Study of Intestinal Symptoms and Fecal Continence in Patients With Conformal Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geinitz, Hans, E-mail: hans.geinitz@lrz.tu-muenchen.d; Thamm, Reinhard; Keller, Monika

    2011-04-01

    Purpose: To prospectively assess the intestinal symptoms and fecal continence in patients who had undergone conformal radiotherapy (CRT) for prostate cancer. Methods and Materials: A total of 78 men who had undergone definitive CRT for prostate cancer were evaluated. The patients were assessed before, during (treatment Weeks 4 and 6), and 2, 12, and 24 months after CRT completion. The intestinal symptoms and fecal continence were evaluated with comprehensive standardized questionnaires. Results: The intestinal symptoms were mostly intermittent, with only a small minority of patients affected daily. Defecation pain, fecal urge, and rectal mucous discharge increased significantly during therapy. Defecationmore » pain and rectal mucous discharge had returned to baseline levels within 8 weeks and 1 year after CRT, respectively. However, fecal urge remained significantly elevated for {<=}1 year and then returned toward the pretreatment values. The prevalence of rectal bleeding was significantly elevated 2 years after CRT. Fecal continence deteriorated during CRT and remained impaired at 1 year after treatment. Incontinence was mostly minor, occurring less than once per week and predominantly affecting incontinence for gas. Conclusion: Intestinal symptoms and fecal incontinence increased during prostate CRT. Except for rectal bleeding, the intestinal symptoms, including fecal incontinence, returned to baseline levels within 1-2 years after CRT. Thus, the rate of long-term late radiation-related intestinal toxicity was low.« less

  11. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    PubMed

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  12. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.

    PubMed

    Leight, A K; Hood, R; Wood, R; Brohawn, K

    2016-02-01

    Coastal states of the United States (US) routinely monitor shellfish harvest waters for types of bacteria that indicate the potential presence of fecal pollution. The densities of these indicator bacteria in natural waters may be related to climate in several ways, including through runoff from precipitation and survival related to water temperatures. The relationship between interannual precipitation and air temperature patterns and the densities of fecal indicator bacteria in shellfish harvest waters in Maryland's portion of the Chesapeake Bay was quantified using 34 years of data (1979-2013). Annual and seasonal precipitation totals had a strong positive relationship with average fecal coliform levels (R(2) = 0.69) and the proportion of samples with bacterial densities above the FDA regulatory criteria (R(2) = 0.77). Fecal coliform levels were also significantly and negatively related to average annual air temperature (R(2) = -0.43) and the average air temperature of the warmest month (R(2) = -0.57), while average seasonal air temperature was only significantly related to fecal coliform levels in the summer. River and regional fecal coliform levels displayed a wide range of relationships with precipitation and air temperature patterns, with stronger relationships in rural areas and mainstem Bay stations. Fecal coliform levels tended to be higher in years when the bulk of precipitation occurred throughout the summer and/or fall (August to September). Fecal coliform levels often peaked in late fall and winter, with precipitation peaking in summer and early fall. Continental-scale sea level pressure (SLP) analysis revealed an association between atmospheric patterns that influence both extratropical and tropical storm tracks and very high fecal coliform years, while regional precipitation was found to be significantly correlated with the Atlantic Multidecadal Oscillation and the Pacific North American Pattern. These findings indicate that management of shellfish harvest waters should account for changes in climate conditions and that SLP patterns may be particularly important for predicting years with extremely high levels of fecal coliforms. Published by Elsevier Ltd.

  13. Colonization potential to reconstitute a microbe community in patients detected early after fecal microbe transplant for recurrent C. difficile.

    PubMed

    Kumar, Ranjit; Maynard, Craig L; Eipers, Peter; Goldsmith, Kelly T; Ptacek, Travis; Grubbs, J Aaron; Dixon, Paula; Howard, Donna; Crossman, David K; Crowley, Michael R; Benjamin, William H; Lefkowitz, Elliot J; Weaver, Casey T; Rodriguez, J Martin; Morrow, Casey D

    2016-01-13

    Fecal microbiota transplants (FMT) are an effective treatment for patients with gut microbe dysbiosis suffering from recurrent C. difficile infections. To further understand how FMT reconstitutes the patient's gut commensal microbiota, we have analyzed the colonization potential of the donor, recipient and recipient post transplant fecal samples using transplantation in gnotobiotic mice. A total of nine samples from three human donors, recipient's pre and post FMT were transplanted into gnotobiotic mice. Microbiome analysis of three donor fecal samples revealed the presence of a high relative abundance of commensal microbes from the family Bacteriodaceae and Lachnospiraceae that were almost absent in the three recipient pre FMT fecal samples (<0.01%). The microbe composition in gnotobiotic mice transplanted with the donor fecal samples was similar to the human samples. The recipient samples contained Enterobacteriaceae, Lactobacillaceae, Enterococcaceae in relative abundance of 43, 11, 8%, respectively. However, gnotobiotic mice transplanted with the recipient fecal samples had an average relative abundance of unclassified Clostridiales of 55%, approximately 7000 times the abundance in the recipient fecal samples prior to transplant. Microbiome analysis of fecal samples from the three patients early (2-4 weeks) after FMT revealed a microbe composition with the relative abundance of both Bacteriodaceae and Lachnospiraceae that was approximately 7% of that of the donor. In contrast, gnotobioitc mice transplanted with the fecal samples obtained from the three at early times post FMT revealed increases in the relative abundance of Bacteriodaceae and Lachnospiraceae microbe compositions to levels similar to the donor fecal samples. Furthermore, the unclassified Clostridiales in the recipient samples post FMT was reduced to an average of 10%. We have used transplantation into gnotobiotic mice to evaluate the colonization potential of microbiota in FMT patients early after transplant. The commensal microbes present at early times post FMT out competed non-commensal microbes (e.g. such as unclassified Clostridiales) for niche space. The selective advantage of these commensal microbes to occupy niches in the gastrointestinal tract helps to explain the success of FMT to reconstitute the gut microbe community of patients with recurrent C. difficile infections.

  14. Virtual earthquake engineering laboratory with physics-based degrading materials on parallel computers

    NASA Astrophysics Data System (ADS)

    Cho, In Ho

    For the last few decades, we have obtained tremendous insight into underlying microscopic mechanisms of degrading quasi-brittle materials from persistent and near-saintly efforts in laboratories, and at the same time we have seen unprecedented evolution in computational technology such as massively parallel computers. Thus, time is ripe to embark on a novel approach to settle unanswered questions, especially for the earthquake engineering community, by harmoniously combining the microphysics mechanisms with advanced parallel computing technology. To begin with, it should be stressed that we placed a great deal of emphasis on preserving clear meaning and physical counterparts of all the microscopic material models proposed herein, since it is directly tied to the belief that by doing so, the more physical mechanisms we incorporate, the better prediction we can obtain. We departed from reviewing representative microscopic analysis methodologies, selecting out "fixed-type" multidirectional smeared crack model as the base framework for nonlinear quasi-brittle materials, since it is widely believed to best retain the physical nature of actual cracks. Microscopic stress functions are proposed by integrating well-received existing models to update normal stresses on the crack surfaces (three orthogonal surfaces are allowed to initiate herein) under cyclic loading. Unlike the normal stress update, special attention had to be paid to the shear stress update on the crack surfaces, due primarily to the well-known pathological nature of the fixed-type smeared crack model---spurious large stress transfer over the open crack under nonproportional loading. In hopes of exploiting physical mechanism to resolve this deleterious nature of the fixed crack model, a tribology-inspired three-dimensional (3d) interlocking mechanism has been proposed. Following the main trend of tribology (i.e., the science and engineering of interacting surfaces), we introduced the base fabric of solid particle-soft matrix to explain realistic interlocking over rough crack surfaces, and the adopted Gaussian distribution feeds random particle sizes to the entire domain. Validation against a well-documented rough crack experiment reveals promising accuracy of the proposed 3d interlocking model. A consumed energy-based damage model has been proposed for the weak correlation between the normal and shear stresses on the crack surfaces, and also for describing the nature of irrecoverable damage. Since the evaluation of the consumed energy is directly linked to the microscopic deformation, which can be efficiently tracked on the crack surfaces, the proposed damage model is believed to provide a more physical interpretation than existing damage mechanics, which fundamentally stem from mathematical derivation with few physical counterparts. Another novel point of the present work lies in the topological transition-based "smart" steel bar model, notably with evolving compressive buckling length. We presented a systematic framework of information flow between the key ingredients of composite materials (i.e., steel bar and its surrounding concrete elements). The smart steel model suggested can incorporate smooth transition during reversal loading, tensile rupture, early buckling after reversal from excessive tensile loading, and even compressive buckling. Especially, the buckling length is made to evolve according to the damage states of the surrounding elements of each bar, while all other dominant models leave the length unchanged. What lies behind all the aforementioned novel attempts is, of course, the problem-optimized parallel platform. In fact, the parallel computing in our field has been restricted to monotonic shock or blast loading with explicit algorithm which is characteristically feasible to be parallelized. In the present study, efficient parallelization strategies for the highly demanding implicit nonlinear finite element analysis (FEA) program for real-scale reinforced concrete (RC) structures under cyclic loading are proposed. Quantitative comparison of state-of-the-art parallel strategies, in terms of factorization, had been carried out, leading to the problem-optimized solver, which is successfully embracing the penalty method and banded nature. Particularly, the penalty method employed imparts considerable smoothness to the global response, which yields a practical superiority of the parallel triangular system solver over other advanced solvers such as parallel preconditioned conjugate gradient method. Other salient issues on parallelization are also addressed. The parallel platform established offers unprecedented access to simulations of real-scale structures, giving new understanding about the physics-based mechanisms adopted and probabilistic randomness at the entire system level. Particularly, the platform enables bold simulations of real-scale RC structures exposed to cyclic loading---H-shaped wall system and 4-story T-shaped wall system. The simulations show the desired capability of accurate prediction of global force-displacement responses, postpeak softening behavior, and compressive buckling of longitudinal steel bars. It is fascinating to see that intrinsic randomness of the 3d interlocking model appears to cause "localized" damage of the real-scale structures, which is consistent with reported observations in different fields such as granular media. Equipped with accuracy, stability and scalability as demonstrated so far, the parallel platform is believed to serve as a fertile ground for the introducing of further physical mechanisms into various research fields as well as the earthquake engineering community. In the near future, it can be further expanded to run in concert with reliable FEA programs such as FRAME3d or OPENSEES. Following the central notion of "multiscale" analysis technique, actual infrastructures exposed to extreme natural hazard can be successfully tackled by this next generation analysis tool---the harmonious union of the parallel platform and a general FEA program. At the same time, any type of experiments can be easily conducted by this "virtual laboratory."

  15. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  16. Fecal Pollution of Water

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  17. Fecal Pollution of Water.

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  18. HUMAN FECAL SOURCE IDENTIFICATION: REAL-TIME QUANTITATIVE PCR METHOD STANDARDIZATION - abstract

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  19. Addressing Uncertainty in Fecal Indicator Bacteria Dark Inactivation Rates

    EPA Science Inventory

    Fecal contamination is a leading cause of surface water quality degradation. Roughly 20% of all total maximum daily load assessments approved by the United States Environmental Protection Agency since 1995, for example, address water bodies with unacceptably high fecal indicator...

  20. Association of fecal calprotectin concentrations with disease severity, response to treatment, and other biomarkers in dogs with chronic inflammatory enteropathies

    PubMed Central

    Berghoff, Nora; Mansell, Joanne; Grützner, Niels; Parnell, Nolie K.; Gurtner, Corinne; Suchodolski, Jan S.; Steiner, Jörg M.

    2018-01-01

    Background Calprotectin is a marker of inflammation, but its clinical utility in dogs with chronic inflammatory enteropathies (CIE) is unknown. Objective Evaluation of fecal calprotectin in dogs with biopsy‐confirmed CIE. Animals 127 dogs. Methods Prospective case‐control study. Dogs were assigned a canine chronic enteropathy clinical activity index (CCECAI) score, and histologic lesions severity was assessed. Fecal calprotectin, fecal S100A12, and serum C‐reactive protein (CRP) were measured. Food‐ or antibiotic‐responsive cases (FRE/ARE, n = 13) were distinguished from steroid‐/immunosuppressant‐responsive or ‐refractory cases (SRE/IRE, n = 20). Clinical response to treatment in SRE/IRE dogs was classified as complete remission (CR), partial response (PR), or no response (NR). Results Fecal calprotectin correlated with CCECAI (ρ = 0.27, P = .0065) and fecal S100A12 (ρ = 0.90, P < .0001), some inflammatory criteria, and cumulative inflammation scores, but not serum CRP (ρ = 0.16, P = .12). Dogs with SRE/IRE had higher fecal calprotectin concentrations (median: 2.0 μg/g) than FRE/ARE dogs (median: 1.4 μg/g), and within the SRE/IRE group, dogs with PR/NR had higher fecal calprotectin (median: 37.0 μg/g) than dogs with CR (median: 1.6 μg/g). However, both differences did not reach statistical significance (both P = .10). A fecal calprotectin ≥15.2 μg/g separated both groups with 80% sensitivity (95% confidence interval [95%CI]: 28%‐100%) and 75% specificity (95%CI: 43%‐95%). Conclusions and Clinical Importance Fecal calprotectin could be a useful surrogate marker of disease severity in dogs with CIE, but larger longitudinal studies are needed to evaluate its utility in predicting the response to treatment. PMID:29460444

  1. Assessment of the relative sensitivity of milk ELISA for detection of Mycobacterium avium ssp. paratuberculosis infectious dairy cows.

    PubMed

    Laurin, Emilie L; Sanchez, Javier; Chaffer, Marcelo; McKenna, Shawn L B; Keefe, Greg P

    2017-01-01

    Milk ELISA are commonly used for detection of Mycobacterium avium ssp. paratuberculosis (MAP) antibodies in dairy cows, due to low cost and quick processing for large numbers of samples. However, low sensitivity and variations from host and environmental factors can impede detection of MAP antibodies at early disease stages. The objectives of our study were to assess the sensitivity of milk ELISA in comparison with fecal tests and to evaluate how detectable antibody concentrations in milk vary with changes in fecal shedding of MAP, cow age, cow parity, days in milk, and time of year. To compare the sensitivity of a commercial milk ELISA with solid and broth fecal culture and with fecal real-time PCR, a longitudinal study was performed for the identification of MAP-infectious animals as determined by prior fecal testing for MAP shedding. In addition, associations between variation in milk MAP ELISA score and changes in fecal MAP shedding, host age, days in milk, and season were evaluated. Monthly milk and fecal samples were collected over 1 yr from 46 cows that were previously shedding MAP in their feces. Sensitivity of milk ELISA was 29.9% (95% CI: 24.8 to 35.1%), compared with 46.7% (40.7 to 52.7%) for fecal solid culture, 55.0% (49.3 to 60.7%) for fecal broth culture, and 78.4% (73.3 to 83.1%) for fecal direct real-time PCR. The effect of stage of lactation could not be separated from the effect of season, with increased milk ELISA scores at greater days in milk in winter. However, unpredictable monthly variations in results were observed among the 3 assays for individual cow testing, which highlights the importance of identifying patterns in pathogen and antibody detection over time in MAP-positive herds. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Fecal S100A12 concentration predicts a lack of response to treatment in dogs affected with chronic enteropathy.

    PubMed

    Heilmann, Romy M; Volkmann, Maria; Otoni, Cristiane C; Grützner, Niels; Kohn, Barbara; Jergens, Albert E; Steiner, Jörg M

    2016-09-01

    S100A12 is a potential biomarker of gastrointestinal inflammation in dogs and fecal S100A12 concentrations are correlated with disease severity and outcome. The aim of the present study was to investigate whether there was any association between pre-treatment fecal S100A12 concentrations in dogs affected with chronic enteropathy (CE) and the response to treatment. Dogs affected with CE were recruited into the study and were classified as antibiotic-responsive diarrhea (ARD; n = 9), food-responsive diarrhea (FRD; n = 30) or idiopathic inflammatory bowel disease (IBD; n = 25). They were also grouped based on their response to treatment as complete remission (n = 35), partial response (n = 25) or no response (n = 4). Fecal S100A12 concentrations, measured by ELISA, were elevated in dogs affected with IBD compared with those from dogs affected with FRD (P = 0.010) or ARD (P = 0.025). Dogs with IBD that did not respond to treatment (n = 4) had significantly greater fecal S100A12 concentrations than dogs in complete remission (P = 0.009). Measurement of fecal S100A12 at the time of diagnosis discriminated between dogs with IBD that were refractory to therapy (≥2700 ng/g fecal S100A12) from those with at least a partial response (<2700 ng/g fecal S100A12), with a sensitivity of 100% and a specificity of 76%. These preliminary results suggest that testing of fecal S100A12 may be useful for predicting the lack of response to treatment in dogs affected with CE. The utility of serial fecal S100A12 measurements for monitoring dogs undergoing treatment for CE warrants further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sudan stain of fecal fat: new insight into an old test.

    PubMed

    Khouri, M R; Huang, G; Shiau, Y F

    1989-02-01

    The 72-h fecal fat determination is used as the gold standard to document the presence of steatorrhea. Although the Sudan stain for fecal fat is advocated as a sensitive screening test, a quantitative correlation between the 72-h fecal fat quantitation and the fecal Sudan stain is lacking. This study was designed to examine the staining properties of different classes of purified lipids in an experimentally defined artificial matrix, and to elucidate the reasons for the lack of quantitative correlation between these two tests. Our results indicate that the "neutral fat" stain without acidification or heating identifies triglyceride; and at an appropriate pH, the "neutral stain" also identifies fatty acid. The "split fat" stain with acidification and heating identifies both triglyceride and fatty acid. After acidification, fatty acid soaps are converted to the nonionized fatty acid. Thus, fatty acid soaps can be identified indirectly as fat droplets that are stained by the split fat stain. Although cholesterol is stained with Sudan stain after heating, upon cooling, cholesterol forms crystals of anhydrous cholesterol, making its staining pattern distinct. Neither the neutral fat nor the split fat stain can detect phospholipid or cholesteryl ester. The 72-h fecal fat determination is a measure of the total fatty acid content after a specimen is saponified. The resulting fatty acids are derived from a variety of endogenous and exogenous sources, including free fatty acids, soaps of fatty acids, triglycerides, cholesterol esters, and phospholipids. Therefore, the 72-h fecal fat quantitation does not differentiate between the primary sources of the measured fatty acid. It is concluded that the 72-h fecal fat determination is not specific for documenting triglyceride (fat) malabsorption. Until new methods are developed that specifically measure fecal triglyceride and fatty acid, the Sudan stain of fecal fat appears to be a more specific method for detecting the presence of triglyceride and fatty acid in a matrix.

  4. The Development of a new Numerical Modelling Approach for Naturally Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Pine, R. J.; Coggan, J. S.; Flynn, Z. N.; Elmo, D.

    2006-11-01

    An approach for modelling fractured rock masses has been developed which has two main objectives: to maximise the quality of representation of the geometry of existing rock jointing and to use this within a loading model which takes full account of this style of jointing. Initially the work has been applied to the modelling of mine pillars and data from the Middleton Mine in the UK has been used as a case example. However, the general approach is applicable to all aspects of rock mass behaviour including the stress conditions found in hangingwalls, tunnels, block caving, and slopes. The rock mass fracture representation was based on a combination of explicit mapping of rock faces and the synthesis of this data into a three-dimensional model, based on the use of the FracMan computer model suite. Two-dimensional cross sections from this model were imported into the finite element computer model, ELFEN, for loading simulation. The ELFEN constitutive model for fracture simulation includes the Rotating Crack, and Rankine material models, in which fracturing is controlled by tensile strength and fracture energy parameters. For tension/compression stress states, the model is complemented with a capped Mohr-Coulomb criterion in which the softening response is coupled to the tensile model. Fracturing due to dilation is accommodated by introducing an explicit coupling between the inelastic strain accrued by the Mohr-Coulomb yield surface and the anisotropic degradation of the mutually orthogonal tensile yield surfaces of the rotating crack model. Pillars have been simulated with widths of 2.8, 7 and 14 m and a height of 7 m (the Middleton Mine pillars are typically 14 m wide and 7 m high). The evolution of the pillar failure under progressive loading through fracture extension and creation of new fractures is presented, and pillar capacities and stiffnesses are compared with empirical models. The agreement between the models is promising and the new model provides useful insights into the influence of pre-existing fractures. Further work is needed to consider the effects of three-dimensional loading and other boundary condition problems.

  5. Shock-induced damage in rocks: Application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong

    Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of rocks in the compressive field near the impact source and the tensile failure in the far field. The model parameters are determined either from direct static measurements, or from indirect numerical adjustment. The agreement between the simulation and experiment is very encouraging.

  6. Mode-I Fracture Toughness Testing and Coupled Cohesive Zone Modeling at In Situ P, T, and Chemical (H2O-CO2-NaCl) Conditions

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Choens, R. C., II; Regueiro, R. A.; Eichhubl, P.; Bryan, C. R.; Rinehart, A. J.; Su, J. C.; Heath, J. E.

    2017-12-01

    Propagation of mode I cracks is fundamental to subsurface engineering endeavors, but the majority of fracture toughness measurements are performed at ambient conditions. A novel testing apparatus was used to quantify the relationship between supercritical carbon dioxide (scCO2), water vapor, and fracture toughness in analogs for reservoir rock and caprock lithologies at temperature and pressure conditions relevant to geologic carbon storage. Samples of Boise Sandstone and Marcellus Shale were subject to fracture propagation via a novel short rod fracture toughness tester composed of titanium and Hastelloy® and designed to fit inside a pressure vessel. The tester is controlled by a hydraulically-driven ram and instrumented with a LVDT to monitor displacement. We measure fracture toughness under conditions of dry supercritical CO2 (scCO2), scCO2-saturated brine, and scCO2 with varying water content ( 25%, 90%, and 100% humidity) at 13.8 MPa and 70oC. Water film development as a function of humidity is determined in situ during the experiments with a quartz crystal microbalance. Two orientations of the Marcellus are included in the testing matrix. Dry CO2 has a negligible to slightly strengthening effect compared to a control, however hydrous scCO2 can decrease the fracture toughness, and the effect increases with increasing humidity, which likely is due to capillary condensation of reactive water films at nascent crack tips and associated subcritical weakening. A 2D poromechanical finite element model with cohesive surface elements (CSEs) and a chemo-plasticity phenomenology is being used to describe the chemical weakening/softening effects observed in the testing. The reductions in fracture toughness seen in this study could be important in considerations of borehole stability, in situ stress measurements, changes in fracture gradient, and reservoir caprock integrity during CO2 injection and storage. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  7. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Percutaneous cecostomy in the management of organic fecal incontinence in children

    PubMed Central

    Donkol, Ragab Hani; Al-Nammi, Ahmed

    2010-01-01

    AIM: To assess the effectiveness and safety of imaging-guided percutaneous cecostomy in the management of pediatric patients with organic fecal incontinence. METHODS: Twenty three cecostomies were performed on 21 children with organic fecal incontinence (13 males, 8 females), aged from 5 to 16 years (mean 9.5 years). Thirteen patients had neurogenic fecal incontinence and 8 patients had anorectal anomalies. Procedures were performed under general anesthesia and fluoroscopic guidance. Effectiveness and complication data were obtained for at least 1 year after the procedure. RESULTS: Cecostomy was successful in 20 patients (primary technical success rate 95%). Cecostomy failed in one patient due to tube breakage (secondary technical success rate 100%). The tubes were in situ for an average of 18 mo (range 12-23 mo). Eighteen patients (87%) expressed satisfaction with the procedures. Resolution of soiling was achieved in all patients with neurogenic fecal incontinence (100%) and in 5 of 8 patients with anorectal anomalies (62.5%). Eleven patients (52%) experienced minor problems. No major complications were noted. CONCLUSION: Percutaneous cecostomy improves the quality of life in children with organic fecal incontinence. A satisfactory outcome is more prevalent in patients with neurogenic fecal incontinence than anorectal anomalies. PMID:21225001

  9. Evaluation and Improved Use of Fecal Occult Blood Test in the Constipated Child.

    PubMed

    Kilway, Denise M

    2016-01-01

    This quality improvement project examined the use of fecal occult blood test in the constipated child in a pediatric gastroenterology outpatient clinic. A retrospective chart review was completed on 100 children seen for an initial visit with the gastroenterology provider. The number of fecal occult blood tests performed and the child's coinciding symptoms were tallied and compared with the North American Society of Pediatric Gastroenterology, Hepatology, and Nutrition recommendations. An educational intervention was held with the pediatric gastroenterology providers consisting of a PowerPoint presentation summarizing aims of the quality improvement project and reviewing recommendations for use of fecal occult blood test in the constipated child. Pre- and post-intervention chart review data sets were compared. Results showed a 19.6% decrease in the use of fecal occult blood tests performed during the post-intervention timeframe. However, when used in conjunction with North American Society of Pediatric Gastroenterology, Hepatology, and Nutrition recommendations, the appropriateness of fecal occult blood test use increased by 71.4% in the post-intervention patients. Reviewing the recommendations with gastroenterology providers assisted in optimizing the meaningful use of fecal occult blood test, improving quality and safety of care for children seen in the pediatric gastroenterology outpatient clinic.

  10. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis)

    PubMed Central

    SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn

    2016-01-01

    To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098

  11. Applicability of universal Bacteroidales genetic marker for microbial monitoring of drinking water sources in comparison to conventional indicators.

    PubMed

    Shahryari, A; Nikaeen, M; Khiadani Hajian, M; Nabavi, F; Hatamzadeh, M; Hassanzadeh, A

    2014-11-01

    Water quality monitoring is essential for the provision of safe drinking water. In this study, we compared a selection of fecal indicators with universal Bacteroidales genetic marker to identify fecal pollution of a variety of drinking water sources. A total of 60 samples were collected from water sources. The microbiological parameters included total coliforms, fecal coliforms, Escherichia coli and fecal streptococci as the fecal indicator bacteria (FIB), Clostridium perfringens and H2S bacteria as alternative indicators, universal Bacteroidales genetic marker as a promising alternative fecal indicator, and Salmonella spp., Shigella spp., and E. coli O157 as pathogenic bacteria. From 60 samples analyzed, Bacteroidales was the most frequently detected indicator followed by total coliforms. However, the Bacteroidales assay failed to detect the marker in nine samples positive for FIB and other alternative indicators. The results of our study showed that the absence of Bacteroidales is not necessarily an evidence of fecal and pathogenic bacteria absence and may be unable to ensure the safety of the water. Further research, however, is required for a better understanding of the use of a Bacteroidales genetic marker as an indicator in water quality monitoring programs.

  12. Detection and Quantification of Human Fecal Pollution with Real-Time PCR

    EPA Science Inventory

    ABSTRACT Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for enumeration of two recently described ...

  13. HOLDING TIME STUDY FOR FECALS/SALMONELLA & CONNECTING LANGUAGE FOR 503 REGULATIONS

    EPA Science Inventory

    Current federal regulations required monitoring for fecal coliforms or Salmonella in biosolids destined for land application. Methods used for analysis of fecal coliforms and Salmonella have been developed and are currently in use for quantification of these organisms. Recently c...

  14. IDENTIFICATION OF SOURCES OF FECAL POLLUTION IN ENVIRONMENTAL WATERS

    EPA Science Inventory

    A number of Microbial Source Tracking (MST) methods are currently used to determine the origin of fecal pollution impacting environmental waters. MST is based on the assumption that given the appropriate method and indicator organism, the source of fecal microbial pollution can ...

  15. CULTURE-INDEPENDENT MOLECULAR METHODS FOR FECAL SOURCE IDENTIFICATION

    EPA Science Inventory

    Fecal contamination is widespread in the waterways of the United States. Both to correct the problem, and to estimate public health risk, it is necessary to identify the source of the contamination. Several culture-independent molecular methods for fecal source identification hav...

  16. Exposure to human source fecal indicators and self-reported illness among bathers

    EPA Science Inventory

    Introduction: Indicator microorganisms are used to predict the presence of fecal pollution in water and assess associated health risks, usually gastrointestinal illness and diarrhea. Few studies have characterized the health risks associated with human fecal sources using microbi...

  17. Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources

    EPA Science Inventory

    Exposure to human fecal waste can be a public health risk dueto the presence of human pathogens. Human fecal pollutioncan be introduced into water resources from damagedsewer lines, faulty septic systems, combined sewer overflows,illicit dumping activities, and even recreational ...

  18. Development of Cross-Assembly Phage PCR-Based Methods for Human Fecal Source Identification

    EPA Science Inventory

    Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source id...

  19. Global Inter-Laboratory Fecal Source Identification Methods Comparison Study

    EPA Science Inventory

    Source tracking is key to identifying sources of fecal contamination for remediation as well as risk assessment. Previous intra- and inter-lab studies have investigated the performance of human and cow-associated source tracking markers, as well as library-dependent fecal source ...

  20. Evaluation of Two PCR-Based Swine-Specific Fecal Source Tracking Assays (Poster)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the specificity and distribution of these targets have not been adequately assessed. Consequently, the utility of these assays in identifying swine fecal contamination...

  1. Heterotrophic bacteria associated with the degradation of zooplankton fecal pellets in Lake Michigan. [Mysis relicta, pseudomonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrante, J.G.; Ptak, D.J.

    1978-01-01

    Heterotrophic microbes decompose most of the calanoid copepod fecal pellets produced in Lake Michigan before they reach the sediment. Rod-shaped nonfermenters isolated from copepod and Mysis relicta fecal pellets were identified as Pseudomonas maltophilia and Pseudomonas fluorescens species. No enterobacteriaceae or fungal hyphae were found on or in any pellets. This investigation suggests that Pseudomonas species are attached to and may degrade Mysis relicta and calanoid copepod fecal pellets in the water column of Lake Michigan.

  2. Routine Testing of Bitumen Binders

    NASA Astrophysics Data System (ADS)

    Holý, Michal; Remišová, Eva

    2017-12-01

    The quality of bituminous binders used in the construction and maintenance of road surfaces is currently assessed by empirical testing based on obtaining one value for specific boundary conditions, which were designed about 100 years ago. Basic empirical tests include the softening point and penetration, but the practice shows that these tests appear to be inadequate. The evaluation of changes of bitumen properties during the production and paving process of bituminous mixture is also important. The paper points out how the "traditional" tests as softening point and penetration and viscosity are sufficient to evaluate properties of bitumen binders.

  3. [Evaluation of Cepan Cream after 15 years of treatment of burn scars].

    PubMed

    Stozkowska, Wiesława

    2002-01-01

    Cepan Cream is used for the topical treatment of scars and keloids resulting from burns, post-operative scars, and contractures. Cepan Cream makes scars more elastic, softer and paler. Plant extracts, heparin and allantoin in Cepan act on the biochemical processes in the developing connective tissue, preventing the formation of hyperplastic scars. These active ingredients enhance swelling, softening and loosening of connective tissue. It exerts softening and smoothing action on indurated and hyperplastic scar tissue, improving collagen structure. It promotes tissue regeneration and reduces exuberant granulation. Cepan is well tolerated.

  4. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  5. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  6. Dissipative Dynamics of Enzymes

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni

    2014-11-01

    We explore enzyme conformational dynamics at sub-Å resolution, specifically, temperature effects. The ensemble-averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor of 2 as the temperature is raised from 10 to 45 °C ; the elastic parameter K shows a similar decrease. Thus, when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.

  7. Dissipative Dynamics of Enzymes

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni; Zocchi LabMolecular Biophysics Team

    2015-03-01

    We explore enzyme conformational dynamics at sub - Å resolution, specifically temperature effects. The ensemble averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor 2 as the temperature is raised from 10 C to 45 C; the elastic parameter K shows a similar decrease. Thus when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.

  8. Dissipative dynamics of enzymes.

    PubMed

    Ariyaratne, Amila; Wu, Chenhao; Tseng, Chiao-Yu; Zocchi, Giovanni

    2014-11-07

    We explore enzyme conformational dynamics at sub-Å resolution, specifically, temperature effects. The ensemble-averaged mechanical response of the folded enzyme is viscoelastic in the whole temperature range between the warm and cold denaturation transitions. The dissipation parameter γ of the viscoelastic description decreases by a factor of 2 as the temperature is raised from 10 to 45 °C; the elastic parameter K shows a similar decrease. Thus, when probed dynamically, the enzyme softens for increasing temperature. Equilibrium mechanical experiments with the DNA spring (and a different enzyme) also show, qualitatively, a small softening for increasing temperature.

  9. Systems and Methods for Implementing Robust Carbon Nanotube-Based Field Emitters

    NASA Technical Reports Server (NTRS)

    Kristof, Valerie (Inventor); Manohara, Harish (Inventor); Toda, Risaku (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement carbon nanotube-based field emitters. In one embodiment, a method of fabricating a carbon nanotube field emitter includes: patterning a substrate with a catalyst, where the substrate has thereon disposed a diffusion barrier layer; growing a plurality of carbon nanotubes on at least a portion of the patterned catalyst; and heating the substrate to an extent where it begins to soften such that at least a portion of at least one carbon nanotube becomes enveloped by the softened substrate.

  10. Mechanical stiffening and thermal softening of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Varshney, Dinesh; Singh, Namita, E-mail: namita.singh.2050@gmail.com

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  11. [Validation of questionnaires to assess quality of life related to fecal incontinence in children with anorectal malformations and Hirschsprung's disease].

    PubMed

    Mathias, Arthur Loguetti; Tannuri, Ana Cristina Aoun; Ferreira, Mariana Aparecida Elisei; Santos, Maria Mercês; Tannuri, Uenis

    2016-01-01

    Surgical treatment of anorectal malformations (ARMs) and Hirschsprung's disease (HD) leads to alterations in bowel habits and fecal incontinence, with consequent quality of life impairment. The objectives were to create and validate a Questionnaire for the Fecal Incontinence Index (FII) based on the Holschneider score, as well as a Questionnaire for the Assessment of Quality of Life Related to Fecal Incontinence in Children and Adolescents (QQVCFCA), based on the Fecal Incontinence Quality of Life. The questionnaires were applied to 71 children submitted to surgical procedure, in two stages. Validity was tested by comparing the QQVCFCA and a generic quality of life questionnaire (SF-36), and between QQVCFCA and the FII. A group of 59 normal children was used as control. At two stages, 45.0% (32/71) and 42.8% (21/49) of the patients had fecal incontinence. It was observed that the QQVCFCA showed a significant correlation with the SF-36 and FII (Pearson's correlation 0.57), showing that the quality of life is directly proportional to improvement in fecal incontinence. Quality of life in patients with fecal incontinence is still globally impaired, when compared with control subjects (p<0.05, Student's t test). There were also significant differences between the results of children with ARMs and children with HD. QQVCFCA and FII are useful tools to assess the quality of life and fecal incontinence in these groups of children. Children with ARMs submitted to surgical procedure and HD have similar quality of life impairment. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes

    PubMed Central

    Abeles, Shira R.; Ly, Melissa; Santiago-Rodriguez, Tasha M.; Pride, David T.

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances. PMID:26309137

  13. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    PubMed

    Abeles, Shira R; Ly, Melissa; Santiago-Rodriguez, Tasha M; Pride, David T

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances.

  14. The Effect of Sampling and Storage on the Fecal Microbiota Composition in Healthy and Diseased Subjects

    PubMed Central

    Tedjo, Danyta I.; Jonkers, Daisy M. A. E.; Savelkoul, Paul H.; Masclee, Ad A.; van Best, Niels; Pierik, Marieke J.; Penders, John

    2015-01-01

    Large-scale cohort studies are currently being designed to investigate the human microbiome in health and disease. Adequate sampling strategies are required to limit bias due to shifts in microbial communities during sampling and storage. Therefore, we examined the impact of different sampling and storage conditions on the stability of fecal microbial communities in healthy and diseased subjects. Fecal samples from 10 healthy controls, 10 irritable bowel syndrome and 8 inflammatory bowel disease patients were collected on site, aliquoted immediately after defecation and stored at -80°C, -20°C for 1 week, at +4°C or room temperature for 24 hours. Fecal transport swabs (FecalSwab, Copan) were collected and stored for 48-72 hours at room temperature. We used pyrosequencing of the 16S gene to investigate the stability of microbial communities. Alpha diversity did not differ between all storage methods and -80°C, except for the fecal swabs. UPGMA clustering and principal coordinate analysis showed significant clustering by test subject (p<0.001) but not by storage method. Bray-Curtis dissimilarity and (un)weighted UniFrac showed a significant higher distance between fecal swabs and -80°C versus the other methods and -80°C samples (p<0.009). The relative abundance of Ruminococcus and Enterobacteriaceae did not differ between the storage methods versus -80°C, but was higher in fecal swabs (p<0.05). Storage up to 24 hours (at +4°C or room temperature) or freezing at -20°C did not significantly alter the fecal microbial community structure compared to direct freezing of samples from healthy subjects and patients with gastrointestinal disorders. PMID:26024217

  15. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomicmore » units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.« less

  16. Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    PubMed Central

    Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.

    2010-01-01

    Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654

  17. Comparison of fecal culture and Danish Mix-ELISA for determination of Salmonella enterica subsp. enterica prevalence in growing swine.

    PubMed

    Funk, J A; Harris, I T; Davies, P R

    2005-04-25

    In the USA, control of food-borne salmonellosis associated with meat consumption has been predominantly focused at slaughter and processing. It is expected that standards at slaughter and processing will become more stringent, creating pressure to reduce prevalence of Salmonella-positive food animals through on-farm interventions. The aim of this study was to compare traditional fecal culture and the Danish Mix-ELISA (DME) for determination of Salmonella prevalence pre-harvest in swine. In Trial 1, five cohorts of individually identified pigs were longitudinally sampled during the growing period to compare the kinetics of prevalence as estimated by fecal culture and the DME. In Trial 2, the correlation between fecal prevalence and seroprevalence was estimated pre-marketing in 49 groups of pigs. In Trial 1, fecal prevalence and seroprevalence showed similar kinetics, with a tendency of a higher OD% cut-off to more closely approximate fecal prevalence. In Trial 2, correlations between fecal culture and the DME were 0.40, 0.36, 0.43, and 0.43 (p<0.001) for OD% cut-offs > or =10, 20, 30, and 40, respectively. Based on these results, a higher OD% cut-off would be recommended if more approximate estimation of fecal prevalence is desired and longitudinal sampling would be suggested for evaluating the impact of on-farm interventions for Salmonella reduction whether utilizing fecal culture or the DME. Further evaluation of the impact of Salmonella serovar present on farms on seroprevalence and the relationship of on-farm seroprevalence with food safety risk are needed prior to utilizing the DME for pre-harvest Salmonella diagnostics in the US swine herd.

  18. Comparison of FecalSwab and ESwab Devices for Storage and Transportation of Diarrheagenic Bacteria

    PubMed Central

    Kaukoranta, Suvi-Sirkku

    2014-01-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at −20°C or −70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At −70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At −20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions. PMID:24740083

  19. Validation of a fecal scoring scale in puppies during the weaning period.

    PubMed

    Grellet, Aurélien; Feugier, Alexandre; Chastant-Maillard, Sylvie; Carrez, Bruno; Boucraut-Baralon, Corine; Casseleux, Gregory; Grandjean, Dominique

    2012-10-01

    In puppies weaning is a high risk period. Fecal changes are frequent and can be signs of infection by digestive pathogens (bacteria, viruses, parasites) and indicators of nutritional and environmental stress. The aim of this study was to define a pathological fecal score for weaning puppies, and to study the impact on that score of two intestinal viruses (canine parvovirus type 2 and canine coronavirus). For this, the quality of stools was evaluated on 154 puppies between 4 and 8 weeks of age (100 from small breeds and 54 from large breeds). The scoring was performed immediately after a spontaneous defecation based on a 13-point scale (from 1; liquid to 13; dry and hard feces). Fecal samples were frozen for further viral analysis. Each puppy was weighed once a week during the study period. The fecal score regarded as pathological was the highest score associated with a significant reduction in average daily gain (ADG). Fecal samples were checked by semi-quantitative PCR or RT-PCR for canine parvovirus type 2 and canine coronavirus identification, respectively. The quality of feces was affected by both age and breed size. In small breeds, the ADG was significantly reduced under a fecal score of 6 and 7 for puppies at 4-5 and 6-8 weeks of age, respectively. In large breeds, the ADG was significantly reduced under a fecal score of 5 whatever the age of the puppy. Whereas a high viral load of canine parvovirus type 2 significantly impacted feces quality, no effect was recorded for canine coronavirus. This study provides an objective threshold for evaluation of fecal quality in weaning puppies. It also emphasizes the importance to be given to age and breed size in that evaluation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence.

    PubMed

    Parmar, Nina; Kumar, Lalit; Emmanuel, Anton; Day, Richard M

    2014-01-01

    Fecal incontinence is a major public health issue that has yet to be adequately addressed. Obstetric trauma and injury to the anal sphincter muscles are the most common cause of fecal incontinence. New therapies are emerging aimed at repair or regeneration of sphincter muscle and restoration of continence. While regenerative medicine offers an attractive option for fecal incontinence there are currently no validated techniques using this approach. Although many challenges are yet to be resolved, the advent of regenerative medicine is likely to offer disruptive technologies to treat and possibly prevent the onset of this devastating condition. This article provides a review on regenerative medicine approaches for treating fecal incontinence and a critique of the current landscape in this area.

Top