Modeling of an argon cascaded arc plasma by ANSYS FLUENT
NASA Astrophysics Data System (ADS)
Wei, Guodong; Qi, Xin; Yang, Lei
2014-04-01
In this work, an argon cascaded arc plasma is simulated by the business software ANSYS FLUENT. In fact, thus plasma is a high temperature arc (plasma window) with an average temperature of 12000 °C, which can be used as a medium between high pressure and vacuum mainly due to its characteristics of high temperature. According to the simulating results, the temperature can reach as high as 11500 °C which is in great agreement with that of other reports about plasma window.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Numerical wind-tunnel simulation for Spar platform
NASA Astrophysics Data System (ADS)
Shen, Wenjun
2017-05-01
ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.
Numerical analysis of eccentric orifice plate using ANSYS Fluent software
NASA Astrophysics Data System (ADS)
Zahariea, D.
2016-11-01
In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.
Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water
NASA Astrophysics Data System (ADS)
Beneš, Petr; Kollárik, Róbert
2011-12-01
This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.
NASA Astrophysics Data System (ADS)
Kusaiynov, K.; Tanasheva, N. K.; Min'kov, L. L.; Nusupbekov, B. R.; Stepanova, Yu. O.; Rozhkova, A. V.
2016-02-01
An air flow past a single triangular sail-type blade of a wind turbine is analyzed by numerical simulation for low velocities of the incoming flow. The results of numerical simulation indicate a monotonic increase in the drag force and the lift force as functions of the incoming flow; empirical dependences of these quantities are obtained.
Verification of ANSYS Fluent and OpenFOAM CFD platforms for prediction of impact flow
NASA Astrophysics Data System (ADS)
Tisovská, Petra; Peukert, Pavel; Kolář, Jan
The main goal of the article is a verification of the heat transfer coefficient numerically predicted by two CDF platforms - ANSYS-Fluent and OpenFOAM on the problem of impact flows oncoming from 2D nozzle. Various mesh parameters and solver settings were tested under several boundary conditions and compared to known experimental results. The best solver setting, suitable for further optimization of more complex geometry is evaluated.
Bai, Long; Cui, Yuhong; Zhang, Yixia; Zhao, Na
2014-01-01
The mechanical behavior of blood cells in the vessels has a close relationship with the physical characteristics of the blood and the cells. In this paper, a numerical simulation method was proposed to understand a single-blood cell's behavior in the vessels based on fluid-solid interaction method, which was conducted under adaptive time step and fixed time step, respectively. The main programme was C++ codes, which called FLUENT and ANSYS software, and UDF and APDL acted as a messenger to connect FLUENT and ANSYS for exchanging data. The computing results show: (1) the blood cell moved towards the bottom of the flow chamber in the beginning due to the influence of gravity, then it began to jump up when reached a certain height rather than touching the bottom. It could move downwards again after jump up, the blood cell could keep this way of moving like dancing continuously in the vessels; (2) the blood cell was rolling and deforming all the time; the rotation had oscillatory changes and the deformation became conspicuously when the blood cell was dancing. This new simulation method and results can be widely used in the researches of cytology, blood, cells, etc.
A modified Brownian force for ultrafine particle penetration through building crack modeling
NASA Astrophysics Data System (ADS)
Chen, Chen; Zhao, Bin
2017-12-01
Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.
The effect of balance holes to centrifugal pump performance
NASA Astrophysics Data System (ADS)
Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.
2017-07-01
The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.
Running ANSYS Fluent on the WinHPC System | High-Performance Computing |
. If you don't have one, see WinHPC system user basics. Check License Use Status Start > All Jason Lustbader. Run Using Fluent Launcher Start Fluent launcher by opening: Start > All Programs > . Available node groups can be found from HPC Job Manager. Start > All Programs > Microsoft HPC Pack
Rosin-Rammler Distributions in ANSYS Fluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
In Health Physics monitoring, particles need to be collected and tracked. One method is to predict the motion of potential health hazards with computer models. Particles released from various sources within a glove box can become a respirable health hazard if released into the area surrounding a glove box. The goal of modeling the aerosols in a glove box is to reduce the hazards associated with a leak in the glove box system. ANSYS Fluent provides a number of tools for modeling this type of environment. Particles can be released using injections into the flow path with turbulent properties. Themore » models of particle tracks can then be used to predict paths and concentrations of particles within the flow. An attempt to understand and predict the handling of data by Fluent was made, and results iteratively tracked. Trends in data were studied to comprehend the final results. The purpose of the study was to allow a better understanding of the operation of Fluent for aerosol modeling for future application in many fields.« less
NASA Astrophysics Data System (ADS)
Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.
2017-11-01
With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.
Analyse et design aerodynamique haute-fidelite de l'integration moteur sur un avion BWB
NASA Astrophysics Data System (ADS)
Mirzaei Amirabad, Mojtaba
BWB (Blended Wing Body) is an innovative type of aircraft based on the flying wing concept. In this configuration, the wing and the fuselage are blended together smoothly. BWB offers economical and environmental advantages by reducing fuel consumption through improving aerodynamic performance. In this project, the goal is to improve the aerodynamic performance by optimizing the main body of BWB that comes from conceptual design. The high fidelity methods applied in this project have been less frequently addressed in the literature. This research develops an automatic optimization procedure in order to reduce the drag force on the main body. The optimization is carried out in two main stages: before and after engine installation. Our objective is to minimize the drag by taking into account several constraints in high fidelity optimization. The commercial software, Isight is chosen as an optimizer in which MATLAB software is called to start the optimization process. Geometry is generated using ANSYS-DesignModeler, unstructured mesh is created by ANSYS-Mesh and CFD calculations are done with the help of ANSYS-Fluent. All of these software are coupled together in ANSYS-Workbench environment which is called by MATLAB. The high fidelity methods are used during optimization by solving Navier-Stokes equations. For verifying the results, a finer structured mesh is created by ICEM software to be used in each stage of optimization. The first stage includes a 3D optimization on the surface of the main body, before adding the engine. The optimized case is then used as an input for the second stage in which the nacelle is added. It could be concluded that this study leads us to obtain appropriate reduction in drag coefficient for BWB without nacelle. In the second stage (adding the nacelle) a drag minimization is also achieved by performing a local optimization. Furthermore, the flow separation, created in the main body-nacelle zone, is reduced.
Analysis of artery blood flow before and after angioplasty
NASA Astrophysics Data System (ADS)
Tomaszewski, Michał; Baranowski, Paweł; Małachowski, Jerzy; Damaziak, Krzysztof; Bukała, Jakub
2018-01-01
The study presents a comparison of results obtained from numerical simulations of blood flow in two different arteries. One of them was considered to be narrowed in order to simulate an arteriosclerosis obstructing the blood flow in the vessel, whereas the second simulates the vessel after angioplasty treatment. During the treatment, a biodegradable stent is inserted into the artery, which prevents the vessel walls from collapsing. The treatment was simulated through the use of numerical simulation using the finite element method. The final mesh geometry obtained from the analysis was exported to the dedicated software in order to create geometry in which a flow domain inside the artery with the stent was created. The flow analysis was conducted in ANSYS Fluent software with non-deformable vessel walls.
NASA Astrophysics Data System (ADS)
Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N.
2017-01-01
Nonequilibrium flows of a two-component oxygen mixture O2/O behind a shock wave are studied with due allowance for the state-to-state vibrational and chemical kinetics. The system of gas-dynamic equations is supplemented with kinetic equations including contributions of VT (TV)-exchange and dissociation processes. A method of the numerical solution of this system with the use of the ANSYS Fluent commercial software package is proposed, which is used in a combination with the authors' code that takes into account nonequilibrium kinetics. The computed results are compared with parameters obtained by solving the problem in the shock-fitting formulation. The vibrational temperature is compared with experimental data. The numerical tool proposed in the present paper is applied to study the flow around a cylinder.
CFD Simulation of a Wing-In-Ground-Effect UAV
NASA Astrophysics Data System (ADS)
Lao, C. T.; Wong, E. T. T.
2018-05-01
This paper reports a numerical analysis on a wing section used for a Wing-In-Ground-Effect (WIG) unmanned aerial vehicle (UAV). The wing geometry was created by SolidWorks and the incompressible Reynolds-averaged Navier-Stokes (RANS) equations were solved with the Spalart–Allmaras turbulence model using CFD software ANSYS FLUENT. In FLUENT, the Spalart-Allmaras model has been implemented to use wall functions when the mesh resolution is not sufficiently fine. This might make it the best choice for relatively crude simulations on coarse meshes where accurate turbulent flow computations are not critical. The results show that the lift coefficient and lift-drag ratio derived excellent performance enhancement by ground effect. However, the moment coefficient shows inconsistency when the wing is operating in very low altitude - this is owing to the difficulty on the stability control of WIG vehicle. A drag polar estimation based on the analysis also indicated that the Oswald (or span) efficiency of the wing was improved by ground effect.
Using ANSYS Fluent on the Peregrine System | High-Performance Computing |
two ways to run ANSYS CFD interactively on NREL HPC systems. When graphics rendering is not a critical when used as above is quite low (e.g., windows take a long time to come up). For small tasks, it may be , go to Category/Connection/SSH, and check off the box "enable compression". When graphics
Vibration analysis of large centrifugal pump rotors
NASA Astrophysics Data System (ADS)
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.
Robinson, Risa J; Snyder, Pam; Oldham, Michael J
2007-05-01
Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.
Numerical evaluation of an innovative cup layout for open volumetric solar air receivers
NASA Astrophysics Data System (ADS)
Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz
2016-05-01
This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.
Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.
2017-07-01
This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.
NASA Astrophysics Data System (ADS)
Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku
2014-06-01
As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.
Mathematical modeling of flow in the working part of an acousto-convective drying system
NASA Astrophysics Data System (ADS)
Kravchenko, A. S.; Zhilin, A. A.; Fedorova, N. N.
2018-03-01
The objective of this study was to numerically simulate the nonstationary processes occurring in the acoustic-convective dryer (ACD) channel. In the present work, the problem was solved numerically in a three-dimensional formulation taking into account all features of the ACD duct in real geometry. The processes occurring in the ACD duct were simulated using the ANSYS Fluent 18.0 software. The numerical experiments provided an aggregate picture of the working gas flow in the ACD duct with the features near the subsonic nozzle and the cavity. The results of the numerical calculations were compared with experimental data. The best agreement with the experimental data was obtained for the viscosity model neglecting turbulent effects.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques
NASA Astrophysics Data System (ADS)
Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan
2018-03-01
Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.
NASA Astrophysics Data System (ADS)
Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael
2015-11-01
The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.
Jain, Kartik; Jiang, Jingfeng; Strother, Charles; Mardal, Kent-André
2016-11-01
Blood flow in intracranial aneurysms has, until recently, been considered to be disturbed but still laminar. Recent high resolution computational studies have demonstrated, in some situations, however, that the flow may exhibit high frequency fluctuations that resemble weakly turbulent or transitional flow. Due to numerous assumptions required for simplification in computational fluid dynamics (CFD) studies, the occurrence of these events, in vivo, remains unsettled. The detection of these fluctuations in aneurysmal blood flow, i.e., hemodynamics by CFD, poses additional challenges as such phenomena cannot be captured in clinical data acquisition with magnetic resonance (MR) due to inadequate temporal and spatial resolutions. The authors' purpose was to address this issue by comparing results from highly resolved simulations, conventional resolution laminar simulations, and MR measurements, identify the differences, and identify their causes. Two aneurysms in the basilar artery, one with disturbed yet laminar flow and the other with transitional flow, were chosen. One set of highly resolved direct numerical simulations using the lattice Boltzmann method (LBM) and another with adequate resolutions under laminar flow assumption were conducted using a commercially available ANSYS Fluent solver. The velocity fields obtained from simulation results were qualitatively and statistically compared against each other and with MR acquisition. Results from LBM, ANSYS Fluent, and MR agree well qualitatively and quantitatively for one of the aneurysms with laminar flow in which fluctuations were <80 Hz. The comparisons for the second aneurysm with high fluctuations of > ∼ 600 Hz showed vivid differences between LBM, ANSYS Fluent, and magnetic resonance imaging. After ensemble averaging and down-sampling to coarser space and time scales, these differences became minimal. A combination of MR derived data and CFD can be helpful in estimating the hemodynamic environment of intracranial aneurysms. Adequately resolved CFD would suffice gross assessment of hemodynamics, potentially in a clinical setting, and highly resolved CFD could be helpful in a detailed and retrospective understanding of the physiological mechanisms.
Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps
Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; ...
2015-07-31
The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m 2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holdersmore » compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less
The numerical modelling of mixing phenomena of nanofluids in passive micromixers
NASA Astrophysics Data System (ADS)
Milotin, R.; Lelea, D.
2018-01-01
The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.
Adjoint Airfoil Optimization of Darrieus-Type Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Fuchs, Roman; Nordborg, Henrik
2012-11-01
We present the feasibility of using an adjoint solver to optimize the torque of a Darrieus-type vertical axis wind turbine (VAWT). We start with a 2D cross section of a symmetrical airfoil and restrict us to low solidity ratios to minimize blade vortex interactions. The adjoint solver of the ANSYS FLUENT software package computes the sensitivities of airfoil surface forces based on a steady flow field. Hence, we find the torque of a full revolution using a weighted average of the sensitivities at different wind speeds and angles of attack. The weights are computed analytically, and the range of angles of attack is given by the tip speed ratio. Then the airfoil geometry is evolved, and the proposed methodology is evaluated by transient simulations.
NASA Astrophysics Data System (ADS)
Zasimova, Marina; Ivanov, Nikolay
2018-05-01
The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.
NASA Astrophysics Data System (ADS)
Abdullah, J.; Zaini, S. S.; Aziz, M. S. A.; Majid, T. A.; Deraman, S. N. C.; Yahya, W. N. W.
2018-04-01
Single-storey houses are classified as low rise building and vulnerable to damages under windstorm event. This study was carried out with the aim to investigate the pressure distribution and streamlines around an isolated house by considering the effect of terrain characteristics. The topographic features such as flat, depression, ridge, and valley, are considered in this study. This simulation were analysed with Ansys FLUENT 14.0 software package. The result showed the topography characteristics influence the value of pressure coefficient and streamlines especially when the house was located at ridge terrain. The findings strongly suggested that wind analysis should include all topographic features in the analysis in order to establish the true wind force exerted on any structure.
NASA Astrophysics Data System (ADS)
Doroudi, Shahed
Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.
Analysis of a hydraulic a scaled asymmetric labyrinth weir with Ansys-Fluent
NASA Astrophysics Data System (ADS)
Otálora Carmona, Andrés Humberto; Santos Granados, Germán Ricardo
2017-04-01
This document presents the three dimensional computational modeling of a labyrinth weir, using the version 17.0 of the Computational Fluid Dynamics (CFD) software ANSYS - FLUENT. The computational characteristics of the model such as the geometry consideration, the mesh sensitivity, the numerical scheme, and the turbulence modeling parameters. The volume fraction of the water mixture - air, the velocity profile, the jet trajectory, the discharge coefficient and the velocity field are analyzed. With the purpose of evaluating the hydraulic behavior of the labyrinth weir of the Naveta's hydroelectric, in Apulo - Cundinamarca, was development a 1:21 scale model of the original structure, which was tested in the laboratory of the hydraulic studies in the Escuela Colombiana de Ingeniería Julio Garavito. The scale model of the structure was initially developed to determine the variability of the discharge coefficient with respect to the flow rate and their influence on the water level. It was elaborate because the original weir (labyrinth weir with not symmetrical rectangular section), did not have the capacity to work with the design flow of 31 m3/s, because over 15 m3/s, there were overflows in the adduction channel. This variation of efficiency was due to the thickening of the lateral walls by structural requirements. During the physical modeling doing by Rodríguez, H. and Matamoros H. (2015) in the test channel, it was found that, with the increase in the width of the side walls, the discharge coefficient is reduced an average by 34%, generating an increase of the water level by 0.26 m above the structure. This document aims to develop a splicing methodology between the physical models of a labyrinth weir and numerical modeling, using concepts of computational fluid dynamics and finite volume theories. For this, was carried out a detailed analysis of the variations in the different directions of the main hydraulic variables involved in the behavior, such as, the components of the velocity and the distribution of pressures, For the numerical development, we worked with ANSYS - FLUENT software modeling version 17.0. Initially, a digital model of a conventional triangular weir with a vertical angle of 102° was developed in order to find the most appropriate numerical scheme and conditions. The numerical results were compared with conventional theories, evaluating the path and discharge coefficient. Subsequently, one of the five cycles that compose the labyrinth weir was simulated, evaluating the behavior of the discharge coefficient, the water level, the streamline and the velocity field, with the purpose of understanding the hydraulic variables that are related in these geometries. According to the previous results, the numerical modeling of labyrinth weir was performed, comparing the obtained results with the data of the physical scale model, analyzing the variation of the discharge coefficient, the streamline, velocity field, pressure distribution and shear stress. Finally, based on the lessons learned from physical and numerical modeling, a methodological guide was created for any user with a computational and hydraulic fluid mechanics knowledge to develop a good practice of a computational and physical modeling.
Software and Systems Test Track Architecture and Concept Definition
2007-05-01
Light 11.0 11.0 11.0 ASC Flex Free Software Foundation 2.5.31 2.5.31 2.5.31 ASC Fluent Fluent Inc. 6.2.26 6.2.26 6.2.26 6.2.26 ASC FMD ...11 ERDC Fluent Fluent 6.2.16 ERDC Fortran 77/90 compiler Compaq/Cray/SGI 7.4 7.4.3m 7.4.4m 5.6 ERDC FTA Platform 1.1 1.1 1.1 ERDC GAMESS
Study on steam pressure characteristics in various types of nozzles
NASA Astrophysics Data System (ADS)
Firman; Anshar, Muhammad
2018-03-01
Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.
Improved design of a cone-shaped rotating disk for shear force loading in a cell culture plate
NASA Astrophysics Data System (ADS)
Keawprachum, Boonrit; Limjeerajarus, Nuttapol; Nakalekha Limjeerajarus, Chalida; Srisungsitthisunti, Pornsak
2018-01-01
In our previous study, a cone-shaped rotating disk had been designed and proposed for generating shear force on the cell in a cell culture plate. This study aims to improve the design of the rotating disk that could provide a better uniformity of shear stress distribution. The top of the cone was designed to be trimmed off to obtain a flat head area. The effect of tilt angle (θ) was numerically studied using computational fluid dynamics (CFD) technique in ANSYS-Fluent software. The results revealed that for 500 rpm, the new designed rotating disk with a height of cone-shaped top to the plate bottom h = 1 mm and θ = 25° provided the best uniformity of 0.820 which was better than that of the previously designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my; Cioncolini, Andrea; Iacovides, Hector
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software calledmore » FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.« less
On the laminar-turbulent transition in the boundary layer of streamwise corner
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Boiko, A. V.; Poplavskaya, T. V.
2017-10-01
The work is aimed at developing methods of numerical simulation of incompressible non-symmetric flow in streamwise corner by solving the Navier-Stokes equations with ANSYS Fluent and the self-similar equations of boundary-layer type. A comparison of the computations with each other and experimental data is provided.
NASA Astrophysics Data System (ADS)
Algabri, Y. A.; Rookkapan, S.; Chatpun, S.
2017-09-01
An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.
Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle
NASA Astrophysics Data System (ADS)
Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan
2017-10-01
This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.
A numerical study of latent thermal energy storage in a phase change material/carbon panel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekaddem, Najoua, E-mail: mekaddem.najoua@gmail.com; Ali, Samia Ben, E-mail: samia.benali@enig.rnu.tn; Hannachi, Ahmed, E-mail: ahmed.hannachi@enig.rnu.tn
2016-07-25
To reduce the energetic dependence of building, it has become necessary to explore and develop new materials promoting energy conservation. Because of their high storage capacity, phase change materials (PCMs) are efficient to store thermal energy. In this paper, a 3D model was studied for simulation of energy storing cycles to predict the performances of PCM loaded panels. Carbon was used as supporting material for the PCM. The simulation was based on the enthalpy method using Ansys Fluent software. The panel was exposed to a daily heat flow including the effects of convection and radiation. The results show that themore » temperature decreased of approximately 2.5°C with a time shift about 2 hours. The steady state was reached after four cycles. Thus, after four cycles the PCM showed its effects on the temperature conditioning.« less
NASA Astrophysics Data System (ADS)
Pratomo, Ariawan Wahyu; Muchammad, Tauviqirrahman, Mohammad; Jamari, Bayuseno, Athanasius P.
2016-04-01
Polymer thickened oils are the most preferred materials for modern lubrication applications due to their high shear. The present paper explores a lubrication mechanism in sliding contact lubricated with polymer thickened oil considering cavitation. Investigations are carried out by using a numerical method based on commercial CFD (computational fluid dynamic) software ANSYS for fluid flow phenomenon (Fluent) to assess the tribological characteristic (i.e. hydrodynamic pressure distribution) of lubricated sliding contact. The Zwart-Gerber-Belamri model for cavitation is adopted in this simulation to predict the extent of the full film region. The polymer thickened oil is characterized as non-Newtonian power-law fluid. The simulation results show that the cavitation lead lower pressure profile compared to that without cavitation. In addition, it is concluded that the characteristic of the lubrication performance with polymer thickened oil is strongly dependent on the Power-law index of lubricant.
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
NASA Astrophysics Data System (ADS)
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
CFD analysis of hydrodynamic studies of a bubbling fluidized bed
NASA Astrophysics Data System (ADS)
Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.
2018-03-01
Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng
2017-05-01
Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.
Determination of the oil distribution in a hermetic compressor using numerical simulation
NASA Astrophysics Data System (ADS)
Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.
2017-08-01
In addition to the reduction of friction the oil in a hermetic compressor is very important for the transfer of heat from hot parts to the compressor shell. The simulation of the oil distribution in a hermetic reciprocating compressor for refrigeration application is shown in the present work. Using the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent, the oil flow inside the compressor shell from the oil pump outlet to the oil sump is calculated. A comprehensive overview of the used models and the boundary conditions is given. After reaching steady-state conditions the oil covered surfaces are analysed concerning heat transfer coefficients. The gained heat transfer coefficients are used as input parameters for a thermal model of a hermetic compressor. An increase in accuracy of the thermal model with the simulated heat transfer coefficients compared to values from literature is shown by model validation with experimental data.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model
NASA Astrophysics Data System (ADS)
Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung
2017-12-01
This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.
Parametric study of natural circulation flow in molten salt fuel in molten salt reactor
NASA Astrophysics Data System (ADS)
Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector
2015-04-01
The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.
Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM
2013-12-01
UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared
Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT
NASA Astrophysics Data System (ADS)
Kirpo, Maksims
2013-05-01
Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".
NASA Astrophysics Data System (ADS)
Asmuin, Norzelawati; Pairan, M. Rasidi; Isa, Norasikin Mat; Sies, Farid
2017-04-01
Commercial kitchen hood ventilation system is a device used to capture and filtered the plumes from cooking activities in the kitchen area. Nowadays, it is very popular in the industrial sector such as restaurant and hotel to provide hygiene food. This study focused at the KSA filter part which installed in the kitchen hood system, the purpose of this study is to identify the critical region which indicated by observing the velocity and pressure of plumes exerted at of KSA filter. It is important to know the critical location of the KSA filter in order to install the nozzle which will helps increase the filtration effectiveness. The ANSYS 16.1 (FLUENT) software as a tool used to simulate the kitchen hood systems which consist of KSA filter. The commercial kitchen hood system model has a dimension 700 mm width, 1600 mm length and 555 mm height. The system has two inlets and one outlet. The velocity of the plumes is set to be 0.235m/s and the velocity of the inlet capture jet is set to be 1.078m/s. The KSA filter is placed 45 degree from the y axis. The result shows the plumes has more tendency flowing pass through at the bottom part of KSA filter.
Design of Friction Stir Welding Tool for Avoiding Root Flaws
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-01-01
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426
Design of Friction Stir Welding Tool for Avoiding Root Flaws.
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-12-12
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.
NASA Astrophysics Data System (ADS)
Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.
2018-03-01
The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.
Indirect contact freeze water desalination for an ice maker machine - CFD simulation
NASA Astrophysics Data System (ADS)
Jayakody, Harith; Al-Dadah, Raya; Mahmoud, Saad
2017-11-01
To offer for potable water shortages, sea water desalination is a potential solution for the global rising demand for fresh water. The latent heat of fusion is about one-seventh the latent heat of vaporisation, thus indicating the benefit of lower energy consumption for the freeze desalination process. Limited literature is reported on computational fluid dynamics (CFD) on freeze desalination. Therefore, analysing and investigating thermodynamic processes are easily conducted by the powerful tool of CFD. A single unit of ice formation in an ice maker machine was modelled using ANSYS Fluent software three-dimensionally. Energy, species transport and solidification/melting modules were used in building the CFD model. Parametric analysis was conducted using the established CFD model to predict the effects of freezing temperature and the geometry of the ice maker machine; on ice production and the freezing time. Lower freezing temperatures allowed more ice production and faster freezing. Increasing the diameter and the length of the freezing tube enabled more ice to be produced.
A parametric simulation of solar chimney power plant
NASA Astrophysics Data System (ADS)
Beng Hooi, Lim; Kannan Thangavelu, Saravana
2018-01-01
The strong solar radiation, continuous supplies of sunlight and environmental friendly factors have made the solar chimney power plant becoming highly feasible to build in Malaysia. Solar chimney power plant produces upward buoyancy force through the greenhouse effect. Numerical simulation was performed on the model of a solar chimney power plant using the ANSYS Fluent software by applying standard k-epsilon turbulence model and discrete ordinates (DO) radiation model to solve the relevant equations. A parametric study was carried out to evaluate the performance of solar chimney power plant, which focused on the temperature rise in the collector, air velocity at the chimney base, and pressure drop inside the chimney were based on the results of temperature, velocity, and static pressure distributions. The results demonstrate reliability by comparing a model with the experimental data of Manzanares Spanish prototype. Based on the numerical results, power capacity and efficiency were analysed theoretically. Results indicate that a stronger solar radiation and larger prototype will improve the performance of solar chimney power plant.
Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
Laskowski, René; Bart, Hans-Jörg
2015-09-01
An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Numerical investigation of the thermal behavior of heated natural composite materials
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Mohammed, F. Abbas; Hashim, R.
2015-11-01
In the present work numerical investigation was carried out for laminar natural convection heat transfer from natural composite material (NCM). Three types of natural materials such as seed dates, egg shells, and feathers are mixed separately with polyester resin. Natural materials are added with different volume fraction (10%, 20%, and 30%) are heated with different heat flux (1078W/m2, 928W/m2, 750W/m2, 608W/m2, and 457W/m2) at (vertical, inclined, and horizontal) position. Continuity and Navier-Stocks equations are solved numerically in three dimensions using ANSYS FLUENT package 12.1 software commercial program. Numerical results showed the temperature distribution was affected for all types at volume fraction 30% and heat flux is 1078 W/m2, for different position. So, shows that the plumes and temperature behavior are affected by the air and the distance from heat source. Numerical results showed acceptable agreement with the experimental previous results.
The necessity of HVAC system for the registered architectural cultural heritage building
NASA Astrophysics Data System (ADS)
Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian
2018-02-01
This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.
Comparative study on direct burning of oil shale and coal
NASA Astrophysics Data System (ADS)
Hammad, Ahmad; Al Asfar, Jamil
2017-07-01
A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.
NASA Astrophysics Data System (ADS)
Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei
2017-10-01
A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.
Numerical investigation of solid mixing in a fluidized bed coating process
NASA Astrophysics Data System (ADS)
Kenche, Venkatakrishna; Feng, Yuqing; Ying, Danyang; Solnordal, Chris; Lim, Seng; Witt, Peter J.
2013-06-01
Fluidized beds are widely used in many process industries including the food and pharmaceutical sectors. Despite being an intensive research area, there are no design rules or correlations that can be used to quantitatively predict the solid mixing in a specific system for a given set of operating conditions. This paper presents a numerical study of the gas and solid dynamics in a laboratory scale fluidized bed coating process used for food and pharmaceutical industries. An Eulerian-Eulerian model (EEM) with kinetic theory of granular flow is selected as the modeling technique, with the commercial computational fluid dynamics (CFD) software package ANSYS/Fluent being the numerical platform. The flow structure is investigated in terms of the spatial distribution of gas and solid flow. The solid mixing has been evaluated under different operating conditions. It was found that the solid mixing rate in the horizontal direction is similar to that in the vertical direction under the current design and operating conditions. It takes about 5 s to achieve good mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-19
The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.
Aerodynamic study of state transport bus using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Kanekar, Siddhesh; Thakre, Prashant; Rajkumar, E.
2017-11-01
The main purpose of this study was to develop the aerodynamic study of a Maharashtra state road transport bus. The rising fuel price and strict government regulations makes the road transport uneconomical now days. With the objective of increasing fuel efficiency and reducing the emission of harmful exhaust gases. It has been proven experimentally that vehicle consumes almost 40% of the available useful engine power to overcome the drag resistance. This provides us a huge scope to study the influence of aerodynamic drag. The initial of the project was to identify the drag coefficient of the existing ordinary type model called “Parivartan” from ANSYS fluent. After preliminary analysis of the existing model corresponding changes are made in such a way that their implementation should be possible at workshop level. The simulation of the air flow over the bus was performed in two steps: design on SolidWorks CAD and ANSYS (FLUENT) is used as a virtual analysis tool to estimate the drag coefficient of the bus. We have used the turbulence models k-ε Realizable having a better approximation of the actual result. Around 28% improvement in the drag coefficient is achieved by CFD driven changes in the bus design. Coefficient of drag is improved by 28% and fuel efficiency increased by 20% by CFD driven changes.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
Static analysis of the hull plate using the finite element method
NASA Astrophysics Data System (ADS)
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; ...
2016-05-30
In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Jesus; Khivsara, Sagar; Christian, Joshua
In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO 2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO 2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO 2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO 2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat fluxmore » profiles on the receiver and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less
Structural Performance’s Optimally Analysing and Implementing Based on ANSYS Technology
NASA Astrophysics Data System (ADS)
Han, Na; Wang, Xuquan; Yue, Haifang; Sun, Jiandong; Wu, Yongchun
2017-06-01
Computer-aided Engineering (CAE) is a hotspot both in academic field and in modern engineering practice. Analysis System(ANSYS) simulation software for its excellent performance become outstanding one in CAE family, it is committed to the innovation of engineering simulation to help users to shorten the design process, improve product innovation and performance. Aimed to explore a structural performance’s optimally analyzing model for engineering enterprises, this paper introduced CAE and its development, analyzed the necessity for structural optimal analysis as well as the framework of structural optimal analysis on ANSYS Technology, used ANSYS to implement a reinforced concrete slab structural performance’s optimal analysis, which was display the chart of displacement vector and the chart of stress intensity. Finally, this paper compared ANSYS software simulation results with the measured results,expounded that ANSYS is indispensable engineering calculation tools.
2013-12-01
Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX
Development and Analysis of a Bi-Directional Tidal Turbine
2012-03-01
commercial CFD software ANSYS CFX was utilized to build a turbine map. The basic turbine map was developed for a 25 blade bi-axial turbine under...directional turbine created for this purpose. In the present study, the commercial CFD software ANSYS CFX was utilized to build a turbine map. The...sheath C. PROBLEM SPECIFICATIONS AND BOUNDARY CONDITIONS The simulation definition was created using ANSYS CFX -Pre. The best measurements to determine
Development of a Cross-Flow Fan Rotor for Vertical Take-Off and Landing Aircraft
2013-06-01
ANSYS CFX , along with the commercial computer-aided design software SolidWorks, was used to model and perform a parametric study on the number of rotor...the results found using ANSYS CFX . The experimental and analytical models were successfully compared at speeds ranging from 4,000 to 7,000 RPM...will make vertical take-off possible. The commercial computational fluid dynamics software ANSYS CFX , along with the commercial computer-aided design
NASA Astrophysics Data System (ADS)
Sukanto, H.; Budiana, E. P.; Putra, B. H. H.
2016-03-01
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.
NASA Astrophysics Data System (ADS)
Amanowicz, Łukasz; Wojtkowiak, Janusz
2017-11-01
In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
NASA Astrophysics Data System (ADS)
Afshar, Ali
An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.
NASA Astrophysics Data System (ADS)
Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.
2011-01-01
This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.
NASA Astrophysics Data System (ADS)
Bojko, Marian; Kocich, Radim
2016-06-01
Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.
Numerical analysis on centrifugal compressor with membrane type dryer
NASA Astrophysics Data System (ADS)
Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.
2017-09-01
Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.
Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS
NASA Astrophysics Data System (ADS)
Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun
2018-03-01
ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.
Motion interference analysis and optimal control of an electronic controlled bamboo-dance mechanism
NASA Astrophysics Data System (ADS)
Liu, Xiaohong; Xu, Liang; Hu, Xiaobin
2017-08-01
An electric bamboo-dance mechanism was designed and developed to realize mechanism of automation and mechanization. For coherent and fluent motion, ANSYS finite element analysis was applied on movement interference. Static structural method was used for analyzing dynamic deflection and deformation of the slender rod, while modal analysis was applied on frequency analysis to avoid second deformation caused by resonance. Therefore, the deformation in vertical and horizontal direction was explored and reasonable optimization was taken to avoid interference.
NASA Astrophysics Data System (ADS)
Bedarev, I. A.; Temerbekov, V. M.; Fedorov, A. V.
2018-03-01
The initiation of detonation in a reactive mixture by a small-diameter spherical projectile launched at supersonic velocity was studied for a reduced kinetic scheme of chemical reactions. A mathematical technique based on the ANSYS Fluent package was developed for this purpose. Numerical and experimental data on the flow regimes and detonation cell sizes are compared. There is agreement between the calculated and experimental flow patterns and detonation cell sizes for each regime.
Aerodynamic investigations of a disc-wing
NASA Astrophysics Data System (ADS)
Dumitrache, Alexandru; Frunzulica, Florin; Grigorescu, Sorin
2017-01-01
The purpose of this paper is to evaluate the aerodynamic characteristics of a wing-disc, for a civil application in the fire-fighting system. The aerodynamic analysis is performed using a CFD code, named ANSYS Fluent, in the flow speed range up to 25 m/s, at lower and higher angle of attack. The simulation is three-dimensional, using URANS completed by a SST turbulence model. The results are used to examine the flow around the disc with increasing angle of attack and the structure of the wake.
Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms
Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2010-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022
Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.
Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju
2011-01-01
The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.
ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Shao, Liang
2008-09-01
The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.
NASA Astrophysics Data System (ADS)
Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix
2016-06-01
Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.
[Finite Element Analysis of Intravascular Stent Based on ANSYS Software].
Shi, Gengqiang; Song, Xiaobing
2015-10-01
This paper adopted UG8.0 to bulid the stent and blood vessel models. The models were then imported into the finite element analysis software ANSYS. The simulation results of ANSYS software showed that after endothelial stent implantation, the velocity of the blood was slow and the fluctuation of velocity was small, which meant the flow was relatively stable. When blood flowed through the endothelial stent, the pressure gradually became smaller, and the range of the pressure was not wide. The endothelial shear stress basically unchanged. In general, it can be concluded that the endothelial stents have little impact on the flow of blood and can fully realize its function.
Pandey, Ramakant; Premalatha, M
2017-03-01
Open raceway ponds are widely adopted for cultivating microalgae on a large scale. Working depth of the raceway pond is the major component to be analysed for increasing the volume to surface area ratio. The working depth is limited up to 5-15 cm in conventional ponds but in this analysis working depth of raceway pond is considered as 25 cm. In this work, positioning of the paddle wheel is analysed and corresponding Vertical Mixing Index are calculated using CFD. Flow pattern along the length of the raceway pond, at three different paddle wheel speeds are analysed for L/W ratio of 6, 8 and 10, respectively. Effect of clearance (C) between rotor blade tip and bottom surface is also analysed by taking four clearance conditions i.e. C = 2, 5, 10 and 15. Moving reference frame method of Fluent is used for the modeling of six blade paddle wheel and realizable k-ε model is used for capturing turbulence characteristics. Overall objective of this work is to analyse the required geometry for maintaining a minimum flow velocity to avoid settling of algae corresponding to 25 cm working depth. Geometry given in [13] is designed using ANSYS Design modular and CFD results are generated using ANSYS FLUENT for the purpose of validation. Good agreement of results is observed between CFD and experimental Particle image velocimetry results with the deviation of 7.23%.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004,more » the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.« less
Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.
The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.
Grain dryer temperature field analysis
NASA Astrophysics Data System (ADS)
Li, Shizhuang; Cao, Shukun; Meng, Wenjing; Ma, Lingran
2017-09-01
Taking into account the drying process in the hot air temperature on the grain temperature has a great impact, and grain temperature and determines the quality of food after baking, so in order to ensure that the grain drying temperature in the safe range, the use of ANSYS FLUENT module of grain The temperature field was simulated in the drying process. The horizontal spacing of the angle box was 200mm and the vertical spacing was 240mm. At this time, the grain temperature distribution was more uniform and the drying was more adequate.
Numerical investigation of self-sustained oscillations in the flow over the spiked blunt body
NASA Astrophysics Data System (ADS)
Konstantin, Babarykin
2018-05-01
Numerical simulation of the supersonic turbulent flow around spike-tipped cylindrical body is carried out. The self-sustained oscillating flow picture is studied. For the simulations the ANSYS Fluent finite-volume solver is employed, the calculations are performed mainly for 2d axisymmetric case, and some simulations are made in 3d version. The freestream Mach number is 2,22, the cases of sharp and obtuse needle of different length are considered. The numerical results are obtained using different turbulence models, are compared with experimental data.
Mathematical Simulation of Drying Process of Fibrous Material
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Raška, Jiří; Jablonská, Jana
2018-06-01
The article describes mathematical simulation of flowing air through porous zone and water vaporisation from mentioned porous area which actually represents dried fibrous material - cotton towel. Simulation is based on finite volume method. Wet towel is placed in pipe and hot air flow through the towel. Water from towel is evaporated. Simulation of airflow through porous element is described first. Eulerian multiphase model is then used for simulation of water vaporisation from porous medium. Results of simulation are compared with experiment. Ansys Fluent 13.0 was used for calculation.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency andmore » buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.« less
Probabilistic Prediction of Lifetimes of Ceramic Parts
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Gyekenyesi, John P.; Jadaan, Osama M.; Palfi, Tamas; Powers, Lynn; Reh, Stefan; Baker, Eric H.
2006-01-01
ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components.
Accounting for Uncertainties in Strengths of SiC MEMS Parts
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.
2007-01-01
A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.
Modeling and testing of fast response, fiber-optic temperature sensors
NASA Astrophysics Data System (ADS)
Tonks, Michael James
The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided. For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to have a faster response time compared to the thermocouple. When the sensors were extended 12.7 cm into the flow, the fiber-optic sensors recorded a temperature change of 143 K compared to 38 K recorded by the thermocouple during the 0.5 millisecond test. This corresponds to 22% of the change of total temperature in the air recorded by the fiber-optic sensor and only 6% recorded by the thermocouple. Put another way, the fiber-optic sensor experience a rate of temperature change equal to 2.9x105 K/s and the thermocouple changed at a rate of 0.79x105 K/s. The data recorded from the fiber-optic sensor also contained much less noise than the thermocouple data. An unsteady finite element thermal model was created using ANSYS to predict the temperature response of the sensor. Test cases with known analytical solutions were used to verify the ANSYS modeling procedures. The shock tube flow environment was also modeled with Fluent, a commercially available CFD code. Fluent was used to determine the heat transfer between the shock tube flow and the sensor. The convection film coefficient for the flow was predicted by Fluent to be 27,150 W/m2K for the front of the wafer and 13,385 W/m2K for the side. The Fluent results were used with the ANSYS model to predict the response of the fiber-optic sensor when exposed to the shock tube flow. The results from the Fluent/ANSYS model were compared to the fiber-optic measurements taken in the shock tube. It was seen that the heat flux to the sensor was slightly over-predicted by the model, and the heat losses from the wafer were also over-predicted. Since the prediction fell within the uncertainty of the measurement, it was found to be in good agreement with the measured values. (Abstract shortened by UMI.)
Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties
NASA Astrophysics Data System (ADS)
Meisel, Zach; Shi, Ke; Jemcov, Aleksandar; Couder, Manoel
2016-08-01
In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from 20Ne(α,α)20Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Maithani, Rajesh; Suri, Amar Raj Singh
2017-12-01
In this study, numerical and experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of dimpled rib on heat and fluid flow behaviours in heat exchanger tube. Tube has, stream wise spacing ( x/ d d ) range of 15-35, span wise spacing ( y/ d d ) range of 15-35, ratio of dimpled depth to print diameter ( e/ d d ) of 1.0 and Reynolds number ( Re n ) ranges from 4000 to 28,000. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and rough tube, using commercial CFD software, ANSYS 16.0 (Fluent). Renormalization k - ɛ model was employed to assess the influence of dimpled on turbulent flow and velocity field. Simulation results show that, the enhancement of 3.18 times in heat transfer and 2.87 times enhancement in thermal hydraulic performance as a function of stream wise direction ( x/ d d ) of 15 and span wise direction ( y/ d d ) of 15 respectively. Comparison between numerical and experimental simulation results showed that good agreement as the data fell within ±10% error band.
NASA Astrophysics Data System (ADS)
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
NASA Astrophysics Data System (ADS)
Wu, Dongxu; Qiao, Zheng; Wang, Bo; Wang, Huiming; Li, Guo
2014-08-01
In this paper, a four-axis ultra-precision lathe for machining large-scale drum mould with microstructured surface is presented. Firstly, because of the large dimension and weight of drum workpiece, as well as high requirement of machining accuracy, the design guidelines and component parts of this drum lathe is introduced in detail, including control system, moving and driving components, position feedback system and so on. Additionally, the weight of drum workpiece would result in the structural deformation of this lathe, therefore, this paper analyses the effect of structural deformation on machining accuracy by means of ANSYS. The position change is approximately 16.9nm in the X-direction(sensitive direction) which could be negligible. Finally, in order to study the impact of bearing parameters on the load characteristics of aerostatic journal bearing, one of the famous computational fluid dynamics(CFD) software, FLUENT, is adopted, and a series of simulations are carried out. The result shows that the aerostatic spindle has superior performance of carrying capacity and stiffness, it is possible for this lathe to bear the weight of drum workpiece up to 1000kg since there are two aerostatic spindles in the headstock and tailstock.
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
NASA Astrophysics Data System (ADS)
Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.
2016-08-01
The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.
Modeling of diesel/CNG mixing in a pre-injection chamber
NASA Astrophysics Data System (ADS)
Abdul-Wahhab, H. A.; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.
2015-12-01
Diesel engines performance can be improved by adding combustible gases to the liquid diesel. In this paper, the propagation of a two phase flow liquid-gas fuel mixture into a pre-mixer is investigated numerically by computational fluid dynamics simulation. CNG was injected into the diesel within a cylindrical conduit operates as pre-mixer. Four injection models of Diesel-CNG were simulated using ANSYS-FLUENT commercial software. Two CNG jet diameters were used of 1 and 2 mm and the diesel pipe diameter was 9 mm. Two configurations were considered for the gas injection. In the first the gas was injected from one side while for the second two side entries were used. The CNG to Diesel pressure ratio was varied between 1.5 and 3. The CNG to Diesel mass flow ratios were varied between 0.7 and 0.9. The results demonstrate that using double-sided injection increased the homogeneity of the mixture due to the swirl and acceleration of the mixture. Mass fraction, in both cases, was found to increase as the mixture flows towards the exit. As a result, this enhanced mixing is likely to lead to improvement in the combustion performance.
Numerical simulation of a passive scalar transport from thermal power plants
NASA Astrophysics Data System (ADS)
Issakhov, Alibek; Baitureyeva, Aiymzhan
2017-06-01
The active development of the industry leads to an increase in the number of factories, plants, thermal power plants, nuclear power plants, thereby increasing the amount of emissions into the atmosphere. Harmful chemicals are deposited on the soil surface, remain in the atmosphere, which leads to a variety of environmental problems which are harmful for human health and the environment, flora and fauna. Considering the above problems, it is very important to control the emissions to keep them at an acceptable level for the environment. In order to do that it is necessary to investigate the spread of harmful emissions. The best way to assess it is the creating numerical simulation of gaseous substances' motion. In the present work the numerical simulation of the spreading of emissions from the thermal power plant chimney is considered. The model takes into account the physical properties of the emitted substances and allows to calculate the distribution of the mass fractions, depending on the wind velocity and composition of emissions. The numerical results were performed using the ANSYS Fluent software package. As a result, the results of numerical simulations and the graphs are given.
NASA Astrophysics Data System (ADS)
Ganimedov, V. L.; Muchnaya, M. I.
2017-10-01
A detailed study of the behavior of the U-shaped curve was conducted, which described deposition efficiency of inhaled particles in human nasal cavity. The particles in the range from 1 nm to 20 µm are considered. Calculations of air flow and particles deposition were carried out for symmetrical (idealized) and asymmetrical (real) breathing cycles at the same volume of inhaled air, which corresponded to calm breathing. The calculations were performed on the base of the mathematical model of the nasal cavity of healthy person using software package ANSYS (FLUENT 12). The comparison of the results was made between these calculations, and also with the results obtained at quasi-stationary statement of the problem for several values of flow rate. The comparison of the results of quasi-stationary calculations with available calculated and experimental data (in vivo i in vitro) was fulfilled previously. Good agreement of the results was obtained. It is shown that the real distribution of deposition efficiency as a function of the particle size can be obtained via a certain combination of the results of quasi-stationary calculations, without the use of laborious and time-consuming non-stationary calculation.
NASA Astrophysics Data System (ADS)
Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena
2015-09-01
The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent, under the specific conditions of the georeactor operations within the time interval of 100 hours and 305 hours. The results of the numerical solution have been compared with the results of experimental results under in-situ conditions. Zaprezentowano wyniki badań modelowych polegających na numerycznej symulacji procesu podziemnego zgazowania węgla. Dla potrzeb realizowanej pracy dokonano wyboru oprogramowania wykorzystywanego do symulacji procesu podziemnego zgazowania węgla. Na podstawie przeglądu literatury zdecydowano, że oprogramowaniem, za pomocą, którego będą realizowane badania modelowe, będzie oprogramowanie informatyczne ANSYS-Fluent. Za jego pomocą przeprowadzano obliczenia numeryczne z zamiarem zidentyfikowania rozkładu zmian stężenia składników gazu procesowego w funkcji czasu trwania procesu zgazowania węgla. Przeprowadzone obliczenia miały charakter predykcji. W oparciu o dane konstrukcyjne georeaktora stosowanego podczas badań na KD Barbara oraz KWK Wieczorek, opracowano model geometryczny oraz wykonano jego dyskretyzację poprzez wygenerowanie odpowiedniej siatki numerycznej w oparciu, o którą wykonywane są obliczenia. Dane dotyczące sposobu zasilania georeaktora oraz parametrów utrzymywanych podczas procesu wykorzystano do definiowania modelu numerycznego. Część danych została uzupełniona w oparciu o źródła literaturowe. Głównym przyjętym założeniem było oparcie symulacji pracy georeaktora o modele opisujące reaktywny przepływ płynu. Składniki gazu procesowego oraz czynnik zgazowujący przemieszczają się wzdłuż kanału zgazowującego symulując zjawiska fizykochemiczne związane z transportem masy i energii oraz zachodzące reakcje chemiczne (wraz z efektem energetycznym). Chemizm procesu zgazowania oparto o równanie kinetyczne, które determinuje przebieg danego typu równania chemicznego zgazowania węgla. W ramach modelu opisano też interakcję gazu z otaczającą warstwą węgla. Opis ten dotyczył transportu energii cieplnej. Warstwę węgla oraz warstwy geologiczne otaczające georeaktor traktuje się jako ciało jednorodne. Badania modelowe zakładały prowadzenie procesu zgazowania calizny węglowej przy udziale, osobno tlenu i powietrza, jako czynnika zgazowującego, w warunkach ustalonych pracy georeaktora w przedziale czasu 100 godzin i 305 godzin. Uzyskane wyniki rozwiązania numerycznego zestawiono z wynikami badań eksperymentalnych w warunkach in-situ.
Flat plate solar air heater with latent heat storage
NASA Astrophysics Data System (ADS)
Touati, B.; Kerroumi, N.; Virgone, J.
2017-02-01
Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.
Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Brantley
2016-01-01
A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided tomore » achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.« less
Is MRI-based CFD able to improve clinical treatment of coarctations of aorta?
Goubergrits, L; Riesenkampff, E; Yevtushenko, P; Schaller, J; Kertzscher, U; Berger, F; Kuehne, T
2015-01-01
Pressure drop associated with coarctation of the aorta (CoA) can be successfully treated surgically or by stent placement. However, a decreased life expectancy associated with altered aortic hemodynamics was found in long-term studies. Image-based computational fluid dynamics (CFD) is intended to support particular diagnoses, to help in choosing between treatment options, and to improve performance of treatment procedures. This study aimed to prove the ability of CFD to improve aortic hemodynamics in CoA patients. In 13 patients (6 males, 7 females; mean age 25 ± 14 years), we compared pre- and post-treatment peak systole hemodynamics [pressure drops and wall shear stress (WSS)] vs. virtual treatment as proposed by biomedical engineers. Anatomy and flow data for CFD were based on MRI and angiography. Segmentation, geometry reconstruction and virtual treatment geometry were performed using the software ZIBAmira, whereas peak systole flow conditions were simulated with the software ANSYS(®) Fluent(®). Virtual treatment significantly reduced pressure drop compared to post-treatment values by a mean of 2.8 ± 3.15 mmHg, which significantly reduced mean WSS by 3.8 Pa. Thus, CFD has the potential to improve post-treatment hemodynamics associated with poor long-term prognosis of patients with coarctation of the aorta. MRI-based CFD has a huge potential to allow the slight reduction of post-treatment pressure drop, which causes significant improvement (reduction) of the WSS at the stenosis segment.
Investigation of wind behaviour around high-rise buildings
NASA Astrophysics Data System (ADS)
Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil
2017-09-01
A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.
Computational Investigation on the performance of thermo-acoustically driven pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra
2017-02-01
A Thermoacoustic Pulse Tube Refrigeration (TAPTR) system employs a thermo acoustic engine as the pressure wave generator instead of mechanical compressor. Such refrigeration systems are highly reliable due to the absence of moving components, structural simplicity and the use of environmental friendly working fluids. In the present work, a traveling wave thermoacoustic primmover (TWTAPM) has been developed and it is coupled to a pulse tube cryocooler. The performance of TAPTR depends on the operating and working fluid parameters. Simulation studies of the system has been performed using ANSYS Fluent and compared with experimental results.
Final Progress Report: Internship at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
2012-08-10
Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up andmore » ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... submitted TN Calculation No. 10494-174, which performed a bounding thermal analysis using ANSYS finite element software to evaluate the misloading events. The ANSYS analysis consists of a half-symmetric, three...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Computer Software and Complex Electronics Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear...-1209, ``Software Requirement Specifications for Digital Computer Software and Complex Electronics used... Electronics Engineers (ANSI/IEEE) Standard 830-1998, ``IEEE Recommended Practice for Software Requirements...
Unsteady conjugate heat transfer analysis for impinging jet cooling
NASA Astrophysics Data System (ADS)
Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.
2016-10-01
The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.
Experimental and Numerical Study on Supersonic Ejectors Working with R-1234ze(E)
NASA Astrophysics Data System (ADS)
Kracik, Jan; Dvorak, Vaclav; Nguyen Van, Vu; Smierciew, Kamil
2018-06-01
These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.
NASA Astrophysics Data System (ADS)
Leontidis, V.; Brandner, J. J.; Baldas, L.; Colin, S.
2012-05-01
The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.
NASA Astrophysics Data System (ADS)
Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas
2018-02-01
Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.
Load calculation on the nozzle in a flue gas desulphurization system
NASA Astrophysics Data System (ADS)
Róbert, Olšiak; Zoltán, Fuszko; Zoltán, Csuka
2017-09-01
The desulphurization system is used to remove sulfur oxides from exhaust, so-called flue gases through absorbing them via the sprayed suspension. The suspension delivered from the pump system to the atmospheric bi-directional double hollow cone nozzle has the prescribed working pressure. The unknown mechanical load on the solid body of the nozzle is present through the change of moment due to the flow of the suspension through the bi-directional outflow areas [1], [4]. The calculation of the acting forces and torques in the 3 directions was carried out with the methods of computational fluid dynamics (CFD) in the software ANSYS Fluent. The geometric model of the flow areas of the nozzle were created with the methods of reverse engineering. The computational mesh required by the CFD solver was created, and its quality verified with the standard criteria. The used boundary conditions were defined by the hydraulic parameters of the pump system, the properties of the suspension present in the hydraulic system were specified by sample analysis. The post-processed and analyzed results of the CFD calculation, the pressure-field and the velocity magnitudes in particular directions were further used as input parameters at the mechanical analysis of the load on the bi-directional nozzle.
Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation
NASA Astrophysics Data System (ADS)
Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti
2017-10-01
Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.
Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades
NASA Astrophysics Data System (ADS)
Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.
2015-09-01
This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.
NASA Astrophysics Data System (ADS)
Amalia, E.; Moelyadi, M. A.; Ihsan, M.
2018-04-01
The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.
CFD analysis of turboprop engine oil cooler duct for best rate of climb condition
NASA Astrophysics Data System (ADS)
Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.
2016-09-01
Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.
Analysis of Wind Forces on Roof-Top Solar Panel
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Kudav, Ganesh
2011-03-01
Structural loads on solar panels include forces due to high wind, gravity, thermal expansion, and earthquakes. International Building Code (IBC) and the American Society of Civil Engineers are two commonly used approaches in solar industries to address wind loads. Minimum Design Loads for Buildings and Other Structures (ASCE 7-02) can be used to calculate wind uplift loads on roof-mounted solar panels. The present study is primarily focused on 2D and 3D modeling with steady, and turbulent flow over an inclined solar panel on the flat based roof to predict the wind forces for designing wind management system. For the numerical simulation, 3-D incompressible flow with the standard k- ɛ was adopted and commercial CFD software ANSYS FLUENT was used. Results were then validated with wind tunnel experiments with a good agreement. Solar panels with various aspect ratios for various high wind speeds and angle of attacks were modeled and simulated in order to predict the wind loads in various scenarios. The present study concluded to reduce the strong wind uplift by designing a guide plate or a deflector before the panel. Acknowledgments to Northern States Metal Inc., OH (GK & YP) and School of Graduate Studies of YSU for RP & URC 2009-2010 (YP).
Clinical questions and the role CFD can play
NASA Astrophysics Data System (ADS)
Basu, Phd, Saikat; Kimbell, Phd, Julia S.; Zanation, Md, Adam M.; Ebert, Md, Charles S.; Senior, Md, Brent A.
2016-11-01
Use of computational fluid dynamics has revolutionized our perspectives on flow problems in engineering. These tools are however still underused in exploring clinical questions. Here we present some representative CFD-based findings that can improve current clinical practice. Chronic rhinosinusitis (CRS) is a complex inflammatory disease affecting over 11 million Americans yearly. It obstructs sinus pathways, thus hindering ventilation and clearance. Prescribed topical medications are often ineffective even after surgeries, partially owing to scanty drug delivery to the affected areas. We focus on improving the use of the most frequently used topical nasal sprays. From computed tomography (CT) scans, we develop 3D sinonasal airway models on the medical imaging software MimicsTM, which are then meshed using ICEM-CFDTM followed by airflow and particle simulations on FluentTM (v.14.5, ANSYS, Inc.). The results quantify aerosol particle delivery to target cavities before and after surgical alleviation. Various combinations of breathing techniques and head-nozzle orientations can increase target-site particle deposition over depositions using prevalent physician recommendations, and our findings facilitate identification of such optimal conditions. Supported by the National Institutes of Health (NIH) Grant R01 HL122154. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
The numerical modelling of falling film thickness flow on horizontal tubes
NASA Astrophysics Data System (ADS)
Hassan, I. A.; Sadikin, A.; Isa, N. Mat
2017-04-01
This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.
Numerical Simulation of Creep Characteristic for Composite Rock Mass with Weak Interlayer
NASA Astrophysics Data System (ADS)
Li, Jian-guang; Zhang, Zuo-liang; Zhang, Yu-biao; Shi, Xiu-wen; Wei, Jian
2017-06-01
The composite rock mass with weak interlayer is widely exist in engineering, and it’s essential to research the creep behavior which could cause stability problems of rock engineering and production accidents. However, due to it is difficult to take samples, the losses and damages in delivery and machining process, we always cannot get enough natural layered composite rock mass samples, so the indirect test method has been widely used. In this paper, we used ANSYS software (a General Finite Element software produced by American ANSYS, Inc) to carry out the numerical simulation based on the uniaxial compression creep experiments of artificial composite rock mass with weak interlayer, after experimental data fitted. The results show that the laws obtained by numerical simulations and experiments are consistent. Thus confirmed that carry out numerical simulation for the creep characteristics of rock mass with ANSYS software is feasible, and this method can also be extended to other underground engineering of simulate the weak intercalations.
2015-09-01
lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid
Simulation of Dual Firing of Hydrogen and JP-8 in a Swirling Combustor
2012-06-14
completed using the Ansys CFX computational fluid dynamics software. The total Lower Heating Value of the fuel mixture is maintained at a constant 6 kW...PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Moder, Jeffrey P.
2016-01-01
This paper presents ANSYS Fluent simulation results and analysis for self-pressurization of a flightweight, cryogenic, liquid hydrogen tank in 1-g. These results are compared with experimental data, in particular, pressure evolution and temperature measurements at a set of sensors. The simulations can be analyzed to identify and quantify heat flows in the tank. Heat flows change over time and influence the self-pressurization process. The initial rate of self-pressurization is sensitive to the initial temperature profile near the interface. Uncertainty in saturation pressure data and the accuracy of experimental measurements complicate simulation of self-pressurization. Numerical issues encountered, and their resolution, are also explained.
CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas
NASA Astrophysics Data System (ADS)
Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI
2016-03-01
CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.
NASA Astrophysics Data System (ADS)
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
Computational fluid dynamics (CFD) simulation of a newly designed passive particle sampler.
Sajjadi, H; Tavakoli, B; Ahmadi, G; Dhaniyala, S; Harner, T; Holsen, T M
2016-07-01
In this work a series of computational fluid dynamics (CFD) simulations were performed to predict the deposition of particles on a newly designed passive dry deposition (Pas-DD) sampler. The sampler uses a parallel plate design and a conventional polyurethane foam (PUF) disk as the deposition surface. The deposition of particles with sizes between 0.5 and 10 μm was investigated for two different geometries of the Pas-DD sampler for different wind speeds and various angles of attack. To evaluate the mean flow field, the k-ɛ turbulence model was used and turbulent fluctuating velocities were generated using the discrete random walk (DRW) model. The CFD software ANSYS-FLUENT was used for performing the numerical simulations. It was found that the deposition velocity increased with particle size or wind speed. The modeled deposition velocities were in general agreement with the experimental measurements and they increased when flow entered the sampler with a non-zero angle of attack. The particle-size dependent deposition velocity was also dependent on the geometry of the leading edge of the sampler; deposition velocities were more dependent on particle size and wind speeds for the sampler without the bend in the leading edge of the deposition plate, compared to a flat plate design. Foam roughness was also found to have a small impact on particle deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.
2017-09-01
This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.
Sultan, Tipu
2016-07-01
This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lactation in the Human Breast From a Fluid Dynamics Point of View.
Negin Mortazavi, S; Geddes, Donna; Hassanipour, Fatemeh
2017-01-01
This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.
NASA Astrophysics Data System (ADS)
Amin, Osman Md; Karim, Md. Arshadul; Saad, Abdullah His
2017-12-01
At present, research on unmanned underwater vehicle (UUV) has become a significant & familiar topic for researchers from various engineering fields. UUV is of mainly two types - AUV (Autonomous Underwater vehicle) & ROV (Remotely Operated Vehicle). There exist a significant number of published research papers on UUV, where very few researchers emphasize on the ease of maneuvering and control of UUV. Maneuvering is important for underwater vehicle in avoiding obstacles, installing underwater piping system, searching undersea resources, underwater mine disposal operations, oceanographic surveys etc. A team from Dept. of Naval Architecture & Marine Engineering of MIST has taken a project to design a highly maneuverable unmanned underwater vehicle on the basis of quad-copter dynamics. The main objective of the research is to develop a control system for UUV which would be able to maneuver the vehicle in six DOF (Degrees of Freedom) with great ease. For this purpose we are not only focusing on controllability but also designing an efficient hull with minimal drag force & optimized propeller using CFD technique. Motors were selected on the basis of the simulated thrust generated by propellers in ANSYS Fluent software module. Settings for control parameters to carry out different types of maneuvering such as hovering, spiral, one point rotation about its centroid, gliding, rolling, drifting and zigzag motions were explained in short at the end.
Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications
NASA Astrophysics Data System (ADS)
Gauna, Edgar Avalos; Zhao, Yuyuan
2017-08-01
Porous metals have low densities and novel physical, mechanical, thermal, electrical, and acoustic properties. Hence, they have attracted a large amount of interest over the last few decades. One of their applications is for thermal management in the electronics industry because of their fluid permeability and thermal conductivity. The heat transfer capability is achieved by the interaction between the internal channels within the porous metal and the coolant flowing through them. This paper studies the fluid flow and heat transfer in open-cell porous metals manufactured by space holder methods by numerical simulation using software ANSYS Fluent. A 3D geometric model of the porous structure was created based on the face-centered-cubic arrangement of spheres linked by cylinders. This model allows for different combinations of pore parameters including a wide range of porosity (50 to 80 pct), pore size (400 to 1000 µm), and metal particle size (10 to 75 µm). In this study, water was used as the coolant and copper was selected as the metal matrix. The flow rate was varied in the Darcian and Forchheimer's regimes. The permeability, form drag coefficient, and heat transfer coefficient were calculated under a range of conditions. The numerical results showed that permeability increased whereas the form drag coefficient decreased with porosity. Both permeability and form drag coefficient increased with pore size. Increasing flow rate and decreasing porosity led to better heat transfer performance.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
[The study of noninvasive ventilator impeller based on ANSYS].
Hu, Zhaoyan; Lu, Pan; Xie, Haiming; Zhou, Yaxu
2011-06-01
An impeller plays a significant role in the non-invasive ventilator. This paper shows a model of impeller for noninvasive ventilator established with the software Solidworks. The model was studied for feasibility based on ANSYS. Then stress and strain of the impeller were discussed under the external loads. The results of the analysis provided verification for the reliable design of impellers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... bounding thermal analysis using ANSYS finite element software to evaluate the misloading events. The ANSYS analysis consists of a half-symmetric, three-dimensional model of a 32PTH DSC with a number of conservative... the maximum fuel cladding temperature presented in the UFSAR analysis dated October 2, 2009, with the...
Modeling of short fiber reinforced injection moulded composite
NASA Astrophysics Data System (ADS)
Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.
2012-09-01
A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.
NASA Astrophysics Data System (ADS)
Zhang, Daojie; Nastac, Laurentiu
2016-12-01
In present study, 6061- and A356-based nano-composites are fabricated by using the ultrasonic stirring technology (UST) in a coreless induction furnace. SiC nanoparticles are used as the reinforcement. Nanoparticles are added into the molten metal and then dispersed by ultrasonic cavitation and acoustic streaming assisted by electromagnetic stirring. The applied UST parameters in the current experiments are used to validate a recently developed magneto-hydro-dynamics (MHD) model, which is capable of modeling the cavitation and nanoparticle dispersion during UST processing. The MHD model accounts for turbulent fluid flow, heat transfer and solidification, and electromagnetic field, as well as the complex interaction between the nanoparticles and both the molten and solidified alloys by using ANSYS Maxwell and ANSYS Fluent. Molecular dynamics (MD) simulations are conducted to analyze the complex interactions between the nanoparticle and the liquid/solid interface. The current modeling results demonstrate that a strong flow can disperse the nanoparticles relatively well during molten metal and solidification processes. MD simulation results prove that ultrafine particles (10 nm) will be engulfed by the solidification front instead of being pushed, which is beneficial for nano-dispersion.
Interpreting CMMI High Maturity for Small Organizations
2008-09-01
Stoddard September, 2008 Congreso Internacional en Ingeniería de Software y sus Aplicaciones (International Congress of Software Engineering d...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Congreso Internacional en Ingeniería de Software y sus Aplicaciones (International Congress of...de Software y sus Aplicaciones (International Congress of Software Engineering and its Applications) Why This Workshop? CMMI Process Performance
System Engineering Approach to Assessing Integrated Survivability
2009-08-01
based response for the above engagements using LS- Dyna for blast modelling, MADYMO for safety and human response, CFD software (Fluent) is used to...Simulation JFAS Joint Force Analysis Simulation JANUS Joint Army Navy Uniform Simulation LS- DYNA Livermore Software-Dynamics MADYMO...management technologies. The “don’t be killed” layer of survivability protection accounts for many of the mitigation technologies (i.e. blast
RANS Simulation (Actuator Disk Model[ADM]) of the NREL Phase VI wind turbine modeled as MHK Turbine
Javaherchi, Teymour
2016-06-08
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MHK turbine, is simulated using Actuator Disk Model (a.k.a Porous Media) by solving RANS equations coupled with a turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Actuator Disk Theory (see the stated section of attached M.Sc. thesis for more details).
Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction
NASA Astrophysics Data System (ADS)
Arias, S.; Montlaur, A.
2018-03-01
In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.
Effect of inlet conditions for numerical modelling of the urban boundary layer
NASA Astrophysics Data System (ADS)
Gnatowska, Renata
2018-01-01
The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.
Data resulting from the CFD analysis of ten window frames according to the UNI EN ISO 10077-2.
Baglivo, Cristina; Malvoni, Maria; Congedo, Paolo Maria
2016-09-01
Data are related to the numerical simulation performed in the study entitled "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077" (Malvoni et al., 2016) [1]. The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.2 and ANSYS FLUENT 14.5 CFD code. The dataset specifically includes information about the CFD setup and boundary conditions considered as the input values of the simulations. The trend of the isotherms points out the different impacts on the thermal behaviour of all sections with air solid material or ideal gas into the cavities.
Influence of the gap size on the wind loading on heliostats
NASA Astrophysics Data System (ADS)
Poulain, Pierre E.; Craig, Ken J.; Meyer, Josua P.
2016-05-01
Generally built in desert areas, heliostat fields undergo various wind loading conditions. An ANSYS Fluent CFD model of an isolated heliostat in worst-case orientation for the drag force is realized via numerical simulations using the realizable k-ɛ turbulence model. This paper focuses on the gap width between the panels and its influence on the wind loading that heliostats are subjected to. An atmospheric boundary layer profile is generated based on a wind tunnel experiment. For a heliostat in upright and tilted orientations with the wind angle being zero degrees, the gap width is varied and the force and moment coefficients are calculated. In the range tested, all the coefficients globally increase with the widening of the gaps.
Use of computational fluid dynamics in respiratory medicine.
Fernández Tena, Ana; Casan Clarà, Pere
2015-06-01
Computational Fluid Dynamics (CFD) is a computer-based tool for simulating fluid movement. The main advantages of CFD over other fluid mechanics studies include: substantial savings in time and cost, the analysis of systems or conditions that are very difficult to simulate experimentally (as is the case of the airways), and a practically unlimited level of detail. We used the Ansys-Fluent CFD program to develop a conducting airway model to simulate different inspiratory flow rates and the deposition of inhaled particles of varying diameters, obtaining results consistent with those reported in the literature using other procedures. We hope this approach will enable clinicians to further individualize the treatment of different respiratory diseases. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Nonlinear vibration of a hemispherical dome under external water pressure
NASA Astrophysics Data System (ADS)
Ross, C. T. F.; McLennan, A.; Little, A. P. F.
2011-07-01
The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalsa, Siri Sahib; Ho, Clifford Kuofei
2010-04-01
A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoftmore » Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalsa, Siri Sahib S.; Ho, Clifford Kuofei
2010-05-01
A rigorous computational fluid dynamics (CFD) approach to calculating temperature distributions, radiative and convective losses, and flow fields in a cavity receiver irradiated by a heliostat field is typically limited to the receiver domain alone for computational reasons. A CFD simulation cannot realistically yield a precise solution that includes the details within the vast domain of an entire heliostat field in addition to the detailed processes and features within a cavity receiver. Instead, the incoming field irradiance can be represented as a boundary condition on the receiver domain. This paper describes a program, the Solar Patch Calculator, written in Microsoftmore » Excel VBA to characterize multiple beams emanating from a 'solar patch' located at the aperture of a cavity receiver, in order to represent the incoming irradiance from any field of heliostats as a boundary condition on the receiver domain. This program accounts for cosine losses; receiver location; heliostat reflectivity, areas and locations; field location; time of day and day of year. This paper also describes the implementation of the boundary conditions calculated by this program into a Discrete Ordinates radiation model using Ansys{reg_sign} FLUENT (www.fluent.com), and compares the results to experimental data and to results generated by the code DELSOL.« less
CFD Modeling of Water Flow through Sudden Contraction and Expansion in a Horizontal Pipe
ERIC Educational Resources Information Center
Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K.
2011-01-01
This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…
NASA software specification and evaluation system: Software verification/validation techniques
NASA Technical Reports Server (NTRS)
1977-01-01
NASA software requirement specifications were used in the development of a system for validating and verifying computer programs. The software specification and evaluation system (SSES) provides for the effective and efficient specification, implementation, and testing of computer software programs. The system as implemented will produce structured FORTRAN or ANSI FORTRAN programs, but the principles upon which SSES is designed allow it to be easily adapted to other high order languages.
Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Loesser, G.; Zhai, Y.
2015-07-24
We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.
Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition
NASA Astrophysics Data System (ADS)
Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.
2012-11-01
In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.
Numerical investigation of air flow in a supersonic wind tunnel
NASA Astrophysics Data System (ADS)
Drozdov, S. M.; Rtishcheva, A. S.
2017-11-01
In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay
The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less
Aerodynamic Influence of Added Surfaces on the Performance Characteristics of a Sports Car
NASA Astrophysics Data System (ADS)
Thangadurai, Murugan; Kumar, Rajesh; Rana, Subhas Chandra; Chatterjee, Dipankar
2018-05-01
External aerodynamics plays a vital role in designing high-speed vehicles since a reduction in drag and positive lift generation are principal concerns in vehicle aerodynamics to ensure superior performance, comfort, and vehicle stability. In the present study, the effect of added surfaces such as NACA 2412 wings and wedge type spoiler at the rear end of a sports car are examined in detail using three-dimensional numerical simulations substantiated with lab scale experiments. The simulations are performed by solving Reynolds-averaged Navier-Stokes equations with a realizable k-ɛ turbulence model using ANSYS Fluent software for Reynolds numbers 9.1 × 106, 1.37 × 107 and 1.82 × 107. The results obtained from simulations are validated with the experiments performed on a scale down model at the low-speed wind tunnel using a six component external pyramidal balance. The variation in the wake flow field of the vehicles with different added surfaces are demonstrated using pressure and velocity contours, velocity vectors at the rear end, and the turbulent kinetic energy distribution plots. It is observed that the positive lift coefficient of the base model is reduced drastically by incorporating a single wing at the rear end of the vehicle. The aerodynamics coefficients obtained from different configurations suggest that the two wing configuration has lesser drag than the wedge type spoiler though, the negative lift is higher with a wedge than the two wing configuration.
Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner
NASA Astrophysics Data System (ADS)
Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong
2014-07-01
In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.
NASA Astrophysics Data System (ADS)
Faria, João.; Alves, J. L.; Nunes-Pereira, Eduardo J.
2017-08-01
The goal of this paper is to study in which extent the use of Zemax is suited for athermalization purposes. The research questions targeted in this paper are: what are the differences in the formulation of materials' thermal expansion between Zemax and Ansys; what is the impact on optical quality between both approaches; quantification of the differences between the two methodologies in terms of back focal length, spot radius and modulation transfer function (MTF). To quantify the differences between both approaches, it is used an objective working between -40°C and 110°C. Initially, only Zemax was used to evaluate the objective. Zemax considers a linear geometric expansion of every optical surface, which is here proved to not be the best approach to find a deformed geometry after a thermal load. The second approach is to create a 3D model and perform a finite element simulation in Ansys software. The input data is the thermal variation and the output is the deformed geometry of the lenses. Using SigFit software, it was possible to generate new mathematical equations of the deformed lenses and import this data into Zemax to start a new ray tracing. The new shape and location of lenses differs for both scenarios, and the difference in the focal plane shift is around 12%. The maximum spot radius difference is 27% and MTF relative error goes up to 16%. Zemax as a standalone software is valid if used as an initial guess for the optical designer. However, as a final stage for validation and detailed design, the approach containing Ansys and SigFit should be preferable.
Quantifying Thin Mat Floating Marsh Strength and Interaction with Hydrodynamic Conditions
NASA Astrophysics Data System (ADS)
Collins, J. H., III; Sasser, C.; Willson, C. S.
2016-12-01
Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Floating marshes make up 70% of the Terrebonne and Barataria basin wetlands and exist in several forms, mainly thick mat or thin mat. Salt-water intrusion, nutria grazing, and high-energy wave events are believed to be some contributing factors to the degradation of floating marshes; however, there has been little investigation into the hydrodynamic effects on their structural integrity. Due to their unique nature, floating marshes could be susceptible to changes in the hydrodynamic environment that may result from proposed river freshwater and sediment diversion projects introducing flow to areas that are typically somewhat isolated. This study aims to improve the understanding of how thin mat floating marshes respond to increased hydrodynamic stresses and, more specifically, how higher water velocities might increase the washout probability of this vegetation type. There are two major components of this research: 1) A thorough measurement of the material properties of the vegetative mats as a root-soil matrix composite material; and 2) An accurate numerical simulation of the hydrodynamics and forces imposed on the floating marsh mats by the flow. To achieve these goals, laboratory and field experiments were conducted using a customized device to measure the bulk properties of typical floating marshes. Additionally, Delft-3D FLOW and ANSYS FLUENT were used to simulate the flow around a series of simplified mat structures in order to estimate the hydrodynamic forcings on the mats. The hydrodynamic forcings are coupled with a material analysis, allowing for a thorough analysis of their interaction under various conditions. The 2-way Fluid Structure Interaction (F.S.I.) between the flow and the mat is achieved by coupling a Finite Element Analysis (F.E.A.) solver in ANSYS with FLUENT. The flow conditions necessary for the structural failure of the floating marshes are determined for a multitude of mat shapes and sizes, leading to a quantifiable critical velocity required for washout. Ultimately, through dimensional analysis, an equation for washout potential will be developed from the results, which could be used as a design guideline.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan
2013-12-01
Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.
Thermal analysis of electron gun for travelling wave tubes
NASA Astrophysics Data System (ADS)
Bhat, K. S.; Sreedevi, K.; Ravi, M.
2006-11-01
Thermal analysis of a pierce type electron gun using the FEM software ANSYS and its experimental validation are presented in this paper. Thermal analysis of the electron gun structure has been carried out to find out the effect of heater power on steady state temperature and warm-up time. The thermal drain of the supporting structure has also been analyzed for different materials. These results were experimentally verified in an electron gun. The experimental results closely match the ANSYS results.
A Recommended Framework for the Network-Centric Acquisition Process
2009-09-01
ISO /IEC 12207 , Systems and Software Engineering-Software Life-Cycle Processes ANSI/EIA 632, Processes for Engineering a System. There are...engineering [46]. Some of the process models presented in the DAG are: ISO /IEC 15288, Systems and Software Engineering-System Life-Cycle Processes...e.g., ISO , IA, Security, etc.). Vetting developers helps ensure that they are using industry best industry practices and maximize the IA compliance
Wu, Renyuan; Zhu, Zhencai; Cao, Guohua
2015-01-01
The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn’t been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect. PMID:25679522
Studies on Single-phase and Multi-phase Heat Pipe for LED Panel for Efficient Heat Dissipation
NASA Astrophysics Data System (ADS)
Vyshnave, K. C.; Rohit, G.; Maithreya, D. V. N. S.; Rakesh, S. G.
2017-08-01
The popularity of LED panel as a source of illumination has soared recently due to its high efficiency. However, the removal of heat that is produced in the chip is still a major challenge in its design since this has an adverse effect on its reliability. If high junction temperature develops, the colour of the emitted light may diminish over prolonged usage or even a colour shift may occur. In this paper, a solution has been developed to address this problem by using a combination of heat pipe and heat fin technology. A single-phase and a two-phase heat pipes have been designed theoretically and computational simulations carried out using ANSYS FLUENT. The results of the theoretical calculations and those obtained from the simulations are found to be in agreement with each other.
NASA Astrophysics Data System (ADS)
Foo, Kam Keong
A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.
NASA Astrophysics Data System (ADS)
Uddin, M. Maruf; Fuad, Muzaddid-E.-Zaman; Rahaman, Md. Mashiur; Islam, M. Rabiul
2017-12-01
With the rapid decrease in the cost of computational infrastructure with more efficient algorithm for solving non-linear problems, Reynold's averaged Navier-Stokes (RaNS) based Computational Fluid Dynamics (CFD) has been used widely now-a-days. As a preliminary evaluation tool, CFD is used to calculate the hydrodynamic loads on offshore installations, ships, and other structures in the ocean at initial design stages. Traditionally, wedges have been studied more than circular cylinders because cylinder section has zero deadrise angle at the instant of water impact, which increases with increase of submergence. In Present study, RaNS based commercial code ANSYS Fluent is used to simulate the water entry of a circular section at constant velocity. It is seen that present computational results were compared with experiment and other numerical method.
NASA Astrophysics Data System (ADS)
Jablonska, J.; Kozubkova, M.
2017-08-01
Static and dynamic characteristics of flow in technical practice are very important and serious problem and can be solved by experimental measurement or mathematical modeling. Unsteady flow presents time changes of the flow and water hammer can be an example of this phenomenon. Water hammer is caused by rapid changes in the water flow by means the closure or opening of the control valve. The authors deal with by hydraulic hammer at the multiphase flow (water and air), its one-dimensional modeling (Matlab SimHydraulics) and modeling with the use of the finite volume method (Ansys Fluent) in article. The circuit elements are defined by static and dynamic characteristics. The results are verified with measurements. The article evaluates different approaches, their advantages, disadvantages and specifics in solving of water hammer.
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element.
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role.
Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software
NASA Astrophysics Data System (ADS)
Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.
2017-12-01
Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.
CFD simulation of the combustion process of the low-emission vortex boiler
NASA Astrophysics Data System (ADS)
Chernov, A. A.; Maryandyshev, P. A.; Pankratov, E. V.; Lubov, V. K.
2017-11-01
Domestic heat and power engineering needs means and methods for optimizing the existing boiler plants in order to increase their technical, economic and environmental work. The development of modern computer technology, methods of numerical modeling and specialized software greatly facilitates the solution of many emerging problems. CFD simulation allows to obtaine precise results of thermochemical and aerodynamic processes taking place in the furnace of boilers in order to optimize their operation modes and develop directions for their modernization. The paper presents the results of simulation of the combustion process of a low-emission vortex coal boiler of the model E-220/100 using the software package Ansys Fluent. A hexahedral grid with a number of 2 million cells was constructed for the chosen boiler model. A stationary problem with a two-phase flow was solved. The gaseous components are air, combustion products and volatile substances. The solid phase is coal particles at different burnup stages. The Euler-Lagrange approach was taken as a basis. Calculation of the coal particles trajectories was carried out using the Discrete Phase Model which distribution of the size particle of coal dust was accounted for using the Rosin-Rammler equation. Partially Premixed combustion model was used as the combustion model which take into account elemental composition of the fuel and heat analysis. To take turbulence into account, a two-parameter k-ε model with a standard wall function was chosen. Heat transfer by radiation was calculated using the P1-approximation of the method of spherical harmonics. The system of spatial equations was numerically solved by the control volume method using the SIMPLE algorithm of Patankar and Spaulding. Comparison of data obtained during the industrial-operational tests of low-emission vortex boilers with the results of mathematical modeling showed acceptable convergence of the tasks of this level, which confirms the adequacy of the realized mathematical model.
High temperature high velocity direct power extraction using an open-cycle oxy-combustion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Norman
The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWthmore » model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The results observed in the lab-scale system were employed to develop a 1-MW scaled prototype. Scaling methods were based on critical design criteria found in similar systems, aimed at replicating combustion flow fields and reducing possible instabilities. A numerical simulation of the combustor wall was developed for a combined thermal steady model and static structural model. This combined model was developed predict combined stress parameters within the wall during testing conditions. Both models were developed within ANSYS FEA software package. The relative accuracy presented as well major performance parameters are discussed to assess the design's validity and ensure safety. The scaled prototype was manufactured through selective laser melting (SLM)-based additive manufacturing to reduce lead times and increase geometrical complexity. Additional CFD models were developed to optimize coolant manifold system parameters and perform a parametric study on channel geometry. An investigation on coolant manifold geometry demonstrated improvements in channel flow distribution when enlarging manifold lengths and increasing the number of tubes feeding into the flow. A three-dimensional model based on a single channel was developed to capture the effect of variable properties and thermal stratification. All cases in the simulation exhibited higher wall temperatures and lower convective coefficients than those determined through 1-D analytical equations. This implies that pressure and velocity safety factors must be implemented during system operation. Overall, the findings made in this investigation are thought to be of value to researchers and industrial practitioners when designing oxy-fuel direct power extraction systems operating at temperatures exceeding 3000 K. In addition to this, the implementation of the developed technology at pilot and commercial scales could result in a significant improvement in the efficiencies of heritage and next-generation power cycles.« less
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2012-01-01
The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.
Numerical modeling tools for chemical vapor deposition
NASA Technical Reports Server (NTRS)
Jasinski, Thomas J.; Childs, Edward P.
1992-01-01
Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.
Integrated thermal disturbance analysis of optical system of astronomical telescope
NASA Astrophysics Data System (ADS)
Yang, Dehua; Jiang, Zibo; Li, Xinnan
2008-07-01
During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.
FEM and Multiphysics Applications at NASA/GSFC
NASA Technical Reports Server (NTRS)
Loughlin, James
2004-01-01
FEM software available to the Mechanical Systems Analysis and Simulation Branch at Goddard Space Flight Center (GSFC) include: 1) MSC/Nastran; 2) Abaqus; 3) Ansys/Multiphysics; 4) COSMOS/M; 5) 'Home-grown' programs; 6) Pre/post processors such as Patran and FEMAP. This viewgraph presentation provides additional information on MSC/Nastran and Ansys/Multiphysics, and includes screen shots of analyzed equipment, including the Wilkinson Microwave Anistropy Probe, a micro-mirror, a MEMS tunable filter, and a micro-shutter array. The presentation also includes information on the verification of results.
Simulation of blast action on civil structures using ANSYS Autodyn
NASA Astrophysics Data System (ADS)
Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.
2016-10-01
The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.
Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile
NASA Astrophysics Data System (ADS)
Hoľko, Michal; Stacho, Jakub
2014-12-01
The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.
USDA-ARS?s Scientific Manuscript database
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...
Mixed convection of nanofluids in a lid-driven rough cavity
NASA Astrophysics Data System (ADS)
Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.
2017-06-01
Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.
NASA Astrophysics Data System (ADS)
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
Use of Computational Fluid Dynamics for improvement of Balloon Borne Frost Point Hygrometer
NASA Astrophysics Data System (ADS)
Jorge, Teresa; Brunamonti, Simone; Wienhold, Frank G.; Peter, Thomas
2017-04-01
In the StratoClim 2016 Balloon Campaign in Nainital (India) during the Asian Summer Monsoon, balloon born payloads containing the EN-SCI CFH - Cryogenic Frost point Hygrometer - were flown to observe water vapor and cloud formation processes in the Upper Troposphere and Lower Stratosphere. Some of the recorded atmospheric water vapor profiles showed unexpected values above the tropopause and were considered contaminated. To interpret these contaminated results and in the scope of the development of a new frost point hygrometer - the Peltier Cooled Frost point Hygrometer (PCFH) - computational fluid dynamic (CFD) simulations with ANSYS Fluent software have been carried out. These simulations incorporate the fluid and thermodynamic characteristics of stratospheric air to predict airflow in the inlet tube of the instrument. An ice wall boundary layer based on the Murphy and Koop 2005 ice-vapor parametrization was created as a cause of the unexpected water vapor. Sensitivity was tested in relation to the CFD mesh, ice wall surface, inlet flow, inlet tube dimension, sensor head location and variation of atmospheric conditions. The development of the PCFH uses the results of this study and other computational fluid dynamic studies concerning the whole instrument boundary layer and heat exchanger design to improve on previous realizations of frost point hygrometers. As a novelty in the field of frost point hygrometry, Optimal Control Theory will be used to optimize the cooling of the mirror by the Peltier element, which will be described in a physical "plant model", since the cooling capacity of a cryogenic liquid will no longer be available in the new instrument.
Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.
Pei, Guihong; Zhang, Liyin
2016-01-01
Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).
Selection of axial hydraulic turbines for low-head microhydropower plants
NASA Astrophysics Data System (ADS)
Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.
2015-12-01
The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.
Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...
2015-03-26
The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less
The Influence of Shaping Air Pressure of Pneumatic Spray Gun
NASA Astrophysics Data System (ADS)
Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo
2018-02-01
The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.
NASA Astrophysics Data System (ADS)
Prostomolotov, A. I.; Verezub, N. A.; Voloshin, A. E.
2014-09-01
A thermo-gravitational convection and impurity transfer in the melt were investigated using a simplified numerical model for Bridgman GaSb(Te) crystal growth in microgravity conditions. Simplifications were as follows: flat melt/crystal interface, fixed melt sizes and only lateral ampoule heating. Calculations were carried out by Ansys®Fluent® code employing a two-dimensional Navier-Stokes-Boussinesq and heat and mass transfer equations in a coordinate system moving with the melt/crystal interface. The parametric dependence of the effective segregation coefficient Keff at the melt/crystal interface was studied for various ampoule sizes and for microgravity conditions. For the uprising one-vortex flow, the resulting dependences were presented as Keff vs. Vmax-the maximum velocity value. These dependences were compared with the formulas by Burton-Prim-Slichter's, Ostrogorsky-Muller's, as well as with the semi-analytical solutions.
Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.
2017-08-01
Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.
Modeling of the processes of natural and waste water purification in the reactor-clarifier
NASA Astrophysics Data System (ADS)
Primak, O. D.; Skolubovich, Yu. L.; Fedorova, N. N.; Voitov, E. L.
2018-03-01
The results of the filtration process simulation in a reactor-clarifier installation using a suspended loading layer are presented. Calculations were carried out in ANSYS Fluent on the basis of the Navier-Stokes equations supplemented by the equations of the Eulerian model of multiphase taking into account granularity of the particle phase. The unsteady picture of the formation of a fluidized («boiling») layer of particles is obtained. The results of parametric calculations allowing to estimate the effect of the flow velocity, the loading layer thickness, the thickness of sand and other parameters on the fluidized bed structure are presented. The liquid flow rate at which the loading grains are not washed out is determined. The diameter of particles and the height of the loading layer, at which the filter material is suspended and thus normal operation of the plant is ensured, are defined.
Shafiekhani, Soraya; Zamindar, Nafiseh; Hojatoleslami, Mohammad; Toghraie, Davood
2016-06-01
Pasteurization of canned apple puree was simulated for a 3-D geometry in a semi-rigid aluminum based container which was heated from all sides at 378 K. The computational fluid dynamics code Ansys Fluent 14.0 was used and the governing equations for energy, momentum, and continuity were computed using a finite volume method. The food model was assumed to have temperature-dependent properties. To validate the simulation, the apple puree was pasteurized in a water cascading retort. The effect of the mesh structures was studied for the temperature profiles during thermal processing. The experimental temperature in the slowest heating zone in the container was compared with the temperature predicted by the model and the difference was not significant. The study also investigated the impact of head space (water-vapor) on heat transfer.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
NASA Astrophysics Data System (ADS)
Borisov, S. P.; Bountin, D. A.; Gromyko, Yu. V.; Khotyanovsky, D. V.; Kudryavtsev, A. N.
2016-10-01
Development of disturbances in the supersonic boundary layer on sharp and blunted cones is studied both experimentally and theoretically. The experiments were conducted at the Transit-M hypersonic wind tunnel of the Institute of Theoretical and Applied Mechanics. Linear stability calculations use the basic flow profiles provided by the numerical simulations performed by solving the Navier-Stokes equations with the ANSYS Fluent and the in-house CFS3D code. Both the global pseudospectral Chebyshev method and the local iteration procedure are employed to solve the eigenvalue problem and determine linear stability characteristics. The calculated amplification factors for disturbances of various frequencies are compared with the experimentally measured pressure fluctuation spectra at different streamwise positions. It is shown that the linear stability calculations predict quite accurately the frequency of the most amplified disturbances and enable us to estimate reasonably well their relative amplitudes.
NASA Astrophysics Data System (ADS)
Pawar, Sumedh; Sharma, Atul
2018-01-01
This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.
Turbulent flow computation in a circular U-Bend
NASA Astrophysics Data System (ADS)
Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir
2014-03-01
Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Modeling of Non-Isothermal Cryogenic Fluid Sloshing
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Moder, Jeffrey P.
2015-01-01
A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.
Numerical simulation of turbulent forced convection in liquid metals
NASA Astrophysics Data System (ADS)
Vodret, S.; Vitale Di Maio, D.; Caruso, G.
2014-11-01
In the frame of the future generation of nuclear reactors, liquid metals are foreseen to be used as a primary coolant. Liquid metals are characterized by a very low Prandtl number due to their very high heat diffusivity. As such, they do not meet the so-called Reynolds analogy which assumes a complete similarity between the momentum and the thermal boundary layers via the use of the turbulent Prandtl number. Particularly, in the case of industrial fluid-dynamic calculations where a resolved computation near walls could be extremely time consuming and could need very large computational resources, the use of the classical wall function approach could lead to an inaccurate description of the temperature profile close to the wall. The first aim of the present study is to investigate the ability of a well- established commercial code (ANSYS FLUENT v.14) to deal with this issue, validating a suitable expression for the turbulent Prandtl number. Moreover, a thermal wall-function developed at Universite Catholique de Louvain has been implemented in FLUENT and validated, overcoming the limits of the solver to define it directly. Both the resolved and unresolved approaches have been carried out for a channel flow case and assessed against available direct numerical and large eddy simulations. A comparison between the numerically evaluated Nusselt number and the main correlations available in the literature has been also carried out. Finally, an application of the proposed methodology to a typical sub-channel case has been performed, comparing the results with literature correlations for tube banks.
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Background: Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. Materials and Methods: In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Results: Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Conclusion: Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role. PMID:29497445
Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve
NASA Astrophysics Data System (ADS)
Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata
The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.
2017-03-01
The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.
Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire
NASA Astrophysics Data System (ADS)
Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai
2018-02-01
According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
NASA Astrophysics Data System (ADS)
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
NASA Astrophysics Data System (ADS)
Kurchatkin, I. V.; Gorshkalev, A. A.; Blagin, E. V.
2017-01-01
This article deals with developed methods of the working processes modelling in the combustion chamber of an internal combustion engine (ICE). Methods includes description of the preparation of a combustion chamber 3-d model, setting of the finite-element mesh, boundary condition setting and solution customization. Aircraft radial engine M-14 was selected for modelling. The cycle of cold blowdown in the ANSYS IC Engine software was carried out. The obtained data were compared to results of known calculation methods. A method of engine’s induction port improvement was suggested.
Finite element modeling of concrete structures strengthened with FRP laminates
DOT National Transportation Integrated Search
2001-05-01
Linear and non-linear method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer (FRP) composites. ANSYS and SAP2000 modeling software were used; however, most of the development effort used...
Simulation of concentration distribution of urban particles under wind
NASA Astrophysics Data System (ADS)
Chen, Yanghou; Yang, Hangsheng
2018-02-01
The concentration of particulate matter in the air is too high, which seriously affects people’s health. The concentration of particles in densely populated towns is also high. Understanding the distribution of particles in the air helps to remove them passively. The concentration distribution of particles in urban streets is simulated by using the FLUENT software. The simulation analysis based on Discrete Phase Modelling (DPM) of FLUENT. Simulation results show that the distribution of the particles is caused by different layout of buildings. And it is pointed out that in the windward area of the building and the leeward sides of the high-rise building are the areas with high concentration of particles. Understanding the concentration of particles in different areas is also helpful for people to avoid and reduce the concentration of particles in high concentration areas.
DOT National Transportation Integrated Search
2001-05-01
Linear and non-linear finite element method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer composites. ANSYS and SAP2000 modeling software were used; however, most of the development ef...
Study of the possibility of thermal utilization of contaminated water in low-power boilers
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.
2017-09-01
The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.
NASA Astrophysics Data System (ADS)
Bosykh, L. Yu.; Ganimedov, V. L.; Muchnaya, M. I.; Sadovskii, A. S.
2016-10-01
The evolution of air flow field in the human nasal cavity has studied during the respiratory cycle. Real tomographic scans of the adult without abnormalities in the upper airway have been used to construct the geometric model. Quiet breathing mode is selected: the duration of the respiratory cycle is 4.3 sec and the depth of breathing is 600 ml, which provides pulmonary ventilation at 8.4 liters of air per minute. The system of Navier - Stokes equations was used to describe the flow. Laminar flow regime was postulated. The Lagrange approach was used for calculation of submicron particles motion. The numerical solution was built on the basis of gas-dynamic solver FLUENT of software package ANSYS 12. Calculations were made for two cases in which the same value of the integral characteristic (the depth of breathing) was reached, but which had different kind of boundary conditions on the exit. In the first case, the velocity was assumed symmetrical with respect to inhalation - exhalation and was approximated by sinusoid. In the second case, the velocity as a function of time is determined by processing of the real person spirogram. For the both variants the flow fields were obtained and compared. Analysis of the results showed that in non-stationary case the use of symmetric boundary condition leads to an underestimation of respiratory effort for the implementation of the required depth of breathing. In cyclic flow the flow fields in acceleration and deceleration phases are, basically, the same as in the corresponding steady flow. At the same time taking into account of non-symmetry of respiratory cycle influences on deposition pattern of particles significantly.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
Van Wassenbergh, Sam
2015-07-01
The gill cover of fish and pre-metamorphic salamanders has a key role in suction feeding by acting as a one-way valve. It initially closes and avoids an inflow of water through the gill slits, after which it opens to allow outflow of the water that was sucked through the mouth into the expanded buccopharyngeal cavity. However, due to the inability of analytical models (relying on the continuity principle) to calculate the flow of fluid through a cavity with two openings and that was changing in shape and size, stringent boundary conditions had to be used in previously developed mathematical models after the moment of the valve's opening. By solving additionally for the conservation of momentum, computational fluid dynamics (CFD) has the capacity to dynamically simulate these flows, but this technique also faces complications in modeling a transition from closed to open valves. Here, I present a relatively simple solution strategy to incorporate the opening of the valves, exemplified in an axisymmetrical model of a suction-feeding sunfish in ANSYS Fluent software. By controlling viscosity of a separately defined fluid entity in the region of the opercular cavity, early inflow can be blocked (high viscosity assigned) and later outflow can be allowed (changing viscosity to that of water). Finally, by analyzing the CFD solution obtained for the sunfish model, a few new insights into the biomechanics of suction feeding are gained. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Sahar, A. F. A.; Firas, A. A.
2015-11-01
A numerical study has been carried out to investigate the heat transfer by laminar forced convection of nanofluid taking Titania (TiO2) and Alumina (Al2O3) as nanoparticles and the water as based fluid in a three dimensional plain and U-longitudinal finned tube heat exchanger. A Solid WORKS PREMIUM 2012 is used to draw the geometries of plain tube heat exchanger or U-longitudinal copper finned tube heat exchanger. Four U-longitudinal copper fins have 100 cm long, 3.8cm height and 1mm thickness are attached to a straight copper tube of 100 cm length, 2.2 cm inner diameter and 2.39 cm outer diameter. The governing equations which used as continuity, momentum and energy equations under assumptions are utilized to predict the flow field, temperature distribution, and heat transfer of the heat exchanger. The finite volume approach is used to obtain all the computational results using commercial ANSYS Fluent copy package 14.0 with assist of solid works and Gambit software program. The effect of various parameters on the performance of heat exchanger are investigated numerically such as Reynolds' number (ranging from 270 to 1900), volume consternation of nanoparticles (0.2%, 0.4%, 0.6%, 0.8%), type of nanoparticles, and mass flow rate of nanofluid in the hot region of heat exchanger. For 0.8% consternation of nanoparticles, heat transfer has significant enhancement in both nanofluids. It can be found about 7.3% for TiO2 and about 7.5% for Al2O3 compared with the water only as a working fluid.
Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kothiyal, Alok Darshan; Bisht, Mangal Singh; Kumar, Anil
In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000-18000. Different nanoparticles (Al2O3, CuO, and ZnO), with different concentration (φ) range of 1-4% and different nanoparticle diameter (dnp) range of 30-45 nm are disperse in water (base fluid). Several parameters such as stream wise distance (Xs /dp) range of 1.4-2.6, span wise distance (Ys /dp) range of 1.4-2.6, ratio of protruded height to print diameter (ep /dp) range of 0.83-1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent). Renormalization k - ε model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, φ = 0.04, dnp = 30 nm, Xs /dp = 1.8, Ys /dp = 1.8 and ep /dp = 1.0 . The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within ±7.0% error band.
Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation.
Kurşun, Burak; Uğur, Levent; Keskin, Gökhan
2018-05-01
Hemodynamic analyzes are used in the clinical investigation and treatment of cardiovascular diseases. In the present study, the effect of bypass geometry on intracranial aneurysm hemodynamics was investigated numerically. Pressure, wall shear stress (WSS) and velocity distribution causing the aneurysm to grow and rupture were investigated and the best conditions were tried to be determined in case of bypassing between basilar (BA) and left/right posterior arteries (LPCA/RPCA) for different values of parameters. The finite volume method was used for numerical solutions and calculations were performed with the ANSYS-Fluent software. The SIMPLE algorithm was used to solve the discretized conservation equations. Second Order Upwind method was preferred for finding intermediate point values in the computational domain. As the blood flow velocity changes with time, the blood viscosity value also changes. For this reason, the Carreu model was used in determining the viscosity depending on the velocity. Numerical study results showed that when bypassed, pressure and wall shear stresses reduced in the range of 40-70% in the aneurysm. Numerical results obtained are presented in graphs including the variation of pressure, wall shear stress and velocity streamlines in the aneurysm. Considering the numerical results for all parameter values, it is seen that the most important factors affecting the pressure and WSS values in bypassing are the bypass position on the basilar artery (L b ) and the diameter of the bypass vessel (d). Pressure and wall shear stress reduced in the range of 40-70% in the aneurysm in the case of bypass for all parameters. This demonstrates that pressure and WSS values can be greatly reduced in aneurysm treatment by bypassing in cases where clipping or coil embolization methods can not be applied. Copyright © 2018 Elsevier B.V. All rights reserved.
High temperature helical tubular receiver for concentrating solar power system
NASA Astrophysics Data System (ADS)
Hossain, Nazmul
In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.
Ignition of an organic water-coal fuel droplet floating in a heated-air flow
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.
2017-01-01
Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.
SIMOGEN - An Object-Oriented Language for Simulation
1989-03-01
program generator must also be written in the same prcgramming languaje . In this case, the C language was chosen, for the following main reasons...3), March 88. 4. PRESTO: A System for Object-Oriented Parallel Programing B N Bershad, E D Lazowska & H M Levy Software Practice and Experience, Vol...U.S. Depare nt of Defence ANSI/ML-STD 1815A. 7. Object-oriented Development Grady Booch Transactions on Software Engineering , February 86. 8. A
Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS
NASA Astrophysics Data System (ADS)
Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang
2014-02-01
Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.
Research on electromechanical resonance of two-axis tracking system
NASA Astrophysics Data System (ADS)
Zhao, Zhi-ming; Xue, Ying-jie; Zeng, Shu-qin; Li, Zhi-guo
2017-02-01
The multi-axes synchronous system about the spatial two-axis turntable is the key equipment for semi-physical simulation and test in aerospace. In this paper, the whole structure design of the turntable is created by using Solidworks, then putting the three-dimensional solid model into ANSYS to build the finite element model. The software ANSYS is used to do the simulation about the static and dynamic analysis of two-axis turntable. Based on the modal analysis, we can forecast the inherent frequencies and the mode of vibration during the launch conditions which is very important to the design and safety of the structure.
Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed
NASA Astrophysics Data System (ADS)
Wang, Zuomin; Li, Jiuru
2018-02-01
This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
NASA Technical Reports Server (NTRS)
Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon
2010-01-01
Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.
Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade
NASA Astrophysics Data System (ADS)
Aabid, Abdul; Khan, S. A.
2018-05-01
In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.
Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios
NASA Astrophysics Data System (ADS)
Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit
2016-03-01
In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.
[Numerical finite element modeling of custom car seat using computer aided design].
Huang, Xuqi; Singare, Sekou
2014-02-01
A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.
Study on cavitation effect of mechanical seals with laser-textured porous surface
NASA Astrophysics Data System (ADS)
Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.
2012-11-01
Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.
method for testing home energy audit software and associated calibration methods. BESTEST-EX is one of Energy Analysis Model Calibration Methods. When completed, the ANSI/RESNET SMOT will specify test procedures for evaluating calibration methods used in conjunction with predicting building energy use and
NASA Astrophysics Data System (ADS)
Shahid, Abdullah Bin; Mashud, Mohammad
2017-06-01
This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.
Investigation of powder injection moulded oblique fin heat sinks
NASA Astrophysics Data System (ADS)
Sai, Vadri Siva
The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.
RANS Simulation (Virtual Blade Model [VBM]) of Single Full Scale DOE RM1 MHK Turbine
Javaherchi, Teymour; Aliseda, Alberto
2013-04-10
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.
Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil
NASA Astrophysics Data System (ADS)
Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.
2018-03-01
In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.
CFD modeling using PDF approach for investigating the flame length in rotary kilns
NASA Astrophysics Data System (ADS)
Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.
2016-12-01
Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.
NASA Astrophysics Data System (ADS)
Smyth, Trevor; Menary, Gary; Geron, Marco
2018-05-01
Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.
Heat, mass and force flows in supersonic shockwave interaction
NASA Astrophysics Data System (ADS)
Dixon, John Michael
There is no cost effective way to deliver a payload to space and, with rising fuel prices, currently the price to travel commercially is also becoming more prohibitive to the public. During supersonic flight, compressive shock waves form around the craft which could be harnessed to deliver an additional lift on the craft. Using a series of hanging plates below a lifting wing design, the total lift generated can be increased above conventional values, while still maintaining a similar lift-to-drag ratio. Here, we study some of the flows involved in supersonic shockwave interaction. This analysis uses ANSYS Fluent Computational Fluid Dynamics package as the modeler. Our findings conclude an increase of up to 30% lift on the modeled craft while maintaining the lift-to-drag profile of the unmodified lifting wing. The increase in lift when utilizing the shockwave interaction could increase transport weight and reduce fuel cost for space and commercial flight, as well as mitigating negative effects associated with supersonic travel.
NASA Astrophysics Data System (ADS)
Ravi, D.; Parammasivam, K. M.
2016-09-01
Numerical investigations were conducted on a turbine cascade, with end-wall cooling by a single row of cylindrical holes, inclined at 30°. The mainstream fluid was hot air and the coolant was CO2 gas. Based on the Reynolds number, the flow was turbulent at the inlet. The film hole row position, its pitch and blowing ratio was varied with five different values. Taguchi approach was used in designing a L25 orthogonal array (OA) for these parameters. The end-wall averaged film cooling effectiveness (bar η) was chosen as the quality characteristic. CFD analyses were carried out using Ansys Fluent on computational domains designed with inputs from OA. Experiments were conducted for one chosen OA configuration and the computational results were found to correlate well with experimental measurements. The responses from the CFD analyses were fed to the statistical tool to develop a correlation for bar η using regression analysis.
Numerical simulation of heat transfer in metal foams
NASA Astrophysics Data System (ADS)
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
NASA Astrophysics Data System (ADS)
Buono, Armand C.
The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.
Study of flow control by localized volume heating in hypersonic boundary layers
NASA Astrophysics Data System (ADS)
Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.
2014-12-01
Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.
NASA Astrophysics Data System (ADS)
Castro-Bolinaga, C. F.; Zavaleta, E. R.; Diplas, P.
2015-03-01
This paper presents the preliminary results of a coupled modelling effort to study the fate of tailings (radioactive waste-by product) downstream of the Coles Hill uranium deposit located in Virginia, USA. The implementation of the overall modelling process includes a one-dimensional hydraulic model to qualitatively characterize the sediment transport process under severe flooding conditions downstream of the potential mining site, a two-dimensional ANSYS Fluent model to simulate the release of tailings from a containment cell located partially above the local ground surface into the nearby streams, and a one-dimensional finite-volume sediment transport model to examine the propagation of a tailings sediment pulse in the river network located downstream. The findings of this investigation aim to assist in estimating the potential impacts that tailings would have if they were transported into rivers and reservoirs located downstream of the Coles Hill deposit that serve as municipal drinking water supplies.
NASA Astrophysics Data System (ADS)
Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo
2017-06-01
The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.
[Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].
Quan, Xiaoliang
2017-07-30
This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.
Design and numerical simulation of novel giant magnetostrictive ultrasonic transducer
NASA Astrophysics Data System (ADS)
Li, Pengyang; Liu, Qiang; Li, Shujuan; Wang, Quandai; Zhang, Dongya; Li, Yan
This paper provides a design method of a novel giant magnetostrictive ultrasonic transducer utilized in incremental sheet metal forming. The frequency equations of the ultrasonic vibrator were deduced and the corresponding correctness verified by the modal and harmonic response characteristic through the finite element method (FEM) and ANSYS software. In addition, the magnetic field of the vibrator system was designed and verified by the ANSYS. Finally, the frequency tests based on the impedance response analysis and the amplitude measurements based on the laser displacement sensor were performed on the prototype. The results confirmed the appropriate design of this transducer, setting the foundation for a low mechanical quality factor and satisfying amplitude.
Applications of CFD and visualization techniques
NASA Technical Reports Server (NTRS)
Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.
1992-01-01
In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.
NASA Astrophysics Data System (ADS)
Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna
2017-12-01
The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.
Temperature Field Simulation of Powder Sintering Process with ANSYS
NASA Astrophysics Data System (ADS)
He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying
2018-03-01
Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.
CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace
NASA Astrophysics Data System (ADS)
Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong
2014-01-01
A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.
NASA Astrophysics Data System (ADS)
Abdiwe, Ramadan; Haider, Markus
2017-06-01
In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.
NASA Astrophysics Data System (ADS)
Martsynkovskyy, V. A.; Deineka, A.; Kovalenko, V.
2017-08-01
The article presents forced axial vibrations of the rotor with an automatic unloading machine in an oxidizer pump. A feature of the design is the use in the autoloading system of slotted throttles with mutually inverse throttling. Their conductivity is determined by a numerical experiment in the ANSYS CFX software package.
A computational fluid dynamics modeling study of guide walls for downstream fish passage
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.
A novel low profile wireless flow sensor to monitor hemodynamic changes in cerebral aneurysm
NASA Astrophysics Data System (ADS)
Chen, Yanfei; Jankowitz, Brian T.; Cho, Sung Kwon; Chun, Youngjae
2015-03-01
A proof of concept of low-profile flow sensor has been designed, fabricated, and subsequently tested to demonstrate its feasibility for monitoring hemodynamic changes in cerebral aneurysm. The prototype sensor contains three layers, i.e., a thin polyurethane layer was sandwiched between two sputter-deposited thin film nitinol layers (6μm thick). A novel superhydrophilic surface treatment was used to create hemocompatible surface of thin nitinol electrode layers. A finite element model was conducted using ANSYS Workbench 15.0 Static Structural to optimize the dimensions of flow sensor. A computational fluid dynamics calculations were performed using ANSYS Workbench Fluent to assess the flow velocity patterns within the aneurysm sac. We built a test platform with a z-axis translation stage and an S-beam load cell to compare the capacitance changes of the sensors with different parameters during deformation. Both LCR meter and oscilloscope were used to measure the capacitance and the resonant frequency shifts, respectively. The experimental compression tests demonstrated the linear relationship between the capacitance and applied compression force and decreasing the length, width and increasing the thickness improved the sensor sensitivity. The experimentally measured resonant frequency dropped from 12.7MHz to 12.48MHz, indicating a 0.22MHz shift with 200g ( 2N) compression force while the theoretical resonant frequency shifted 0.35MHz with 50g ( 0.5N). Our recent results demonstrated a feasibility of the low-profile flow sensor for monitoring haemodynamics in cerebral aneurysm region, as well as the efficacy of the use of the surface treated thin film nitinol for the low-profile sensor materials.
Huang, Zheng; Chen, Zhi
2013-10-01
This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was -0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
SABrE is a set of tools to facilitate the development of portable scientific software and to visualize scientific data. As with most constructs, SABRE has a foundation. In this case that foundation is SCORE. SCORE (SABRE CORE) has two main functions. The first and perhaps most important is to smooth over the differences between different C implementations and define the parameters which drive most of the conditional compilations in the rest of SABRE. Secondly, it contains several groups of functionality that are used extensively throughout SABRE. Although C is highly standardized now, that has not always been the case. Roughlymore » speaking C compilers fall into three categories: ANSI standard; derivative of the Portable C Compiler (Kernighan and Ritchie); and the rest. SABRE has been successfully ported to many ANSI and PCC systems. It has never been successfully ported to a system in the last category. The reason is mainly that the ``standard`` C library supplied with such implementations is so far from true ANSI or PCC standard that SABRE would have to include its own version of the standard C library in order to work at all. Even with standardized compilers life is not dead simple. The ANSI standard leaves several crucial points ambiguous as ``implementation defined.`` Under these conditions one can find significant differences in going from one ANSI standard compiler to another. SCORE`s job is to include the requisite standard headers and ensure that certain key standard library functions exist and function correctly (there are bugs in the standard library functions supplied with some compilers) so that, to applications which include the SCORE header(s) and load with SCORE, all C implementations look the same.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
SABrE is a set of tools to facilitate the development of portable scientific software and to visualize scientific data. As with most constructs, SABRE has a foundation. In this case that foundation is SCORE. SCORE (SABRE CORE) has two main functions. The first and perhaps most important is to smooth over the differences between different C implementations and define the parameters which drive most of the conditional compilations in the rest of SABRE. Secondly, it contains several groups of functionality that are used extensively throughout SABRE. Although C is highly standardized now, that has not always been the case. Roughlymore » speaking C compilers fall into three categories: ANSI standard; derivative of the Portable C Compiler (Kernighan and Ritchie); and the rest. SABRE has been successfully ported to many ANSI and PCC systems. It has never been successfully ported to a system in the last category. The reason is mainly that the standard'' C library supplied with such implementations is so far from true ANSI or PCC standard that SABRE would have to include its own version of the standard C library in order to work at all. Even with standardized compilers life is not dead simple. The ANSI standard leaves several crucial points ambiguous as implementation defined.'' Under these conditions one can find significant differences in going from one ANSI standard compiler to another. SCORE's job is to include the requisite standard headers and ensure that certain key standard library functions exist and function correctly (there are bugs in the standard library functions supplied with some compilers) so that, to applications which include the SCORE header(s) and load with SCORE, all C implementations look the same.« less
Analysis and Characterization of the Mechanical Structure for the I-Tracker of the Mu2e Experiment
NASA Astrophysics Data System (ADS)
De Lorenzis, L.; Grancagnolo, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Zavarise, G.
2014-03-01
The design of a tracking detector for electrons in a magnetic field consisting of a drift chamber is discussed. The chosen materials for its construction must be light to minimize the effects of the subatomic particles interactions with the chamber walls. Low-density materials and very thin wall thicknesses are therefore needed. From a mechanical engineering point of view, it is important to analyse the drift chamber structure and define the conditions to which it is subject in terms of both mechanical loads and geometric constraints. The analysis of the structural response of the drift chamber has been performed through the Finite Element Method (FEM) as implemented in the commercial software ANSYS and its interface for the analysis for composite structures ACP (Ansys Composite Pre/Post).
Nonlinear analysis of concrete beams strengthened by date palm fibers
NASA Astrophysics Data System (ADS)
Bouzouaid, Samia; Kriker, Abdelouahed
2017-02-01
The behaviour of concrete beams strengthened with date palm fibers was studied by Nonlinear Finite Element Analysis using ANSYS software. Five beams that were experimentally tested in a previous research were considered. The results obtained from the ANSYS finite element analysis are compared with the experimental data for the five beams with different amounts of fibres, ranging from 0.2% to 0.5% by a step equal to 0.1% and with a fibre length of 0.04 m. The results obtained by FEA showed good agreement with those obtained by the experimental program. This research demonstrates the ability of FEA in predicting the behaviour of beams strengthened with Date Palm fibers. It will help researchers in studying beams with different configurations without the need to go through the lengthy experimental testing programs.
Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities.
Bogu, V Phanindra; Kumar, Y Ravi; Kumar Khanara, Asit
2017-01-01
This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.
Aerodynamic analysis of Audi A4 Sedan using CFD
NASA Astrophysics Data System (ADS)
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
Zhang, Lijun; Sun, Changyan
2018-04-18
Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing’s material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing’s surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.
NASA Astrophysics Data System (ADS)
Aslan, E.; Ozturk, Y.; Dileroglu, S.
2017-07-01
The focus of this study is to determine the most appropriate exhaust tail pipe form among three different type of designs with respect to their temperature loss efficiency for a 9.5m intercity bus equipped with an Euro VI diesel engine and an automated transmission. To provide lower temperatures at the exhaust outlet, mentioned designs were submitted on to a CFD simulation using Ansys Fluent 17.1, while for manufactured products, temperature measurement tests were conducted in an environmental chamber with Omega K-type thermocouples, and Flir T420 thermal camera was used to monitor outer surface temperature distributions to make a comparison between theoretical and practical results. In order to obtain these practical results, actual tests were performed in an environmental chamber with a constant ambient temperature during the vehicle exhaust emission system regeneration process. In conclusion, an exhaust tail pipe design with a diffuser having a circular contraction and expansion forms is designated since it was the most optimized option in terms of temperature loss efficiency, inconsiderable exhaust backpressure increase and manufacturing costs.
Homogenous and heterogeneous combustion in the secondary chamber of a straw-fired batch boiler
NASA Astrophysics Data System (ADS)
Szubel, Mateusz; Adamczyk, Wojciech; Basista, Grzegorz; Filipowicz, Mariusz
Currently, the attention of the producers of biomass batch boilers is mostly focused on the problem of the total efficiency of energy conversion, CO emissions as well as particulate matter emissions. Due to the regulations of the European Union, the emissions referred to above have to be kept at certain levels because of health considerations, but also because of the necessity to increase the efficiency of the devices. The paper presents the process of analysis of a straw-fired small-scale boiler. In this study, the early stage CFD model presented in a previous paper [1] has been improved and evaluated. Based on [2], an additional set of specimens participating in homogeneous gas reactions was assumed to describe the combustion process sufficiently. Associated Arrhenius parameters have been applied for the description of these reactions. ANSYS Fluent 16 has been used to perform the analysis and the analysis was focused on the CO emissions level as well as on the impact of the modelling approach on the result of the computing. Moreover, losses related to incomplete combustion have been calculated for each of the considered cases.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Pneumafil casing blower through moving reference frame (MRF) - A CFD simulation
NASA Astrophysics Data System (ADS)
Manivel, R.; Vijayanandh, R.; Babin, T.; Sriram, G.
2018-05-01
In this analysis work, the ring frame of Pneumafil casing blower of the textile mills with a power rating of 5 kW have been simulated using Computational Fluid Dynamics (CFD) code. The CFD analysis of the blower is carried out in Ansys Workbench 16.2 with Fluent using MRF solver settings. The simulation settings and boundary conditions are based on literature study and field data acquired. The main objective of this work is to reduce the energy consumption of the blower. The flow analysis indicated that the power consumption is influenced by the deflector plate orientation and deflector plate strip situated at the outlet casing of the blower. The energy losses occurred in the blower is due to the recirculation zones formed around the deflector plate strip. The deflector plate orientation is changed and optimized to reduce the energy consumption. The proposed optimized model is based on the simulation results which had relatively lesser power consumption than the existing and other cases. The energy losses in the Pneumafil casing blower are reduced through CFD analysis.
Swirling flow in bileaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.
2018-05-01
Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.
NASA Astrophysics Data System (ADS)
Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete
2018-04-01
In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.
Numerical Simulation of Flow in Fluidic Valves in Rotating Detonation Engines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Nandini
Rotating detonation engines (RDE) have received considerable research attention in recent times for use in propulsion systems. The cycle frequency of operation of an RDE can be as high as 10,000 Hz. Conventional mechanical valves cannot operate at such high frequencies, leading to the need for propellant injectors or valves with no moving parts. A fluidic valve is such a valve and is the focus of this study. The valve consists of an orifice connected to a constant area plenum cavity which operates at constant pressure. The fluidic valve supplies propellants to the detonation tube through the orifice. Hydrogen - oxygen detonation is studied in a tube with fluidic valves. A detailed 19-step chemical reaction mechanism has been used to model detonation and the flow simulated in ANSYS Fluent. This research aims to determine the location of contact surface in the cavity and the time taken for the contact surface to leave the valve after a shock wave has passed through it. This will help us understand if the steady-state flow in the cavity is comprised of detonation products or fresh propellants.
Sun, Changyan
2018-01-01
Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing’s material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing’s surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller. PMID:29670023
RANS Simulation (Rotating Reference Frame Model [RRF]) of Single Full Scale DOE RM1 MHK Turbine
Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto
2013-04-10
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry is modeled using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in both the near and far wake of the device at the desired operating conditions. The results of these simulations showed good agreement to the only publicly available numerical simulation of the device done in the NREL. Please see the attached paper.
Numerical analysis of steady and transient natural convection in an enclosed cavity
NASA Astrophysics Data System (ADS)
Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul
2017-06-01
The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.
Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.
2009-01-01
Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.
Bending of I-beam with the transvers shear effect included - FEM calculated
NASA Astrophysics Data System (ADS)
Grygorowicz, Magdalena; Lewiński, Jerzy
2016-06-01
The paper is devoted to three-point bending of an I-beam with include of transvers shear effect. Numerical calculations were conducted independently with the use of the SolidWorks system and the multi-purpose software package ANSYS The results of FEM study conducted with the use of two systems were compared and presented in tables and figures.
Bending of I-beam with the transvers shear effect included – FEM calculated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grygorowicz, Magdalena; Lewiński, Jerzy
2016-06-08
The paper is devoted to three-point bending of an I-beam with include of transvers shear effect. Numerical calculations were conducted independently with the use of the SolidWorks system and the multi-purpose software package ANSYS The results of FEM study conducted with the use of two systems were compared and presented in tables and figures.
Spring 2006. Industry Study. Information Technology Industry
2006-01-01
unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 i Information Technology 2006 ABSTRACT...integration of processors, coprocessors, memory, storage, etc. into a user-programmable final product. C . Software (Apple, Oracle): These firms...able to support the U.S. national security interests. C . Manufacturing: The personal computer manufacturing industry has also changed considerably
Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
Tang, C Y; Ng, G Y F; Wang, Z W; Tsui, C P; Zhang, G
2011-01-01
Numerous constitutive models describing the mechanical properties of tendons have been proposed during the past few decades. However, few were widely used owing to the lack of implementation in the general finite element (FE) software, and very few systematic studies have been done on selecting the most appropriate parameters for these constitutive laws. In this work, the visco-hyperelastic constitutive model of the tendon implemented through the use of three-parameter Mooney-Rivlin form and sixty-four-parameter Prony series were firstly analyzed using ANSYS FE software. Afterwards, an integrated optimization scheme was developed by coupling two optimization toolboxes (OPTs) of ANSYS and MATLAB for estimating these unknown constitutive parameters of the tendon. Finally, a group of Sprague-Dawley rat tendons was used to execute experimental and numerical simulation investigation. The simulated results showed good agreement with the experimental data. An important finding revealed that too many Maxwell elements was not necessary for assuring accuracy of the model, which is often neglected in most open literatures. Thus, all these proved that the constitutive parameter optimization scheme was reliable and highly efficient. Furthermore, the approach can be extended to study other tendons or ligaments, as well as any visco-hyperelastic solid materials.
Chang, Yang; Zhao, Xiao-zhuo; Wang, Cheng; Ning, Fang-gang; Zhang, Guo-an
2015-01-01
Inhalation injury is an important cause of death after thermal burns. This study was designed to simulate the velocity and temperature distribution of inhalation thermal injury in the upper airway in humans using computational fluid dynamics. Cervical computed tomography images of three Chinese adults were imported to Mimics software to produce three-dimensional models. After grids were established and boundary conditions were defined, the simulation time was set at 1 minute and the gas temperature was set to 80 to 320°C using ANSYS software (ANSYS, Canonsburg, PA) to simulate the velocity and temperature distribution of inhalation thermal injury. Cross-sections were cut at 2-mm intervals, and maximum airway temperature and velocity were recorded for each cross-section. The maximum velocity peaked in the lower part of the nasal cavity and then decreased with air flow. The velocities in the epiglottis and glottis were higher than those in the surrounding areas. Further, the maximum airway temperature decreased from the nasal cavity to the trachea. Computational fluid dynamics technology can be used to simulate the velocity and temperature distribution of inhaled heated air.
ANSI/ASHRAE/IES Standard 90.1-2010 Performance Rating Method Reference Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Supriya; Rosenberg, Michael I.
This document is intended to be a reference manual for the Appendix G Performance Rating Method (PRM) of ANSI/ASHRAE/IES Standard 90.1- 2010 (Standard 90.1-2010).The PRM is used for rating the energy efficiency of commercial and high-rise residential buildings with designs that exceed the requirements of Standard 90.1. The procedures and processes described in this manual are designed to provide consistency and accuracy by filling in gaps and providing additional details needed by users of the PRM. It should be noted that this document is created independently from ASHRAE and SSPC 90.1 and is not sanctioned nor approved by either ofmore » those entities . Potential users of this manual include energy modelers, software developers and implementers of “beyond code” energy programs. Energy modelers using ASHRAE Standard 90.1-2010 for beyond code programs can use this document as a reference manual for interpreting requirements of the Performance Rating method. Software developers, developing tools for automated creation of the baseline model can use this reference manual as a guideline for developing the rules for the baseline model.« less
Technical Support Document for Version 3.6.1 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2009-09-29
This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.
NASA Astrophysics Data System (ADS)
Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.
2018-03-01
Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.
NASA Astrophysics Data System (ADS)
Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.
2018-06-01
Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.
Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang
2017-05-01
Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.
NASA Astrophysics Data System (ADS)
Erçetin, Engin; Düşünür Doǧan, Doǧa
2017-04-01
The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling
Khajepour, Abolhasan; Rahmani, Faezeh
2017-01-01
In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.
A comparison of FE beam and continuum elements for typical nitinol stent geometries
NASA Astrophysics Data System (ADS)
Ballew, Wesley; Seelecke, Stefan
2009-03-01
With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.
ERIC Educational Resources Information Center
Zhang, Jianliang; Kalinowski, Joseph; Saltuklaroglu, Tim; Hudock, Daniel
2010-01-01
Background: Previous studies have found simultaneous increases in skin conductance response and decreases in heart rate when normally fluent speakers watched and listened to stuttered speech compared with fluent speech, suggesting that stuttering induces arousal and emotional unpleasantness in listeners. However, physiological responses of persons…
Fluent Aphasia in Telugu: A Case Comparison Study of Semantic Dementia and Stroke Aphasia
ERIC Educational Resources Information Center
Alladi, Suvarna; Mridula, Rukmini; Mekala, Shailaja; Rupela, Vani; Kaul, Subhash
2010-01-01
This study presents two cases with fluent aphasia in Telugu with semantic dementia and post-stroke fluent aphasia. Comparable scores were obtained on the conventional neuropsychological and language tests that were administered on the two cases. Both cases demonstrated fluent, grammatical and well-articulated speech with little content, impaired…
Structural analysis of a ship on global aspect using ANSYS
NASA Astrophysics Data System (ADS)
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
Analysis of particle size to erosion wear of sliding sleeve ball seat based on fluent software
NASA Astrophysics Data System (ADS)
Ding, Kun; Yin, Hongcheng; Wan, Bingqian; Cheng, Hao; Xiang, Lu; Li, Jianmin
2017-04-01
The fracturing has become the most offensive stimulation treatment in the low permeability reservoir. But, as the construction displacement and sand dosage of overlong horizontal well were increased continuously, the erosion wear of ball seat of pitching sliding sleeve was increasingly serious, which might lead to the failure of opening the sliding sleeve. In the existing literature, there were many researches on the erosion wear of liquid-solid two-phase flow in the diameter of sudden expansion pipe, but the influence of solid particle with mixed particle size to the erosion wear was not considered. This paper studied the erosion wear of ball seat according to the mixed proppant with different particle sizes, and carried out the numerical simulation with Fluent software with the Euler two-fluid theory. The results showed that: the erosion wear rate of ball seat is in inversely proportional to the particle size of proppant; the erosion wear rate of ball seat is different when the volume fraction of proppant with different particle sizes is changed; and for the mixed proppant of which the particle size is 0.3mm and 0.8mm, the erosion wear rate of ball seat is minimum when the volume fraction of proppant, of which the particle size is 0.3mm, is about 20%. The simulated result contributed to the deep study on erosion wear law of solid particle, and meanwhile, provided a certain reference basis for the selection of staged fracturing material of horizontal well.
Annotated Bibliography on Human Factors in Software Development
1979-06-01
Information Sciences, 1976, 5, 123-143. Shneiderman. B., Mayer, R., McKay, D., & Heller, P. Experimental investi- gations of the utility of flowcharts ...REPRESENTATIONS OF PROGRAMS, PRODUCTION SCHEDULIWG, AUTOMATIC FLOWCHARTING , -MAPFSR,- AND CERTIFICATION TECHNIQUES. EXAMPLES OF HOW THSSE AIOS AND METHODS CAN...PROCiSS ARE PRESENTED, AND THE ANALYSIS Of THREE SPECIFIC MODELS IS REVIEWED. (0)SP, 5R. . 65 FLOWCHARTING CHAPIN, N. FLOWCHARTING WITH THE ANSI
Study of scattering from turbulence structure generated by propeller with FLUENT
NASA Astrophysics Data System (ADS)
Luo, Gen
2017-07-01
In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.
Computational Fluid Dynamic simulations of pipe elbow flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and meshmore » were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation; secondary maxima in both quantities still occur near the elbow entrance on the inner radius. Which set of results better reflects reality must await experimental corroboration. Additional calculations demonstrate that whether or not FLUENT's radial equilibrium pressure distribution option is used in the PRESSURE OUTLET boundary condition has no significant impact on the flowfield near the elbow. Simulations performed with and without the chemical sensor and associated support bracket that were present in the experiments demonstrate that the latter have a negligible influence on the flow in the vicinity of the elbow. The fact that the maxima in wall shear stress and turbulent kinetic energy occur on the inner radius is therefore not an artifact of having introduced the sensor into the flow.« less
Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.
2016-05-01
Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.
Modeling and analysis of visual digital impact model for a Chinese human thorax.
Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He
2017-01-01
To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.
NASA Astrophysics Data System (ADS)
Galerkin, Y. B.; Voinov, I. B.; Drozdov, A. A.
2017-08-01
Computational Fluid Dynamics (CFD) methods are widely used for centrifugal compressors design and flow analysis. The calculation results are dependent on the chosen software, turbulence models and solver settings. Two of the most widely applicable programs are NUMECA Fine Turbo and ANSYS CFX. The objects of the study were two different stages. CFD-calculations were made for a single blade channel and for full 360-degree flow paths. Stage 1 with 3D impeller and vaneless diffuser was tested experimentally. Its flow coefficient is 0.08 and loading factor is 0.74. For stage 1 calculations were performed with different grid quality, a different number of cells and different models of turbulence. The best results have demonstrated the Spalart-Allmaras model and mesh with 1.854 million cells. Stage 2 with return channel, vaneless diffuser and 3D impeller with flow coefficient 0.15 and loading factor 0.5 was designed by the known Universal Modeling Method. Its performances were calculated by the well identified Math model. Stage 2 performances by CFD calculations shift to higher flow rate in comparison with design performances. The same result was obtained for stage 1 in comparison with measured performances. Calculated loading factor is higher in both cases for a single blade channel. Loading factor performance calculated for full flow path (“360 degrees”) by ANSYS CFX is in satisfactory agreement with the stage 2 design performance. Maximum efficiency is predicted accurately by the ANSYS CFX “360 degrees” calculation. “Sector” calculation is less accurate. Further research is needed to solve the problem of performances mismatch.
Biomechanical analysis of titanium fixation plates and screws in sagittal split ramus osteotomies.
Atik, F; Atac, M S; Özkan, A; Kılınc, Y; Arslan, M
2016-01-01
The aim of the study was to evaluate the mechanical behavior of three different fixation methods used in the bilateral sagittal split ramus osteotomy. Three different three-dimensional finite element models were created, each corresponding to three different fixation methods. The mandibles were fixed with double straight 4-hole, square 4-hole, and 5-hole Y plates. 150 N incisal occlusal loads were simulated on the distal segments. ANSYS software ((v 10; ANSYS Inc., Canonsburg, PA) was used to calculate the Von Mises stresses on fixative appliances. The highest Von Mises stress values were found in Y plate. The lowest values were isolated in double straight plate group. It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study.
Method to simulate and analyse induced stresses for laser crystal packaging technologies.
Ribes-Pleguezuelo, Pol; Zhang, Site; Beckert, Erik; Eberhardt, Ramona; Wyrowski, Frank; Tünnermann, Andreas
2017-03-20
A method to simulate induced stresses for a laser crystal packaging technique and the consequent study of birefringent effects inside the laser cavities has been developed. The method has been implemented by thermo-mechanical simulations implemented with ANSYS 17.0. ANSYS results were later imported in VirtualLab Fusion software where input/output beams in terms of wavelengths and polarization were analysed. The study has been built in the context of a low-stress soldering technique implemented for glass or crystal optics packaging's called the solderjet bumping technique. The outcome of the analysis showed almost no difference between the input and output laser beams for the laser cavity constructed with an yttrium aluminum garnet active laser crystal, a second harmonic generator beta-barium borate, and the output laser mirror made of fused silica assembled by the low-stress solderjet bumping technique.
Research on Impact Stress and Fatigue Simulation of a New Down-to-the-Hole Impactor Based on ANSYS
NASA Astrophysics Data System (ADS)
Wu, Tao; Wang, Wei; Yao, Aiguo; Li, Yongbo; He, Wangyong; Fei, Dongdong
2018-06-01
In the present work, a down-to-the-hole electric hammer driven by linear motor is reported for drilling engineering. It differs from the common hydraulic or pneumatic hammers in that it can be applied to some special occasions without circulating medium due to its independence of the drilling fluid. The impact stress caused by the reciprocating motion between stator and rotor and the fatigue damage in key components of linear motor are analyzed by the ANSYS Workbench software and 3D model. Based on simulation results, the hammer's structure is optimized by using special sliding bearing, increasing the wall thickness of key and multilayer buffer gasket. Fatigue life and coefficient issues of the new structure are dramatically improved. However buffer gasket reduces the impactor's energy, different bumper structure effect on life improving and energy loss have also been elaborated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura
The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less
A Bibliography of Software Engineering Terms.
1979-10-01
WHAT HAPPENS TO DATA, HOW DATA IS TRANSFORMED, AND HOW ONE CAN PARTITION THE PROCESS INTO SUBPROCESSES WITH A MINIMAL NEED OF DATA TRANSFERS. (DAN 323...ANSI-X3HI) 75 p 1 PARANORMAL TERMINATION UNSTRUCTURED ESCAPES (IN CONTROL) FROM A MODULE IN RESPONSE TO NORMAL EVENTS OR CONDITIONS. MODULES HAVING... PARANORMAL TERMINATIONS MAY YET EXHIBIT A FORM OF STRUCTURED CONTROL FLOW, IF PROPERLY CONFIGURED INTO " PARANORMAL EXTENSIONS" OF STRUCTURED PROGRAMMING
2017-12-01
2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for public release. Distribution is unlimited. COST ...from the scope of this demonstration due to time constraints. Further study of this software would benefit similar cost , schedule, and performance...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA SYSTEMS ENGINEERING CAPSTONE PROJECT REPORT Approved for public release. Distribution
Design and Test of a Transonic Axial Splittered Rotor
2015-06-15
AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the...geometric rendering and analysis of a transonic axial compressor rotor with splitter blades. Predictive numerical simulations were conducted and...Compressor, Splittered Rotor REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING
Finite Element Method Applied to Fuse Protection Design
NASA Astrophysics Data System (ADS)
Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin
2014-03-01
In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.
Su, Fan; Zhao, Ying; Su, Qin
2013-08-01
To evaluate the stress distribution of the cervical-defected incisor with labial or lingual endodontic access with finite element analysis (FEA), and to explore the advantage of resistance in labial endodontic access. 3-D finite element models of upper cervical-defected incisor were established using cone-beam CT (CBCT), Mimics Catia, and Ansys software. The subjects were categorized according to the two endodontic accesses and three restorative ways, which were composite resin, glass fiber-reinforced composite resin and glass fiber-reinforced post-crown. All the models were loaded.The von Mises stress values and distribution were recorded and analyzed with Ansys 10.0 software. In this study, direct composite resin restoration showed no significant difference between the labial and lingual access. In glass fiber-reinforced composite resin, labial access could transfer the stress concentration area. It could reduce the incidence of fracture of the cervical lesion but increase the incidence of root fracture. Post-crown restoration could obviously reduce the incidence of fracture of the cervical lesion. When the cervical-defected incisor is restored with composite resin, labial and lingual accesses can be considered. Labial access with glass fiber-reinforced composite resin or post-crown restoration is a good choice.
NASA Astrophysics Data System (ADS)
Sakamoto, Tatsuya; Iida, Tsutomu; Taguchi, Yutaka; Kurosaki, Shota; Hayatsu, Yusuke; Nishio, Keishi; Kogo, Yasuo; Takanashi, Yoshifumi
2012-06-01
We have fabricated an unconventional uni-leg structure thermoelectric generator (TEG) element using quad thermoelectric (TE) chips of Sb-doped n-Mg2Si, which were prepared by a plasma-activated sintering process. The power curve characteristics, the effect of aging up to 500 h, and the thermal gradients at several points on the module were investigated. The observed maximum output power with the heat source at 975 K and the heat sink at 345 K was 341 mW, from which the Δ T for the TE chip was calculated to be about 333 K. In aging testing in air ambient, a remarkable feature of the results was that there was no notable change from the initial resistance of the TEG module for as long as 500 h. The thermal distribution for the fabricated uni-leg TEG element was analyzed by finite-element modeling using ANSYS software. To tune the calculation parameters of ANSYS, such as the thermal conductance properties of the corresponding coupled materials in the module, precise measurements of the temperature at various probe points on the module were made. Then, meticulous verification between the measured temperature values and the results calculated by ANSYS was carried out to optimize the parameters.
NASA Astrophysics Data System (ADS)
Sahu, M. K.; Pandey, K. M.; Chatterjee, S.
2018-05-01
In this two dimensional numerical investigation, small rectangular channel with right angled triangular protrusions in the bottom wall of test section is considered. A slot nozzle is placed at the middle of top wall of channel which impinges air normal to the protruded surface. A duct flow and nozzle flow combined to form cross flow which is investigated for heat transfer enhancement of protruded channel. The governing equations for continuity, momentum, energy along with SST k-ω turbulence model are solved with finite volume based Computational fluid dynamics code ANSYS FLUENT 14.0. The range of duct Reynolds number considered for this analysis is 8357 to 51760. The ratios of pitch of protrusion to height of duct considered are 0.5, 0.64 and 0.82. The ratios of height of protrusion to height of duct considered are 0.14, 0.23 and 0.29. The effect of duct Reynolds number, pitch and height of protrusion on thermal-hydraulic performance is studied under cross flow condition. It is found that heat transfer rate is more at relatively larger pitch and small pressure drop is found in case of low height of protrusion.
NASA Astrophysics Data System (ADS)
Almsater, Saleh; Saman, Wasim; Bruno, Frank
2017-06-01
Numerical study for phase change material (PCM) in high temperature vertical triplex tube thermal energy storage system (TTTESS) were performed, using ANSYS FLUENT 15. For validation purposes, numerical modelling of a low temperature PCM was initially conducted and the predicted results were compared with the numerical and experimental data from the literature. The average temperature for freezing and melting agree well with the results from the literature. The validated model for the low temperature PCM was extended to high temperature TTTESS; the supercritical CO2 as the heat transfer fluid (HTF) flows in the inside and outside tubes during the charging and discharging processes, whereas the Lithium and Potassium carbonate (Li2CO3-K2CO3) (35%-65%) as the PCM is enclosed between them. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. This study also provides results demonstrating the effect of adding more fins relative to the case of no fins on the freezing and melting fraction of the PCM. Compared to 2 tank system, the TTTESS with eight fins can provide significant performance with less size.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Computational studies of an intake manifold for restricted engine application
NASA Astrophysics Data System (ADS)
Prasetyo, Bagus Dwi; Ubaidillah, Maharani, Elliza Tri; Setyohandoko, Gabriel; Idris, Muhammad Idzdihar
2018-02-01
The Formula Society of Automotive Engineer (FSAE) student competition is an international contest for a vehicle that entirely designed and built by students from various universities. The engine design in the Formula SAE competition has to comply a tight regulation. Concerning the engine intake line, an air restrictor of circular cross-section less than 20 mm must be fitted between the throttle valve and the engine inlet. The throat is aimed to limit the engine air flow rate as it strongly influences the volumetric efficiency and then the maximum power. This article focuses on the design of the engine intake system of the Bengawan FSAE team vehicle to optimize the engine power output and its stability. The performance of engine intake system is studied through computational fluid dynamics (CFD). The objective of CFD is to know the pressure, velocity, and airflow of the air intake manifold for the best performance of the engine. The three-dimensional drawing of the intake manifold was made, and CFD simulation was conducted using ANSYS FLUENT. Two models were studied. The result shows that the different design produces a different value of the velocity of airflow and the kind of flow type.
New approach to reducing water consumption in commercial kitchen hood
NASA Astrophysics Data System (ADS)
Asmuin, N.; Pairan, M. R.
2017-09-01
Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.
Bilinauskaite, Milda; Mantha, Vishveshwar Rajendra; Rouboa, Abel Ilah; Ziliukas, Pranas; Silva, Antonio Jose
2013-01-01
The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases. PMID:23691493
NASA Astrophysics Data System (ADS)
Afroz, Farhana; Sharif, Muhammad A. R.
2018-04-01
Generation of adverse pressure gradient (APG) in the boundary layer over a plane wall using a rotating cylinder close to the wall has been numerically investigated for a range of the freestream Reynolds number (50 ≤ Re ≤ 400), the cylinder rotation rate (0 ≤ α ≤ 2), and the cylinder to wall gap (0.125 ≤ G/D ≤ 2). Various combinations of these flow parameters have been considered and the transient flow is computed using the ANSYS Fluent CFD code. The magnitude of the APG has been quantified. The influence of the freestream Reynolds number on the dynamics of flow separation and cylinder wake has been examined. Reynolds number has strong effect on bubble size properties and APG magnitude. Drag and lift force coefficient on the cylinder are also computed which are found to be strong function of the Reynolds number. Higher Reynolds number results in complex laminar separation bubble on the wall. A parametric demarcation map showing the threshold combinations of the flow parameters for transition from steady to periodic unsteady flow is generated.
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu
2018-03-01
Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.
Liquefaction Study of Gaseous Oxygen Inside Mars Ascent Vehicle Propellant Tank
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen
2017-01-01
The in-situ production of propellants for Mars missions will utilize carbon dioxide (CO2) in the Mars atmosphere to produce oxygen. The oxygen then needs to be cooled, liquefied, and stored to be available for Mars ascent propulsion, which could be up to 2 years after liquefaction starts. Recent investigations have demonstrated the feasibility of both achieving zero boiloff and controlling the pressure of oxygen within a tank using high-efficiency reverse turbo-Brayton-cycle cryocoolers. A tube-on-tank configuration is being studied in this work. The cooling fluid circulating in the cryocooler system is routed through a network of cooling tubes on the oxygen tank. The oxygen gas produced from the in-situ production process is introduced into the chilled tank. A series of analysis of this configuration has been performed to investigate the liquefaction rate inside the tank, the thermal gradient near the top of the tank where the oxygen gas feeding tubing is located. The analyses include 2D axisymmetric CFD analysis using ANSYS Fluent, 1D thermal analysis using Matlab, and 3D thermal analysis using MSC Patran/pthermal. These three models correlate and validate each other.
NASA Astrophysics Data System (ADS)
Choubey, Gautam; Pandey, K. M.
2017-04-01
Numerical analysis of the supersonic combustion and flow structure through a scramjet engine at Mach 7 with alternating wedge fuel injection and with three angle of attack (α=-3°, α=0°, α=3°) have been studied in the present research article. The configuration used here is slight modification of the Rabadan et al. scramjet model. Steady two dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulation and Shear stress transport (SST) based on k-ω turbulent model is used to predict the shock structure and combustion phenomenon inside the scramjet combustor. All the simulations are done by using Ansys 14-Fluent code. The combustion model used here is the combination of eddy dissipation and finite rate chemistry models since this model avoids Arrhenius calculations in which reaction rates are controlled by turbulence. Present results show that the geometry with negative angle of attack (α=-3°) have lowest ignition delay and it improves the performance of scramjet combustor as compared to geometry with α=0°, α=3°. The combustion phenomena and efficiency is also found to be stronger and highest in case of α=-3°.
NASA Astrophysics Data System (ADS)
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling
NASA Astrophysics Data System (ADS)
Yavuz, Mehmet Metin; Guden, Yigitcan
2014-11-01
Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.
Argonne Bubble Experiment Thermal Model Development III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Cynthia Eileen
This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development” and “Argonne Bubble Experiment Thermal Model Development II”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at beam power levels between 6 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was recorded. The previous report2 described the Monte-Carlo N-Particle (MCNP) calculations and Computational Fluid Dynamics (CFD) analysis performed on the as-built solution vesselmore » geometry. The CFD simulations in the current analysis were performed using Ansys Fluent, Ver. 17.2. The same power profiles determined from MCNP calculations in earlier work were used for the 12 and 15 kW simulations. The primary goal of the current work is to calculate the temperature profiles for the 12 and 15 kW cases using reasonable estimates for the gas generation rate, based on images of the bubbles recorded during the irradiations. Temperature profiles resulting from the CFD calculations are compared to experimental measurements.« less
Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler
NASA Astrophysics Data System (ADS)
Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan
2017-04-01
This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.
An Analysis of SE and MBSE Concepts to Support Defence Capability Acquisition
2014-09-01
Government Department of Finance and Deregulation, Canberra, ACT, August 2011. [online] URL: http://agimo.gov.au/files/2012/04/AGA_RM_v3_0.pdf ANSI...First Time, White Paper, Aberdeen Group Group, August 2011. [online] URL: http://www.aberdeen.com/Aberdeen- Library/7121/RA-system-design...Edge e-zine, IBM Software Group, August 2003. Cantor 2003b Cantor, Murray, Rational Unified Process for Systems Engineering Part I1: System
Analysis of seismic stability of large-sized tank VST-20000 with software package ANSYS
NASA Astrophysics Data System (ADS)
Tarasenko, A. A.; Chepur, P. V.; Gruchenkova, A. A.
2018-05-01
The work is devoted to the study of seismic stability of vertical steel tank VST-20000 with due consideration of the system response “foundation-tank-liquid”, conducted on the basis of the finite element method, modal analysis and linear spectral theory. The calculations are performed for the tank model with a high degree of detailing of metallic structures: shells, a fixed roof, a bottom, a reinforcing ring.
Neal, Richard D; Ali, Nasreen; Atkin, Karl; Allgar, Victoria L; Ali, Shahid; Coleman, Tim
2006-01-01
Background The UK South Asian population has poorer health outcomes. Little is known about their process of care in general practice, or in particular the process of communication with GPs. Aim To compare the ways in which white and South Asian patients communicate with white GPs. Design of study Observational study of video-recorded consultations using the Roter Interactional Analysis System (RIAS). Setting West Yorkshire, UK. Method One hundred and eighty–three consultations with 11 GPs in West Yorkshire, UK were video-recorded and analysed. Results Main outcome measures were consultation length, verbal domination, 16 individual abridged RIAS categories, and three composite RIAS categories; with comparisons between white patients, South Asian patients fluent in English and South Asian patients non-fluent in English. South Asians fluent in English had the shortest consultations and South Asians non-fluent in English the longest consultations (one-way ANOVA F = 7.173, P = 0.001). There were no significant differences in verbal domination scores between the three groups. White patients had more affective (emotional) consultations than South Asian patients, and played a more active role in their consultations, as did their GPs. GPs spent less time giving information to South Asian patients who were not fluent in English and more time asking questions. GPs spent less time giving information to South Asian patients fluent in English compared with white patients. Conclusions These findings were expected between patients fluent and non-fluent in English but do demonstrate their nature. The differences between white patients and South Asian patients fluent in English warrant further explanation. How much of this was due to systematic differences in behaviour by the GPs, or was in response to patients' differing needs and expectations is unknown. These differences may contribute to differences in health outcomes. PMID:17132355
NASA Technical Reports Server (NTRS)
Vinci, Samuel, J.
2012-01-01
This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.
Comparison of numerical simulations to experiments for atomization in a jet nebulizer.
Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra
2013-01-01
The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters.
Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer
Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra
2013-01-01
The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters. PMID:24244334
What’s the Story? The Tale of Reading Fluency Told at Speed
Benjamin, Christopher F. A.; Gaab, Nadine
2012-01-01
Fluent readers process written text rapidly and accurately, and comprehend what they read. Historically, reading fluency has been modeled as the product of discrete skills such as single word decoding. More recent conceptualizations emphasize that fluent reading is the product of competency in, and the coordination of, multiple cognitive sub-skills (a multi-componential view). In this study, we examined how the pattern of activation in core reading regions changes as the ability to read fluently is manipulated through reading speed. We evaluated 13 right-handed adults with a novel fMRI task assessing fluent sentence reading and lower-order letter reading at each participant’s normal fluent reading speed, as well as constrained (slowed) and accelerated reading speeds. Comparing fluent reading conditions with rest revealed regions including bilateral occipito-fusiform, left middle temporal, and inferior frontal gyral clusters across reading speeds. The selectivity of these regions’ responses to fluent sentence reading was shown by comparison with the letter reading task. Region of interest analyses showed that at constrained and accelerated speeds these regions responded significantly more to fluent sentence reading. Critically, as reading speed increased, activation increased in a single reading-related region: occipital/fusiform cortex (left > right). These results demonstrate that while brain regions engaged in reading respond selectively during fluent reading, these regions respond differently as the ability to read fluently is manipulated. Implications for our understanding of reading fluency, reading development, and reading disorders are discussed. PMID:21954000
CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.
2010-04-01
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.
Numerical Simulation in a Supercirtical CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Gaol, Xiang; Luo, Zhongyang; Jiang, Xiaoguo
The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many unknowns and challenges that should be identified and resolved during the development. In order to realize a reasonable and reliable design of the hot circulation loop, numerical simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. The working condition of hot circulation loop flow field, gas-solid flow affected by three unsymmetrical cyclones, air distribution and pressure drop in furnace were analyzed. The simulation results showed that the general arrangement of the 600MWe supercritical CFB boiler is reasonable.
Analysis of dangerous area of single berth oil tanker operations based on CFD
NASA Astrophysics Data System (ADS)
Shi, Lina; Zhu, Faxin; Lu, Jinshu; Wu, Wenfeng; Zhang, Min; Zheng, Hailin
2018-04-01
Based on the single process in the liquid cargo tanker berths in the state as the research object, we analyzed the single berth oil tanker in the process of VOCs diffusion theory, built network model of VOCs diffusion with Gambit preprocessor, set up the simulation boundary conditions and simulated the five detection point sources in specific factors under the influence of VOCs concentration change with time by using Fluent software. We analyzed the dangerous area of single berth oil tanker operations through the diffusion of VOCs, so as to ensure the safe operation of oil tanker.
Fluent aphasia in children: definition and natural history.
Klein, S K; Masur, D; Farber, K; Shinnar, S; Rapin, I
1992-01-01
We compared the course of a preschool child we followed for 4 years with published reports of 24 children with fluent aphasia. Our patient spoke fluently within 3 weeks of the injury. She was severely anomic and made many semantic paraphasic errors. Unlike other children with fluent aphasia, her prosody of speech was impaired initially, and her spontaneous language was dominated by stock phrases. Residual deficits include chronic impairment of auditory comprehension, repetition, and word retrieval. She has more disfluencies in spontaneous speech 4 years after her head injury than acutely. School achievement in reading and mathematics remains below age level. Attention to the timing of recovery of fluent speech and to the characteristics of receptive and expressive language over time will permit more accurate description of fluent aphasia in childhood.
Improvement of film cooling effectiveness with a small downstream block body
NASA Astrophysics Data System (ADS)
Khorsi, A.; Guelailia, A.; Hamidou, M. K.
2016-07-01
The aim of this study is to predict the improvement in film cooling performance over a flat plate through a single row of cylindrical holes with different streamwise angles by using the Ansys CFX software package. In order to improve the film cooling effectiveness, a short crescent-shaped block is placed downstream of a cylindrical cooling hole. The numerical results of the cylindrical hole without the downstream short crescent-shaped block are compared with experimental data.
2011-10-01
Systems engineer- ing knowledge has also been documented through the standards bodies, most notably : • ISO /IEC/IEEE 15288, Systems Engineer- ing...System Life Cycle Processes, 2008 (see [10]). • ANSI/EIA 632, Processes for Engineering a System, (1998) • IEEE 1220, ISO /IEC 26702 Application...tion • United States Defense Acquisition Guidebook, Chapter 4, June 27, 2011 • IEEE/EIA 12207 , Software Life Cycle Processes, 2008 • United
Updated Fatigue-Crack-Growth And Fracture-Mechanics Software
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Shivakumar, Venkataraman; Newman, James C., Jr.
1995-01-01
NASA/FLAGRO 2.0 developed as analytical aid in predicting growth and stability of preexisting flaws and cracks in structural components of aerospace systems. Used for fracture-control analysis of space hardware. Organized into three modules to maximize efficiency in operation. Useful in: (1) crack-instability/crack-growth analysis, (2) processing raw crack-growth data from laboratory tests, and (3) boundary-element analysis to determine stresses and stress-intensity factors. Written in FORTRAN 77 and ANSI C.
Biomechanical Modeling and Measurement of Blast Injury and Hearing Protection Mechanisms
2015-10-01
12 software into Workbench V. 15 in CFX/ANSYS; 2) building the geometry of the ear model with ossicular chain and cochlear load in CFX; 3...the ear canal to middle ear. The model consists of the ear canal, TM, middle ear ossicles and suspensory ligaments, middle ear cavity, and cochlear ...the TM, ossicles, and ligaments/muscle tendons with the cochlear load applied on the stapes footplate. 17 Fig. 21. Time-history plots of
Focus on Resiliency: A Process-Oriented Approach to Security
2005-11-01
by ANSI Std Z39-18 © 2005 Carnegie Mellon University CSI v1.0 2 Agenda About the SEI Characterizing the problem Security, resiliency, and risk A...2005 Carnegie Mellon University CSI v1.0 5 SEI Technical Programs Product Line Systems Dynamic Systems Software Engineering Process Management...University CSI v1.0 7 What is the problem? Is your organization’s security capability sufficient to identify and manage risks that result from failed
Hose, D R; Lawford, P V; Narracott, A J; Penrose, J M T; Jones, I P
2003-01-01
Fluid-solid interaction is a primary feature of cardiovascular flows. There is increasing interest in the numerical solution of these systems as the extensive computational resource required for such studies becomes available. One form of coupling is an external weak coupling of separate solid and fluid mechanics codes. Information about the stress tensor and displacement vector at the wetted boundary is passed between the codes, and an iterative scheme is employed to move towards convergence of these parameters at each time step. This approach has the attraction that separate codes with the most extensive functionality for each of the separate phases can be selected, which might be important in the context of the complex rheology and contact mechanics that often feature in cardiovascular systems. Penrose and Staples describe a weak coupling of CFX for computational fluid mechanics to ANSYS for solid mechanics, based on a simple Jacobi iteration scheme. It is important to validate the coupled numerical solutions. An extensive analytical study of flow in elastic-walled tubes was carried out by Womersley in the late 1950s. This paper describes the performance of the coupling software for the straight elastic-walled tube, and compares the results with Womersley's analytical solutions. It also presents preliminary results demonstrating the application of the coupled software in the context of a stented vessel.
Singh, S Vijay; Bhat, Manohar; Gupta, Saurabh; Sharma, Deepak; Satija, Harsha; Sharma, Sumeet
2015-01-01
A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post.
NASA Astrophysics Data System (ADS)
Armenio, Vincenzo; Fakhari, Ahmad; Petronio, Andrea; Padovan, Roberta; Pittaluga, Chiara; Caprino, Giovanni
2015-11-01
Massive flow separation is ubiquitous in industrial applications, ruling drag and hydrodynamic noise. In spite of considerable efforts, its numerical prediction still represents a challenge for CFD models in use in engineering. Aside commercial software, over the latter years the opensource software OpenFOAMR (OF) has emerged as a valid tool for prediction of complex industrial flows. In the present work, we simulate two flows representative of a class of situations occurring in industrial problems: the flow around sphere and that around a wall-mounted square cylinder at Re = 10000 . We compare the performance two different tools, namely OF and ANSYS CFX 15.0 (CFX) using different unstructured grids and turbulence models. The grids have been generated using SNAPPYHEXMESH and ANSYS ICEM CFD 15.0 with different near wall resolutions. The codes have been run in a RANS mode using k - ɛ model (OF) and SST - k - ω (CFX) with and without wall-layer models. OF has been also used in LES, WMLES and DES mode. Regarding the sphere, RANS models were not able to catch separation, while good prediction of separation and distribution of stresses over the surface were obtained using LES, WMLES and DES. Results for the second test case are currently under analysis. Financial support from COSMO ``cfd open source per opera mortta'' PAR FSC 2007-2013, Friuli Venezia Giulia.
NASA Astrophysics Data System (ADS)
Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.
2012-06-01
Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.
Multi-canister overpack project -- verification and validation, MCNP 4A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldmann, L.H.
This supporting document contains the software verification and validation (V and V) package used for Phase 2 design of the Spent Nuclear Fuel Multi-Canister Overpack. V and V packages for both ANSYS and MCNP are included. Description of Verification Run(s): This software requires that it be compiled specifically for the machine it is to be used on. Therefore to facilitate ease in the verification process the software automatically runs 25 sample problems to ensure proper installation and compilation. Once the runs are completed the software checks for verification by performing a file comparison on the new output file and themore » old output file. Any differences between any of the files will cause a verification error. Due to the manner in which the verification is completed a verification error does not necessarily indicate a problem. This indicates that a closer look at the output files is needed to determine the cause of the error.« less
Listeners' identification and discrimination of digitally manipulated sounds as prolongations.
Kawai, Norimune; Healey, E Charles; Carrell, Thomas D
2007-08-01
The present study had two main purposes. One was to examine if listeners perceive gradually increasing durations of a voiceless fricative categorically ("fluent" versus "stuttered") or continuously (gradient perception from fluent to stuttered). The second purpose was to investigate whether there are gender differences in how listeners perceive various duration of sounds as "prolongations." Forty-four listeners were instructed to rate the duration of the // in the word "shape" produced by a normally fluent speaker. The target word was embedded in the middle of an experimental phrase and the initial // sound was digitally manipulated to create a range of fluent to stuttered sounds. This was accomplished by creating 20 ms stepwise increments for sounds ranging from 120 to 500 ms in duration. Listeners were instructed to give a rating of 1 for a fluent word and a rating of 100 for a stuttered word. The results showed listeners perceived the range of sounds continuously. Also, there was a significant gender difference in that males rated fluent sounds higher than females but female listeners rated stuttered sounds higher than males. The implications of these results are discussed.
Next-Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William; Fitzgerald, Matthew; Stahl, Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.
Next Generation Lightweight Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-01-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu
2014-10-01
This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Design and Simulation of an Electrothermal Actuator Based Rotational Drive
NASA Astrophysics Data System (ADS)
Beeson, Sterling; Dallas, Tim
2008-10-01
As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.
Simulation study of air and water cooled photovoltaic panel using ANSYS
NASA Astrophysics Data System (ADS)
Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.
2017-10-01
Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.
Study on installation of the submersible mixer
NASA Astrophysics Data System (ADS)
Tian, F.; Shi, W. D.; He, X. H.; Jiang, H.; Xu, Y. H.
2013-12-01
Study on installation of the submersible mixer for sewage treatment has been limited. In this article, large-scale computational fluid dynamics software FLUENT6.3 was adopted. ICEM software was used to build an unstructured grid of sewage treatment pool. After that, the sewage treatment pool was numerically simulated by dynamic coordinate system technology and RNG k-ε turbulent model and PIOS algorithm. Agitation pools on four different installation location cases were simulated respectively, and the external characteristic of the submersible mixer and the velocity cloud of the axial section were respectively comparatively analyzed. The best stirring effect can be reached by the installation location of case C, which is near the bottom of the pool 600 mm and blade distance the bottom at least for 200 mm wide and wide edge and narrow edge distance by 4:3. The conclusion can guide the engineering practice.
NASA Astrophysics Data System (ADS)
Johnson, Ryan William
2005-07-01
Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the general science of Laser Chemical Vapor Deposition and to elucidate the practicality of fabricating ceramic-metal composites using the process.
Heat transfer and fluid flow analysis of self-healing in metallic materials
NASA Astrophysics Data System (ADS)
Martínez Lucci, J.; Amano, R. S.; Rohatgi, P. K.
2017-03-01
This paper explores imparting self-healing characteristics to metal matrices similar to what are observed in biological systems and are being developed for polymeric materials. To impart self-healing properties to metal matrices, a liquid healing method was investigated; the met hod consists of a container filled with low melting alloy acting as a healing agent, embedded into a high melting metal matrix. When the matrix is cracked; self-healing is achieved by melting the healing agent allowing the liquid metal to flow into the crack. Upon cooling, solidification of the healing agent occurs and seals the crack. The objective of this research is to investigate the fluid flow and heat transfer to impart self-healing property to metal matrices. In this study, a dimensionless healing factor, which may help predict the possibility of healing is proposed. The healing factor is defined as the ratio of the viscous forces and the contact area of liquid metal and solid which prevent flow, and volume expansion, density, and velocity of the liquid metal, gravity, crack size and orientation which promote flow. The factor incorporates the parameters that control self-healing mechanism. It was observed that for lower values of the healing factor, the liquid flows, and for higher values of healing factor, the liquid remains in the container and healing does not occur. To validate and identify the critical range of the healing factor, experiments and simulations were performed for selected combinations of healing agents and metal matrices. The simulations were performed for three-dimensional models and a commercial software 3D Ansys-Fluent was used. Three experimental methods of synthesis of self-healing composites were used. The first method consisted of creating a hole in the matrices, and liquid healing agent was poured into the hole. The second method consisted of micro tubes containing the healing agent, and the third method consisted of incorporating micro balloons containing the healing agent in the matrix. The observed critical range of the healing factor is between 407 and 495; only for healing factor values below 407 healing was observed in the matrices.
Effect of boundary conditions on thermal plume growth
NASA Astrophysics Data System (ADS)
Kondrashov, A.; Sboev, I.; Rybkin, K.
2016-07-01
We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.
Achieving better cooling of turbine blades using numerical simulation methods
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.
2013-02-01
A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.
Research on Characteristics of New Energy Dissipation With Symmetrical Structure
NASA Astrophysics Data System (ADS)
Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang
2018-03-01
Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.
Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins
NASA Astrophysics Data System (ADS)
Vodiannikov, Mikhail A.; Kashevarova, Galina G., Dr.
2017-06-01
In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS software, as well as experimental findings. Dependence diagrams are shown; comparative analysis of the results obtained is conducted.
2016-10-01
testing as well as finite element simulation. Automation and control testing has been completed on a 5x5 array of bubble actuators to verify pressure...mechanical behavior at varying loads and internal pressures both by experimental testing as well as finite element simulation. Automation and control...A finite element (FE) model of the bubble actuator was developed in the commercial software ANSYS in order to determine the deformation of the
Electronic Biometric Transmission Specification. Version 1.2
2006-11-08
Prescribed by ANSI Std Z39-18 Electronic Biometric Transmission Specification DIN: DOD_BTF_TS_EBTS_ Nov06_01.02.00 i Revision History Revision...contains: • the ORI • a Greenwich Mean (a.k.a. Zulu or UTC) date/time stamp • a code for the software used at the point of collection/transmission...long names and would generally include the tribe name. Subfield 1 Item 1 Character Type AS Characters 1 to 50 Special Characters: Any 7-bit non
Neural-Network-Development Program
NASA Technical Reports Server (NTRS)
Phillips, Todd A.
1993-01-01
NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements
Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces
NASA Astrophysics Data System (ADS)
Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.
2017-10-01
The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.
Computational Analysis of Human Blood Flow
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
How Do Fluent and Poor Readers' Endurance Differ in Reading?
ERIC Educational Resources Information Center
Bastug, Muhammet; Keskin, Hasan Kagan; Akyol, Mustafa
2017-01-01
It was observed in this research how endurance status of fluent readers and poor readers changed as the text became longer. 40 students of the primary school 4th-grade, 20 were fluent readers and other 20 were poor readers, participated in the research. A narrative text was utilised in the data collection process. Students' oral readings were…
Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.
NASA Technical Reports Server (NTRS)
Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.
1995-01-01
This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
Wind conditions in urban layout - Numerical and experimental research
NASA Astrophysics Data System (ADS)
Poćwierz, Marta; Zielonko-Jung, Katarzyna
2018-01-01
This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.
Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit
NASA Astrophysics Data System (ADS)
Samsun, Remzi Can; Krupp, Carsten; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef
2016-01-01
As auxiliary power units in trucks and aircraft, fuel cell systems with a diesel and kerosene reforming capacity offer the dual benefit of reduced emissions and fuel consumption. In order to be commercially viable, these systems require a quick start-up time with low energy input. In pursuit of this end, this paper reports an electrical start-up strategy for diesel fuel processing. A transient computational fluid dynamics model is developed to optimize the start-up procedure of the fuel processor in the 28 kWth power class. The temperature trend observed in the experiments is reproducible to a high degree of accuracy using a dual-cell approach in ANSYS Fluent. Starting from a basic strategy, different options are considered for accelerating system start-up. The start-up time is reduced from 22 min in the basic case to 9.5 min, at an energy consumption of 0.4 kW h. Furthermore, an electrical wire is installed in the reformer to test the steam generation during start-up. The experimental results reveal that the generation of steam at 450 °C is possible within seconds after water addition to the reformer. As a result, the fuel processor can be started in autothermal reformer mode using the electrical concept developed in this work.
An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment
NASA Astrophysics Data System (ADS)
Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo
2017-02-01
Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.
The effect of soot modeling on thermal radiation in buoyant turbulent diffusion flames
NASA Astrophysics Data System (ADS)
Snegirev, A.; Kokovina, E.; Tsoy, A.; Harris, J.; Wu, T.
2016-09-01
Radiative impact of buoyant turbulent diffusion flames is the driving force in fire development. Radiation emission and re-absorption is controlled by gaseous combustion products, mainly CO2 and H2O, and by soot. Relative contribution of gas and soot radiation depends on the fuel sooting propensity and on soot distribution in the flame. Soot modeling approaches incorporated in big commercial codes were developed and calibrated for momentum-dominated jet flames, and these approaches must be re-evaluated when applied to the buoyant flames occurring in fires. The purpose of this work is to evaluate the effect of the soot models available in ANSYS FLUENT on the predictions of the radiative fluxes produced by the buoyant turbulent diffusion flames with considerably different soot yields. By means of large eddy simulations, we assess capability of the Moss-Brooks soot formation model combined with two soot oxidation submodels to predict methane- and heptane-fuelled fires, for which radiative flux measurements are available in the literature. We demonstrate that the soot oxidation models could be equally important as soot formation ones to predict the soot yield in the overfire region. Contribution of soot in the radiation emission by the flame is also examined, and predicted radiative fluxes are compared to published experimental data.
Wind-Driven Natural Ventilation Design Of Walk-Up Apartment In Coastal Region North Jakarta
NASA Astrophysics Data System (ADS)
Nugrahanti, Fathina I.; Yasin, P. E.; Nurdini, A.
2018-05-01
Housing has been the second most energy-consuming sector in Indonesia nowadays. According to the data released by government, the biggest consumption in housing sector is the use of air conditioning. This consumption will significantly rise in metropolitan-high density city like Jakarta along with the increase of vertical housing supply. This research focus on design iteration to achieve optimum model of wind-driven naturally ventilated housing. Cilincing District, North Jakarta, known as industrial and settlement area is used as case study. Since the location by the bay area, Cilincing represents the characteristic of tropical coastal area. This research utilizes the tropical coastal characteristic especially wind to design a naturally ventilated housing. Various building elements are determined as variables and tested using Ansys Fluent CFD simulator to achieve thermal comfort stadard by SNI 03-6572-2001. Preliminary results shows that unlinear (zig-zag) building layout and combination of various building distances give big impact to airflow movement around the buildings. Narrowing building distance in the middle of the site can create a kind-of tunnel / trap that strengthen the wind along the site. Inlet and outlet area should be balance to avoid uneven airflow distribution inside the room and located in different level to maximize cross-ventilation.
NASA Astrophysics Data System (ADS)
Viktorov, Vladimir; Nimafar, Mohammad
2013-05-01
This study introduces a novel generation of 3D splitting and recombination (SAR) passive micromixer with microstructures placed on the top and bottom floors of microchannels called a ‘chain mixer’. Both experimental verification and numerical analysis of the flow structure of this type of passive micromixer have been performed to evaluate the mixing performance and pressure drop of the microchannel, respectively. We propose here two types of chain mixer—chain 1 and chain 2—and compare their mixing performance and pressure drop with other micromixers, T-, o- and tear-drop micromixers. Experimental tests carried out in the laminar flow regime with a low Reynolds number range, 0.083 ≤ Re ≤ 4.166, and image-based techniques are used to evaluate the mixing efficiency. Also, the computational fluid dynamics code, ANSYS FLUENT-13.0 has been used to analyze the flow and pressure drop in the microchannel. Experimental results show that the chain and tear-drop mixer's efficiency is very high because of the SAR process: specifically, an efficiency of up to 98% can be achieved at the tested Reynolds number. The results also show that chain mixers have a lower required pressure drop in comparison with a tear-drop micromixer.
Investigation of the capillary flow through open surface microfluidic structures
NASA Astrophysics Data System (ADS)
Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet
2017-02-01
The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.
NASA Astrophysics Data System (ADS)
Chandra, Shubham; Rao, Balkrishna C.
2017-06-01
The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.
Verification of kinetic schemes of hydrogen ignition and combustion in air
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Fedorova, N. N.; Vankova, O. S.; Tropin, D. A.
2018-03-01
Three chemical kinetic models for hydrogen combustion in oxygen and three gas-dynamic models for reactive mixture flow behind the initiating SW front were analyzed. The calculated results were compared with experimental data on the dependences of the ignition delay on the temperature and the dilution of the mixture with argon or nitrogen. Based on detailed kinetic mechanisms of nonequilibrium chemical transformations, a mathematical technique for describing the ignition and combustion of hydrogen in air was developed using the ANSYS Fluent code. The problem of ignition of a hydrogen jet fed coaxially into supersonic flow was solved numerically. The calculations were carried out using the Favre-averaged Navier-Stokes equations for a multi-species gas taking into account chemical reactions combined with the k-ω SST turbulence model. The problem was solved in several steps. In the first step, verification of the calculated and experimental data for the three kinetic schemes was performed without considering the conicity of the flow. In the second step, parametric calculations were performed to determine the influence of the conicity of the flow on the mixing and ignition of hydrogen in air using a kinetic scheme consisting of 38 reactions. Three conical supersonic nozzles for a Mach number M = 2 with different expansion angles β = 4°, 4.5°, and 5° were considered.
RANS Simulation (Rotating Reference Frame Model [RRF]) of Single Lab-Scaled DOE RM1 MHK Turbine
Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph
2014-04-15
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study taking advantage of the symmetry of lab-scaled DOE RM1 geometry, only half of the geometry is models using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in the near and far wake of the device at the desired operating conditions. The results of these simulations were validated against in-house experimental data. Please see the attached paper.
Numerical analysis of inertance pulse tube cryocooler with a modified reservoir
NASA Astrophysics Data System (ADS)
Abraham, Derick; Damu, C.; Kuzhiveli, Biju T.
2017-12-01
Pulse tube cryocoolers are used for cooling applications, where very high reliability is required as in space applications. These cryocoolers require a buffer volume depending on the temperature to be maintained and cooling load. A miniature single stage coaxial Inertance Pulse Tube Cryocooler is proposed which operates at 80 K to provide a cooling effect of at least 2 W. In this paper a pulse tube cryocooler, with modified reservoir is suggested, where the reverse fluctuation in compressor case is used instead of a steady pressure in the reservoir to bring about the desired phase shift between the pressure and the mass flow rate in the cold heat exchanger. Therefore, the large reservoir of the cryocooler is replaced by the crank volume of the hermetically sealed linear compressor, and hence the cryocooler is simplified and compact in size. The components of the cryocooler consist of a connecting tube, aftercooler, regenerator, cold heat exchanger, flow straightener, pulse tube, warm heat exchanger, inertance tube and the modified reservoir along with the losses were designed and analyzed. Each part of the cryocooler was analysed using SAGE v11 and verified with ANSYS Fluent. The simulation results clearly show that there is 50% reduction in the reservoir volume for the modified Inertance pulse tube cryocooler.
NASA Astrophysics Data System (ADS)
Wiryanta, I. K. E. H.; Adiaksa, I. M. A.
2018-01-01
The purposes of this research was to investigate the temperature performance of tube and fins car radiator experimentally and numerically. The experiment research was carried out on a simulation design consists of a reservoir water tank, a heater, pump to circulate hot water to the radiator and a cooling fan. The hot water mass flow rate is 0.486 kg/s, and the cooling air velocity of the fan is 1 m/s. The heat transfer rate and the effectiveness of radiator were investigated. The results showed that the exhaust heat transfer rate from the radiator tended to increase over time, with an average heat transfer rate of 3974.3 Watt. The maximum heat transfer rate was 4680 Watt obtained at 6 minutes. The effectiveness of the radiator (ε) over time tends to increase with an average of ε = 0.3 and the maximum effectiveness value was obtained at 12 minutes i.e. 0.35. The numerical research conducted using CFD method. The geometry and meshing created using ANSYS Workbench and the post processing using Fluent. The simulation result showed the similarity with the experimental research. The temperatures of air-side radiator are about 45°C.
CFD analysis of a scramjet combustor with cavity based flame holders
NASA Astrophysics Data System (ADS)
Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat
2018-03-01
Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.
NASA Astrophysics Data System (ADS)
Buonomo, B.; Diana, A.; Manca, O.; Nardini, S.
2017-11-01
Natural convection gets a great attention for its importance in many thermal engineering applications, such as cooling of electronic components and devices, chemical vapor deposition systems and solar energy systems. In this work, a numerical investigation on steady state natural convection in a horizontal channel partially filled with a porous medium and heated at uniform heat flux from above is carried out. A three-dimensional model is realized and solved by means of the ANSYS-FLUENT code. The computational domain is made up of the principal channel and two lateral extended reservoirs at the open vertical sections. Furthermore, a porous plate is considered near the upper heated plate and the aluminium foam has different values of PPI. The numerical simulations are performed with working fluid air. Different values of assigned wall heat flux at top surface are considered and the configuration of the channel partially filled with metal foam is compared to the configuration without foam. Results are presented in terms of velocity and temperature fields, and both temperature and velocity profiles at different significant sections are shown. Results show that the use of metal foams, with low values of PPI, promotes the cooling of the heated wall and it causes a reduction of Nusselt Number values with high values of PPI.
Two-Dimensional Supersonic Nozzle Thrust Vectoring Using Staggered Ramps
NASA Astrophysics Data System (ADS)
Montes, Carlos Fernando
A novel mechanism for vectoring the thrust of a supersonic, air-breathing engine was analyzed numerically using ANSYS Fluent. The mechanism uses two asymmetrically staggered ramps; one placed at the throat, the other positioned at the exit lip of the nozzle. The nozzle was designed using published flow data, isentropic relationships, and piecewise quartic splines. The design was verified numerically and was in fair agreement with the analytical data. Using the steady-state pressure-based solver, along with the realizable kappa - epsilon turbulence model, a total of eighteen simulations were conducted: three ramp lengths at three angles, using two sets of inlet boundary conditions (non-afterburning and afterburning). The vectoring simulations showed that the afterburning flow yields a lower flow deflection distribution, shown by the calculated average deflection angle and area-weighted integrals of the distributions. The data implies that an aircraft can achieve an average thrust vectoring angle of approximately 30° in a given direction with the longest ramp length and largest ramp angle configuration. With increasing ramp angle, the static pressure across the nozzle inlet increased, causing concern for potential negative effects on the engine's turbine. The mechanism, for which a provisional patent application has been filed, will require further work to investigate the maximum possible thrust vectoring angle, including experiments.
Two-Step Multi-Physics Analysis of an Annular Linear Induction Pump for Fission Power Systems
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Reid, Terry V.
2016-01-01
One of the key technologies associated with fission power systems (FPS) is the annular linear induction pump (ALIP). ALIPs are used to circulate liquid-metal fluid for transporting thermal energy from the nuclear reactor to the power conversion device. ALIPs designed and built to date for FPS project applications have not performed up to expectations. A unique, two-step approach was taken toward the multi-physics examination of an ALIP using ANSYS Maxwell 3D and Fluent. This multi-physics approach was developed so that engineers could investigate design variations that might improve pump performance. Of interest was to determine if simple geometric modifications could be made to the ALIP components with the goal of increasing the Lorentz forces acting on the liquid-metal fluid, which in turn would increase pumping capacity. The multi-physics model first calculates the Lorentz forces acting on the liquid metal fluid in the ALIP annulus. These forces are then used in a computational fluid dynamics simulation as (a) internal boundary conditions and (b) source functions in the momentum equations within the Navier-Stokes equations. The end result of the two-step analysis is a predicted pump pressure rise that can be compared with experimental data.
Mass Transport and Shear Stress in the Carotid Artery Bifurcation
NASA Astrophysics Data System (ADS)
Gorder, Riley; Aliseda, Alberto
2010-11-01
The carotid artery bifurcation (CAB) is one of the leading sites for atherosclerosis, a major cause of death and disability in the developed world. The specific processes by which the complex flow found at the bifurcation and carotid sinus promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered key factors. Although the governing equations closely link shear stress and mass transfer, the pulsatile, transitional, and detached flow found at the CAB can lead to differences between regions of WSS and mass transfer statistics. In this study, CAB geometries are reconstructed from patient specific 3D ultrasound medical imaging. Using ANSYS FLUENT, the fluid flow and scalar transport was solved using realistic flow conditions and various mass transfer boundary conditions. The spatial and temporal resolution was validated against the analytical solution of the Graetz-Nusselt problem with constant wall flux to ensure the scalar transport is resolved for a Peclet number up to 100,000. High residence time regions are investigated by determining the number of cardiac cycles required to flush out the carotid sinus. The correlations between regions of low WSS, high OSI, and scalar concentration are computed and interpreted in the context of atherosclerotic plaque origin and progression.
The Development of Reading and Spelling Abilities in the First 3 Years of Learning Arabic
ERIC Educational Resources Information Center
Mohamed, Wessam; Elbert, Thomas; Landerl, Karin
2011-01-01
In a cross-sectional study, we investigated the development of fluent reading and spelling in the first 3 years of learning Arabic. The goals of our study were to: (1) validate suitable measures for fluent reading and spelling in the first 3 years of learning Arabic; (2) trace the developmental course of the relationship between fluent reading and…
Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram
2014-01-01
This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the Energy Efficient Engine (EEE) High Pressure Turbine (HPT) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by (1) injection from the tip near the pressure side, (2) injection from the tip surface at the camber line, and (3) injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000, and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg, -30 deg, and 90 deg to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 deg toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.
Study of accuracy of precipitation measurements using simulation method
NASA Astrophysics Data System (ADS)
Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián
2013-04-01
Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.
Computational Investigation of Novel Tip Leakage Mitigation Methods for High Pressure Turbine Blades
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Gupta, Abhinav; Shyam, Vikram
2014-01-01
This paper presents preliminary findings on a possible approach to reducing tip leakage losses. In this paper a computational study was conducted on the EEE (Energy Efficient Engine) HPT (High Pressure Turbine) rotor tip geometry using the commercial numerical solver ANSYS FLUENT. The flow solver was validated against aerodynamic data acquired in the NASA Transonic Turbine Blade Cascade facility. The scope of the ongoing study is to computationally investigate how the tip leakage and overall blade losses are affected by 1. injection from the tip near the pressure side, 2. injection from the tip surface at the camber line, and 3. injection from the tip surface into the tip separation bubble. The objective is to identify the locations on the tip surface at which to place appropriately configured blowing keeping in mind the film cooling application of tip blowing holes. The validation was conducted at Reynolds numbers of 85,000, 343,000 and 685,000 and at engine realistic flow conditions. The coolant injection simulations were conducted at a Reynolds number of 343,000 based on blade chord and inlet velocity and utilized the SST turbulence model in FLUENT. The key parameters examined are the number of jets, jet angle and jet location. A coolant to inlet pressure ratio of 1.0 was studied for angles of +30 deg., -30 deg. and 90 deg. to the local free stream on the tip. For the 3 hole configuration, 3 holes spaced 3 hole diameters apart with length to diameter ratio of 1.5 were used. A simulation including 11 holes along the entire mean camber line is also presented (30 degrees toward suction side). In addition, the effect of a single hole is also compared to a flat tip with no injection. The results provide insight into tip flow control methods and can be used to guide further investigation into tip flow control. As noted in past research it is concluded that reducing leakage flow is not necessarily synonymous with reducing losses due to leakage.
Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge
NASA Astrophysics Data System (ADS)
Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian
2014-12-01
This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.
Numerical simulation of blast wave propagation in vicinity of standalone prism on flat plate
NASA Astrophysics Data System (ADS)
Valger, Svetlana; Fedorova, Natalya; Fedorov, Alexander
2018-03-01
In the paper, numerical simulation of shock wave propagation in the vicinity of a standalone prism and a prism with a cavity in front of it was carried out. The modeling was based on the solution of 3D Euler equations and Fluent software was used as a main computational tool. The algorithm for local dynamic mesh adaptation to high gradients of pressure was applied. The initial stage of the explosion of condensed explosive was described with the help of "Compressed balloon method". The research allowed describing the characteristic stages of the blast in a semi-closed space, the structure of secondary shock waves and their interaction with obstacles. The numerical approach in Fluent based on combining inviscid gas dynamics methods and "Compressed balloon method" was compared with the method which had been used by the authors earlier with the help of AUTODYN and which is based on the use of the hydrodynamic model of a material to describe state of detonation products. For the problem of shock wave propagation in the vicinity of standalone prism the comparison of the simulation results obtained using both the methods with the experimental data was performed on the dependence of static pressure and effective momentum on time for the characteristic points located on prism walls.
Calçada, Flávio Siqueira; Guimarães, Antônio Sérgio; Teixeira, Marcelo Lucchesi; Takamatsu, Flávio Atsushi
2017-01-01
To assess the distribution of stress produced on TMJ disc by chincup therapy, by means of the finite element method. a simplified three-dimensional TMJ disc model was developed by using Rhinoceros 3D software, and exported to ANSYS software. A 4.9N load was applied on the inferior surface of the model at inclinations of 30, 40, and 50 degrees to the mandibular plane (GoMe). ANSYS was used to analyze stress distribution on the TMJ disc for the different angulations, by means of finite element method. The results showed that the tensile and compressive stresses concentrations were higher on the inferior surface of the model. More presence of tensile stress was found in the middle-anterior region of the model and its location was not altered in the three directions of load application. There was more presence of compressive stress in the middle and mid-posterior regions, but when a 50o inclined load was applied, concentration in the middle region was prevalent. Tensile and compressive stresses intensities progressively diminished as the load was more vertically applied. stress induced by the chincup therapy is mainly located on the inferior surface of the model. Loads at greater angles to the mandibular plane produced distribution of stresses with lower intensity and a concentration of compressive stresses in the middle region. The simplified three-dimensional model proved useful for assessing the distribution of stresses on the TMJ disc induced by the chincup therapy.
Sugii, Mari Miura; Barreto, Bruno de Castro Ferreira; Francisco Vieira-Júnior, Waldemir; Simone, Katia Regina Izola; Bacchi, Ataís; Caldas, Ricardo Armini
2018-01-01
The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.
Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling
2013-04-01
To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.
Numerical Analysis of Shear Thickening Fluids for Blast Mitigation Applications
2011-12-01
integrate with other types of physics simulation technologies ( ANSYS , 2011). One well-known product offered by ANSYS is the ANSYS CFX . The ANSYS CFD...centered. The ANSYS CFX solver uses coupled algebraic multigrid to achieve its solutions and its engineered scalability ensures a linear increase in CPU...on the user-defined distribution and size. As the numerical analysis focused on the behavior of each individual particle, the ANSYS CFX Rigid Body
NASA Astrophysics Data System (ADS)
Elwood, Teri; Simmons-Potter, Kelly
2017-08-01
Quantification of the effect of temperature on photovoltaic (PV) module efficiency is vital to the correct interpretation of PV module performance under varied environmental conditions. However, previous work has demonstrated that PV module arrays in the field are subject to significant location-based temperature variations associated with, for example, local heating/cooling and array edge effects. Such thermal non-uniformity can potentially lead to under-prediction or over-prediction of PV array performance due to an incorrect interpretation of individual module temperature de-rating. In the current work, a simulated method for modeling the thermal profile of an extended PV array has been investigated through extensive computational modeling utilizing ANSYS, a high-performance computational fluid dynamics (CFD) software tool. Using the local wind speed as an input, simulations were run to determine the velocity at particular points along modular strings corresponding to the locations of temperature sensors along strings in the field. The point velocities were utilized along with laminar flow theories in order to calculate Nusselt's number for each point. These calculations produced a heat flux profile which, when combined with local thermal and solar radiation profiles, were used as inputs in an ANSYS Thermal Transient model that generated a solar string operating temperature profile. A comparison of the data collected during field testing, and the data fabricated by ANSYS simulations, will be discussed in order to authenticate the accuracy of the model.
Radiopacity Evaluation of Gutta-Percha Points in Thinner Samples than the ANSI/ADA Recommendation.
Petry, Bruna Lucian; Bodanezi, Augusto; Baldasso, Flávia Emi Razera; Delai, Débora; Larentis, Naiara Leites; Fontanella, Vania Regina Camargo; Kopper, Patrícia Maria Poli
2017-01-01
The aim of this study was to evaluate the radiopacity of different gutta-percha points (Endo Points®, Dentsply®, Tanari®, Meta®, Roeko® and Odous®) in samples of 1 mm thick as established by ANSI/ADA Specification #57 and ISO 6876/2001, in comparison with thinner samples. Twelve test specimens for each material, four for each thickness (0.3, 0.6, and 1 mm and diameter of 8 mm), were laminated and compressed between two polished glass plates until the desirable thickness. Digital radiographs were obtained along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The X-ray unit was set at 70 kVp, 10 mA and 0.4 s exposure time, at a focal distance of 36 cm. One calibrated observer quantified the average values of pixels with Adobe Photoshop® software. Data were analyzed using ANOVA and Tukey tests, at 5% significance level. At 0.6 and 1 mm thickness, all the tested materials showed radiopacity higher than 3 mm of aluminum (reference value). At 0.3 mm thickness, Odous and Tanari presented significantly less radiopacity than the reference, and the other materials showed similar radiopacity to the reference. The study concluded that the materials demonstrated different radiopacities and all had values above the minimum recommended by ANSI/ADA specification #57, being Odous and Tanari less radiopaque than the reference value in thinner samples (0.3mm).
NASA Astrophysics Data System (ADS)
Knypiński, Łukasz
2017-12-01
In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
Characteristics study of the gears by the CAD/CAE
NASA Astrophysics Data System (ADS)
Wang, P. Y.; Chang, S. L.; Lee, B. Y.; Nguyen, D. H.; Cao, C. W.
2017-09-01
Gears are the most important transmission component in machines. The rapid development of the machines in industry requires a shorter time of the analysis process. In traditional, the gears are analyzed by setting up the complete mathematical model firstly, considering the profile of cutter and coordinate systems relationship between the machine and the cutter. It is a really complex and time-consuming process. Recently, the CAD/CAE software is well developed and useful in the mechanical design. In this paper, the Autodesk Inventor® software is introduced to model the spherical gears firstly, and then the models can also be transferred into ANSYS Workbench for the finite element analysis. The proposed process in this paper is helpful to the engineers to speed up the analyzing process of gears in the design stage.
Method of experimental and calculation determination of dissipative properties of carbon
NASA Astrophysics Data System (ADS)
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2017-12-01
This paper describes the process of definition of relations between the damping ratio and strain/state levels in a material. For these purposes, the experimental-calculation approach was applied. The experimental research was performed on plane composite specimens. The tests were accompanied by finite element modeling using the ANSYS software. Optimization was used as a tool for FEM property setting and for finding the above-mentioned relations. A difference between the calculation and experimental results was accepted as objective functions of this optimization. The optimization cycle was implemented using the pSeven DATADVANCE software platform. The developed approach makes it possible to determine the relations between the damping ratio and strain/state levels in the material, which can be used for computer modeling of the structure response under dynamic loading.
The Safety Analysis of Shipborne Ammunition in Fire Environment
NASA Astrophysics Data System (ADS)
Ren, Junpeng; Wang, Xudong; Yue, Pengfei
2017-12-01
The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.
Optomechanical design software for segmented mirrors
NASA Astrophysics Data System (ADS)
Marrero, Juan
2016-08-01
The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.
[Establishment of a 3D finite element model of human skull using MSCT images and mimics software].
Huang, Ping; Li, Zheng-dong; Shao, Yu; Zou, Dong-hua; Liu, Ning-guo; Li, Li; Chen, Yuan-yuan; Wan, Lei; Chen, Yi-jiu
2011-02-01
To establish a human 3D finite element skull model, and to explore its value in biomechanics analysis. The cadaveric head was scanned and then 3D skull model was created using Mimics software based on 2D CT axial images. The 3D skull model was optimized by preprocessor along with creation of the surface and volume meshes. The stress changes, after the head was struck by an object or the head hit the ground directly, were analyzed using ANSYS software. The original 3D skull model showed a large number of triangles with a poor quality and high similarity with the real head, while the optimized model showed high quality surface and volume meshes with a small number of triangles comparatively. The model could show the local and global stress changes effectively. The human 3D skull model can be established using MSCT and Mimics software and provides a good finite element model for biomechanics analysis. This model may also provide a base for the study of head stress changes following different forces.
Sandia Compact Sensor Node (SCSN) v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
HARRINGTON, JOHN
2009-01-07
The SCSN communication protocol is implemented in software and incorporates elements of Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), and Carrier Sense Multiple Access (CSMA) to reduce radio message collisions, latency, and power consumption. Alarm messages are expeditiously routed to a central node as a 'star' network with minimum overhead. Other messages can be routed along network links between any two nodes so that peer-to-peer communication is possible. Broadcast messages can be composed that flood the entire network or just specific portions with minimal radio traffic and latency. Two-way communication with sensor nodes, which sleep most ofmore » the time to conserve battery life, can occur at seven second intervals. SCSN software also incorporates special algorithms to minimize superfluous radio traffic that can result from excessive intrusion alarm messages. A built-in seismic detector is implemented with a geophone and software that distinguishes between pedestrian and vehicular targets. Other external sensors can be attached to a SCSN using supervised interface lines that are controlled by software. All software is written in the ANSI C language for ease of development, maintenance, and portability.« less
Female Autism Phenotypes Investigated at Different Levels of Language and Developmental Abilities.
Howe, Yamini J; O'Rourke, Julia A; Yatchmink, Yvette; Viscidi, Emma W; Jones, Richard N; Morrow, Eric M
2015-11-01
This study investigated the differences in clinical symptoms between females and males with autism spectrum disorder (ASD) across three verbal ability groups (nonverbal, phrase and fluent speech), based on which Autism Diagnostic Observation Schedule module was administered to 5723 individuals in four research datasets. In the Simons Simplex Collection and Autism Treatment Network, females with ASD and phrase or fluent speech had lower cognitive, adaptive, and social abilities than males. In the Autism Genetics Resource Exchange and the Autism Consortium, females with phrase or fluent speech had similar or better adaptive and social abilities than males. Females who were nonverbal had similar cognitive, adaptive, and social abilities as males. Population-based longitudinal studies of verbally fluent females with ASD are needed.
40 CFR 211.206-2 - Alternative test data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to ANSI STD Z24.22-1957 or ANSI STD S3.19-1974 to determine the mean attenuation and standard... based on the ANSI STD Z24.22-1957 measurement procedure must state in the supporting information... are based on ANSI STD -Z24.22-1957. (b) Manufacturers who initially use available data based on ANSI...
40 CFR 211.206-2 - Alternative test data.
Code of Federal Regulations, 2014 CFR
2014-07-01
... according to ANSI STD Z24.22-1957 or ANSI STD S3.19-1974 to determine the mean attenuation and standard... based on the ANSI STD Z24.22-1957 measurement procedure must state in the supporting information... are based on ANSI STD -Z24.22-1957. (b) Manufacturers who initially use available data based on ANSI...
40 CFR 211.206-2 - Alternative test data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to ANSI STD Z24.22-1957 or ANSI STD S3.19-1974 to determine the mean attenuation and standard... based on the ANSI STD Z24.22-1957 measurement procedure must state in the supporting information... are based on ANSI STD -Z24.22-1957. (b) Manufacturers who initially use available data based on ANSI...
40 CFR 211.206-2 - Alternative test data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to ANSI STD Z24.22-1957 or ANSI STD S3.19-1974 to determine the mean attenuation and standard... based on the ANSI STD Z24.22-1957 measurement procedure must state in the supporting information... are based on ANSI STD -Z24.22-1957. (b) Manufacturers who initially use available data based on ANSI...
Fostering successful scientific software communities
NASA Astrophysics Data System (ADS)
Bangerth, W.; Heister, T.; Hwang, L.; Kellogg, L. H.
2016-12-01
Developing sustainable open source software packages for the sciences appears at first to be primarily a technical challenge: How can one create stable and robust algorithms, appropriate software designs, sufficient documentation, quality assurance strategies such as continuous integration and test suites, or backward compatibility approaches that yield high-quality software usable not only by the authors, but also the broader community of scientists? However, our experience from almost two decades of leading the development of the deal.II software library (http://www.dealii.org, a widely-used finite element package) and the ASPECT code (http://aspect.dealii.org, used to simulate convection in the Earth's mantle) has taught us that technical aspects are not the most difficult ones in scientific open source software. Rather, it is the social challenge of building and maintaining a community of users and developers interested in answering questions on user forums, contributing code, and jointly finding solutions to common technical and non-technical challenges. These problems are posed in an environment where project leaders typically have no resources to reward the majority of contributors, where very few people are specifically paid for the work they do on the project, and with frequent turnover of contributors as project members rotate into and out of jobs. In particular, much software work is done by graduate students who may become fluent enough in a software only a year or two before they leave academia. We will discuss strategies we have found do and do not work in maintaining and growing communities around the scientific software projects we lead. Specifically, we will discuss the management style necessary to keep contributors engaged, ways to give credit where credit is due, and structuring documentation to decrease reliance on forums and thereby allow user communities to grow without straining those who answer questions.
Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser
NASA Astrophysics Data System (ADS)
Wang, Xi; Fang, Xiaodong
2015-10-01
The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
NASA Astrophysics Data System (ADS)
Maciejewska, Beata; Błasiak, Sławomir; Piasecka, Magdalena
This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.
A Virtual Aluminum Reduction Cell
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie
2013-11-01
The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.
2013-05-01
REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) May 2013 2. REPORT TYPE Final 3. DATES...area code) (410) 278-7386 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures v List of Tables v 1
Pulsatile blood flow in elastic artery with model aneurysm
NASA Astrophysics Data System (ADS)
Nikolov, N.; Radev, St.; Tabakova, S.
2017-11-01
The mathematical modeling and numerical simulations are expected to play an important role to predict the genesis of different cardiovascular diseases, such as the formation and rupture of aneurysms. In the present work, the numerical solutions of the oscillatory blood flow are constructed for an elastic artery with a model aneurysm by use of the software ANSYS. It is observed that the artery elastic strain behaves in a different way: stably or unstably depending on the different combinations between the flow parameter (outlet pressure) and the elastic modulus of the artery wall.
The Mechanical Design Optimization of a High Field HTS Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, SL; Gupta, RC
2015-06-01
This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.
NASA Astrophysics Data System (ADS)
Li, Shouju; Shangguan, Zichang; Cao, Lijuan
A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.
NASA Technical Reports Server (NTRS)
Weller, David G.
1992-01-01
The current version of Ada has been an ANSI standard since 1983. In 1988, the Ada Joint Program Office was tasked with reevaluating the language and proposing changes to the standard. Since that time, the world has seen a tremendous explosion in object-oriented languages, as well as other growing fields such as distributed computing and support for very large software systems. The speaker will discuss new features being added to the next version of Ada, currently called Ada 9X, and what transition issues must be considered for current Ada projects.
1990-06-30
declaring all of the valid enumeration values for a domain of type enumeration. Example-> In type color_vals is (red, blue , green), color_vals is the name...Color Vals is (red, white, blue ); package Fifth is new domainl.generateenum domain (ColorVals, Colors, enumeration, nullandnotnull); Resulting...generated domain definition-> type colorsnotnull is (red, white, blue ); package colors_ops is new sqlenumeration_pkg(colors notnull); type colors_type is
FPGA based control system for space instrumentation
NASA Astrophysics Data System (ADS)
Di Giorgio, Anna M.; Cerulli Irelli, Pasquale; Nuzzolo, Francesco; Orfei, Renato; Spinoglio, Luigi; Liu, Giovanni S.; Saraceno, Paolo
2008-07-01
The prototype for a general purpose FPGA based control system for space instrumentation is presented, with particular attention to the instrument control application software. The system HW is based on the LEON3FT processor, which gives the flexibility to configure the chip with only the necessary HW functionalities, from simple logic up to small dedicated processors. The instrument control SW is developed in ANSI C and for time critical (<10μs) commanding sequences implements an internal instructions sequencer, triggered via an interrupt service routine based on a HW high priority interrupt.
On the mechanics of cerebral aneurysms: experimental research and numerical simulation
NASA Astrophysics Data System (ADS)
Parshin, D. V.; Kuianova, I. O.; Yunoshev, A. S.; Ovsyannikov, K. S.; Dubovoy, A. V.
2017-10-01
This research extends existing experimental data for CA tissues [1, 2] and presents the preliminary results of numerical calculations. Experiments were performed to measure aneurysm wall stiffness and the data obtained was analyzed. To reconstruct the geometry of the CAs, DICOM images of real patients with aneurysms and ITK Snap [3] were used. In addition, numerical calculations were performed in ANSYS (commercial software, License of Lavrentyev Institute of Hydrodynamics). The results of these numerical calculations show a high level of agreement with experimental data from previous literature.
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Boerschlein, David P.
1993-01-01
Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.
Gok, Kadir; Inal, Sermet; Gok, Arif; Gulbandilar, Eyyup
2017-05-01
In this study, biomechanical behaviors of three different screw materials (stainless steel, titanium and cobalt-chromium) have analyzed to fix with triangle fixation under axial loading in femoral neck fracture and which material is best has been investigated. Point cloud obtained after scanning the human femoral model with the three dimensional (3D) scanner and this point cloud has been converted to 3D femoral model by Geomagic Studio software. Femoral neck fracture was modeled by SolidWorks software for only triangle configuration and computer-aided numerical analyses of three different materials have been carried out by AnsysWorkbench finite element analysis (FEA) software. The loading, boundary conditions and material properties have prepared for FEA and Von-Misses stress values on upper and lower proximity of the femur and screws have been calculated. At the end of numerical analyses, the best advantageous screw material has calculated as titanium because it creates minimum stress at the upper and lower proximity of the fracture line.
Aerodynamic Simulation Analysis of Unmanned Airborne Electronic Bomb
NASA Astrophysics Data System (ADS)
Yang, Jiaoying; Guo, Yachao
2017-10-01
For microelectronic bombs for UAVs, on the basis of the use of rotors to lift the insurance on the basis of ammunition, increased tail to increase stability. The aerodynamic simulation of the outer structure of the ammunition was carried out by FLUENT software. The resistance coefficient, the lift coefficient and the pitch moment coefficient under different angle of attack and Mach number were obtained, and the aerodynamic characteristics of the electronic bomb were studied. The pressure line diagram and the velocity line diagram of the flow around the bomb are further analyzed, and the rationality of the external structure is verified, which provides a reference for the subsequent design of the electronic bomb.
NASA Astrophysics Data System (ADS)
St-Pierre, Benoit
In order to produce more efficient jet engines, manufacturers add compressor stages to their new engines and their manufacturing departments must increase their productivity while reducing their costs of operation. The addition of these compressor stages causes an increase in the pressures and temperatures for those components. To address this issue, the engineering departments use highly thermal resistant alloys for their manufacturing, mostly nickel alloys. However, these alloys are very difficult to machine by conventional manufacturing processes. Thus, in order to efficiently machine these alloys, grinding processes, like Continuous Dress Creep Feed (CDCF), are always the best choices. However, the productivity of these processes is mainly limited by the burning marks that may appear on the machined surfaces if too aggressive cutting parameters are selected. A simple solution to this issue consists in improving the design of the existing coherent coolant nozzle so that they can produce an even more coherent coolant jet. Therefore, this research project proposes a method which makes it possible to predict the jet coherency of a given nozzle while also giving the possibility to optimize its design in order to improve its jet coherency and all that while using a commercial CFD software, i.e. FLUENT 6.3. Thus, the proposed method is based on the evolution of the velocity profile provided by FLUENT for a given Webster type nozzle and on the experimental measurement of jet coherency of this one in order to establish a semi-empirical model that links these two results. So, for a given nozzle it is possible to precisely predict the physical opening of the coolant jet that this one will produce by using the opening of the velocity profile provided by FLUENT and the semiempirical model developed in this research. The use of FLUENT fonctions also made it possible to simulate the fluid flow inside the coolant nozzle and to identify the cavitation zones within it in order to decrease its importance by modifying the inside profile geometry. This new design of coolant nozzle is more able to produce a coherent jet as compared to the Webster type design. Moreover, this was verified using the semi-empirical model developed in this research and then validated through experimental tests. Finally, cutting tests were performed to compare Webster type nozzle against the newly proposed coolant nozzle design. The results obtained show that the new concept of coolant nozzle gives an improvement in wheel life of more than 15% while slightly decreasing the power required for a cut and that's while preserving a similar surface finish. Finally, a comparative study between FLUENT and Bernoulli equations for the prediction of the mean velocity at the nozzle exit is carried out. This comparison shows that neglecting the effect of turbulence and cavitations on the coolant flow greatly influences the mean velocity at the nozzle exit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionita, C; Rudin, S; Bednarek, D
Purpose: To validate Computed Tomography Fractional Flow Reserve (CT-FFR) measurements with accurate 3D printed coronary phantoms. Methods: DICOM data from four phases in two patients imaged with a standard 320 × 0.5mm coronary CT acquisition (70–80% cardiac cycle) underwent semi-automated segmentation using a research workstation. Both patients had a >50% stenosis from the clinical image interpretation. Each volume was saved as a Stereo Lithographic (STL) file with 250 micron resolution. The 3D geometries were qualitatively assessed; the best of the four phases was 3D printed using a Stratasys Eden260V printer in Tango+, a rubber-like material that roughly emulates mechanical propertiesmore » of human vasculature. We connected the model to a programmable pump and measured the pressure drop using pressure sensors embedded proximal and distal to the arterial stenosis. Next, the STL files used for the 3D printed models were uploaded in the ANSYS meshing tool (ICEM CFD 16.1). A standard meshing process was applied and the meshed geometry was directly imported in the ANSYS Fluent for Computational Flow Dynamics simulations. The CFD simulations were used to calculate the CT-FFR and compared to the bench top FFR measured in the 3D printed phantoms. Results: FFR-CT measurements and phantoms were completed in within an hour after the segmentation. Patient 1 had a 60% stenosis that resulted in a CT-FFR of 0.68. The second case had a 50% stenosis and a CT-FFR of 0.75. The average bench top FFR measurements were 0.72 and 0.80, respectively. Conclusion: This pilot investigation demonstrated the use of a bench-top coronary model for CT-FFR validation. The measurements and the CFD simulations agreed within 6%. Project supported by Support: Toshiba America Medical Systems Corp.and NIH grant R01-EB002873. Project supported by Toshiba America Medical Systems Corp.and partial support from NIH grant R01-EB002873.« less
Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle
NASA Astrophysics Data System (ADS)
Feng, Yun-song
2016-01-01
For mastery of infrared radiation characteristics and flow field of exhaust plume of twin engine nozzles, first, a physical model of the double rectangular nozzles is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the twin engine nozzles, and the datum of flow field, such as temperature, pressure and density, are obtained. Finally, based on the plume temperature, the exhaust plume space is divided. The exhaust plume is equivalent to a gray-body. A calculating model of the plume infrared radiation is established, and the plume infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. The result improves that with the height increasing the temperature, press and infrared radiant intensity diminish. Compared with engine afterburning condition, temperature and infrared radiant intensity increases and press has no obvious change.
Next generation lightweight mirror modeling software
NASA Astrophysics Data System (ADS)
Arnold, William R.; Fitzgerald, Matthew; Rosa, Rubin Jaca; Stahl, H. Philip
2013-09-01
The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 3-5 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any text editor, all the shell thickness parameters and suspension spring rates are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.
Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise; Zhang, Ning
Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), tomore » which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.« less
Modeling deformation behavior of the baseball.
Nicholls, Rochelle Llewelyn; Miller, Karol; Elliott, Bruce C
2005-02-01
Regulating ball response to impact is one way to control ball exit velocity in baseball. This is necessary to reduce injuries to defensive players and maintain the balance between offense and defense in the game. This paper presents a model for baseball velocity-dependent behavior. Force-displacement data were obtained using quasi-static compression tests to 50% of ball diameter (n = 70 baseballs). The force-displacement curves for a very stiff baseball (Model B) and a softer type (Model C) were characterized by a Mooney-Rivlin model using implicit finite element analysis (ANSYS software, version 6.1). Agreement between experimental and numerical results was excellent for both Model B (C(10) = 0, C(01) = 3.7e(6) Pa) and Model C (C(10) = 0, C(01) = 2.6e(6) Pa). However, this material model was not available in the ANSYS/LSDYNA explicit dynamic software (version 6.1) used to quantify the transient behavior of the ball. Therefore the modeling process was begun again using a linear viscoelastic material. G(infinity), the long-term shear modulus of the material, was determined by the same implicit FEA procedure. Explicit FEA was used to quantify the time-dependent response of each ball in terms of instantaneous shear modulus (G0) and a decay term (beta). The results were evaluated with respect to published experimental data for the ball coefficient of restitution at five velocities (13.4-40.2 ms(-1)) and were in agreement with the experimental values. The model forms the basis for future research on baseball response to impact with the bat.
NASA Astrophysics Data System (ADS)
Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid
2017-04-01
Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.
Technical Support Document for Version 3.4.0 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2007-09-14
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.« less
Preliteracy signatures of poor-reading abilities in resting-state EEG
Schiavone, Giuseppina; Linkenkaer-Hansen, Klaus; Maurits, Natasha M.; Plakas, Anna; Maassen, Ben A. M.; Mansvelder, Huibert D.; van der Leij, Aryan; van Zuijen, Titia L.
2014-01-01
The hereditary character of dyslexia suggests the presence of putative underlying neural anomalies already in preliterate age. Here, we investigated whether early neurophysiological correlates of future reading difficulties—a hallmark of dyslexia—could be identified in the resting-state EEG of preliterate children. The children in this study were recruited at birth and classified on the basis of parents' performance on reading tests to be at-risk of becoming poor readers (n = 48) or not (n = 14). Eyes-open rest EEG was measured at the age of 3 years, and the at-risk children were divided into fluent readers (n = 24) and non-fluent readers (n = 24) after reading assessment at their third grade of school. We found that fluent readers and non-fluent readers differed in normalized spectral amplitude. Non-fluent readers were characterized by lower amplitude in the delta-1 frequency band (0.5–2 Hz) and higher amplitude in the alpha-1 band (6–8 Hz) in multiple scalp regions compared to control and at-risk fluent readers. Interestingly, across groups these EEG biomarkers correlated with several behavioral test scores measured in the third grade. Specifically, the performance on reading fluency, phonological and orthographic tasks and rapid automatized naming task correlated positively with delta-1 and negatively with alpha-1. Together, our results suggest that combining family-risk status, neurophysiological testing and behavioral test scores in a longitudinal setting may help uncover physiological mechanisms implicated with neurodevelopmental disorders such as the predisposition to reading disabilities. PMID:25285075
Ratner, Nan Bernstein; Newman, Rochelle; Strekas, Amy
2009-12-01
In a prior study (Newman & Bernstein Ratner, 2007), we examined the effects of word frequency and phonological neighborhood characteristics on confrontation naming latency, accuracy and fluency in adults who stutter and typically fluent speakers. A small difference in accuracy favoring fluent adults was noted, but no other patterns differentiated fluent speaker responses from those obtained from the adults who stutter. Because lexical organization or retrieval differences might be more easily observed in less mature language users, we replicated the experiment using 15 children who stutter (ages 4;10 16;2) and age- and gender-matched peers. Results replicated the earlier study: the two groups of participants showed strikingly similar patterns of responses based on word frequency and neighborhood characteristics. There were also no differences in naming accuracy overall between the two groups. Given our results and those of other researchers who have explored the impact of neighborhood variables on lexical retrieval in people who stutter, we suggest that differences between language production in PWS and fluent speakers are not likely to involve atypical phonological organization of lexical neighborhoods. After reading this article, the reader will be able to: (1) define and illustrate words that have differing frequency and phonological neighborhood characteristics; (2) evaluate whether or not children who stutter appear to organize their mental lexicons differently than those of children who are typically fluent; (3) suggest future areas of research into language processing in people who stutter.
Jones, Robin M.; Conture, Edward G.; Walden, Tedra A.
2014-01-01
Purpose The purpose of this study was to assess the relation between emotional reactivity and regulation associated with fluent and stuttered utterances of preschool-age children who stutter (CWS) and those who do not (CWNS). Participants Participants were eight 3 to 6-year old CWS and eight CWNS of comparable age and gender. Methods Participants were exposed to three emotion-inducing overheard conversations—neutral, angry and happy—and produced a narrative following each overheard conversation. From audio-video recordings of these narratives, coded behavioral analysis of participants’ negative and positive affect and emotion regulation associated with stuttered and fluent utterances was conducted. Results Results indicated that CWS were significantly more likely to exhibit emotion regulation attempts prior to and during their fluent utterances following the happy as compared to the negative condition, whereas CWNS displayed the opposite pattern. Within-group assessment indicated that CWS were significantly more likely to display negative emotion prior to and during their stuttered than fluent utterances, particularly following the positive overheard conversation. Conclusions After exposure to emotional-inducing overheard conversations, changes in preschool-age CWS’s emotion and emotion regulatory attempts were associated with the fluency of their utterances. PMID:24630144
NASA Astrophysics Data System (ADS)
Lin, Chunjing; Xu, Sichuan; Chang, Guofeng; Liu, Jinling
2015-02-01
A passive thermal management system (TMS) for LiFePO4 battery modules using phase change material (PCM) as the heat dissipation source to control battery temperature rise is developed. Expanded graphite matrix and graphite sheets are applied to compensate low thermal conductivity of PCM and improve temperature uniformity of the batteries. Constant current discharge and mixed charge-discharge duties were applied on battery modules with and without PCM on a battery thermal characteristics test platform. Experimental results show that PCM cooling significantly reduces the battery temperature rise during short-time intense use. It is also found that temperature uniformity across the module deteriorates with the increasing of both discharge time and current rates. The maximum temperature differences at the end of 1C and 2C-rate discharges are both less than 5 °C, indicating a good performance in battery thermal uniformity of the passive TMS. Experiments on warm-keeping performance show that the passive TMS can effectively keep the battery within its optimum operating temperature for a long time during cold weather uses. A three dimensional numerical model of the battery pack with the passive TMS was conducted using ANSYS Fluent. Temperature profiles with respect to discharging time reveal that simulation shows good agreement with experiment at 1C-discharge rate.
Computational Study of a Vortex-Ring Pair Interacting with a Constant-Temperature Heated Wall
NASA Astrophysics Data System (ADS)
Jabbar, Hussam; Naguib, Ahmed
2017-11-01
Impinging jets are used widely in industrial and manufacturing processes because of their ability to increase the heat transfer rate from the impingement surface. The vortical structures of these jets have an important influence on the heat transfer; by affecting the thermal boundary layer (TBL) during their interaction with the wall. In order to better understand the physics of this interaction, particularly when pairing of two vortices happens near the wall, a simplified model problem of two isolated vortex rings interacting with a flat wall is investigated computationally using ANSYS FLUENT 17.1. Observations of the vorticity field, the temperature field, the wall shear stress, the TBL and the Nusselt number (Nu) provide insight into the association of local Nu maxima/minima with different flow features. The results provide physical understanding of the flow processes leading to enhancement/deterioration of Nu due to vortex-wall interaction. Additionally, the characteristics of the vortical structures are quantified, and possible correlations between the temporal development of these characteristics and the evolution of the maximum/minimum Nu are investigated. The results are compared to those involving a single vortex ring in order to understand the effect of vortex pairing. This work is supported by NSF Grant Number CBET-1603720. Hussam Jabbar also acknowledges the fellowship support from Higher Committee for Education Development in Iraq (HCED).
Javaherchi, Teymour
2016-06-08
Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for the Reynolds Averaged Navier-Stokes (RANS) simulation of three coaxially located lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbines in a coaxial array is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of each device and structure of their turbulent far wake. The results of these simulations were validated against the developed in-house experimental data. Simulations for other turbine configurations are available upon request.
RANS Simulation (Virtual Blade Model [VBM]) of Single Lab Scaled DOE RM1 MHK Turbine
Javaherchi, Teymour; Stelzenmuller, Nick; Aliseda, Alberto; Seydel, Joseph
2014-04-15
Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model) by solving RANS equations coupled with k-\\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.
NASA Astrophysics Data System (ADS)
Yadav, Satyapal; Lingayat, Abhay Bhanudas; Chandramohan, V. P.; Raju, V. R. K.
2018-05-01
Thermal energy storage (TES) device that uses phase change material (PCM) in the field of indirect solar drying is economical due to its energy storage characteristics. In this work, a low-temperature latent heat TES device has been numerically analyzed for the application of solar drying of agricultural products in an indirect type solar dryer. Paraffin wax is used as a PCM material. The study has been performed on a single set of concentric tubes which consist of an inner copper tube and an outer plastic tube. A 2D geometry is created and computational fluid dynamics (CFD) simulations are performed using ANSYS Fluent 2015. The hot air coming from solar collector enters the copper tube and then the drying chamber to dry the sample. PCM material is placed in the outer plastic tube. It was found that the drying process can be continued up to 10.00 pm without further source of heating. At a given time, the melting fraction is increased during the heating process and solidification factor is increased during the cooling process while increasing the air flow velocities from 1 to 4 m/s, but 1 m/s is good for maintaining outlet temperature of air (T oa ) for a long time. Heat lost and gained by air was estimated. It was found that air flow velocity influenced the heat lost and gain by air.
Application of CFD in Indonesian Research: A review
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siregar, M. R.; Kishinami, K.; Daimaruya, M.; Kawai, H.
2018-04-01
Computational Fluid Dynamics (CFD) is a numerical method that solves fluid flow and related governing equations using a computational tool. The studies on CFD, its methodology and its application as a research tool, are increasing. In this study, application of CFD by Indonesian researcher is briefly reviewed. The main objective is to explore the characteristics of CFD applications in Indonesian researchers. Considering the size and reputation, this study uses Scopus publications indexed data base. All of the documents in Scopus related to CFD which is affiliated by at least one of Indonesian researcher are collected to be reviewed. Research topics, CFD method, and simulation results are reviewed in brief. The results show that there are 260 documents found in literature indexed by Scopus. These documents divided into research articles 125 titles, conference paper 135 titles, book 1 title and review 1 title. In the research articles, only limited researchers focused on the development of CFD methodology. Almost all of the articles focus on using CFD in a particular application, as a research tool, such as aircraft application, wind power and heat exchanger. The topics of the 125 research articles can be divided into 12 specific applications and 1 miscellaneous application. The most popular application is Heating Ventilating and Air Conditioning and followed by Reactor, Transportation and Heat Exchanger applications. The most popular commercial CFD code used is ANSYS Fluent and only several researchers use CFX.
NASA Astrophysics Data System (ADS)
Maktouf, Nabaouia; Moussa, Ali Ben; Turki, Saïd
2018-06-01
Active control of the flow behind a bluff body is obtained by integrating a vibrating membrane. A numerical study has been conducted to investigate the effect of the vibration of a flexible membrane, stuck to the rear side of a circular cylinder, on the global flow parameters such as the Strouhal number, the drag and lift coefficients. The shape of the membrane is evolving as a vibrating chord using a dynamic mesh. The governing equations of 2D and laminar flow have been solved using ANSYS Fluent 16.0 as a solver and the Gambit as a modeler. The motion of the membrane is managed by two parameters: frequency f and amplitude A. The effect of the flexible membrane motion is studied for the range of conditions as 0.1 Hz ≤ f ≤ 6 Hz and 5 × 10-4 m ≤ A ≤ 10-3 m at a fixed Reynolds number, Re = 150. Three different sizes of the flexible membrane have been studied. Results show that a beat phenomenon affects the drag coefficient. The amplitude does not affect significantly the Strouhal number as well as drag and lift coefficients. By increasing the size of the flexible membrane, we show a lift enhancement by a growth rate equal to 39.15% comparing to the uncontrolled case.
NASA Astrophysics Data System (ADS)
Mahto, Navin Kumar; Choubey, Gautam; Suneetha, Lakka; Pandey, K. M.
2016-11-01
The two equation standard k-ɛ turbulence model and the two-dimensional compressible Reynolds-Averaged Navier-Stokes (RANS) equations have been used to computationally simulate the double cavity scramjet combustor. Here all the simulations are performed by using ANSYS 14-FLUENT code. At the same time, the validation of the present numerical simulation for double cavity has been performed by comparing its result with the available experimental data which is in accordance with the literature. The results are in good agreement with the schlieren image and the pressure distribution curve obtained experimentally. However, the pressure distribution curve obtained numerically is under-predicted in 5 locations by numerical calculation. Further, investigations on the variations of the effects of the length-to-depth ratio of cavity and Mach number on the combustion characteristics has been carried out. The present results show that there is an optimal length-to-depth ratio for the cavity for which the performance of combustor significantly improves and also efficient combustion takes place within the combustor region. Also, the shifting of the location of incident oblique shock took place in the downstream of the H2 inlet when the Mach number value increases. But after achieving a critical Mach number range of 2-2.5, the further increase in Mach number results in lower combustion efficiency which may deteriorate the performance of combustor.
Piergiovanni, Monica; Bianchi, Elena; Capitani, Giada; Li Piani, Irene; Ganzer, Lucia; Guidotti, Luca G; Iannacone, Matteo; Dubini, Gabriele
2017-10-03
The liver is organized in hexagonal functional units - termed lobules - characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries - termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation. Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees. The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ömeroǧlu, Gökhan
2017-10-01
Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5 m/s) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350 W/m2. While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5-m/s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.
Method for VAWT Placement on a Complex Building Structure
2013-06-01
85 APPENDIX C: ANSYS CFX SPECIFICAITONS FOR WIND FLOW ANALYSIS .....87 APPENDIX D: SINGLE ROTOR ANALYSIS ANSYS CFX MESH DETAILS...89 APPENDIX E: SINGLE ROTOR ANALYSIS, ANSYS CFX SPECIFICS .....................91 APPENDIX F: DETAILED RESULTS OF SINGLE ROTOR...101 APPENDIX I: DUAL ROTOR ANALYSIS- ANSYS CFX SPECIFICATIONS (6 BLADED VAWTS
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
29 CFR Appendix B to Subpart L of... - National Consensus Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
.... NFPA No. 13E, Fire Department Operations in Properties Protected by Sprinkler, Standpipe Systems. ANSI..., Water Supplies for Suburban and Rural Fire Fighting. 1910.159 ANSI-NFPA No. 13, Sprinkler Systems. NFPA No. 13A, Sprinkler Systems, Maintenance. ANSI/NFPA No. 18, Wetting Agents. ANSI/NFPA No. 20...
29 CFR Appendix B to Subpart L of... - National Consensus Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
.... NFPA No. 13E, Fire Department Operations in Properties Protected by Sprinkler, Standpipe Systems. ANSI..., Water Supplies for Suburban and Rural Fire Fighting. 1910.159 ANSI-NFPA No. 13, Sprinkler Systems. NFPA No. 13A, Sprinkler Systems, Maintenance. ANSI/NFPA No. 18, Wetting Agents. ANSI/NFPA No. 20...
29 CFR Appendix B to Subpart L of... - National Consensus Standards
Code of Federal Regulations, 2011 CFR
2011-07-01
.... NFPA No. 13E, Fire Department Operations in Properties Protected by Sprinkler, Standpipe Systems. ANSI..., Water Supplies for Suburban and Rural Fire Fighting. 1910.159 ANSI-NFPA No. 13, Sprinkler Systems. NFPA No. 13A, Sprinkler Systems, Maintenance. ANSI/NFPA No. 18, Wetting Agents. ANSI/NFPA No. 20...
29 CFR Appendix B to Subpart L of... - National Consensus Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
.... NFPA No. 13E, Fire Department Operations in Properties Protected by Sprinkler, Standpipe Systems. ANSI..., Water Supplies for Suburban and Rural Fire Fighting. 1910.159 ANSI-NFPA No. 13, Sprinkler Systems. NFPA No. 13A, Sprinkler Systems, Maintenance. ANSI/NFPA No. 18, Wetting Agents. ANSI/NFPA No. 20...
When will a stuttering moment occur? The determining role of speech motor preparation.
Vanhoutte, Sarah; Cosyns, Marjan; van Mierlo, Pieter; Batens, Katja; Corthals, Paul; De Letter, Miet; Van Borsel, John; Santens, Patrick
2016-06-01
The present study aimed to evaluate whether increased activity related to speech motor preparation preceding fluently produced words reflects a successful compensation strategy in stuttering. For this purpose, a contingent negative variation (CNV) was evoked during a picture naming task and measured by use of electro-encephalography. A CNV is a slow, negative event-related potential known to reflect motor preparation generated by the basal ganglia-thalamo-cortical (BGTC) - loop. In a previous analysis, the CNV of 25 adults with developmental stuttering (AWS) was significantly increased, especially over the right hemisphere, compared to the CNV of 35 fluent speakers (FS) when both groups were speaking fluently (Vanhoutte et al., (2015) doi: 10.1016/j.neuropsychologia.2015.05.013). To elucidate whether this increase is a compensation strategy enabling fluent speech in AWS, the present analysis evaluated the CNV of 7 AWS who stuttered during this picture naming task. The CNV preceding AWS stuttered words was statistically compared to the CNV preceding AWS fluent words and FS fluent words. Though no difference emerged between the CNV of the AWS stuttered words and the FS fluent words, a significant reduction was observed when comparing the CNV preceding AWS stuttered words to the CNV preceding AWS fluent words. The latter seems to confirm the compensation hypothesis: the increased CNV prior to AWS fluent words is a successful compensation strategy, especially when it occurs over the right hemisphere. The words are produced fluently because of an enlarged activity during speech motor preparation. The left CNV preceding AWS stuttered words correlated negatively with stuttering frequency and severity suggestive for a link between the left BGTC - network and the stuttering pathology. Overall, speech motor preparatory activity generated by the BGTC - loop seems to have a determining role in stuttering. An important divergence between left and right hemisphere is hypothesized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-fluent speech following stroke is caused by impaired efference copy.
Feenaughty, Lynda; Basilakos, Alexandra; Bonilha, Leonardo; den Ouden, Dirk-Bart; Rorden, Chris; Stark, Brielle; Fridriksson, Julius
2017-09-01
Efference copy is a cognitive mechanism argued to be critical for initiating and monitoring speech: however, the extent to which breakdown of efference copy mechanisms impact speech production is unclear. This study examined the best mechanistic predictors of non-fluent speech among 88 stroke survivors. Objective speech fluency measures were subjected to a principal component analysis (PCA). The primary PCA factor was then entered into a multiple stepwise linear regression analysis as the dependent variable, with a set of independent mechanistic variables. Participants' ability to mimic audio-visual speech ("speech entrainment response") was the best independent predictor of non-fluent speech. We suggest that this "speech entrainment" factor reflects integrity of internal monitoring (i.e., efference copy) of speech production, which affects speech initiation and maintenance. Results support models of normal speech production and suggest that therapy focused on speech initiation and maintenance may improve speech fluency for individuals with chronic non-fluent aphasia post stroke.
Analysis of composite plates by using mechanics of structure genome and comparison with ANSYS
NASA Astrophysics Data System (ADS)
Zhao, Banghua
Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp(TM), which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp(TM), a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or arbitrary customized SG models in ANSYS and invoke SwiftComp(TM) to perform homogenization and dehomogenization. The global structural analysis can also be handled in ANSYS after homogenization, which could predict the global behavior and provide needed inputs for dehomogenization. To demonstrate the accuracy and efficiency of the MSG approach, several numerical cases are studied and compared using both MSG and ANSYS. In the ANSYS approach, 3D solid element models (ANSYS 3D approach) are used as reference models and the 2D shell element models created by ANSYS Composite PrepPost (ACP approach) are compared with the MSG approach. The results of the MSG approach agree well with the ANSYS 3D approach while being as efficient as the ACP approach. Therefore, the MSG approach provides an efficient and accurate new way to model composite plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2004-05-01
ML development was started in 1997 by Ray Tuminaro and Charles Tong. Currently, there are several full- and part-time developers. The kernel of ML is written in ANSI C, and there is a rich C++ interface for Trilinos users and developers. ML can be customized to run geometric and algebraic multigrid; it can solve a scalar or a vector equation (with constant number of equations per grid node), and it can solve a form of Maxwell's equations. For a general introduction to ML and its applications, we refer to the Users Guide [SHT04], and to the ML web site, http://software.sandia.gov/ml.
Numerical and experimental analyses of lighting columns in terms of passive safety
NASA Astrophysics Data System (ADS)
Jedliński, Tomasz Ireneusz; Buśkiewicz, Jacek
2018-01-01
Modern lighting columns have a very beneficial influence on road safety. Currently, the columns are being designed to keep the driver safe in the event of a car collision. The following work compares experimental results of vehicle impact on a lighting column with FEM simulations performed using the Ansys LS-DYNA program. Due to high costs of experiments and time-consuming research process, the computer software seems to be very useful utility in the development of pole structures, which are to absorb kinetic energy of the vehicle in a precisely prescribed way.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.
2017-10-01
The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.
Hydrodynamic analysis of floating platform for special purposes under complex water environment
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. By using ANSYS AQWA software, the hydrodynamic model of the platform was established. The time history responses of the platform motions and the cable tension forces were calculate under complex water environments, such as wind, wave, current and mooring. The results showed that the tension of the four cables are far less than the breaking tension of the cable, so that the cable will not break. This study can be referenced by the relevant researchers and engineers.
NASA Astrophysics Data System (ADS)
Luo, Min
2018-02-01
On the basis of consulting data, the bearing mechanism of gravel pile composite foundation is analyzed in this paper. The use of ANSYS software under flexible foundation according to the plum blossoms gravel pile additional stress between pile and soil additional stress distribution, load on pile top stress and pile bearing rate of modulus ratio between pile and soil on the pile top stress and rate of pile bearing capacity, pile-soil effect the stress ratio was calculated and analyzed, providing reasonable design reference for the design of gravel pile composite foundation.
Strategy for an Extensible Microcomputer-Based Mumps System for Private Practice
Walters, Richard F.; Johnson, Stephen L.
1979-01-01
A macro expander technique has been adopted to generate a machine independent single user version of ANSI Standard MUMPS running on an 8080 Microcomputer. This approach makes it possible to have the medically oriented MUMPS language available on inexpensive systems suitable for small group practice settings. Substitution of another macro expansion set allows the same interpreter to be implemented on another computer, thereby providing compatibility with comparable or larger scale systems. Furthermore, since the global file handler can be separated from the interpreter, this approach permits development of a distributed MUMPS system with no change in applications software.
Analytic Patch Configuration (APC) gateway version 1.0 user's guide
NASA Technical Reports Server (NTRS)
Bingel, Bradford D.
1990-01-01
The Analytic Patch Configuration (APC) is an interactive software tool which translates aircraft configuration geometry files from one format into another. This initial release of the APC Gateway accommodates six formats: the four accepted APC formats (89f, 89fd, 89u, and 89ud), the PATRAN 2.x phase 1 neutral file format, and the Integrated Aerodynamic Analysis System (IAAS) General Geometry (GG) format. Written in ANSI FORTRAN 77 and completely self-contained, the APC Gateway is very portable and was already installed on CDC/NOS, VAX/VMS, SUN, SGI/IRIS, CONVEX, and GRAY hosts.
Fault Study of Valve Based on Test Analysis and Comparison
NASA Astrophysics Data System (ADS)
Cheng, Li; Yang, Wukui; Liang, Tao; Xu, Yu; Chen, Chao
2017-10-01
The valve of a certain type of small engine often has the fault phenomenon of abnormal vibration noise and can’t close under the specified pressure, which may cause the engine automatic stop because of valve incomplete close leading to fuel leakage during test and startup on the bench. By test study compared to imported valve with the same use function and test condition valve, and put forward the thinking of improving valve structure, compared no-improved valve to improved valve by adopting Fluent field simulation software. As a result, improved valve can restore close pressure of valve, restrain abnormal vibration noise phenomenon, and effectively compensate compression value of spring because of steel ball contacting position downward with valve casing.
Numerical simulation of flow field in umbrella wind turbine
NASA Astrophysics Data System (ADS)
Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu; Daorina, Bao; Xiaoxue, Wang; Wei, Shang; Yadong, Liu
2018-05-01
Umbrella wind turbine can control the swept area by adjusting the shrinking angle of the rotor so as to ensure that output power is near the rated value. This is very helpful for the utilization of wind energy in sandstorms and typhoon-prone areas of our country. In this paper, Fluent software is used to simulate the velocity field and pressure field of 5kW Umbrella Wind Turbine at 0° 45°and 60°angle of contraction. The results provide a theoretical basis for further improving the power adjustment mechanism of Umbrella Wind Turbines, At the same time, it also provide a reference for our country to perfect the wind energy utilization system about the typhoon environment in the coastal areas.
Mathematical modeling of the process of filling a mold during injection molding of ceramic products
NASA Astrophysics Data System (ADS)
Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.
2015-10-01
Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed
NASA Astrophysics Data System (ADS)
Kallio, S.; Guldén, M.; Hermanson, A.
Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.
Design and Analysis of Horizontal Axial Flow Motor Shroud
NASA Astrophysics Data System (ADS)
Wang, Shiming; Shen, Yu
2018-01-01
The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.
Development of the FITS tools package for multiple software environments
NASA Technical Reports Server (NTRS)
Pence, W. D.; Blackburn, J. K.
1992-01-01
The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.
C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component
NASA Astrophysics Data System (ADS)
Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.
2018-06-01
The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.
C-Based Design Methodology and Topological Change for an Indian Agricultural Tractor Component
NASA Astrophysics Data System (ADS)
Matta, Anil Kumar; Raju, D. Ranga; Suman, K. N. S.; Kranthi, A. S.
2018-02-01
The failure of tractor components and their replacement has now become very common in India because of re-cycling, re-sale, and duplication. To over come the problem of failure we propose a design methodology for topological change co-simulating with software's. In the proposed Design methodology, the designer checks Paxial, Pcr, Pfailue, τ by hand calculations, from which refined topological changes of R.S.Arm are formed. We explained several techniques employed in the component for reduction, removal of rib material to change center of gravity and centroid point by using system C for mixed level simulation and faster topological changes. The design process in system C can be compiled and executed with software, TURBO C7. The modified component is developed in proE and analyzed in ANSYS. The topologically changed component with slot 120 × 4.75 × 32.5 mm at the center showed greater effectiveness than the original component.
Cross-Modal Matching of Audio-Visual German and French Fluent Speech in Infancy
Kubicek, Claudia; Hillairet de Boisferon, Anne; Dupierrix, Eve; Pascalis, Olivier; Lœvenbruck, Hélène; Gervain, Judit; Schwarzer, Gudrun
2014-01-01
The present study examined when and how the ability to cross-modally match audio-visual fluent speech develops in 4.5-, 6- and 12-month-old German-learning infants. In Experiment 1, 4.5- and 6-month-old infants’ audio-visual matching ability of native (German) and non-native (French) fluent speech was assessed by presenting auditory and visual speech information sequentially, that is, in the absence of temporal synchrony cues. The results showed that 4.5-month-old infants were capable of matching native as well as non-native audio and visual speech stimuli, whereas 6-month-olds perceived the audio-visual correspondence of native language stimuli only. This suggests that intersensory matching narrows for fluent speech between 4.5 and 6 months of age. In Experiment 2, auditory and visual speech information was presented simultaneously, therefore, providing temporal synchrony cues. Here, 6-month-olds were found to match native as well as non-native speech indicating facilitation of temporal synchrony cues on the intersensory perception of non-native fluent speech. Intriguingly, despite the fact that audio and visual stimuli cohered temporally, 12-month-olds matched the non-native language only. Results were discussed with regard to multisensory perceptual narrowing during the first year of life. PMID:24586651
Mathematical Modeling of Thermofrictional Milling Process Using ANSYS WB Software
NASA Astrophysics Data System (ADS)
Sherov, K. T.; Sikhimbayev, M. R.; Sherov, A. K.; Donenbayev, B. S.; Rakishev, A. K.; Mazdubai, A. B.; Musayev, M. M.; Abeuova, A. M.
2017-06-01
This article presents ANSYS WB-based mathematical modelling of the thermofrictional milling process, which allowed studying the dynamics of thermal and physical processes occurring during the processing. The technique used also allows determination of the optimal cutting conditions of thermofrictional milling for processing various materials, in particular steel 40CN2MA, 30CGSA, 45, 3sp. In our study, from among a number of existing models of cutting fracture, we chose the criterion first proposed by prof. V. L. Kolmogorov. In order to increase the calculations performance, a mathematical model was proposed, that used only two objects: a parallelepiped-shaped workpiece and a cutting insert in the form of a pentagonal prism. In addition, the work takes into account the friction coefficient between a cutting insert and a workpiece taken equal to 0.4 mm. To determine the temperature in the subcontact layer of the workpiece, we introduced the coordinates of nine characteristic points with the same interval in the local coordinate system. As a result, the temperature values were obtained for different materials at the studied points during the cutter speed change. The research results showed the possibility of controlling thermal processes during processing by choosing the optimum cutting modes.
Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model
NASA Astrophysics Data System (ADS)
Dordevich, Milorad C. W.
This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.
Applications of Artificial Intelligence in Voice Recognition Systems in Micro-Computers.
1982-03-01
DELTAO THEN 1290 1050 IF ANS$(I) = "HAIN MENU THEN 320 1060 IF ANS$(I) - " ABORTO THEN 3150 1070 IF ANS$(I) - BACK’ THEN 3590 1080 NEXT I 1090... ABORTO THEN 3150 1660 NEXT I 1670 SOTO 3350 3 REM’ ERROR PACK 1680 STOP 1690 REM SHIPS MENU 1700 REM------------ 1710 HOME : VTAB 5 :HTAB 15 :PRINT...IF ANS*(I) - PROFILESO THEN 3100 2470 IF IS$(I) - "MIN MENU" THEN 320 24Sf IF NB$(I) - "G0 BACK" THEN 3590 2490 IF ANS$(I) - " ABORTO THEN 3150 2500
Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh
2018-05-01
This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohne, Thomas; Kliem, Soren; Rohde, Ulrich
2006-07-01
Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shiftedmore » towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities. (authors)« less
Tribst, João Paulo Mendes; Dal Piva, Amanda Maria de Oliveira; Shibli, Jamil Awad; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie
2017-12-07
This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland) was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA). The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm), C2 (2 mm), C3 (3 mm), C4 (4 mm), C5 (5 mm) and C6 (6 mm). The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6). The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA) and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N) was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads' presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant's thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.
Reproducing American Sign Language sentences: cognitive scaffolding in working memory
Supalla, Ted; Hauser, Peter C.; Bavelier, Daphne
2014-01-01
The American Sign Language Sentence Reproduction Test (ASL-SRT) requires the precise reproduction of a series of ASL sentences increasing in complexity and length. Error analyses of such tasks provides insight into working memory and scaffolding processes. Data was collected from three groups expected to differ in fluency: deaf children, deaf adults and hearing adults, all users of ASL. Quantitative (correct/incorrect recall) and qualitative error analyses were performed. Percent correct on the reproduction task supports its sensitivity to fluency as test performance clearly differed across the three groups studied. A linguistic analysis of errors further documented differing strategies and bias across groups. Subjects' recall projected the affordance and constraints of deep linguistic representations to differing degrees, with subjects resorting to alternate processing strategies when they failed to recall the sentence correctly. A qualitative error analysis allows us to capture generalizations about the relationship between error pattern and the cognitive scaffolding, which governs the sentence reproduction process. Highly fluent signers and less-fluent signers share common chokepoints on particular words in sentences. However, they diverge in heuristic strategy. Fluent signers, when they make an error, tend to preserve semantic details while altering morpho-syntactic domains. They produce syntactically correct sentences with equivalent meaning to the to-be-reproduced one, but these are not verbatim reproductions of the original sentence. In contrast, less-fluent signers tend to use a more linear strategy, preserving lexical status and word ordering while omitting local inflections, and occasionally resorting to visuo-motoric imitation. Thus, whereas fluent signers readily use top-down scaffolding in their working memory, less fluent signers fail to do so. Implications for current models of working memory across spoken and signed modalities are considered. PMID:25152744
NASA Astrophysics Data System (ADS)
Gu, Yu; Li, Qiang; Xu, Bao-Jun; Zhao, Zhe
2014-01-01
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance (QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fsp of 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fsp was found and subsequently became one of the most important parameters in the new sensor design.
Technical Support Document for Version 3.9.0 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2011-09-01
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC are no longer included, but those sections remain in this document for reference purposes.« less
Technical Support Document for Version 3.9.1 of the COMcheck Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan
2012-09-01
COMcheck provides an optional way to demonstrate compliance with commercial and high-rise residential building energy codes. Commercial buildings include all use groups except single family and multifamily not over three stories in height. COMcheck was originally based on ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989) requirements and is intended for use with various codes based on Standard 90.1, including the Codification of ASHRAE/IES Standard 90.1-1989 (90.1-1989 Code) (ASHRAE 1989a, 1993b) and ASHRAE/IESNA Standard 90.1-1999 (Standard 90.1-1999). This includes jurisdictions that have adopted the 90.1-1989 Code, Standard 90.1-1989, Standard 90.1-1999, or their own code based on one of these. We view Standard 90.1-1989more » and the 90.1-1989 Code as having equivalent technical content and have used both as source documents in developing COMcheck. This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards. Beginning with COMcheck version 3.8.0, support for 90.1-1989, 90.1-1999, and the 1998 IECC and version 3.9.0 support for 2000 and 2001 IECC are no longer included, but those sections remain in this document for reference purposes.« less
Writing Blocks and Tacit Knowledge.
ERIC Educational Resources Information Center
Boice, Robert
1993-01-01
A review of the literature on writing block looks at two kinds: inability to write in a timely, fluent fashion, and reluctance by academicians to assist others in writing. Obstacles to fluent writing are outlined, four historical trends in treating blocks are discussed, and implications are examined. (MSE)
Hofstadter-Duke, Kristi L; Daly, Edward J
2015-03-01
This study investigated a method for conducting experimental analyses of academic responding. In the experimental analyses, academic responding (math computation), rather than problem behavior, was reinforced across conditions. Two separate experimental analyses (one with fluent math computation problems and one with non-fluent math computation problems) were conducted with three elementary school children using identical contingencies while math computation rate was measured. Results indicate that the experimental analysis with non-fluent problems produced undifferentiated responding across participants; however, differentiated responding was achieved for all participants in the experimental analysis with fluent problems. A subsequent comparison of the single-most effective condition from the experimental analyses replicated the findings with novel computation problems. Results are discussed in terms of the critical role of stimulus control in identifying controlling consequences for academic deficits, and recommendations for future research refining and extending experimental analysis to academic responding are made. © The Author(s) 2014.
Application Program Interface for the Orion Aerodynamics Database
NASA Technical Reports Server (NTRS)
Robinson, Philip E.; Thompson, James
2013-01-01
The Application Programming Interface (API) for the Crew Exploration Vehicle (CEV) Aerodynamic Database has been developed to provide the developers of software an easily implemented, fully self-contained method of accessing the CEV Aerodynamic Database for use in their analysis and simulation tools. The API is programmed in C and provides a series of functions to interact with the database, such as initialization, selecting various options, and calculating the aerodynamic data. No special functions (file read/write, table lookup) are required on the host system other than those included with a standard ANSI C installation. It reads one or more files of aero data tables. Previous releases of aerodynamic databases for space vehicles have only included data tables and a document of the algorithm and equations to combine them for the total aerodynamic forces and moments. This process required each software tool to have a unique implementation of the database code. Errors or omissions in the documentation, or errors in the implementation, led to a lengthy and burdensome process of having to debug each instance of the code. Additionally, input file formats differ for each space vehicle simulation tool, requiring the aero database tables to be reformatted to meet the tool s input file structure requirements. Finally, the capabilities for built-in table lookup routines vary for each simulation tool. Implementation of a new database may require an update to and verification of the table lookup routines. This may be required if the number of dimensions of a data table exceeds the capability of the simulation tools built-in lookup routines. A single software solution was created to provide an aerodynamics software model that could be integrated into other simulation and analysis tools. The highly complex Orion aerodynamics model can then be quickly included in a wide variety of tools. The API code is written in ANSI C for ease of portability to a wide variety of systems. The input data files are in standard formatted ASCII, also for improved portability. The API contains its own implementation of multidimensional table reading and lookup routines. The same aerodynamics input file can be used without modification on all implementations. The turnaround time from aerodynamics model release to a working implementation is significantly reduced
Aerodynamic Analysis of a Canard Missile Configuration using ANSYS-CFX
2011-12-01
OF A CANARD MISSILE CONFIGURATION USING ANSYS - CFX by Hong Chuan Wee December 2011 Thesis Advisor: Maximilian Platzer Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Aerodynamic Analysis of a Canard Missile Configuration using ANSYS - CFX 5. FUNDING NUMBERS 6...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This study used the Computational Fluid Dynamics code, ANSYS - CFX to
Fluid dynamics simulation for design on sludge drying equipment
NASA Astrophysics Data System (ADS)
Li, Shuiping; Liang, Wang; Kai, Zhang
2017-10-01
Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.
Guntupalli, Vijaya K; Everhart, D Erik; Kalinowski, Joseph; Nanjundeswaran, Chayadevie; Saltuklaroglu, Tim
2007-01-01
People who stutter produce speech that is characterized by intermittent, involuntary part-word repetitions and prolongations. In addition to these signature acoustic manifestations, those who stutter often display repetitive and fixated behaviours outside the speech producing mechanism (e.g. in the head, arm, fingers, nares, etc.). Previous research has examined the attitudes and perceptions of those who stutter and people who frequently interact with them (e.g. relatives, parents, employers). Results have shown an unequivocal, powerful and robust negative stereotype despite a lack of defined differences in personality structure between people who stutter and normally fluent individuals. However, physiological investigations of listener responses during moments of stuttering are limited. There is a need for data that simultaneously examine physiological responses (e.g. heart rate and galvanic skin conductance) and subjective behavioural responses to stuttering. The pairing of these objective and subjective data may provide information that casts light on the genesis of negative stereotypes associated with stuttering, the development of compensatory mechanisms in those who stutter, and the true impact of stuttering on senders and receivers alike. To compare the emotional and physiological responses of fluent speakers while listening and observing fluent and severe stuttered speech samples. Twenty adult participants (mean age = 24.15 years, standard deviation = 3.40) observed speech samples of two fluent speakers and two speakers who stutter reading aloud. Participants' skin conductance and heart rate changes were measured as physiological responses to stuttered or fluent speech samples. Participants' subjective responses on arousal (excited-calm) and valence (happy-unhappy) dimensions were assessed via the Self-Assessment Manikin (SAM) rating scale with an additional questionnaire comprised of a set of nine bipolar adjectives. Results showed significantly increased skin conductance and lower mean heart rate during the presentation of stuttered speech relative to the presentation of fluent speech samples (p<0.05). Listeners also self-rated themselves as being more aroused, unhappy, nervous, uncomfortable, sad, tensed, unpleasant, avoiding, embarrassed, and annoyed while viewing stuttered speech relative to the fluent speech. These data support the notion that stutter-filled speech can elicit physiological and emotional responses in listeners. Clinicians who treat stuttering should be aware that listeners show involuntary physiological responses to moderate-severe stuttering that probably remain salient over time and contribute to the evolution of negative stereotypes of people who stutter. With this in mind, it is hoped that clinicians can work with people who stutter to develop appropriate coping strategies. The role of amygdala and mirror neural mechanism in physiological and subjective responses to stuttering is discussed.
Characteristics of stuttering-like disfluencies in Dutch-speaking children.
Boey, Ronny A; Wuyts, Floris L; Van de Heyning, Paul H; De Bodt, Marc S; Heylen, Louis
2007-01-01
The purpose of this study was to compare the characteristics of stuttering-like disfluencies in a group of native Dutch-speaking children who stutter (n=693), with a group of normally fluent children (n=79). Methods involved the observation of stuttering-like disfluencies in participants' conversational speech samples (total 77,200 words), particularly the frequency, duration and physical tension of instances of stuttering. Findings indicate that stuttering-like disfluencies exhibited by children who stutter are significantly more frequent, longer in duration and involve more physical tension when compared to those of normally fluent children. Furthermore, applying a criterion of 3% stuttering-like disfluencies to distinguish stuttering from normally fluent children resulted in a high degree of sensitivity (0.9452) and specificity (0.9747). Results were taken to suggest that characteristics of stuttering-like disfluencies of Dutch-speaking children are similar to those of English-speaking children and that talker group membership criteria for childhood stuttering can reasonably be extrapolated from the Dutch to the English language and vice versa. The reader will be able to: (1) describe characteristics of stuttering-like disfluencies, (2) define properties such as frequency, duration and physical tension for stuttering children and normally fluent children, and (3) make use of data on sensitivity and specificity of the criterion of 3% stuttering-like disfluencies to distinguish stuttering and normally fluent children.
Kong, Anthony Pak-Hin; Whiteside, Janet; Bargmann, Peggy
2016-10-01
Discourse from speakers with dementia and aphasia is associated with comparable but not identical deficits, necessitating appropriate methods to differentiate them. The current study aims to validate the Main Concept Analysis (MCA) to be used for eliciting and quantifying discourse among native typical English speakers and to establish its norm, and investigate the validity and sensitivity of the MCA to compare discourse produced by individuals with fluent aphasia, non-fluent aphasia, or dementia of Alzheimer's type (DAT), and unimpaired elderly. Discourse elicited through a sequential picture description task was collected from 60 unimpaired participants to determine the MCA scoring criteria; 12 speakers with fluent aphasia, 12 with non-fluent aphasia, 13 with DAT, and 20 elderly participants from the healthy group were compared on the finalized MCA. Results of MANOVA revealed significant univariate omnibus effects of speaker group as an independent variable on each main concept index. MCA profiles differed significantly between all participant groups except dementia versus fluent aphasia. Correlations between the MCA performances and the Western Aphasia Battery and Cognitive Linguistic Quick Test were found to be statistically significant among the clinical groups. The MCA was appropriate to be used among native speakers of English. The results also provided further empirical evidence of discourse deficits in aphasia and dementia. Practitioners can use the MCA to evaluate discourse production systemically and objectively.
Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface
NASA Astrophysics Data System (ADS)
Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai
2016-07-01
A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.
NASA Astrophysics Data System (ADS)
Khalatov, A. A.; Petliak, O. O.; Severin, S. D.; Panchenko, N. A.
2018-03-01
The purpose of this work is a comparative study of the physical structure and film cooling efficiency of the single array of inclined holes, placed in triangular dimples and in a trench. The software package ANSYS CFX 17.0 was used along with RANS SST turbulence model. Calculations were made in a wide range of the blowing ratio ranging from 0.5 to 2.0. Results of modeling have shown high efficiency of triangular film cooling configuration. At m ≥ 1.5, the triangular configuration is comparable with the trench configuration in terms of the film cooling efficiency.
Application of a single-fluid model for the steam condensing flow prediction
NASA Astrophysics Data System (ADS)
Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.
2016-10-01
One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.