Software Architecture Evaluation in Global Software Development Projects
NASA Astrophysics Data System (ADS)
Salger, Frank
Due to ever increasing system complexity, comprehensive methods for software architecture evaluation become more and more important. This is further stressed in global software development (GSD), where the software architecture acts as a central knowledge and coordination mechanism. However, existing methods for architecture evaluation do not take characteristics of GSD into account. In this paper we discuss what aspects are specific for architecture evaluations in GSD. Our experiences from GSD projects at Capgemini sd&m indicate, that architecture evaluations differ in how rigorously one has to assess modularization, architecturally relevant processes, knowledge transfer and process alignment. From our project experiences, we derive nine good practices, the compliance to which should be checked in architecture evaluations in GSD. As an example, we discuss how far the standard architecture evaluation method used at Capgemini sd&m already considers the GSD-specific good practices, and outline what extensions are necessary to achieve a comprehensive architecture evaluation framework for GSD.
Image Understanding Architecture
1991-09-01
architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers
Software synthesis using generic architectures
NASA Technical Reports Server (NTRS)
Bhansali, Sanjay
1993-01-01
A framework for synthesizing software systems based on abstracting software system designs and the design process is described. The result of such an abstraction process is a generic architecture and the process knowledge for customizing the architecture. The customization process knowledge is used to assist a designer in customizing the architecture as opposed to completely automating the design of systems. Our approach using an implemented example of a generic tracking architecture which was customized in two different domains is illustrated. How the designs produced using KASE compare to the original designs of the two systems, and current work and plans for extending KASE to other application areas are described.
An Object-Oriented Software Architecture for the Explorer-2 Knowledge Management Environment
Tarabar, David B.; Greenes, Robert A.; Slosser, Eric T.
1989-01-01
Explorer-2 is a workstation based environment to facilitate knowledge management. It provides consistent access to a broad range of knowledge on the basis of purpose, not type. We have developed a software architecture based on Object-Oriented programming for Explorer-2. We have defined three classes of program objects: Knowledge ViewFrames, Knowledge Resources, and Knowledge Bases. This results in knowledge management at three levels: the screen level, the disk level and the meta-knowledge level. We have applied this design to several knowledge bases, and believe that there is a broad applicability of this design.
The Need for Software Architecture Evaluation in the Acquisition of Software-Intensive Sysetms
2014-01-01
Function and Performance Specification GIG Global Information Grid ISO International Standard Organisation MDA Model Driven Architecture...architecture and design, which is a key part of knowledge-based economy UNCLASSIFIED DSTO-TR-2936 UNCLASSIFIED 24 Allow Australian SMEs to
AKM in Open Source Communities
NASA Astrophysics Data System (ADS)
Stamelos, Ioannis; Kakarontzas, George
Previous chapters in this book have dealt with Architecture Knowledge Management in traditional Closed Source Software (CSS) projects. This chapterwill attempt to examine the ways that knowledge is shared among participants in Free Libre Open Source Software (FLOSS 1) projects and how architectural knowledge is managed w.r.t. CSS. FLOSS projects are organized and developed in a fundamentally different way than CSS projects. FLOSS projects simply do not develop code as CSS projects do. As a consequence, their knowledge management mechanisms are also based on different concepts and tools.
RT-Syn: A real-time software system generator
NASA Technical Reports Server (NTRS)
Setliff, Dorothy E.
1992-01-01
This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Collins, Donald J.; Doyle, Richard J.; Jacobson, Allan S.
1991-01-01
Viewgraphs on DataHub knowledge based assistance for science visualization and analysis using large distributed databases. Topics covered include: DataHub functional architecture; data representation; logical access methods; preliminary software architecture; LinkWinds; data knowledge issues; expert systems; and data management.
Knowledge-based processing for aircraft flight control
NASA Technical Reports Server (NTRS)
Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul
1994-01-01
This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.
An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency
NASA Astrophysics Data System (ADS)
Phillips, Dewanne Marie
Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.
Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U
2001-12-01
Clinicians' acceptance of clinical decision support depends on its workflow-oriented, context-sensitive accessibility and availability at the point of care, integrated into the Electronic Patient Record (EPR). Commercially available Hospital Information Systems (HIS) often focus on administrative tasks and mostly do not provide additional knowledge based functionality. Their traditionally monolithic and closed software architecture encumbers integration of and interaction with external software modules. Our aim was to develop methods and interfaces to integrate knowledge sources into two different commercial hospital information systems to provide the best decision support possible within the context of available patient data. An existing, proven standalone scoring system for acute abdominal pain was supplemented by a communication interface. In both HIS we defined data entry forms and developed individual and reusable mechanisms for data exchange with external software modules. We designed an additional knowledge support frontend which controls data exchange between HIS and the knowledge modules. Finally, we added guidelines and algorithms to the knowledge library. Despite some major drawbacks which resulted mainly from the HIS' closed software architectures we showed exemplary, how external knowledge support can be integrated almost seamlessly into different commercial HIS. This paper describes the prototypical design and current implementation and discusses our experiences.
Software design by reusing architectures
NASA Technical Reports Server (NTRS)
Bhansali, Sanjay; Nii, H. Penny
1992-01-01
Abstraction fosters reuse by providing a class of artifacts that can be instantiated or customized to produce a set of artifacts meeting different specific requirements. It is proposed that significant leverage can be obtained by abstracting software system designs and the design process. The result of such an abstraction is a generic architecture and a set of knowledge-based, customization tools that can be used to instantiate the generic architecture. An approach for designing software systems based on the above idea are described. The approach is illustrated through an implemented example, and the advantages and limitations of the approach are discussed.
Architected Agile Solutions for Software-Reliant Systems
NASA Astrophysics Data System (ADS)
Boehm, Barry; Lane, Jo Ann; Koolmanojwong, Supannika; Turner, Richard
Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70% capabilities,” interoperability, net-centricity, and rapid adaptation to change. The latter need has led to increased interest in agile methods of software development, in which teams rely on shared tacit interpersonal knowledge rather than explicit documented knowledge. However, such systems often need to be scaled up to higher level of performance and assurance, requiring stronger architectural support. Several organizations have recently transformed themselves by developing successful combinations of agility and architecture that can scale to projects of up to 100 personnel. This chapter identifies a set of key principles for such architected agile solutions for software-reliant systems, provides guidance for how much architecting is enough, and illustrates the key principles with several case studies.
Using ArchE in the Classroom: One Experience
2007-09-01
The Architecture Expert (ArchE) tool serves as a software architecture design assistant. It embodies knowledge of quality attributes and the relation...between the achievement of quality attribute requirements and architecture design . This technical note describes the use of a pre-alpha release of
Frances: A Tool for Understanding Computer Architecture and Assembly Language
ERIC Educational Resources Information Center
Sondag, Tyler; Pokorny, Kian L.; Rajan, Hridesh
2012-01-01
Students in all areas of computing require knowledge of the computing device including software implementation at the machine level. Several courses in computer science curricula address these low-level details such as computer architecture and assembly languages. For such courses, there are advantages to studying real architectures instead of…
Integrity Constraint Monitoring in Software Development: Proposed Architectures
NASA Technical Reports Server (NTRS)
Fernandez, Francisco G.
1997-01-01
In the development of complex software systems, designers are required to obtain from many sources and manage vast amounts of knowledge of the system being built and communicate this information to personnel with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure of, relationships between and limitations of the data objects in the system, becomes increasingly more vital as the complexity of the system and the number of knowledge sources increases. Ensuring that violations of these properties do not occur becomes steadily more challenging. One approach toward managing the enforcement or system properties, called context monitoring, uses a centralized repository of integrity constraints and a constraint satisfiability mechanism for dynamic verification of property enforcement during program execution. The focus of this paper is to describe possible software architectures that define a mechanism for dynamically checking the satisfiability of a set of constraints on a program. The next section describes the context monitoring approach in general. Section 3 gives an overview of the work currently being done toward the addition of an integrity constraint satisfiability mechanism to a high-level program language, SequenceL, and demonstrates how this model is being examined to develop a general software architecture. Section 4 describes possible architectures for a general constraint satisfiability mechanism, as well as an alternative approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a brief summary outlining the, current state of the research and future work.
Modeling and Improving Information Flows in the Development of Large Business Applications
NASA Astrophysics Data System (ADS)
Schneider, Kurt; Lübke, Daniel
Designing a good architecture for an application is a wicked problem. Therefore, experience and knowledge are considered crucial for informing work in software architecture. However, many organizations do not pay sufficient attention to experience exploitation and architectural learning. Many users of information systems are not aware of the options and the needs to report problems and requirements. They often do not have time to describe a problem encountered in sufficient detail for developers to remove it. And there may be a lengthy process for providing feedback. Hence, the knowledge about problems and potential solutions is not shared effectively. Architectural knowledge needs to include evaluative feedback as well as decisions and their reasons (rationale).
NASA Technical Reports Server (NTRS)
Keller, Richard M. (Editor); Barstow, David; Lowry, Michael R.; Tong, Christopher H.
1992-01-01
The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface.
Utilizing Expert Knowledge in Estimating Future STS Costs
NASA Technical Reports Server (NTRS)
Fortner, David B.; Ruiz-Torres, Alex J.
2004-01-01
A method of estimating the costs of future space transportation systems (STSs) involves classical activity-based cost (ABC) modeling combined with systematic utilization of the knowledge and opinions of experts to extend the process-flow knowledge of existing systems to systems that involve new materials and/or new architectures. The expert knowledge is particularly helpful in filling gaps that arise in computational models of processes because of inconsistencies in historical cost data. Heretofore, the costs of planned STSs have been estimated following a "top-down" approach that tends to force the architectures of new systems to incorporate process flows like those of the space shuttles. In this ABC-based method, one makes assumptions about the processes, but otherwise follows a "bottoms up" approach that does not force the new system architecture to incorporate a space-shuttle-like process flow. Prototype software has been developed to implement this method. Through further development of software, it should be possible to extend the method beyond the space program to almost any setting in which there is a need to estimate the costs of a new system and to extend the applicable knowledge base in order to make the estimate.
Computers for symbolic processing
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Lowrie, Matthew B.; Li, Guo-Jie
1989-01-01
A detailed survey on the motivations, design, applications, current status, and limitations of computers designed for symbolic processing is provided. Symbolic processing computations are performed at the word, relation, or meaning levels, and the knowledge used in symbolic applications may be fuzzy, uncertain, indeterminate, and ill represented. Various techniques for knowledge representation and processing are discussed from both the designers' and users' points of view. The design and choice of a suitable language for symbolic processing and the mapping of applications into a software architecture are then considered. The process of refining the application requirements into hardware and software architectures is treated, and state-of-the-art sequential and parallel computers designed for symbolic processing are discussed.
A knowledge based software engineering environment testbed
NASA Technical Reports Server (NTRS)
Gill, C.; Reedy, A.; Baker, L.
1985-01-01
The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing
Applying Service-Oriented Architecture on The Development of Groundwater Modeling Support System
NASA Astrophysics Data System (ADS)
Li, C. Y.; WANG, Y.; Chang, L. C.; Tsai, J. P.; Hsiao, C. T.
2016-12-01
Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre- and post-processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing functions. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater modeling support system to assist model construction. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. The system provides a data warehouse to restore groundwater observations, MODFLOW Support Service, MODFLOW Input File & Shapefile Convert Service, MODFLOW Service, and Expert System Service to assist researchers to build models. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.
A Bibliography of Externally Published Works by the SEI Engineering Techniques Program
1992-08-01
media, and virtual reality * model- based engineering * programming languages * reuse * software architectures * software engineering as a discipline...Knowledge- Based Engineering Environments." IEEE Expert 3, 2 (May 1988): 18-23, 26-32. Audience: Practitioner [Klein89b] Klein, D.V. "Comparison of...Terms with Software Reuse Terminology: A Model- Based Approach." ACM SIGSOFT Software Engineering Notes 16, 2 (April 1991): 45-51. Audience: Practitioner
The Software Management Environment (SME)
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Decker, William; Buell, John
1988-01-01
The Software Management Environment (SME) is a research effort designed to utilize the past experiences and results of the Software Engineering Laboratory (SEL) and to incorporate this knowledge into a tool for managing projects. SME provides the software development manager with the ability to observe, compare, predict, analyze, and control key software development parameters such as effort, reliability, and resource utilization. The major components of the SME, the architecture of the system, and examples of the functionality of the tool are discussed.
A diagnostic prototype of the potable water subsystem of the Space Station Freedom ECLSS
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
In analyzing the baseline Environmental Control and Life Support System (ECLSS) command and control architecture, various processes are found which would be enhanced by the use of knowledge based system methods of implementation. The most suitable process for prototyping using rule based methods are documented, while domain knowledge resources and other practical considerations are examined. Requirements for a prototype rule based software system are documented. These requirements reflect Space Station Freedom ECLSS software and hardware development efforts, and knowledge based system requirements. A quick prototype knowledge based system environment is researched and developed.
ELISA, a demonstrator environment for information systems architecture design
NASA Technical Reports Server (NTRS)
Panem, Chantal
1994-01-01
This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.
Mission Services Evolution Center Message Bus
NASA Technical Reports Server (NTRS)
Mayorga, Arturo; Bristow, John O.; Butschky, Mike
2011-01-01
The Goddard Mission Services Evolution Center (GMSEC) Message Bus is a robust, lightweight, fault-tolerant middleware implementation that supports all messaging capabilities of the GMSEC API. This architecture is a distributed software system that routes messages based on message subject names and knowledge of the locations in the network of the interested software components.
Clinical results of HIS, RIS, PACS integration using data integration CASE tools
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Chan, Hing-Ming; Breant, Claudine M.; Huang, Lu J.; Valentino, Daniel J.
1995-05-01
Current infrastructure research in PACS is dominated by the development of communication networks (local area networks, teleradiology, ATM networks, etc.), multimedia display workstations, and hierarchical image storage architectures. However, limited work has been performed on developing flexible, expansible, and intelligent information processing architectures for the vast decentralized image and text data repositories prevalent in healthcare environments. Patient information is often distributed among multiple data management systems. Current large-scale efforts to integrate medical information and knowledge sources have been costly with limited retrieval functionality. Software integration strategies to unify distributed data and knowledge sources is still lacking commercially. Systems heterogeneity (i.e., differences in hardware platforms, communication protocols, database management software, nomenclature, etc.) is at the heart of the problem and is unlikely to be standardized in the near future. In this paper, we demonstrate the use of newly available CASE (computer- aided software engineering) tools to rapidly integrate HIS, RIS, and PACS information systems. The advantages of these tools include fast development time (low-level code is generated from graphical specifications), and easy system maintenance (excellent documentation, easy to perform changes, and centralized code repository in an object-oriented database). The CASE tools are used to develop and manage the `middle-ware' in our client- mediator-serve architecture for systems integration. Our architecture is scalable and can accommodate heterogeneous database and communication protocols.
Modeling software systems by domains
NASA Technical Reports Server (NTRS)
Dippolito, Richard; Lee, Kenneth
1992-01-01
The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.
NASA Astrophysics Data System (ADS)
Zhu, LeiYe; Wang, Qi; Xu, JunHua; Wu, Qing; Jin, MeiDong; Liao, RongJun; Wang, HaiBin
2018-03-01
Architectural Psychology is an interdisciplinary subject of psychology and architecture that focuses on architectural design by using Gestalt psychology, cognitive psychology and other related psychology principles. Researchers from China have achieved fruitful achievements in the field of architectural psychology during past thirty-three years. To reveal the current situation of the field in China, 129 related papers from the China National Knowledge Infrastructure (CNKI) were analyzed by CiteSpace II software. The results show that: (1) the studies of the field in China have been started since 1984 and the annual number of the papers increased dramatically from 2008 and reached a historical peak in 2016. Shanxi Architecture tops the list of contributing publishing journals; Wuhan University, Southwest Jiaotong University and Chongqing University are the best performer among the contributing organizations. (2) “Environmental Psychology”, “Architectural Design” and “Architectural Psychology” are the most frequency keywords. The frontiers of the field in China are “architectural creation” and “environmental psychology” while the popular research topics were“residential environment”, “spatial environment”, “environmental psychology”, “architectural theory” and “architectural psychology”.
2015-05-01
quality attributes. Prioritization of the utility tree leafs driven by mission goals help the user ensure that critical requirements are well-specified...Methods: State of the Art and Future Directions”, ACM Computing Surveys. 1996. 10 Laitenberger, Oliver , “A Survey of Software Inspection Technologies, Handbook on Software Engineering and Knowledge Engineering”. 2002.
Feasibility of using a knowledge-based system concept for in-flight primary flight display research
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.
1991-01-01
A study was conducted to determine the feasibility of using knowledge-based systems architectures for inflight research of primary flight display information management issues. The feasibility relied on the ability to integrate knowledge-based systems with existing onboard aircraft systems. And, given the hardware and software platforms available, the feasibility also depended on the ability to use interpreted LISP software with the real time operation of the primary flight display. In addition to evaluating these feasibility issues, the study determined whether the software engineering advantages of knowledge-based systems found for this application in the earlier workstation study extended to the inflight research environment. To study these issues, two integrated knowledge-based systems were designed to control the primary flight display according to pre-existing specifications of an ongoing primary flight display information management research effort. These two systems were implemented to assess the feasibility and software engineering issues listed. Flight test results were successful in showing the feasibility of using knowledge-based systems inflight with actual aircraft data.
External Dependencies-Driven Architecture Discovery and Analysis of Implemented Systems
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; Ron, Monica
2014-01-01
A method for architecture discovery and analysis of implemented systems (AIS) is disclosed. The premise of the method is that architecture decisions are inspired and influenced by the external entities that the software system makes use of. Examples of such external entities are COTS components, frameworks, and ultimately even the programming language itself and its libraries. Traces of these architecture decisions can thus be found in the implemented software and is manifested in the way software systems use such external entities. While this fact is often ignored in contemporary reverse engineering methods, the AIS method actively leverages and makes use of the dependencies to external entities as a starting point for the architecture discovery. The AIS method is demonstrated using the NASA's Space Network Access System (SNAS). The results show that, with abundant evidence, the method offers reusable and repeatable guidelines for discovering the architecture and locating potential risks (e.g. low testability, decreased performance) that are hidden deep in the implementation. The analysis is conducted by using external dependencies to identify, classify and review a minimal set of key source code files. Given the benefits of analyzing external dependencies as a way to discover architectures, it is argued that external dependencies deserve to be treated as first-class citizens during reverse engineering. The current structure of a knowledge base of external entities and analysis questions with strategies for getting answers is also discussed.
Evaluation of software maintain ability with open EHR - a comparison of architectures.
Atalag, Koray; Yang, Hong Yul; Tempero, Ewan; Warren, James R
2014-11-01
To assess whether it is easier to maintain a clinical information system developed using open EHR model driven development versus mainstream methods. A new open source application (GastrOS) has been developed following open EHR's multi-level modelling approach using .Net/C# based on the same requirements of an existing clinically used application developed using Microsoft Visual Basic and Access database. Almost all the domain knowledge was embedded into the software code and data model in the latter. The same domain knowledge has been expressed as a set of open EHR Archetypes in GastrOS. We then introduced eight real-world change requests that had accumulated during live clinical usage, and implemented these in both systems while measuring time for various development tasks and change in software size for each change request. Overall it took half the time to implement changes in GastrOS. However it was the more difficult application to modify for one change request, suggesting the nature of change is also important. It was not possible to implement changes by modelling only. Comparison of relative measures of time and software size change within each application highlights how architectural differences affected maintain ability across change requests. The use of open EHR model driven development can result in better software maintain ability. The degree to which open EHR affects software maintain ability depends on the extent and nature of domain knowledge involved in changes. Although we used relative measures for time and software size, confounding factors could not be totally excluded as a controlled study design was not feasible. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The AI Bus architecture for distributed knowledge-based systems
NASA Technical Reports Server (NTRS)
Schultz, Roger D.; Stobie, Iain
1991-01-01
The AI Bus architecture is layered, distributed object oriented framework developed to support the requirements of advanced technology programs for an order of magnitude improvement in software costs. The consequent need for highly autonomous computer systems, adaptable to new technology advances over a long lifespan, led to the design of an open architecture and toolbox for building large scale, robust, production quality systems. The AI Bus accommodates a mix of knowledge based and conventional components, running on heterogeneous, distributed real world and testbed environment. The concepts and design is described of the AI Bus architecture and its current implementation status as a Unix C++ library or reusable objects. Each high level semiautonomous agent process consists of a number of knowledge sources together with interagent communication mechanisms based on shared blackboards and message passing acquaintances. Standard interfaces and protocols are followed for combining and validating subsystems. Dynamic probes or demons provide an event driven means for providing active objects with shared access to resources, and each other, while not violating their security.
Thermal Control System Automation Project (TCSAP)
NASA Technical Reports Server (NTRS)
Boyer, Roger L.
1991-01-01
Information is given in viewgraph form on the Space Station Freedom (SSF) Thermal Control System Automation Project (TCSAP). Topics covered include the assembly of the External Thermal Control System (ETCS); the ETCS functional schematic; the baseline Fault Detection, Isolation, and Recovery (FDIR), including the development of a knowledge based system (KBS) for application of rule based reasoning to the SSF ETCS; TCSAP software architecture; the High Fidelity Simulator architecture; the TCSAP Runtime Object Database (RODB) data flow; KBS functional architecture and logic flow; TCSAP growth and evolution; and TCSAP relationships.
A Software Architecture for Adaptive Modular Sensing Systems
Lyle, Andrew C.; Naish, Michael D.
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614
A software architecture for adaptive modular sensing systems.
Lyle, Andrew C; Naish, Michael D
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Software Engineering and Its Application to Avionics
1988-01-01
34Automated Software Development Methodolgy (ASDM): An Architecture of a Knowledge-Based Expert System," Masters Thesis , Florida Atlantic University, Boca...operating system provides the control semnrim and aplication services within the miltiproossur system. Them processes timt aks up the application sofhwae...as a high-value target may no longer be occupied by the time the film is processed and analyzed. With the high mobility of today’s enemy forces
MER Surface Phase; Blurring the Line Between Fault Protection and What is Supposed to Happen
NASA Technical Reports Server (NTRS)
Reeves, Glenn E.
2008-01-01
An assessment on the limitations of communication with MER rovers and how such constraints drove the system design, flight software and fault protection architecture, blurring the line between traditional fault protection and expected nominal behavior, and requiring the most novel autonomous and semi-autonomous elements of the vehicle software including communication, surface mobility, attitude knowledge acquisition, fault protection, and the activity arbitration service.
Software Architecture for Big Data Systems
2014-03-27
Software Architecture: Trends and New Directions #SEIswArch © 2014 Carnegie Mellon University Software Architecture for Big Data Systems...AND SUBTITLE Software Architecture for Big Data Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...ih - . Software Architecture: Trends and New Directions #SEIswArch © 2014 Carnegie Mellon University WHAT IS BIG DATA ? FROM A SOFTWARE
Using CLIPS in the domain of knowledge-based massively parallel programming
NASA Technical Reports Server (NTRS)
Dvorak, Jiri J.
1994-01-01
The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.
PLAYGROUND: Preparing Students for the Cyber Battleground
ERIC Educational Resources Information Center
Nielson, Seth James
2017-01-01
Attempting to educate practitioners of computer security can be difficult if for no other reason than the breadth of knowledge required today. The security profession includes widely diverse subfields including cryptography, network architectures, programming, programming languages, design, coding practices, software testing, pattern recognition,…
Integrated System Health Management: Foundational Concepts, Approach, and Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2009-01-01
A sound basis to guide the community in the conception and implementation of ISHM (Integrated System Health Management) capability in operational systems was provided. The concept of "ISHM Model of a System" and a related architecture defined as a unique Data, Information, and Knowledge (DIaK) architecture were described. The ISHM architecture is independent of the typical system architecture, which is based on grouping physical elements that are assembled to make up a subsystem, and subsystems combine to form systems, etc. It was emphasized that ISHM capability needs to be implemented first at a low functional capability level (FCL), or limited ability to detect anomalies, diagnose, determine consequences, etc. As algorithms and tools to augment or improve the FCL are identified, they should be incorporated into the system. This means that the architecture, DIaK management, and software, must be modular and standards-based, in order to enable systematic augmentation of FCL (no ad-hoc modifications). A set of technologies (and tools) needed to implement ISHM were described. One essential tool is a software environment to create the ISHM Model. The software environment encapsulates DIaK, and an infrastructure to focus DIaK on determining health (detect anomalies, determine causes, determine effects, and provide integrated awareness of the system to the operator). The environment includes gateways to communicate in accordance to standards, specially the IEEE 1451.1 Standard for Smart Sensors and Actuators.
Concept of software interface for BCI systems
NASA Astrophysics Data System (ADS)
Svejda, Jaromir; Zak, Roman; Jasek, Roman
2016-06-01
Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.
Rapid Development of Custom Software Architecture Design Environments
1999-08-01
the tools themselves. This dissertation describes a new approach to capturing and using architectural design expertise in software architecture design environments...A language and tools are presented for capturing and encapsulating software architecture design expertise within a conceptual framework...of architectural styles and design rules. The design expertise thus captured is supported with an incrementally configurable software architecture
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
NASA Technical Reports Server (NTRS)
Maluf, David A.; Koga, Dennis (Technical Monitor)
2002-01-01
This presentation discuss NASA's proposed NETMARK knowledge management tool which aims 'to control and interoperate with every block in a document, email, spreadsheet, power point, database, etc. across the lifecycle'. Topics covered include: system software requirements and hardware requirements, seamless information systems, computer architecture issues, and potential benefits to NETMARK users.
Methodical Design of Software Architecture Using an Architecture Design Assistant (ArchE)
2005-04-01
PA 15213-3890 Methodical Design of Software Architecture Using an Architecture Design Assistant (ArchE) Felix Bachmann and Mark Klein Software...DATES COVERED 00-00-2005 to 00-00-2005 4. TITLE AND SUBTITLE Methodical Design of Software Architecture Using an Architecture Design Assistant...important for architecture design – quality requirements and constraints are most important Here’s some evidence: If the only concern is
Design of a Knowledge Driven HIS
Pryor, T. Allan; Clayton, Paul D.; Haug, Peter J.; Wigertz, Ove
1987-01-01
Design of the software architecture for a knowledge driven HIS is presented. In our design the frame has been used as the basic unit of knowledge representation. The structure of the frame is being designed to be sufficiently universal to contain knowledge required to implement not only expert systems, but almost all traditional HIS functions including ADT, order entry and results review. The design incorporates a two level format for the knowledge. The first level as ASCII records is used to maintain the knowledge base while the second level converted by special knowledge compilers to standard computer languages is used for efficient implementation of the knowledge applications.
FRED, a Front End for Databases.
ERIC Educational Resources Information Center
Crystal, Maurice I.; Jakobson, Gabriel E.
1982-01-01
FRED (a Front End for Databases) was conceived to alleviate data access difficulties posed by the heterogeneous nature of online databases. A hardware/software layer interposed between users and databases, it consists of three subsystems: user-interface, database-interface, and knowledge base. Architectural alternatives for this database machine…
A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William D; Robey, Jonathan M
2012-05-01
The purpose of this code specification is to describe an algorithm for solving the Euler equations of hydrodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an implementation on their target platform using their programming language of choice without requiring detailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a software developer who is proficient in the programming language of choice and is knowledgable of the target hardware to produce an efficient implementation of this specification if they also possess a thorough working knowledge of parallelmore » programming and have some experience in scientific programming using fields and meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the fine grain parallelism and data locality present in this algorithm. This specification aims to make that task easier by presenting the essential details of the algorithm in a systematic and language neutral manner while also avoiding the inclusion of implementation details that would likely be specific to a particular type of programming paradigm or platform architecture.« less
Open Architecture Standard for NASA's Software-Defined Space Telecommunications Radio Systems
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.; Kacpura, Thomas J.; Hall, Charles S.; Smith, Carl R.; Liebetreu, John
2008-01-01
NASA is developing an architecture standard for software-defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer. This paper presents the initial Space Telecommunications Radio System (STRS) Architecture for NASA missions to provide the desired software abstraction and flexibility while minimizing the resources necessary to support the architecture.
Playing Detective: Reconstructing Software Architecture from Available Evidence
1997-10-01
information • PostgreSQL (based on POSTGRES [Stonebraker 90]) for model storage • IAPR [Kazman 96c], RMTool [Murphy 95], and Perl for analysis and...720-741. Stonebraker, M.; Rowe, L; & Hirohama, M. ’The Implementation of POSTGRES ." IEEE Transactions on Knowledge and Data Engineering 2,1 (March...Engineering 19,7 (July 1993): 720-741. Stonebraker, M.; Rowe, L; & Hirohama, M. "The Implementation of POSTGRES ." IEEE Transactions on Knowledge and
Software architecture of INO340 telescope control system
NASA Astrophysics Data System (ADS)
Ravanmehr, Reza; Khosroshahi, Habib
2016-08-01
The software architecture plays an important role in distributed control system of astronomical projects because many subsystems and components must work together in a consistent and reliable way. We have utilized a customized architecture design approach based on "4+1 view model" in order to design INOCS software architecture. In this paper, after reviewing the top level INOCS architecture, we present the software architecture model of INOCS inspired by "4+1 model", for this purpose we provide logical, process, development, physical, and scenario views of our architecture using different UML diagrams and other illustrative visual charts. Each view presents INOCS software architecture from a different perspective. We finish the paper by science data operation of INO340 and the concluding remarks.
Integrating software architectures for distributed simulations and simulation analysis communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsby, Michael E.; Fellig, Daniel; Linebarger, John Michael
2005-10-01
The one-year Software Architecture LDRD (No.79819) was a cross-site effort between Sandia California and Sandia New Mexico. The purpose of this research was to further develop and demonstrate integrating software architecture frameworks for distributed simulation and distributed collaboration in the homeland security domain. The integrated frameworks were initially developed through the Weapons of Mass Destruction Decision Analysis Center (WMD-DAC), sited at SNL/CA, and the National Infrastructure Simulation & Analysis Center (NISAC), sited at SNL/NM. The primary deliverable was a demonstration of both a federation of distributed simulations and a federation of distributed collaborative simulation analysis communities in the context ofmore » the same integrated scenario, which was the release of smallpox in San Diego, California. To our knowledge this was the first time such a combination of federations under a single scenario has ever been demonstrated. A secondary deliverable was the creation of the standalone GroupMeld{trademark} collaboration client, which uses the GroupMeld{trademark} synchronous collaboration framework. In addition, a small pilot experiment that used both integrating frameworks allowed a greater range of crisis management options to be performed and evaluated than would have been possible without the use of the frameworks.« less
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Handler, Louis M.; Hall, Steve C.; Reinhart, Richard C.; Kacpura, Thomas J.
2009-01-01
The Space Telecommunication Radio System (STRS) standard is a Software Defined Radio (SDR) architecture standard developed by NASA. The goal of STRS is to reduce NASA s dependence on custom, proprietary architectures with unique and varying interfaces and hardware and support reuse of waveforms across platforms. The STRS project worked with members of the Object Management Group (OMG), Software Defined Radio Forum, and industry partners to leverage existing standards and knowledge. This collaboration included investigating the use of the OMG s Platform-Independent Model (PIM) SWRadio as the basis for an STRS PIM. This paper details the influence of the OMG technologies on the STRS update effort, findings in the STRS/SWRadio mapping, and provides a summary of the SDR Forum recommendations.
Lifecycle Prognostics Architecture for Selected High-Cost Active Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. Lybeck; B. Pham; M. Tawfik
There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.« less
The elements of a comprehensive education for future architectural acousticians
NASA Astrophysics Data System (ADS)
Wang, Lily M.
2005-04-01
Curricula for students who seek to become consultants of architectural acoustics or researchers in the field are few in the United States and in the world. This paper will present the author's opinions on the principal skills a student should obtain from a focused course of study in architectural acoustics. These include: (a) a solid command of math and wave theory, (b) fluency with digital signal processing techniques and sound measurement equipment, (c) expertise in using architectural acoustic software with an understanding of its limitations, (d) knowledge of building mechanical systems, (e) an understanding of human psychoacoustics, and (f) an appreciation for the artistic aspects of the discipline. Additionally, writing and presentation skills should be emphasized and participation in professional societies encouraged. Armed with such abilities, future architectural acousticians will advance the field significantly.
Extensive Evaluation of Using a Game Project in a Software Architecture Course
ERIC Educational Resources Information Center
Wang, Alf Inge
2011-01-01
This article describes an extensive evaluation of introducing a game project to a software architecture course. In this project, university students have to construct and design a type of software architecture, evaluate the architecture, implement an application based on the architecture, and test this implementation. In previous years, the domain…
Software Architecture Evolution
ERIC Educational Resources Information Center
Barnes, Jeffrey M.
2013-01-01
Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…
2003-09-01
BLANK xv LIST OF ACRONYMS ABC Activity Based Costing ADO ActiveX Data Object ASP Application Server Page BPR Business Process Re...processes uses people and systems (hardware, software, machinery, etc.) and that these people and systems contain the “corporate” knowledge of the...server architecture was also a high maintenance item. Data was no longer contained on one mainframe but was distributed throughout the enterprise
FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics
NASA Technical Reports Server (NTRS)
Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg
1993-01-01
FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.
2015-05-01
Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas...2015 to 00-00-2015 4. TITLE AND SUBTITLE Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and...architecture (OA) software systems Emerging challenges in achieving Better Buying Power (BBP) via OA software systems for Web- based and Mobile devices
Local, regional and national interoperability in hospital-level systems architecture.
Mykkänen, J; Korpela, M; Ripatti, S; Rannanheimo, J; Sorri, J
2007-01-01
Interoperability of applications in health care is faced with various needs by patients, health professionals, organizations and policy makers. A combination of existing and new applications is a necessity. Hospitals are in a position to drive many integration solutions, but need approaches which combine local, regional and national requirements and initiatives with open standards to support flexible processes and applications on a local hospital level. We discuss systems architecture of hospitals in relation to various processes and applications, and highlight current challenges and prospects using a service-oriented architecture approach. We also illustrate these aspects with examples from Finnish hospitals. A set of main services and elements of service-oriented architectures for health care facilities are identified, with medium-term focus which acknowledges existing systems as a core part of service-oriented solutions. The services and elements are grouped according to functional and interoperability cohesion. A transition towards service-oriented architecture in health care must acknowledge existing health information systems and promote the specification of central processes and software services locally and across organizations. Software industry best practices such as SOA must be combined with health care knowledge to respond to central challenges such as continuous change in health care. A service-oriented approach cannot entirely rely on common standards and frameworks but it must be locally adapted and complemented.
A multimedia Anatomy Browser incorporating a knowledge base and 3D images.
Eno, K.; Sundsten, J. W.; Brinkley, J. F.
1991-01-01
We describe a multimedia program for teaching anatomy. The program, called the Anatomy Browser, displays cross-sectional and topographical images, with outlines around structures and regions of interest. The user may point to these structures and retrieve text descriptions, view symbolic relationships between structures, or view spatial relationships by accessing 3-D graphics animations from videodiscs produced specifically for this program. The software also helps students exercise what they have learned by asking them to identify structures by name and location. The program is implemented in a client-server architecture, with the user interface residing on a Macintosh, while images, data, and a growing symbolic knowledge base of anatomy are stored on a fileserver. This architecture allows us to develop practical tutorial modules that are in current use, while at the same time developing the knowledge base that will lead to more intelligent tutorial systems. PMID:1807699
An open-architecture approach to defect analysis software for mask inspection systems
NASA Astrophysics Data System (ADS)
Pereira, Mark; Pai, Ravi R.; Reddy, Murali Mohan; Krishna, Ravi M.
2009-04-01
Industry data suggests that Mask Inspection represents the second biggest component of Mask Cost and Mask Turn Around Time (TAT). Ever decreasing defect size targets lead to more sensitive mask inspection across the chip, thus generating too many defects. Hence, more operator time is being spent in analyzing and disposition of defects. Also, the fact that multiple Mask Inspection Systems and Defect Analysis strategies would typically be in use in a Mask Shop or a Wafer Foundry further complicates the situation. In this scenario, there is a need for a versatile, user friendly and extensible Defect Analysis software that reduces operator analysis time and enables correct classification and disposition of mask defects by providing intuitive visual and analysis aids. We propose a new vendor-neutral defect analysis software, NxDAT, based on an open architecture. The open architecture of NxDAT makes it easily extensible to support defect analysis for mask inspection systems from different vendors. The capability to load results from mask inspection systems from different vendors either directly or through a common interface enables the functionality of establishing correlation between inspections carried out by mask inspection systems from different vendors. This capability of NxDAT enhances the effectiveness of defect analysis as it directly addresses the real-life scenario where multiple types of mask inspection systems from different vendors co-exist in mask shops or wafer foundries. The open architecture also potentially enables loading wafer inspection results as well as loading data from other related tools such as Review Tools, Repair Tools, CD-SEM tools etc, and correlating them with the corresponding mask inspection results. A unique concept of Plug-In interface to NxDAT further enhances the openness of the architecture of NxDAT by enabling end-users to add their own proprietary defect analysis and image processing algorithms. The plug-in interface makes it possible for the end-users to make use of their collected knowledge through the years of experience in mask inspection process by encapsulating the knowledge into software utilities and plugging them into NxDAT. The plug-in interface is designed with the intent of enabling the pro-active mask defect analysis teams to build competitive differentiation into their defect analysis process while protecting their knowledge internally within their company. By providing interface with all major standard layout and mask data formats, NxDAT enables correlation of defect data on reticles with design and mask databases, further extending the effectiveness of defect analysis for D2DB inspection. NxDAT also includes many other advanced features for easy and fast navigation, visual display of defects, defect selection, multi-tier classification, defect clustering and gridding, sophisticated CD and contact measurement analysis, repeatability analysis such as adder analysis, defect trend, capture rate etc.
Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop
2006-08-01
Proceedings of the Second Software Architecture Technology User Network (SATURN) Workshop Robert L. Nord August 2006 TECHNICAL REPORT CMU...SEI-2006-TR-010 ESC-TR-2006-010 Software Architecture Technology Initiative Unlimited distribution subject to the copyright. This report was...Participants 3 3 Presentations 5 3.1 SATURN Opening Presentation: Future Directions of the Software Architecture Technology Initiative 5 3.2 Keynote
2006-12-01
NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI
Knowledge-based processing for aircraft flight control
NASA Technical Reports Server (NTRS)
Painter, John H.
1991-01-01
The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.
Architecture for interoperable software in biology.
Bare, James Christopher; Baliga, Nitin S
2014-07-01
Understanding biological complexity demands a combination of high-throughput data and interdisciplinary skills. One way to bring to bear the necessary combination of data types and expertise is by encapsulating domain knowledge in software and composing that software to create a customized data analysis environment. To this end, simple flexible strategies are needed for interconnecting heterogeneous software tools and enabling data exchange between them. Drawing on our own work and that of others, we present several strategies for interoperability and their consequences, in particular, a set of simple data structures--list, matrix, network, table and tuple--that have proven sufficient to achieve a high degree of interoperability. We provide a few guidelines for the development of future software that will function as part of an interoperable community of software tools for biological data analysis and visualization. © The Author 2012. Published by Oxford University Press.
Distributed asynchronous microprocessor architectures in fault tolerant integrated flight systems
NASA Technical Reports Server (NTRS)
Dunn, W. R.
1983-01-01
The paper discusses the implementation of fault tolerant digital flight control and navigation systems for rotorcraft application. It is shown that in implementing fault tolerance at the systems level using advanced LSI/VLSI technology, aircraft physical layout and flight systems requirements tend to define a system architecture of distributed, asynchronous microprocessors in which fault tolerance can be achieved locally through hardware redundancy and/or globally through application of analytical redundancy. The effects of asynchronism on the execution of dynamic flight software is discussed. It is shown that if the asynchronous microprocessors have knowledge of time, these errors can be significantly reduced through appropiate modifications of the flight software. Finally, the papear extends previous work to show that through the combined use of time referencing and stable flight algorithms, individual microprocessors can be configured to autonomously tolerate intermittent faults.
Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.
2012-01-01
This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.
Dynamic Weather Routes Architecture Overview
NASA Technical Reports Server (NTRS)
Eslami, Hassan; Eshow, Michelle
2014-01-01
Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.
2016-01-06
of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department
Representation and presentation of requirements knowledge
NASA Technical Reports Server (NTRS)
Johnson, W. L.; Feather, Martin S.; Harris, David R.
1992-01-01
An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.
Proceedings of the 1986 IEEE international conference on systems, man and cybernetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.
Perspective on intelligent avionics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H.L.
1987-01-01
Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.
RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications
NASA Technical Reports Server (NTRS)
1992-01-01
This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.
Specification, Design, and Analysis of Advanced HUMS Architectures
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2004-01-01
During the two-year project period, we have worked on several aspects of domain-specific architectures for HUMS. In particular, we looked at using scenario-based approach for the design and designed a language for describing such architectures. The language is now being used in all aspects of our HUMS design. In particular, we have made contributions in the following areas. 1) We have employed scenarios in the development of HUMS in three main areas. They are: (a) To improve reusability by using scenarios as a library indexing tool and as a domain analysis tool; (b) To improve maintainability by recording design rationales from two perspectives - problem domain and solution domain; (c) To evaluate the software architecture. 2) We have defined a new architectural language called HADL or HUMS Architectural Definition Language. It is a customized version of xArch/xADL. It is based on XML and, hence, is easily portable from domain to domain, application to application, and machine to machine. Specifications written in HADL can be easily read and parsed using the currently available XML parsers. Thus, there is no need to develop a plethora of software to support HADL. 3) We have developed an automated design process that involves two main techniques: (a) Selection of solutions from a large space of designs; (b) Synthesis of designs. However, the automation process is not an absolute Artificial Intelligence (AI) approach though it uses a knowledge-based system that epitomizes a specific HUMS domain. The process uses a database of solutions as an aid to solve the problems rather than creating a new design in the literal sense. Since searching is adopted as the main technique, the challenges involved are: (a) To minimize the effort in searching the database where a very large number of possibilities exist; (b) To develop representations that could conveniently allow us to depict design knowledge evolved over many years; (c) To capture the required information that aid the automation process.
Software-defined reconfigurable microwave photonics processor.
Pérez, Daniel; Gasulla, Ivana; Capmany, José
2015-06-01
We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.
Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
2008-05-01
The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.
SOA: A Quality Attribute Perspective
2011-06-23
in software engineering from CMU. 6June 2011 Twitter #seiwebinar © 2011 Carnegie Mellon University Agenda Service -Oriented Architecture and... Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges 7June 2011 Twitter #seiwebinar © 2011...Architecture and Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges Review 10June 2011 Twitter
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung
2015-04-01
To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.
Quality Attributes for Mission Flight Software: A Reference for Architects
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan
2016-01-01
In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.
Executive control systems in the engineering design environment. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hurst, P. W.
1985-01-01
An executive control system (ECS) is a software structure for unifying various applications codes into a comprehensive system. It provides a library of applications, a uniform access method through a cental user interface, and a data management facility. A survey of twenty-four executive control systems designed to unify various CAD/CAE applications for use in diverse engineering design environments within government and industry was conducted. The goals of this research were to establish system requirements to survey state-of-the-art architectural design approaches, and to provide an overview of the historical evolution of these systems. Foundations for design are presented and include environmental settings, system requirements, major architectural components, and a system classification scheme based on knowledge of the supported engineering domain(s). An overview of the design approaches used in developing the major architectural components of an ECS is presented with examples taken from the surveyed systems. Attention is drawn to four major areas of ECS development: interdisciplinary usage; standardization; knowledge utilization; and computer science technology transfer.
Examining the architecture of cellular computing through a comparative study with a computer.
Wang, Degeng; Gribskov, Michael
2005-06-22
The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software-hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's "hardware" equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the "bandwidth" of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed.
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Handling knowledge via Concept Maps: a space weather use case
NASA Astrophysics Data System (ADS)
Messerotti, Mauro; Fox, Peter
Concept Maps (Cmaps) are powerful means for knowledge coding in graphical form. As flexible software tools exist to manipulate the knowledge embedded in Cmaps in machine-readable form, such complex entities are suitable candidates not only for the representation of ontologies and semantics in Virtual Observatory (VO) architectures, but also for knowledge handling and knowledge discovery. In this work, we present a use case relevant to space weather applications and we elaborate on its possible implementation and adavanced use in Semantic Virtual Observatories dedicated to Sun-Earth Connections. This analysis was carried out in the framework of the Electronic Geophysical Year (eGY) and represents an achievement synergized by the eGY Virtual Observatories Working Group.
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Andrea Beth
2004-07-01
This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)
Compositional Specification of Software Architecture
NASA Technical Reports Server (NTRS)
Penix, John; Lau, Sonie (Technical Monitor)
1998-01-01
This paper describes our experience using parameterized algebraic specifications to model properties of software architectures. The goal is to model the decomposition of requirements independent of the style used to implement the architecture. We begin by providing an overview of the role of architecture specification in software development. We then describe how architecture specifications are build up from component and connector specifications and give an overview of insights gained from a case study used to validate the method.
Achieving realistic performance and decison-making capabilities in computer-generated air forces
NASA Astrophysics Data System (ADS)
Banks, Sheila B.; Stytz, Martin R.; Santos, Eugene, Jr.; Zurita, Vincent B.; Benslay, James L., Jr.
1997-07-01
For a computer-generated force (CGF) system to be useful in training environments, it must be able to operate at multiple skill levels, exhibit competency at assigned missions, and comply with current doctrine. Because of the rapid rate of change in distributed interactive simulation (DIS) and the expanding set of performance objectives for any computer- generated force, the system must also be modifiable at reasonable cost and incorporate mechanisms for learning. Therefore, CGF applications must have adaptable decision mechanisms and behaviors and perform automated incorporation of past reasoning and experience into its decision process. The CGF must also possess multiple skill levels for classes of entities, gracefully degrade its reasoning capability in response to system stress, possess an expandable modular knowledge structure, and perform adaptive mission planning. Furthermore, correctly performing individual entity behaviors is not sufficient. Issues related to complex inter-entity behavioral interactions, such as the need to maintain formation and share information, must also be considered. The CGF must also be able to acceptably respond to unforeseen circumstances and be able to make decisions in spite of uncertain information. Because of the need for increased complexity in the virtual battlespace, the CGF should exhibit complex, realistic behavior patterns within the battlespace. To achieve these necessary capabilities, an extensible software architecture, an expandable knowledge base, and an adaptable decision making mechanism are required. Our lab has addressed these issues in detail. The resulting DIS-compliant system is called the automated wingman (AW). The AW is based on fuzzy logic, the common object database (CODB) software architecture, and a hierarchical knowledge structure. We describe the techniques we used to enable us to make progress toward a CGF entity that satisfies the requirements presented above. We present our design and implementation of an adaptable decision making mechanism that uses multi-layered, fuzzy logic controlled situational analysis. Because our research indicates that fuzzy logic can perform poorly under certain circumstances, we combine fuzzy logic inferencing with adversarial game tree techniques for decision making in strategic and tactical engagements. We describe the approach we employed to achieve this fusion. We also describe the automated wingman's system architecture and knowledge base architecture.
Assessment Environment for Complex Systems Software Guide
NASA Technical Reports Server (NTRS)
2013-01-01
This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.
Study of a unified hardware and software fault-tolerant architecture
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart
1989-01-01
A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.
An Ontology-based Architecture for Integration of Clinical Trials Management Applications
Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.
2007-01-01
Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919
The Importance of Architecture in DoD Software
1991-07-01
01282 92 1 14 060 M91-35 The Importance of Architecture in DOD Software S ACCesion For- * DTIC "r,’L- .S Dr. Barry M. Horowitz July 1991 D;.t ibto...resource utilization: architecture determines how the system sustains , 06 operations when parts of the system fail. The architecture also determines...software maintainers to ensure that we deliver to them whatever is necessary for them Medium to sustain and use the architecture . Fault Rate 37% Getting
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Architecture independent environment for developing engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Valimohamed, Karim A.; Lopez, L. A.
1990-01-01
Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.
A unified approach to the design of clinical reporting systems.
Gouveia-Oliveira, A; Salgado, N C; Azevedo, A P; Lopes, L; Raposo, V D; Almeida, I; de Melo, F G
1994-12-01
Computer-based Clinical Reporting Systems (CRS) for diagnostic departments that use structured data entry have a number of functional and structural affinities suggesting that a common software architecture for CRS may be defined. Such an architecture should allow easy expandability and reusability of a CRS. We report the development methodology and the architecture of SISCOPE, a CRS originally designed for gastrointestinal endoscopy that is expandable and reusable. Its main components are a patient database, a knowledge base, a reports base, and screen and reporting engines. The knowledge base contains the description of the controlled vocabulary and all the information necessary to control the menu system, and is easily accessed and modified with a conventional text editor. The structure of the controlled vocabulary is formally presented as an entity-relationship diagram. The screen engine drives a dynamic user interface and the reporting engine automatically creates a medical report; both engines operate by following a set of rules and the information contained in the knowledge base. Clinical experience has shown this architecture to be highly flexible and to allow frequent modifications of both the vocabulary and the menu system. This structure provided increased collaboration among development teams, insulating the domain expert from the details of the database, and enabling him to modify the system as necessary and to test the changes immediately. The system has also been reused in several different domains.
Lobos, Gustavo A.; Poblete-Echeverría, Carlos
2017-01-01
This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules. PMID:28119705
Lobos, Gustavo A; Poblete-Echeverría, Carlos
2016-01-01
This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules.
Engineering intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Warren, Kimberly C.; Goodman, Bradley A.
1993-01-01
We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.
Software architecture and engineering for patient records: current and future.
Weng, Chunhua; Levine, Betty A; Mun, Seong K
2009-05-01
During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment.
Using Ada to implement the operations management system in a community of experts
NASA Technical Reports Server (NTRS)
Frank, M. S.
1986-01-01
An architecture is described for the Space Station Operations Management System (OMS), consisting of a distributed expert system framework implemented in Ada. The motivation for such a scheme is based on the desire to integrate the very diverse elements of the OMS while taking maximum advantage of knowledge based systems technology. Part of the foundation of an Ada based distributed expert system was accomplished in the form of a proof of concept prototype for the KNOMES project (Knowledge-based Maintenance Expert System). This prototype successfully used concurrently active experts to accomplish monitoring and diagnosis for the Remote Manipulator System. The basic concept of this software architecture is named ACTORS for Ada Cognitive Task ORganization Scheme. It is when one considers the overall problem of integrating all of the OMS elements into a cooperative system that the AI solution stands out. By utilizing a distributed knowledge based system as the framework for OMS, it is possible to integrate those components which need to share information in an intelligent manner.
Liaw, Siaw-Teng; Deveny, Elizabeth; Morrison, Iain; Lewis, Bryn
2006-09-01
Using a factorial vignette survey and modeling methodology, we developed clinical and information models - incorporating evidence base, key concepts, relevant terms, decision-making and workflow needed to practice safely and effectively - to guide the development of an integrated rule-based knowledge module to support prescribing decisions in asthma. We identified workflows, decision-making factors, factor use, and clinician information requirements. The Unified Modeling Language (UML) and public domain software and knowledge engineering tools (e.g. Protégé) were used, with the Australian GP Data Model as the starting point for expressing information needs. A Web Services service-oriented architecture approach was adopted within which to express functional needs, and clinical processes and workflows were expressed in the Business Process Execution Language (BPEL). This formal analysis and modeling methodology to define and capture the process and logic of prescribing best practice in a reference implementation is fundamental to tackling deficiencies in prescribing decision support software.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee
2015-01-01
Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962
Reliability Engineering for Service Oriented Architectures
2013-02-01
Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit
2010-03-01
service consumers, and infrastructure. Techniques from any iterative and incremental software development methodology followed by the organiza- tion... Service -Oriented Architecture Environment (CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008. http://www.sei.cmu.edu...Integrating Legacy Software into a Service Oriented Architecture.” Proceedings of the 10th European Conference on Software Maintenance (CSMR 2006). Bari
Plug-In Tutor Agents: Still Pluggin'
ERIC Educational Resources Information Center
Ritter, Steven
2016-01-01
"An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…
Software architecture standard for simulation virtual machine, version 2.0
NASA Technical Reports Server (NTRS)
Sturtevant, Robert; Wessale, William
1994-01-01
The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.
ERIC Educational Resources Information Center
Zheng, Yongjie
2012-01-01
Software architecture plays an increasingly important role in complex software development. Its further application, however, is challenged by the fact that software architecture, over time, is often found not conformant to its implementation. This is usually caused by frequent development changes made to both artifacts. Against this background,…
ModSAF Software Architecture Design and Overview Document
1993-12-20
ADVANCED DISTRIBUTED SIMULATIONTECHNOLOGY AD-A282 740 ModSAF SOFTWARE ARCHITECTURE DESIGN AND OVERVIEW DOCUMENT Ver 1.0 - 20 December 1993 D T...AND SUBTITLE 5. FUNDING NUMBERS MOdSAF SOFTWARE ARCHITECTURE DESIGN AND OVERVIEW DOCUMENT C N61339-91-D-O00, Delivery Order (0021), ModSAF (CDRL A004) 6
Models for Evaluating and Improving Architecture Competence
2008-03-01
learned better methods than it engaged in the past. 36 | CMU/SEI-2008-TR-006 SOFTWARE ENGINEERING INSTITUTE | 37 6 Considering the Models ...and groups must have a repository of ac- cumulated knowledge and experience. The Organizational Learning model provides a way to eva- luate how...effective that repository is. It also tells us how ―mindful‖ the learning needs to be. The organizational coordination model
The Health Service Bus: an architecture and case study in achieving interoperability in healthcare.
Ryan, Amanda; Eklund, Peter
2010-01-01
Interoperability in healthcare is a requirement for effective communication between entities, to ensure timely access to up to-date patient information and medical knowledge, and thus facilitate consistent patient care. An interoperability framework called the Health Service Bus (HSB), based on the Enterprise Service Bus (ESB) middleware software architecture is presented here as a solution to all three levels of interoperability as defined by the HL7 EHR Interoperability Work group in their definitive white paper "Coming to Terms". A prototype HSB system was implemented based on the Mule Open-Source ESB and is outlined and discussed, followed by a clinically-based example.
NASA Technical Reports Server (NTRS)
Fitz, Rhonda; Whitman, Gerek
2016-01-01
Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IV&V) Program, with Software Assurance Research Program support, extracted FM architectures across the IV&V portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IV&V projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management. The identification of particular FM architectures, visibility, and associated IV&V techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. Additionally, the role FM has with regard to strengthened security requirements, with potential to advance overall asset protection of flight software systems, is being addressed with the development of an adverse conditions database encompassing flight software vulnerabilities. Capitalizing on the established framework, this TR suite provides assurance capability for a variety of FM architectures and varied development approaches. Research results are being disseminated across NASA, other agencies, and the software community. This paper discusses the findings and TR suite informing the FM domain in best practices for FM architectural design, visibility observations, and methods employed for IV&V and mission assurance.
Using CORBA to integrate manufacturing cells to a virtual enterprise
NASA Astrophysics Data System (ADS)
Pancerella, Carmen M.; Whiteside, Robert A.
1997-01-01
It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.
Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas
2014-01-01
A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.
An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids
NASA Technical Reports Server (NTRS)
Nugent, Richard O.; Tucker, Richard W.
1988-01-01
MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.
NASA Technical Reports Server (NTRS)
Fitz, Rhonda; Whitman, Gerek
2016-01-01
Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.
Autonomous dexterous end-effectors for space robotics
NASA Technical Reports Server (NTRS)
Bekey, George A.; Iberall, Thea; Liu, Huan
1989-01-01
The development of a knowledge-based controller is summarized for the Belgrade/USC robot hand, a five-fingered end effector, designed for maximum autonomy. The biological principles of the hand and its architecture are presented. The conceptual and software aspects of the grasp selection system are discussed, including both the effects of the geometry of the target object and the task to be performed. Some current research issues are presented.
Advanced information processing system: Input/output network management software
NASA Technical Reports Server (NTRS)
Nagle, Gail; Alger, Linda; Kemp, Alexander
1988-01-01
The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.
ESPC Common Model Architecture
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Common Model Architecture Earth System Modeling...Operational Prediction Capability (NUOPC) was established between NOAA and Navy to develop common software architecture for easy and efficient...development under a common model architecture and other software-related standards in this project. OBJECTIVES NUOPC proposes to accelerate
AMPHION: Specification-based programming for scientific subroutine libraries
NASA Technical Reports Server (NTRS)
Lowry, Michael; Philpot, Andrew; Pressburger, Thomas; Underwood, Ian; Waldinger, Richard; Stickel, Mark
1994-01-01
AMPHION is a knowledge-based software engineering (KBSE) system that guides a user in developing a diagram representing a formal problem specification. It then automatically implements a solution to this specification as a program consisting of calls to subroutines from a library. The diagram provides an intuitive domain oriented notation for creating a specification that also facilitates reuse and modification. AMPHION'S architecture is domain independent. AMPHION is specialized to an application domain by developing a declarative domain theory. Creating a domain theory is an iterative process that currently requires the joint expertise of domain experts and experts in automated formal methods for software development.
Diverter AI based decision aid, phases 1 and 2
NASA Technical Reports Server (NTRS)
Sexton, George A.; Bayles, Scott J.; Patterson, Robert W.; Schulke, Duane A.; Williams, Deborah C.
1989-01-01
It was determined that a system to incorporate artificial intelligence (AI) into airborne flight management computers is feasible. The AI functions that would be most useful to the pilot are to perform situational assessment, evaluate outside influences on the contemplated rerouting, perform flight planning/replanning, and perform maneuver planning. A study of the software architecture and software tools capable of demonstrating Diverter was also made. A skeletal planner known as the Knowledge Acquisition Development Tool (KADET), which is a combination script-based and rule-based system, was used to implement the system. A prototype system was developed which demonstrates advanced in-flight planning/replanning capabilities.
A Plug and Play GNC Architecture Using FPGA Components
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.; Kaneshige, J.; Waterman, R.; Pires, C.; Ippoloito, C.
2005-01-01
The goal of Plug and Play, or PnP, is to allow hardware and software components to work together automatically, without requiring manual setup procedures. As a result, new or replacement hardware can be plugged into a system and automatically configured with the appropriate resource assignments. However, in many cases it may not be practical or even feasible to physically replace hardware components. One method for handling these types of situations is through the incorporation of reconfigurable hardware such as Field Programmable Gate Arrays, or FPGAs. This paper describes a phased approach to developing a Guidance, Navigation, and Control (GNC) architecture that expands on the traditional concepts of PnP, in order to accommodate hardware reconfiguration without requiring detailed knowledge of the hardware. This is achieved by establishing a functional based interface that defines how the hardware will operate, and allow the hardware to reconfigure itself. The resulting system combines the flexibility of manipulating software components with the speed and efficiency of hardware.
Examining the architecture of cellular computing through a comparative study with a computer
Wang, Degeng; Gribskov, Michael
2005-01-01
The computer and the cell both use information embedded in simple coding, the binary software code and the quadruple genomic code, respectively, to support system operations. A comparative examination of their system architecture as well as their information storage and utilization schemes is performed. On top of the code, both systems display a modular, multi-layered architecture, which, in the case of a computer, arises from human engineering efforts through a combination of hardware implementation and software abstraction. Using the computer as a reference system, a simplistic mapping of the architectural components between the two is easily detected. This comparison also reveals that a cell abolishes the software–hardware barrier through genomic encoding for the constituents of the biochemical network, a cell's ‘hardware’ equivalent to the computer central processing unit (CPU). The information loading (gene expression) process acts as a major determinant of the encoded constituent's abundance, which, in turn, often determines the ‘bandwidth’ of a biochemical pathway. Cellular processes are implemented in biochemical pathways in parallel manners. In a computer, on the other hand, the software provides only instructions and data for the CPU. A process represents just sequentially ordered actions by the CPU and only virtual parallelism can be implemented through CPU time-sharing. Whereas process management in a computer may simply mean job scheduling, coordinating pathway bandwidth through the gene expression machinery represents a major process management scheme in a cell. In summary, a cell can be viewed as a super-parallel computer, which computes through controlled hardware composition. While we have, at best, a very fragmented understanding of cellular operation, we have a thorough understanding of the computer throughout the engineering process. The potential utilization of this knowledge to the benefit of systems biology is discussed. PMID:16849179
ERIC Educational Resources Information Center
Harrell, J. Michael
2011-01-01
Enterprise architecture is a relatively new concept that arose in the latter half of the twentieth century as a means of managing the information technology resources within the enterprise. Borrowing from the disciplines of brick and mortar architecture, software engineering, software architecture, and systems engineering, the enterprise…
Integrating Software-Architecture-Centric Methods into the Rational Unified Process
2004-07-01
Architecture Design ...................................................................................... 19...QAW in a life- cycle context. One issue that needs to be addressed is how scenarios produced in a QAW can be used by a software architecture design method...implementation testing. 18 CMU/SEI-2004-TR-011 CMU/SEI-2004-TR-011 19 4 Architecture Design The Attribute-Driven Design (ADD) method
Space Telecommunications Radio System (STRS) Application Repository Design and Analysis
NASA Technical Reports Server (NTRS)
Handler, Louis M.
2013-01-01
The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process.
Gathering and Exploring Scientific Knowledge in Pharmacovigilance
Lopes, Pedro; Nunes, Tiago; Campos, David; Furlong, Laura Ines; Bauer-Mehren, Anna; Sanz, Ferran; Carrascosa, Maria Carmen; Mestres, Jordi; Kors, Jan; Singh, Bharat; van Mulligen, Erik; Van der Lei, Johan; Diallo, Gayo; Avillach, Paul; Ahlberg, Ernst; Boyer, Scott; Diaz, Carlos; Oliveira, José Luís
2013-01-01
Pharmacovigilance plays a key role in the healthcare domain through the assessment, monitoring and discovery of interactions amongst drugs and their effects in the human organism. However, technological advances in this field have been slowing down over the last decade due to miscellaneous legal, ethical and methodological constraints. Pharmaceutical companies started to realize that collaborative and integrative approaches boost current drug research and development processes. Hence, new strategies are required to connect researchers, datasets, biomedical knowledge and analysis algorithms, allowing them to fully exploit the true value behind state-of-the-art pharmacovigilance efforts. This manuscript introduces a new platform directed towards pharmacovigilance knowledge providers. This system, based on a service-oriented architecture, adopts a plugin-based approach to solve fundamental pharmacovigilance software challenges. With the wealth of collected clinical and pharmaceutical data, it is now possible to connect knowledge providers’ analysis and exploration algorithms with real data. As a result, new strategies allow a faster identification of high-risk interactions between marketed drugs and adverse events, and enable the automated uncovering of scientific evidence behind them. With this architecture, the pharmacovigilance field has a new platform to coordinate large-scale drug evaluation efforts in a unique ecosystem, publicly available at http://bioinformatics.ua.pt/euadr/. PMID:24349421
SCA Waveform Development for Space Telemetry
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
2016-09-01
BEHAVIORAL MODELING OF SYSTEM- AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS by Monica F. Farah-Stapleton...AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS 5. FUNDING NUMBERS 6. AUTHOR(S) Monica F. Farah-Stapleton 7. PERFORMING...this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB number
2016-02-22
SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their
Integrating MPI and deduplication engines: a software architecture roadmap.
Baksi, Dibyendu
2009-03-01
The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.
A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes
NASA Technical Reports Server (NTRS)
Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw
2004-01-01
There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.
Deep Space Network information system architecture study
NASA Technical Reports Server (NTRS)
Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.
1992-01-01
The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.
NASA Technical Reports Server (NTRS)
Muratore, John F.
1991-01-01
Lessons learned from operational real time expert systems are examined. The basic system architecture is discussed. An expert system is any software that performs tasks to a standard that would normally require a human expert. An expert system implies knowledge contained in data rather than code. And an expert system implies the use of heuristics as well as algorithms. The 15 top lessons learned by the operation of a real time data system are presented.
Expert system for web based collaborative CAE
NASA Astrophysics Data System (ADS)
Hou, Liang; Lin, Zusheng
2006-11-01
An expert system for web based collaborative CAE was developed based on knowledge engineering, relational database and commercial FEA (Finite element analysis) software. The architecture of the system was illustrated. In this system, the experts' experiences, theories and typical examples and other related knowledge, which will be used in the stage of pre-process in FEA, were categorized into analysis process and object knowledge. Then, the integrated knowledge model based on object-oriented method and rule based method was described. The integrated reasoning process based on CBR (case based reasoning) and rule based reasoning was presented. Finally, the analysis process of this expert system in web based CAE application was illustrated, and an analysis example of a machine tool's column was illustrated to prove the validity of the system.
Matriarch: A Python Library for Materials Architecture.
Giesa, Tristan; Jagadeesan, Ravi; Spivak, David I; Buehler, Markus J
2015-10-12
Biological materials, such as proteins, often have a hierarchical structure ranging from basic building blocks at the nanoscale (e.g., amino acids) to assembled structures at the macroscale (e.g., fibers). Current software for materials engineering allows the user to specify polypeptide chains and simple secondary structures prior to molecular dynamics simulation, but is not flexible in terms of the geometric arrangement of unequilibrated structures. Given some knowledge of a larger-scale structure, instructing the software to create it can be very difficult and time-intensive. To this end, the present paper reports a mathematical language, using category theory, to describe the architecture of a material, i.e., its set of building blocks and instructions for combining them. While this framework applies to any hierarchical material, here we concentrate on proteins. We implement this mathematical language as an open-source Python library called Matriarch. It is a domain-specific language that gives the user the ability to create almost arbitrary structures with arbitrary amino acid sequences and, from them, generate Protein Data Bank (PDB) files. In this way, Matriarch is more powerful than commercial software now available. Matriarch can be used in tandem with molecular dynamics simulations and helps engineers design and modify biologically inspired materials based on their desired functionality. As a case study, we use our software to alter both building blocks and building instructions for tropocollagen, and determine their effect on its structure and mechanical properties.
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to advanced automation primarily due to the comparatively large reaction times of its subsystem processes. This allows longer contemplation times in which to form a more intelligent control strategy and to detect or prevent faults. The objective of the ECLSS Advanced Automation Project is to reduce the flight and ground manpower needed to support the initial and evolutionary ECLS system. The approach is to search out and make apparent those processes in the baseline system which are in need of more automatic control and fault detection strategies, to influence the ECLSS design by suggesting software hooks and hardware scars which will allow easy adaptation to advanced algorithms, and to develop complex software prototypes which fit into the ECLSS software architecture and will be shown in an ECLSS hardware testbed to increase the autonomy of the system. Covered here are the preliminary investigation and evaluation process, aimed at searching the ECLSS for candidate functions for automation and providing a software hooks and hardware scars analysis. This analysis shows changes needed in the baselined system for easy accommodation of knowledge-based or other complex implementations which, when integrated in flight or ground sustaining engineering architectures, will produce a more autonomous and fault tolerant Environmental Control and Life Support System.
Transforming Aggregate Object-Oriented Formal Specifications to Code
1999-03-01
integration issues associated with a formal-based software transformation system, such as the source specification, the problem space architecture , design architecture ... design transforms, and target software transforms. Software is critical in today’s Air Force, yet its specification, design, and development
An Open Avionics and Software Architecture to Support Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Schlesinger, Adam
2017-01-01
The presentation describes an avionics and software architecture that has been developed through NASAs Advanced Exploration Systems (AES) division. The architecture is open-source, highly reliable with fault tolerance, and utilizes standard capabilities and interfaces, which are scalable and customizable to support future exploration missions. Specific focus areas of discussion will include command and data handling, software, human interfaces, communication and wireless systems, and systems engineering and integration.
Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses
ERIC Educational Resources Information Center
Mitra, Sandeep
2014-01-01
This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…
Issues in Defining Software Architectures in a GIS Environment
NASA Technical Reports Server (NTRS)
Acosta, Jesus; Alvorado, Lori
1997-01-01
The primary mission of the Pan-American Center for Earth and Environmental Studies (PACES) is to advance the research areas that are relevant to NASA's Mission to Planet Earth program. One of the activities at PACES is the establishment of a repository for geographical, geological and environmental information that covers various regions of Mexico and the southwest region of the U.S. and that is acquired from NASA and other sources through remote sensing, ground studies or paper-based maps. The center will be providing access of this information to other government entities in the U.S. and Mexico, and research groups from universities, national laboratories and industry. Geographical Information Systems(GIS) provide the means to manage, manipulate, analyze and display geographically referenced information that will be managed by PACES. Excellent off-the-shelf software exists for a complete GIS as well as software for storing and managing spatial databases, processing images, networking and viewing maps with layered information. This allows the user flexibility in combining systems to create a GIS or to mix these software packages with custom-built application programs. Software architectural languages provide the ability to specify the computational components and interactions among these components, an important topic in the domain of GIS because of the need to integrate numerous software packages. This paper discusses the characteristics that architectural languages address with respect to the issues relating to the data that must be communicated between software systems and components when systems interact. The paper presents a background on GIS in section 2. Section 3 gives an overview of software architecture and architectural languages. Section 4 suggests issues that may be of concern when defining the software architecture of a GIS. The last section discusses the future research effort and finishes with a summary.
NASA Technical Reports Server (NTRS)
Barnes, Jeffrey M.
2011-01-01
All software systems of significant size and longevity eventually undergo changes to their basic architectural structure. Such changes may be prompted by evolving requirements, changing technology, or other reasons. Whatever the cause, software architecture evolution is commonplace in real world software projects. Recently, software architecture researchers have begun to study this phenomenon in depth. However, this work has suffered from problems of validation; research in this area has tended to make heavy use of toy examples and hypothetical scenarios and has not been well supported by real world examples. To help address this problem, I describe an ongoing effort at the Jet Propulsion Laboratory to re-architect the Advanced Multimission Operations System (AMMOS), which is used to operate NASA's deep-space and astrophysics missions. Based on examination of project documents and interviews with project personnel, I describe the goals and approach of this evolution effort and then present models that capture some of the key architectural changes. Finally, I demonstrate how approaches and formal methods from my previous research in architecture evolution may be applied to this evolution, while using languages and tools already in place at the Jet Propulsion Laboratory.
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
Web-based training: a new paradigm in computer-assisted instruction in medicine.
Haag, M; Maylein, L; Leven, F J; Tönshoff, B; Haux, R
1999-01-01
Computer-assisted instruction (CAI) programs based on internet technologies, especially on the world wide web (WWW), provide new opportunities in medical education. The aim of this paper is to examine different aspects of such programs, which we call 'web-based training (WBT) programs', and to differentiate them from conventional CAI programs. First, we will distinguish five different interaction types: presentation; browsing; tutorial dialogue; drill and practice; and simulation. In contrast to conventional CAI, there are four architectural types of WBT programs: client-based; remote data and knowledge; distributed teaching; and server-based. We will discuss the implications of the different architectures for developing WBT software. WBT programs have to meet other requirements than conventional CAI programs. The most important tools and programming languages for developing WBT programs will be listed and assigned to the architecture types. For the future, we expect a trend from conventional CAI towards WBT programs.
Wireless Sensor Networks Approach
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
Open Architecture SDR for Space
NASA Technical Reports Server (NTRS)
Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.
2005-01-01
This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.
Lessons about Virtual-Environment Software Systems from 20 years of VE building
Taylor, Russell M.; Jerald, Jason; VanderKnyff, Chris; Wendt, Jeremy; Borland, David; Marshburn, David; Sherman, William R.; Whitton, Mary C.
2010-01-01
What are desirable and undesirable features of virtual-environment (VE) software architectures? What should be present (and absent) from such systems if they are to be optimally useful? How should they be structured? To help answer these questions we present experience from application designers, toolkit designers, and VE system architects along with examples of useful features from existing systems. Topics are organized under the major headings of: 3D space management, supporting display hardware, interaction, event management, time management, computation, portability, and the observation that less can be better. Lessons learned are presented as discussion of the issues, field experiences, nuggets of knowledge, and case studies. PMID:20567602
Integration of an expert teaching assistant with distance learning software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, S.P.; Reed, N.E.
1996-12-31
The Remote Teaching Assistant (RTA) software currently under development at UC Davis allows students and Teaching Assistants (TA`s) to interact through multimedia communication via the Internet. To resolve the problem of TA unavailability and limited knowledge, an Expert Teaching Assistant (ETA) module is being developed. When TA`s are not on-line, students in need of help consult ETA. The focus of this research is the development and integration of ETA with RTA, the establishment of an architecture suitable for use with education (the domain) in any sub-domain (course), and the creation of a mechanism usable by non-technical personnel to maintain knowledgemore » bases.« less
FPGA Based Reconfigurable ATM Switch Test Bed
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Jones, Robert E.
1998-01-01
Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.
Evaluating a Service-Oriented Architecture
2007-09-01
See the description on page 13. SaaS Software as a service ( SaaS ) is a software delivery model where customers don’t own a copy of the application... serviceability REST Representational State Transfer RIA rich internet application RPC remote procedure call SaaS software as a service SAML Security...Evaluating a Service -Oriented Architecture Phil Bianco, Software Engineering Institute Rick Kotermanski, Summa Technologies Paulo Merson
Improved CLARAty Functional-Layer/Decision-Layer Interface
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang
2008-01-01
Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.
Software Management Environment (SME) concepts and architecture, revision 1
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1992-01-01
This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.
Paramedir: A Tool for Programmable Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Labarta, Jesus; Gimenez, Judit
2004-01-01
Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.
From scenarios to domain models: processes and representations
NASA Astrophysics Data System (ADS)
Haddock, Gail; Harbison, Karan
1994-03-01
The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.
NASA Astrophysics Data System (ADS)
Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.
2017-12-01
Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).
The development of a post-test diagnostic system for rocket engines
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.
1991-01-01
An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.
A new software-based architecture for quantum computer
NASA Astrophysics Data System (ADS)
Wu, Nan; Song, FangMin; Li, Xiangdong
2010-04-01
In this paper, we study a reliable architecture of a quantum computer and a new instruction set and machine language for the architecture, which can improve the performance and reduce the cost of the quantum computing. We also try to address some key issues in detail in the software-driven universal quantum computers.
1994-01-29
other processes, but that he arrived at his results in a different manner. Batory didn’t start with idioms; he performed a domain analysis and...abstracted idioms. Through domain analysis and domain modeling, new idioms can be found and the form of architecture can be the same. It was also questioned...Programming 5. Consensus Definition of Architecture 6. Inductive Analysis of Current Exemplars 7. VHDL (Bailor) 8. Ontological Structuring 3.3.3
Key Technologies of Phone Storage Forensics Based on ARM Architecture
NASA Astrophysics Data System (ADS)
Zhang, Jianghan; Che, Shengbing
2018-03-01
Smart phones are mainly running Android, IOS and Windows Phone three mobile platform operating systems. The android smart phone has the best market shares and its processor chips are almost ARM software architecture. The chips memory address mapping mechanism of ARM software architecture is different with x86 software architecture. To forensics to android mart phone, we need to understand three key technologies: memory data acquisition, the conversion mechanism from virtual address to the physical address, and find the system’s key data. This article presents a viable solution which does not rely on the operating system API for a complete solution to these three issues.
Parallel Logic Programming and Parallel Systems Software and Hardware
1989-07-29
Conference, Dallas TX. January 1985. (55) [Rous75] Roussel, P., "PROLOG: Manuel de Reference et d’Uilisation", Group d’ Intelligence Artificielle , Universite d...completed. Tools were provided for software development using artificial intelligence techniques. Al software for massively parallel architectures was...using artificial intelligence tech- niques. Al software for massively parallel architectures was started. 1. Introduction We describe research conducted
Architectural Implementation of NASA Space Telecommunications Radio System Specification
NASA Technical Reports Server (NTRS)
Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.
2012-01-01
This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.
Quantum Computing Architectural Design
NASA Astrophysics Data System (ADS)
West, Jacob; Simms, Geoffrey; Gyure, Mark
2006-03-01
Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.
SIENA Customer Problem Statement and Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Sauer; R. Clay; C. Adams
2000-08-01
This document describes the problem domain and functional requirements of the SIENA framework. The software requirements and system architecture of SIENA are specified in separate documents (called SIENA Software Requirement Specification and SIENA Software Architecture, respectively). While currently this version of the document describes the problems and captures the requirements within the Analysis domain (concentrating on finite element models), it is our intention to subsequent y expand this document to describe problems and capture requirements from the Design and Manufacturing domains. In addition, SIENA is designed to be extendible to support and integrate elements from the other domains (see SIENAmore » Software Architecture document).« less
STGT program: Ada coding and architecture lessons learned
NASA Technical Reports Server (NTRS)
Usavage, Paul; Nagurney, Don
1992-01-01
STGT (Second TDRSS Ground Terminal) is currently halfway through the System Integration Test phase (Level 4 Testing). To date, many software architecture and Ada language issues have been encountered and solved. This paper, which is the transcript of a presentation at the 3 Dec. meeting, attempts to define these lessons plus others learned regarding software project management and risk management issues, training, performance, reuse, and reliability. Observations are included regarding the use of particular Ada coding constructs, software architecture trade-offs during the prototyping, development and testing stages of the project, and dangers inherent in parallel or concurrent systems, software, hardware, and operations engineering.
Updates to the NASA Space Telecommunications Radio System (STRS) Architecture
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.
2008-01-01
This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.
Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture
Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.
2006-10-03
This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.
A research on the application of software defined networking in satellite network architecture
NASA Astrophysics Data System (ADS)
Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing
2017-10-01
Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.
NASA Astrophysics Data System (ADS)
van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish
2016-07-01
Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
The Muon Conditions Data Management:. Database Architecture and Software Infrastructure
NASA Astrophysics Data System (ADS)
Verducci, Monica
2010-04-01
The management of the Muon Conditions Database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored and their analysis. The Muon conditions database is responsible for almost all of the 'non-event' data and detector quality flags storage needed for debugging of the detector operations and for performing the reconstruction and the analysis. In particular for the early data, the knowledge of the detector performance, the corrections in term of efficiency and calibration will be extremely important for the correct reconstruction of the events. In this work, an overview of the entire Muon conditions database architecture is given, in particular the different sources of the data and the storage model used, including the database technology associated. Particular emphasis is given to the Data Quality chain: the flow of the data, the analysis and the final results are described. In addition, the description of the software interfaces used to access to the conditions data are reported, in particular, in the ATLAS Offline Reconstruction framework ATHENA environment.
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without using intrusive and expensive identification methods, the emotions which most affect the character of educational interventions. Our work also demonstrates the feasibility of a general-purpose architecture of decoupled components, in which a wide range of educational software and robot tutors can be integrated and then used according to different educational criteria. PMID:27536230
ARTIE: An Integrated Environment for the Development of Affective Robot Tutors.
Imbernón Cuadrado, Luis-Eduardo; Manjarrés Riesco, Ángeles; De La Paz López, Félix
2016-01-01
Over the last decade robotics has attracted a great deal of interest from teachers and researchers as a valuable educational tool from preschool to highschool levels. The implementation of social-support behaviors in robot tutors, in particular in the emotional dimension, can make a significant contribution to learning efficiency. With the aim of contributing to the rising field of affective robot tutors we have developed ARTIE (Affective Robot Tutor Integrated Environment). We offer an architectural pattern which integrates any given educational software for primary school children with a component whose function is to identify the emotional state of the students who are interacting with the software, and with the driver of a robot tutor which provides personalized emotional pedagogical support to the students. In order to support the development of affective robot tutors according to the proposed architecture, we also provide a methodology which incorporates a technique for eliciting pedagogical knowledge from teachers, and a generic development platform. This platform contains a component for identiying emotional states by analysing keyboard and mouse interaction data, and a generic affective pedagogical support component which specifies the affective educational interventions (including facial expressions, body language, tone of voice,…) in terms of BML (a Behavior Model Language for virtual agent specification) files which are translated into actions of a robot tutor. The platform and the methodology are both adapted to primary school students. Finally, we illustrate the use of this platform to build a prototype implementation of the architecture, in which the educational software is instantiated with Scratch and the robot tutor with NAO. We also report on a user experiment we carried out to orient the development of the platform and of the prototype. We conclude from our work that, in the case of primary school students, it is possible to identify, without using intrusive and expensive identification methods, the emotions which most affect the character of educational interventions. Our work also demonstrates the feasibility of a general-purpose architecture of decoupled components, in which a wide range of educational software and robot tutors can be integrated and then used according to different educational criteria.
A heterogeneous hierarchical architecture for real-time computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skroch, D.A.; Fornaro, R.J.
The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.
A synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.
A distributed data acquisition software scheme for the Laboratory Telerobotic Manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.L.; Glassell, R.L.; Rowe, J.C.
1990-01-01
A custom software architecture was developed for use in the Laboratory Telerobotic Manipulator (LTM) to provide support for the distributed data acquisition electronics. This architecture was designed to provide a comprehensive development environment that proved to be useful for both hardware and software debugging. This paper describes the development environment and the operational characteristics of the real-time data acquisition software. 8 refs., 5 figs.
NASA Technical Reports Server (NTRS)
Boulanger, Richard; Overland, David
2004-01-01
Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.
Implications of Responsive Space on the Flight Software Architecture
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.
NASA Astrophysics Data System (ADS)
Leuchter, S.; Reinert, F.; Müller, W.
2014-06-01
Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.
Remote hardware-reconfigurable robotic camera
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.
2001-10-01
In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.
An integrated set of UNIX based system tools at control room level
NASA Astrophysics Data System (ADS)
Potepan, F.; Scafuri, C.; Bortolotto, C.; Surace, G.
1994-12-01
The design effort of providing a simple point-and-click approach to the equipment access has led to the definition and realization of a modular set of software tools to be used at the ELETTRA control room level. Point-to-point equipment access requires neither programming nor specific knowledge of the control system architecture. The development and integration of communication, graphic, editing and global database modules are described in depth, followed by a report of their use in the first commissioning period.
Combining real-time monitoring and knowledge-based analysis in MARVEL
NASA Technical Reports Server (NTRS)
Schwuttke, Ursula M.; Quan, A. G.; Angelino, R.; Veregge, J. R.
1993-01-01
Real-time artificial intelligence is gaining increasing attention for applications in which conventional software methods are unable to meet technology needs. One such application area is the monitoring and analysis of complex systems. MARVEL, a distributed monitoring and analysis tool with multiple expert systems, was developed and successfully applied to the automation of interplanetary spacecraft operations at NASA's Jet Propulsion Laboratory. MARVEL implementation and verification approaches, the MARVEL architecture, and the specific benefits that were realized by using MARVEL in operations are described.
Deep Space Network information system architecture study
NASA Technical Reports Server (NTRS)
Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.
1992-01-01
The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.
Knowledge-based system verification and validation
NASA Technical Reports Server (NTRS)
Johnson, Sally C.
1990-01-01
The objective of this task is to develop and evaluate a methodology for verification and validation (V&V) of knowledge-based systems (KBS) for space station applications with high reliability requirements. The approach consists of three interrelated tasks. The first task is to evaluate the effectiveness of various validation methods for space station applications. The second task is to recommend requirements for KBS V&V for Space Station Freedom (SSF). The third task is to recommend modifications to the SSF to support the development of KBS using effectiveness software engineering and validation techniques. To accomplish the first task, three complementary techniques will be evaluated: (1) Sensitivity Analysis (Worchester Polytechnic Institute); (2) Formal Verification of Safety Properties (SRI International); and (3) Consistency and Completeness Checking (Lockheed AI Center). During FY89 and FY90, each contractor will independently demonstrate the user of his technique on the fault detection, isolation, and reconfiguration (FDIR) KBS or the manned maneuvering unit (MMU), a rule-based system implemented in LISP. During FY91, the application of each of the techniques to other knowledge representations and KBS architectures will be addressed. After evaluation of the results of the first task and examination of Space Station Freedom V&V requirements for conventional software, a comprehensive KBS V&V methodology will be developed and documented. Development of highly reliable KBS's cannot be accomplished without effective software engineering methods. Using the results of current in-house research to develop and assess software engineering methods for KBS's as well as assessment of techniques being developed elsewhere, an effective software engineering methodology for space station KBS's will be developed, and modification of the SSF to support these tools and methods will be addressed.
On-Board Software Reference Architecture for Payloads
NASA Astrophysics Data System (ADS)
Bos, Victor; Rugina, Ana; Trcka, Adam
2016-08-01
The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.
A Content Markup Language for Data Services
NASA Astrophysics Data System (ADS)
Noviello, C.; Acampa, P.; Mango Furnari, M.
Network content delivery and documents sharing is possible using a variety of technologies, such as distributed databases, service-oriented applications, and so forth. The development of such systems is a complex job, because document life cycle involves a strong cooperation between domain experts and software developers. Furthermore, the emerging software methodologies, such as the service-oriented architecture and knowledge organization (e.g., semantic web) did not really solve the problems faced in a real distributed and cooperating settlement. In this chapter the authors' efforts to design and deploy a distribute and cooperating content management system are described. The main features of the system are a user configurable document type definition and a management middleware layer. It allows CMS developers to orchestrate the composition of specialized software components around the structure of a document. In this chapter are also reported some of the experiences gained on deploying the developed framework in a cultural heritage dissemination settlement.
NASA Technical Reports Server (NTRS)
Steib, Michael
1991-01-01
The APD software features include: On-line help, Three level architecture, (Logic environments, Setup/Application environment, Data environment), Explanation capability, and File handling. The kinds of experimentation and record keeping that leads to effective expert systems is facilitated by: (1) a library of inferencing modules (in the logic environment); (2) an explanation capability which reveals logic strategies to users; (3) automated file naming conventions; (4) an information retrieval system; and (5) on-line help. These aid with effective use of knowledge, debugging and experimentation. Since the APD software anticipates the logical rules becoming complicated, it is embedded in a production system language (CLIPS) to insure the full power of the production system paradigm of CLIPS and availability of the procedural language C. The development is discussed of the APD software and three example applications: toy, experimental, and operational prototype for submarine maintenance predictions.
Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.
2014-01-01
Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138
Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M
2014-01-01
(1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.
A Comparison and Evaluation of Real-Time Software Systems Modeling Languages
NASA Technical Reports Server (NTRS)
Evensen, Kenneth D.; Weiss, Kathryn Anne
2010-01-01
A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.
Four Pillars of Service-Oriented Architecture
2007-09-01
ic A lig n m e n t Figure 1: Pillars of SOA-Based Systems Development Service -Oriented Architectures 12 CROSSTALK The Journal of Defense Software ...et al. “On the Business Value and Technical Challenges of Adopting Web Services .” Journal of Software Maintenance and Evolution 16 (2004): 16, 31-50...10 CROSSTALK The Journal of Defense Software Engineering September 2007 Acornerstone of DoD policy forfuture software and systems policy is the
Modeling of a 3DTV service in the software-defined networking architecture
NASA Astrophysics Data System (ADS)
Wilczewski, Grzegorz
2014-11-01
In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.
NASA Technical Reports Server (NTRS)
Hyde, Patricia R.; Loftin, R. Bowen
1993-01-01
These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace.
Separating essentials from incidentals: an execution architecture for real-time control systems
NASA Technical Reports Server (NTRS)
Dvorak, Daniel; Reinholtz, Kirk
2004-01-01
This paper describes an execution architecture that makes such systems far more analyzable and verifiable by aggressive separation of concerns. The architecture separates two key software concerns: transformations of global state, as defined in pure functions; and sequencing/timing of transformations, as performed by an engine that enforces four prime invariants. The important advantage of this architecture, besides facilitating verification, is that it encourages formal specification of systems in a vocabulary that brings systems engineering closer to software engineering.
Fault Management Architectures and the Challenges of Providing Software Assurance
NASA Technical Reports Server (NTRS)
Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek
2015-01-01
The satellite systems Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most is system complexity due to a need to establish a multi-dimensional structure across hardware, software and operations. This structure is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. These architecture, implementation and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (VV) is challenging. A breakout session at the 2012 NASA Independent Verification Validation (IVV) Annual Workshop titled VV of Fault Management: Challenges and Successes exposed these issues in terms of VV for a representative set of architectures. NASA's IVV is funded by NASA's Software Assurance Research Program (SARP) in partnership with NASA's Jet Propulsion Laboratory (JPL) to extend the work performed at the Workshop session. NASA IVV will extract FM architectures across the IVV portfolio and evaluate the data set for robustness, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This work focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures, visibility, and associated VVIVV techniques provides a data set that can enable higher assurance that a satellite system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the satellite community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research including identification of FM architectures, visibility observations, and methods utilized for VVIVV.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
A multi-agent approach to intelligent monitoring in smart grids
NASA Astrophysics Data System (ADS)
Vallejo, D.; Albusac, J.; Glez-Morcillo, C.; Castro-Schez, J. J.; Jiménez, L.
2014-04-01
In this paper, we propose a scalable multi-agent architecture to give support to smart grids, paying special attention to the intelligent monitoring of distribution substations. The data gathered by multiple sensors are used by software agents that are responsible for monitoring different aspects or events of interest, such as normal voltage values or unbalanced intensity values that can end up blowing fuses and decreasing the quality of service of end consumers. The knowledge bases of these agents have been built by means of a formal model for normality analysis that has been successfully used in other surveillance domains. The architecture facilitates the integration of new agents and can be easily configured and deployed to monitor different environments. The experiments have been conducted over a power distribution network.
The Advanced Technology Operations System: ATOS
NASA Technical Reports Server (NTRS)
Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.
1993-01-01
Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.
Preliminary Design of an Autonomous Amphibious System
2016-09-01
changing vehicle dynamics will require innovative new autonomy algorithms. The developed software architecture, drive-by- wire kit, and supporting...COMMUNICATIONS ARCHITECTURE .................................................12 3.3 DRIVE-BY- WIRE DESIGN...SOFTWARE MATURATION PLANS ......................................................17 4.2 DRIVE-BY- WIRE PLANNED REFINEMENT
2010-03-01
associated with certain software systems [Breaux and Anton 2008]. With this basis to build on, it is now possible to analyze the alignment of...Kazman, R., (2003). Software Architecture in Practice, 2nd Edition, Addison-Wesley Pro- fessional, New York.. Breaux, T.D. and Anton , A.I. (2008... calculus for license rights and obligations in license and context models. Using them, we calculate rights and obligations for specific sys- tems, identify
Software Design for Real-Time Systems on Parallel Computers: Formal Specifications.
1996-04-01
This research investigated the important issues related to the analysis and design of real - time systems targeted to parallel architectures. In...particular, the software specification models for real - time systems on parallel architectures were evaluated. A survey of current formal methods for...uniprocessor real - time systems specifications was conducted to determine their extensibility in specifying real - time systems on parallel architectures. In
A veterinary anatomy tutoring system.
Theodoropoulos, G; Loumos, V; Antonopoulos, J
1994-02-14
A veterinary anatomy tutoring system was developed by using Knowledge Pro, an object-oriented software development tool with hypermedia capabilities, and MS Access, a relational database. Communication between them is facilitated by using the Structured Query Language (SQL). The architecture of the system is based on knowledge sets, each of which covers four different descriptions of an organ, namely gross anatomy (general description), gross anatomy (comparative features), histology, and embryology, which constitute the knowledge units. These knowledge units are linked with three global variables that define the animals, the topographies, and the system to which this organ belongs, creating three data-bases. These three data-bases are interrelated through the organ field in order to establish a relational model. This system allows versatility in the student's navigation through the information space by offering different modes for information location and presentation. These include course mode, review mode, reference mode, dissection mode, and comparison mode. In addition, the system provides a self-evaluation mode.
A taxonomy and discussion of software attack technologies
NASA Astrophysics Data System (ADS)
Banks, Sheila B.; Stytz, Martin R.
2005-03-01
Software is a complex thing. It is not an engineering artifact that springs forth from a design by simply following software coding rules; creativity and the human element are at the heart of the process. Software development is part science, part art, and part craft. Design, architecture, and coding are equally important activities and in each of these activities, errors may be introduced that lead to security vulnerabilities. Therefore, inevitably, errors enter into the code. Some of these errors are discovered during testing; however, some are not. The best way to find security errors, whether they are introduced as part of the architecture development effort or coding effort, is to automate the security testing process to the maximum extent possible and add this class of tools to the tools available, which aids in the compilation process, testing, test analysis, and software distribution. Recent technological advances, improvements in computer-generated forces (CGFs), and results in research in information assurance and software protection indicate that we can build a semi-intelligent software security testing tool. However, before we can undertake the security testing automation effort, we must understand the scope of the required testing, the security failures that need to be uncovered during testing, and the characteristics of the failures. Therefore, we undertook the research reported in the paper, which is the development of a taxonomy and a discussion of software attacks generated from the point of view of the security tester with the goal of using the taxonomy to guide the development of the knowledge base for the automated security testing tool. The representation for attacks and threat cases yielded by this research captures the strategies, tactics, and other considerations that come into play during the planning and execution of attacks upon application software. The paper is organized as follows. Section one contains an introduction to our research and a discussion of the motivation for our work. Section two contains a presents our taxonomy of software attacks and a discussion of the strategies employed and general weaknesses exploited for each attack. Section three contains a summary and suggestions for further research.
A design and implementation methodology for diagnostic systems
NASA Technical Reports Server (NTRS)
Williams, Linda J. F.
1988-01-01
A methodology for design and implementation of diagnostic systems is presented. Also discussed are the advantages of embedding a diagnostic system in a host system environment. The methodology utilizes an architecture for diagnostic system development that is hierarchical and makes use of object-oriented representation techniques. Additionally, qualitative models are used to describe the host system components and their behavior. The methodology architecture includes a diagnostic engine that utilizes a combination of heuristic knowledge to control the sequence of diagnostic reasoning. The methodology provides an integrated approach to development of diagnostic system requirements that is more rigorous than standard systems engineering techniques. The advantages of using this methodology during various life cycle phases of the host systems (e.g., National Aerospace Plane (NASP)) include: the capability to analyze diagnostic instrumentation requirements during the host system design phase, a ready software architecture for implementation of diagnostics in the host system, and the opportunity to analyze instrumentation for failure coverage in safety critical host system operations.
Programmable bandwidth management in software-defined EPON architecture
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming
2016-07-01
This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Ruiz-Cortes, Antonio
2006-01-01
The field of Software Product Lines (SPL) emphasizes building a core architecture for a family of software products from which concrete products can be derived rapidly. This helps to reduce time-to-market, costs, etc., and can result in improved software quality and safety. Current AOSE methodologies are concerned with developing a single Multiagent System. We propose an initial approach to developing the core architecture of a Multiagent Systems Product Line (MAS-PL), exemplifying our approach with reference to a concept NASA mission based on multiagent technology.
Verifying Architectural Design Rules of the Flight Software Product Line
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen
2009-01-01
This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.
Scalable software architecture for on-line multi-camera video processing
NASA Astrophysics Data System (ADS)
Camplani, Massimo; Salgado, Luis
2011-03-01
In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhead.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Rash, James L. (Inventor); Pena, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which an evolutionary system is managed and viewed as a software product line. In some embodiments, the core architecture is a relatively unchanging part of the system, and each version of the system is viewed as a product from the product line. Each software product is generated from the core architecture with some agent-based additions. The result may be a multi-agent system software product line.
2015-09-30
originate from NASA , NOAA , and community modeling efforts, and support for creation of the suite was shared by sponsors from other agencies. ESPS...Framework (ESMF) Software and Application Development Cecelia Deluca NESII/CIRES/ NOAA Earth System Research Laboratory 325 Broadway Boulder, CO...Capability (NUOPC) was established between NOAA and Navy to develop a common software architecture for easy and efficient interoperability. The
Architectural Implications of Cloud Computing
2011-10-24
Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context
ERIC Educational Resources Information Center
Millan, Eva; Belmonte, Maria-Victoria; Ruiz-Montiel, Manuela; Gavilanes, Juan; Perez-de-la-Cruz, Jose-Luis
2016-01-01
In this paper, we present BH-ShaDe, a new software tool to assist architecture students learning the ill-structured domain/task of housing design. The software tool provides students with automatic or interactively generated floor plan schemas for basic houses. The students can then use the generated schemas as initial seeds to develop complete…
A Practical Software Architecture for Virtual Universities
ERIC Educational Resources Information Center
Xiang, Peifeng; Shi, Yuanchun; Qin, Weijun
2006-01-01
This article introduces a practical software architecture called CUBES, which focuses on system integration and evolvement for online virtual universities. The key of CUBES is a supporting platform that helps to integrate and evolve heterogeneous educational applications developed by different organizations. Both standardized educational…
DOT National Transportation Integrated Search
2013-05-01
This document describes the Software Architecture Design and Implementation Options for FRATIS system. The demonstration component of this task will serve to test the technical feasibility of the FRATIS prototype while also facilitating the collectio...
Data Strategies to Support Automated Multi-Sensor Data Fusion in a Service Oriented Architecture
2008-06-01
and employ vast quantities of content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the...UDDI), Simple Order Access Protocol (SOAP), Java, Maritime Domain Awareness (MDA), Business Process Execution Language for Web Service (BPEL4WS) 16...content. This dissertation provides two software architectural patterns and an auto-fusion process that guide the development of a distributed
Combining Architecture-Centric Engineering with the Team Software Process
2010-12-01
colleagues from Quarksoft and CIMAT have re- cently reported on their experiences in “Introducing Software Architecture Development Methods into a TSP...Postmortem Lessons, new goals, new requirements, new risk , etc. Business and technical goals Estimates, plans, process, commitment Work products...architecture to mitigate the risks unco- vered by the ATAM. At the end of the iteration, version 1.0 of the architec- ture is available. Implement a second
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Architecture-Centric Development in Globally Distributed Projects
NASA Astrophysics Data System (ADS)
Sauer, Joachim
In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.
Architecture of the software for LAMOST fiber positioning subsystem
NASA Astrophysics Data System (ADS)
Peng, Xiaobo; Xing, Xiaozheng; Hu, Hongzhuan; Zhai, Chao; Li, Weimin
2004-09-01
The architecture of the software which controls the LAMOST fiber positioning sub-system is described. The software is composed of two parts as follows: a main control program in a computer and a unit controller program in a MCS51 single chip microcomputer ROM. And the function of the software includes: Client/Server model establishment, observation planning, collision handling, data transmission, pulse generation, CCD control, image capture and processing, and data analysis etc. Particular attention is paid to the ways in which different parts of the software can communicate. Also software techniques for multi threads, SOCKET programming, Microsoft Windows message response, and serial communications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less
A mission executor for an autonomous underwater vehicle
NASA Technical Reports Server (NTRS)
Lee, Yuh-Jeng; Wilkinson, Paul
1991-01-01
The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission Executor is being constructed using CLIPS (C Language Integrated Production System) version 5.0. The Mission Executor is an expert system designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected that the executor will make informed decisions about the mission, taking into account the navigational path, the vehicle subsystem health, and the sea environment, as well as the specific mission profile which is downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language (COOL) embedded in CLIPS 5.0. Also, truth maintenance is applied to the knowledge base to keep configurations updated.
NASA Astrophysics Data System (ADS)
Neff, John A.
1989-12-01
Experiments originating from Gestalt psychology have shown that representing information in a symbolic form provides a more effective means to understanding. Computer scientists have been struggling for the last two decades to determine how best to create, manipulate, and store collections of symbolic structures. In the past, much of this struggling led to software innovations because that was the path of least resistance. For example, the development of heuristics for organizing the searching through knowledge bases was much less expensive than building massively parallel machines that could search in parallel. That is now beginning to change with the emergence of parallel architectures which are showing the potential for handling symbolic structures. This paper will review the relationships between symbolic computing and parallel computing architectures, and will identify opportunities for optics to significantly impact the performance of such computing machines. Although neural networks are an exciting subset of massively parallel computing structures, this paper will not touch on this area since it is receiving a great deal of attention in the literature. That is, the concepts presented herein do not consider the distributed representation of knowledge.
NASA Technical Reports Server (NTRS)
Albus, James S.; Mccain, Harry G.; Lumia, Ronald
1989-01-01
The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
DAQ: Software Architecture for Data Acquisition in Sounding Rockets
NASA Technical Reports Server (NTRS)
Ahmad, Mohammad; Tran, Thanh; Nichols, Heidi; Bowles-Martinez, Jessica N.
2011-01-01
A multithreaded software application was developed by Jet Propulsion Lab (JPL) to collect a set of correlated imagery, Inertial Measurement Unit (IMU) and GPS data for a Wallops Flight Facility (WFF) sounding rocket flight. The data set will be used to advance Terrain Relative Navigation (TRN) technology algorithms being researched at JPL. This paper describes the software architecture and the tests used to meet the timing and data rate requirements for the software used to collect the dataset. Also discussed are the challenges of using commercial off the shelf (COTS) flight hardware and open source software. This includes multiple Camera Link (C-link) based cameras, a Pentium-M based computer, and Linux Fedora 11 operating system. Additionally, the paper talks about the history of the software architecture's usage in other JPL projects and its applicability for future missions, such as cubesats, UAVs, and research planes/balloons. Also talked about will be the human aspect of project especially JPL's Phaeton program and the results of the launch.
Generic Software Architecture for Prognostics (GSAP) User Guide
NASA Technical Reports Server (NTRS)
Teubert, Christopher Allen; Daigle, Matthew John; Watkins, Jason; Sankararaman, Shankar; Goebel, Kai
2016-01-01
The Generic Software Architecture for Prognostics (GSAP) is a framework for applying prognostics. It makes applying prognostics easier by implementing many of the common elements across prognostic applications. The standard interface enables reuse of prognostic algorithms and models across systems using the GSAP framework.
Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...
NASA Technical Reports Server (NTRS)
Weeks, Cindy Lou
1986-01-01
Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.
Fault Management Architectures and the Challenges of Providing Software Assurance
NASA Technical Reports Server (NTRS)
Savarino, Shirley; Fitz, Rhonda; Fesq, Lorraine; Whitman, Gerek
2015-01-01
Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research.
Measurements of the LHCb software stack on the ARM architecture
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Couturier, Ben; Clemencic, Marco; Neufeld, Niko
2014-06-01
The ARM architecture is a power-efficient design that is used in most processors in mobile devices all around the world today since they provide reasonable compute performance per watt. The current LHCb software stack is designed (and thus expected) to build and run on machines with the x86/x86_64 architecture. This paper outlines the process of measuring the performance of the LHCb software stack on the ARM architecture - specifically, the ARMv7 architecture on Cortex-A9 processors from NVIDIA and on full-fledged ARM servers with chipsets from Calxeda - and makes comparisons with the performance on x86_64 architectures on the Intel Xeon L5520/X5650 and AMD Opteron 6272. The paper emphasises the aspects of performance per core with respect to the power drawn by the compute nodes for the given performance - this ensures a fair real-world comparison with much more 'powerful' Intel/AMD processors. The comparisons of these real workloads in the context of LHCb are also complemented with the standard synthetic benchmarks HEPSPEC and Coremark. The pitfalls and solutions for the non-trivial task of porting the source code to build for the ARMv7 instruction set are presented. The specific changes in the build process needed for ARM-specific portions of the software stack are described, to serve as pointers for further attempts taken up by other groups in this direction. Cases where architecture-specific tweaks at the assembler lever (both in ROOT and the LHCb software stack) were needed for a successful compile are detailed - these cases are good indicators of where/how the software stack as well as the build system can be made more portable and multi-arch friendly. The experience gained from the tasks described in this paper are intended to i) assist in making an informed choice about ARM-based server solutions as a feasible low-power alternative to the current compute nodes, and ii) revisit the software design and build system for portability and generic improvements.
NASA Astrophysics Data System (ADS)
Broten, Gregory S.; Monckton, Simon P.; Collier, Jack; Giesbrecht, Jared
2006-05-01
In 2002 Defence R&D Canada changed research direction from pure tele-operated land vehicles to general autonomy for land, air, and sea craft. The unique constraints of the military environment coupled with the complexity of autonomous systems drove DRDC to carefully plan a research and development infrastructure that would provide state of the art tools without restricting research scope. DRDC's long term objectives for its autonomy program address disparate unmanned ground vehicle (UGV), unattended ground sensor (UGS), air (UAV), and subsea and surface (UUV and USV) vehicles operating together with minimal human oversight. Individually, these systems will range in complexity from simple reconnaissance mini-UAVs streaming video to sophisticated autonomous combat UGVs exploiting embedded and remote sensing. Together, these systems can provide low risk, long endurance, battlefield services assuming they can communicate and cooperate with manned and unmanned systems. A key enabling technology for this new research is a software architecture capable of meeting both DRDC's current and future requirements. DRDC built upon recent advances in the computing science field while developing its software architecture know as the Architecture for Autonomy (AFA). Although a well established practice in computing science, frameworks have only recently entered common use by unmanned vehicles. For industry and government, the complexity, cost, and time to re-implement stable systems often exceeds the perceived benefits of adopting a modern software infrastructure. Thus, most persevere with legacy software, adapting and modifying software when and wherever possible or necessary -- adopting strategic software frameworks only when no justifiable legacy exists. Conversely, academic programs with short one or two year projects frequently exploit strategic software frameworks but with little enduring impact. The open-source movement radically changes this picture. Academic frameworks, open to public scrutiny and modification, now rival commercial frameworks in both quality and economic impact. Further, industry now realizes that open source frameworks can reduce cost and risk of systems engineering. This paper describes the Architecture for Autonomy implemented by DRDC and how this architecture meets DRDC's current needs. It also presents an argument for why this architecture should also satisfy DRDC's future requirements as well.
Ensemble: an Architecture for Mission-Operations Software
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Powell, Mark; Fox, Jason; Rabe, Kenneth; Shu, IHsiang; McCurdy, Michael; Vera, Alonso
2008-01-01
Ensemble is the name of an open architecture for, and a methodology for the development of, spacecraft mission operations software. Ensemble is also potentially applicable to the development of non-spacecraft mission-operations- type software. Ensemble capitalizes on the strengths of the open-source Eclipse software and its architecture to address several issues that have arisen repeatedly in the development of mission-operations software: Heretofore, mission-operations application programs have been developed in disparate programming environments and integrated during the final stages of development of missions. The programs have been poorly integrated, and it has been costly to develop, test, and deploy them. Users of each program have been forced to interact with several different graphical user interfaces (GUIs). Also, the strategy typically used in integrating the programs has yielded serial chains of operational software tools of such a nature that during use of a given tool, it has not been possible to gain access to the capabilities afforded by other tools. In contrast, the Ensemble approach offers a low-risk path towards tighter integration of mission-operations software tools.
2006-11-01
engines will involve a family of common components. It will consist of a real - time operating system and partitioned application software (AS...system will employ a standard hardware and software architecture. It will consist of a real time operating system and partitioned application...Inputs - Enables Large Cost Reduction 3. Software - FAA Certified Auto Code - Real Time Operating System - Commercial
2008-06-01
agenda are summarized. x | CMU/SEI-2008-SR-011 SOFTWARE ENGINEERING INSTITUTE | 1 1 Introduction Service -oriented architecture (SOA... service -provision software systems. In this po- sition paper, we investigate an initial classification of challenge areas related to service orientation...decade we have witnessed a significant growth of software applications that are de- livered in the form of services utilizing a network infrastructure
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.
A Generic Software Architecture For Prognostics
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason
2017-01-01
Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.
Managing the Evolution of an Enterprise Architecture using a MAS-Product-Line Approach
NASA Technical Reports Server (NTRS)
Pena, Joaquin; Hinchey, Michael G.; Resinas, manuel; Sterritt, Roy; Rash, James L.
2006-01-01
We view an evolutionary system ns being n software product line. The core architecture is the unchanging part of the system, and each version of the system may be viewed as a product from the product line. Each "product" may be described as the core architecture with sonre agent-based additions. The result is a multiagent system software product line. We describe an approach to such n Software Product Line-based approach using the MaCMAS Agent-Oriented nzethoclology. The approach scales to enterprise nrchitectures as a multiagent system is an approprinre means of representing a changing enterprise nrchitectclre nnd the inferaction between components in it.
Image-Processing Software For A Hypercube Computer
NASA Technical Reports Server (NTRS)
Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.
1992-01-01
Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.
Using the CoRE Requirements Method with ADARTS. Version 01.00.05
1994-03-01
requirements; combining ADARTS processes and objects derived from CoRE requirements into an ADARTS software architecture design ; and taking advantage of...CoRE’s precision in the ADARTS process structuring, class structuring, and software architecture design activities. Object-oriented requirements and
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Domain specific software architectures: Command and control
NASA Technical Reports Server (NTRS)
Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave
1992-01-01
GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.
PINT, A Modern Software Package for Pulsar Timing
NASA Astrophysics Data System (ADS)
Luo, Jing; Ransom, Scott M.; Demorest, Paul; Ray, Paul S.; Stovall, Kevin; Jenet, Fredrick; Ellis, Justin; van Haasteren, Rutger; Bachetti, Matteo; NANOGrav PINT developer team
2018-01-01
Pulsar timing, first developed decades ago, has provided an extremely wide range of knowledge about our universe. It has been responsible for many important discoveries, such as the discovery of the first exoplanet and the orbital period decay of double neutron star systems. Currently pulsar timing is the leading technique for detecting low frequency (about 10^-9 Hertz) gravitational waves (GW) using an array of pulsars as the detectors. To achieve this goal, high precision pulsar timing data, at about nanoseconds level, is required. Most high precision pulsar timing data are analyzed using the widely adopted software TEMPO/TEMPO2. But for a robust and believable GW detection, it is important to have independent software that can cross-check the result. In this poster we present the new generation pulsar timing software PINT. This package will provide a robust system to cross check high-precision timing results, completely independent of TEMPO and TEMPO2. In addition, PINT is designed to be a package that is easy to extend and modify, through use of flexible code architecture and a modern programming language, Python, with modern technology and libraries.
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
NASA Technical Reports Server (NTRS)
Clancey, William J.; Lowry, Michael R.; Nado, Robert Allen; Sierhuis, Maarten
2011-01-01
We analyzed a series of ten systematically developed surface exploration systems that integrated a variety of hardware and software components. Design, development, and testing data suggest that incremental buildup of an exploration system for long-duration capabilities is facilitated by an open architecture with appropriate-level APIs, specifically designed to facilitate integration of new components. This improves software productivity by reducing changes required for reconfiguring an existing system.
CrossTalk. The Journal of Defense Software Engineering. Volume 23, Number 6, Nov/Dec 2010
2010-11-01
Model of archi- tectural design. It guides developers to apply effort to their software architecture commensurate with the risks faced by...Driven Model is the promotion of risk to prominence. It is possible to apply the Risk-Driven Model to essentially any software development process...succeed without any planned architecture work, while many high-risk projects would fail without it . The Risk-Driven Model walks a middle path
Overview and Software Architecture of the Copernicus Trajectory Design and Optimization System
NASA Technical Reports Server (NTRS)
Williams, Jacob; Senent, Juan S.; Ocampo, Cesar; Mathur, Ravi; Davis, Elizabeth C.
2010-01-01
The Copernicus Trajectory Design and Optimization System represents an innovative and comprehensive approach to on-orbit mission design, trajectory analysis and optimization. Copernicus integrates state of the art algorithms in optimization, interactive visualization, spacecraft state propagation, and data input-output interfaces, allowing the analyst to design spacecraft missions to all possible Solar System destinations. All of these features are incorporated within a single architecture that can be used interactively via a comprehensive GUI interface, or passively via external interfaces that execute batch processes. This paper describes the Copernicus software architecture together with the challenges associated with its implementation. Additionally, future development and planned new capabilities are discussed. Key words: Copernicus, Spacecraft Trajectory Optimization Software.
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1991-01-01
Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.
Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B
2011-04-10
Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.
The RISC (Reduced Instruction Set Computer) Architecture and Computer Performance Evaluation.
1986-03-01
time where the main emphasis of the evaluation process is put on the software . The model is intended to provide a tool for computer architects to use...program, or 3) Was to be implemented in random logic more effec- tively than the equivalent sequence of software instructions. Both data and address...definition is the IEEE standard 729-1983 stating Computer Architecture as: " The process of defining a collection of hardware and software components and
NASA Technical Reports Server (NTRS)
Skoog, Mark A.
2016-01-01
NASAs Armstrong Flight Research Center has been engaged in the development of highly automatic safety systems for aviation since the mid 80s. For the past three years under Seedling and Center Innovation funding this work has moved toward the development of a software architecture applicable to autonomous safety. This work is now broadening and accelerating to address the airworthiness issues surrounding making a case for trustworthy autonomy. This software architecture is called the expandable variable-autonomy architecture (EVAA) and utilizes a run-time assurance approach to safety assurance.
Hypercluster Parallel Processor
NASA Technical Reports Server (NTRS)
Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela
1992-01-01
Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.
Software system architecture for corporate user support
NASA Astrophysics Data System (ADS)
Sukhopluyeva, V. S.; Kuznetsov, D. Y.
2017-01-01
In this article, several existing ready-to-use solutions for the HelpDesk are reviewed. Advantages and disadvantages of these systems are identified. Architecture of software solution for a corporate user support system is presented in a form of the use case, state, and component diagrams described by using a unified modeling language (UML).
Knowledge-based system for flight information management. Thesis
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.
1990-01-01
The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.
NASA Astrophysics Data System (ADS)
Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos
2016-04-01
This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.
A Unified Approach to Model-Based Planning and Execution
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)
2000-01-01
Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.
NASA Integrated Network Monitor and Control Software Architecture
NASA Technical Reports Server (NTRS)
Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick
2012-01-01
The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.
By Hand or Not By-Hand: A Case Study of Alternative Approaches to Parallelize CFD Applications
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Bailey, David (Technical Monitor)
1997-01-01
While parallel processing promises to speed up applications by several orders of magnitude, the performance achieved still depends upon several factors, including the multiprocessor architecture, system software, data distribution and alignment, as well as the methods used for partitioning the application and mapping its components onto the architecture. The existence of the Gorden Bell Prize given out at Supercomputing every year suggests that while good performance can be attained for real applications on general purpose multiprocessors, the large investment in man-power and time still has to be repeated for each application-machine combination. As applications and machine architectures become more complex, the cost and time-delays for obtaining performance by hand will become prohibitive. Computer users today can turn to three possible avenues for help: parallel libraries, parallel languages and compilers, interactive parallelization tools. The success of these methodologies, in turn, depends on proper application of data dependency analysis, program structure recognition and transformation, performance prediction as well as exploitation of user supplied knowledge. NASA has been developing multidisciplinary applications on highly parallel architectures under the High Performance Computing and Communications Program. Over the past six years, the transition of underlying hardware and system software have forced the scientists to spend a large effort to migrate and recede their applications. Various attempts to exploit software tools to automate the parallelization process have not produced favorable results. In this paper, we report our most recent experience with CAPTOOL, a package developed at Greenwich University. We have chosen CAPTOOL for three reasons: 1. CAPTOOL accepts a FORTRAN 77 program as input. This suggests its potential applicability to a large collection of legacy codes currently in use. 2. CAPTOOL employs domain decomposition to obtain parallelism. Although the fact that not all kinds of parallelism are handled may seem unappealing, many NASA applications in computational aerosciences as well as earth and space sciences are amenable to domain decomposition. 3. CAPTOOL generates code for a large variety of environments employed across NASA centers: MPI/PVM on network of workstations to the IBS/SP2 and CRAY/T3D.
Observatory software for the Maunakea Spectroscopic Explorer
NASA Astrophysics Data System (ADS)
Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick
2016-07-01
The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.
NASA Astrophysics Data System (ADS)
Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan
A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.
Partitioning Strategy Using Static Analysis Techniques
NASA Astrophysics Data System (ADS)
Seo, Yongjin; Soo Kim, Hyeon
2016-08-01
Flight software is software used in satellites' on-board computers. It has requirements such as real time and reliability. The IMA architecture is used to satisfy these requirements. The IMA architecture has the concept of partitions and this affected the configuration of flight software. That is, situations occurred in which software that had been loaded on one system was divided into many partitions when being loaded. For new issues, existing studies use experience based partitioning methods. However, these methods have a problem that they cannot be reused. In this respect, this paper proposes a partitioning method that is reusable and consistent.
Architecture, Design, Implementatio
2003-05-01
The terms architecture , design , and implementation are typically used informally in partitioning software specifications into three coarse strata of...we formalize the Intension and the Locality criteria, which imply that the distinction between architecture , design , and implementation is
Space Generic Open Avionics Architecture (SGOAA) reference model technical guide
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1993-01-01
This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.
A Collaborative Knowledge Plane for Autonomic Networks
NASA Astrophysics Data System (ADS)
Mbaye, Maïssa; Krief, Francine
Autonomic networking aims to give network components self-managing capabilities. Several autonomic architectures have been proposed. Each of these architectures includes sort of a knowledge plane which is very important to mimic an autonomic behavior. Knowledge plane has a central role for self-functions by providing suitable knowledge to equipment and needs to learn new strategies for more accuracy.However, defining knowledge plane's architecture is still a challenge for researchers. Specially, defining the way cognitive supports interact each other in knowledge plane and implementing them. Decision making process depends on these interactions between reasoning and learning parts of knowledge plane. In this paper we propose a knowledge plane's architecture based on machine learning (inductive logic programming) paradigm and situated view to deal with distributed environment. This architecture is focused on two self-functions that include all other self-functions: self-adaptation and self-organization. Study cases are given and implemented.
NASA Astrophysics Data System (ADS)
Sangiorgi, Pierluca; Capalbi, Milvia; Gimenes, Renato; La Rosa, Giovanni; Russo, Francesco; Segreto, Alberto; Sottile, Giuseppe; Catalano, Osvaldo
2016-07-01
The purpose of this contribution is to present the current status of the software architecture of the ASTRI SST-2M Cherenkov Camera. The ASTRI SST-2M telescope is an end-to-end prototype for the Small Size Telescope of the Cherenkov Telescope Array. The ASTRI camera is an innovative instrument based on SiPM detectors and has several internal hardware components. In this contribution we will give a brief description of the hardware components of the camera of the ASTRI SST-2M prototype and of their interconnections. Then we will present the outcome of the software architectural design process that we carried out in order to identify the main structural components of the camera software system and the relationships among them. We will analyze the architectural model that describes how the camera software is organized as a set of communicating blocks. Finally, we will show where these blocks are deployed in the hardware components and how they interact. We will describe in some detail, the physical communication ports and external ancillary devices management, the high precision time-tag management, the fast data collection and the fast data exchange between different camera subsystems, and the interfacing with the external systems.
Control software and electronics architecture design in the framework of the E-ELT instrumentation
NASA Astrophysics Data System (ADS)
Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.
2010-07-01
During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brant Peery; Sam Alessi; Randy Lee
2014-06-01
There is a need for a spatial decision support application that allows users to create customized metrics for comparing proposed locations of a new solar installation. This document discusses how PVMapper was designed to overcome the customization problem through the development of loosely coupled spatial and decision components in a JavaScript plugin architecture. This allows the user to easily add functionality and data to the system. The paper also explains how PVMapper provides the user with a dynamic and customizable decision tool that enables them to visually modify the formulas that are used in the decision algorithms that convert datamore » to comparable metrics. The technologies that make up the presentation and calculation software stack are outlined. This document also explains the architecture that allows the tool to grow through custom plugins created by the software users. Some discussion is given on the difficulties encountered while designing the system.« less
Orthographic Software Modelling: A Novel Approach to View-Based Software Engineering
NASA Astrophysics Data System (ADS)
Atkinson, Colin
The need to support multiple views of complex software architectures, each capturing a different aspect of the system under development, has been recognized for a long time. Even the very first object-oriented analysis/design methods such as the Booch method and OMT supported a number of different diagram types (e.g. structural, behavioral, operational) and subsequent methods such as Fusion, Kruchten's 4+1 views and the Rational Unified Process (RUP) have added many more views over time. Today's leading modeling languages such as the UML and SysML, are also oriented towards supporting different views (i.e. diagram types) each able to portray a different facets of a system's architecture. More recently, so called enterprise architecture frameworks such as the Zachman Framework, TOGAF and RM-ODP have become popular. These add a whole set of new non-functional views to the views typically emphasized in traditional software engineering environments.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1989-01-01
This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.
Study of fault-tolerant software technology
NASA Technical Reports Server (NTRS)
Slivinski, T.; Broglio, C.; Wild, C.; Goldberg, J.; Levitt, K.; Hitt, E.; Webb, J.
1984-01-01
Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance.
Design and Acquisition of Software for Defense Systems
2018-02-14
enterprise business systems and related information technology (IT) services, the role software plays in enabling and enhancing weapons systems often...3 The information in this chart was compiled from Christian Hagen, Jeff Sorenson, Steven Hurt...understanding to make an informed choice of final architecture. The Task Force found commercial practice starts with several competing architectures and
1988-04-21
Layton Senior Software Engineer Martin Marietta Denver Aerospace MS L0425 P.O. Box 179 Denver, CO 80201 Larry L. Lehman Integrated Systems Inc. 2500...Mission College Road Santa Clara, CA 95054 Eric Leighninger Dynamics Research 60 Frontage Road Andover, MA 01810 . Peter Lempp Software Products and
Software control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong
1999-07-01
The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.
NASA Technical Reports Server (NTRS)
Fordyce, Jess
1996-01-01
Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
NASA Technical Reports Server (NTRS)
Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren
1997-01-01
The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions
Architectural Design of a LMS with LTSA-Conformance
ERIC Educational Resources Information Center
Sengupta, Souvik; Dasgupta, Ranjan
2017-01-01
This paper illustrates an approach for architectural design of a Learning Management System (LMS), which is verifiable against the Learning Technology System Architecture (LTSA) conformance rules. We introduce a new method for software architectural design that extends the Unified Modeling Language (UML) component diagram with the formal…
Executive control systems in the engineering design environment
NASA Technical Reports Server (NTRS)
Hurst, P. W.; Pratt, T. W.
1985-01-01
Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.
A unified teleoperated-autonomous dual-arm robotic system
NASA Technical Reports Server (NTRS)
Hayati, Samad; Lee, Thomas S.; Tso, Kam Sing; Backes, Paul G.; Lloyd, John
1991-01-01
A description is given of complete robot control facility built as part of a NASA telerobotics program to develop a state-of-the-art robot control environment for performing experiments in the repair and assembly of spacelike hardware to gain practical knowledge of such work and to improve the associated technology. The basic architecture of the manipulator control subsystem is presented. The multiarm Robot Control C Library (RCCL), a key software component of the system, is described, along with its implementation on a Sun-4 computer. The system's simulation capability is also described, and the teleoperation and shared control features are explained.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
Automated Synthesis of Architecture of Avionic Systems
NASA Technical Reports Server (NTRS)
Chau, Savio; Xu, Joseph; Dang, Van; Lu, James F.
2006-01-01
The Architecture Synthesis Tool (AST) is software that automatically synthesizes software and hardware architectures of avionic systems. The AST is expected to be most helpful during initial formulation of an avionic-system design, when system requirements change frequently and manual modification of architecture is time-consuming and susceptible to error. The AST comprises two parts: (1) an architecture generator, which utilizes a genetic algorithm to create a multitude of architectures; and (2) a functionality evaluator, which analyzes the architectures for viability, rejecting most of the non-viable ones. The functionality evaluator generates and uses a viability tree a hierarchy representing functions and components that perform the functions such that the system as a whole performs system-level functions representing the requirements for the system as specified by a user. Architectures that survive the functionality evaluator are further evaluated by the selection process of the genetic algorithm. Architectures found to be most promising to satisfy the user s requirements and to perform optimally are selected as parents to the next generation of architectures. The foregoing process is iterated as many times as the user desires. The final output is one or a few viable architectures that satisfy the user s requirements.
NASA Astrophysics Data System (ADS)
Vacca, G.; Pili, D.; Fiorino, D. R.; Pintus, V.
2017-05-01
The presented work is part of the research project, titled "Tecniche murarie tradizionali: conoscenza per la conservazione ed il miglioramento prestazionale" (Traditional building techniques: from knowledge to conservation and performance improvement), with the purpose of studying the building techniques of the 13th-18th centuries in the Sardinia Region (Italy) for their knowledge, conservation, and promotion. The end purpose of the entire study is to improve the performance of the examined structures. In particular, the task of the authors within the research project was to build a WebGIS to manage the data collected during the examination and study phases. This infrastructure was entirely built using Open Source software. The work consisted of designing a database built in PostgreSQL and its spatial extension PostGIS, which allows to store and manage feature geometries and spatial data. The data input is performed via a form built in HTML and PHP. The HTML part is based on Bootstrap, an open tools library for websites and web applications. The implementation of this template used both PHP and Javascript code. The PHP code manages the reading and writing of data to the database, using embedded SQL queries. As of today, we surveyed and archived more than 300 buildings, belonging to three main macro categories: fortification architectures, religious architectures, residential architectures. The masonry samples investigated in relation to the construction techniques are more than 150. The database is published on the Internet as a WebGIS built using the Leaflet Javascript open libraries, which allows creating map sites with background maps and navigation, input and query tools. This too uses an interaction of HTML, Javascript, PHP and SQL code.
Robot Electronics Architecture
NASA Technical Reports Server (NTRS)
Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett
2008-01-01
An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.
Preliminary Design of ArchE: A Software Architecture Design Assistant
2003-09-01
This report presents a procedure for moving from a set of quality attribute scenarios to an architecture design that satisfies those scenarios. This...procedure is embodied in a preliminary design for an architecture design assistant named ArchE (Architecture Expert), which will be implemented on a
An Update on Design Tools for Optimization of CMC 3D Fiber Architectures
NASA Technical Reports Server (NTRS)
Lang, J.; DiCarlo, J.
2012-01-01
Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.
Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Ruiz, Alonso A
2015-01-01
The development of software supporting inter-disciplinary systems like the type 2 diabetes mellitus care requires the deployment of methodologies designed for this type of interoperability. The GCM framework allows the architectural description of such systems and the development of software solutions based on it. A first step of the GCM methodology is the definition of a generic architecture, followed by its specialization for specific use cases. This paper describes the specialization of the generic architecture of a system, supporting Type 2 diabetes mellitus glycemic control, for a pharmacotherapy use case. It focuses on the behavioral aspect of the system, i.e. the policy domain and the definition of the rules governing the system. The design of this architecture reflects the inter-disciplinary feature of the methodology. Finally, the resulting architecture allows building adaptive, intelligent and complete systems.
Successful Architectural Knowledge Sharing: Beware of Emotions
NASA Astrophysics Data System (ADS)
Poort, Eltjo R.; Pramono, Agung; Perdeck, Michiel; Clerc, Viktor; van Vliet, Hans
This chapter presents the analysis and key findings of a survey on architectural knowledge sharing. The responses of 97 architects working in the Dutch IT Industry were analyzed by correlating practices and challenges with project size and success. Impact mechanisms between project size, project success, and architectural knowledge sharing practices and challenges were deduced based on reasoning, experience and literature. We find that architects run into numerous and diverse challenges sharing architectural knowledge, but that the only challenges that have a significant impact are the emotional challenges related to interpersonal relationships. Thus, architects should be careful when dealing with emotions in knowledge sharing.
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)
1997-01-01
The Whitney project is integrating commodity off-the-shelf PC hardware and software technology to build a parallel supercomputer with hundreds to thousands of nodes. To build such a system, one must have a scalable software model, and the installation and maintenance of the system software must be completely automated. We describe the design of an architecture for booting, installing, and configuring nodes in such a system with particular consideration given to scalability and ease of maintenance. This system has been implemented on a 40-node prototype of Whitney and is to be used on the 500 processor Whitney system to be built in 1998.
Requirements for a multifunctional code architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiihonen, O.; Juslin, K.
1997-07-01
The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results aremore » managed.« less
Medical Data Architecture Project Capabilities and Design
NASA Technical Reports Server (NTRS)
Middour, C.; Krihak, M.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2017-01-01
Mission constraints will challenge the delivery of medical care on a long-term, deep space exploration mission. This type of mission will be restricted in the availability of medical knowledge, skills, procedures and resources to prevent, diagnose, and treat in-flight medical events. Challenges to providing medical care are anticipated, including resource and resupply constraints, delayed communications and no ability for medical evacuation. The Medical Data Architecture (MDA) project will enable medical care capability in this constrained environment. The first version of the system, called "Test Bed 1," includes capabilities for automated data collection, data storage and data retrieval to provide information to the Crew Medical Officer (CMO). Test Bed 1 seeks to establish a data architecture foundation and develop a scalable data management system through modular design and standardized interfaces. In addition, it will demonstrate to stakeholders the potential for an improved, automated, flow of data to and from the medical system over the current methods employed on the International Space Station (ISS). It integrates a set of external devices, software and processes, and a Subjective, Objective, Assessment, and Plan (SOAP) note commonly used by clinicians. Medical data like electrocardiogram plots, heart rate, skin temperature, respiration rate, medications taken, and more are collected from devices and stored in the Electronic Medical Records (EMR) system, and reported to crew and clinician. Devices integrated include the Astroskin biosensor vest and IMED CARDIAX electrocardiogram (ECG) device with INEED MD ECG Glove, and the NASA-developed Medical Dose Tracker application. The system is designed to be operated as a standalone system, and can be deployed in a variety of environments, from a laptop to a data center. The system is primarily composed of open-source software tools, and is designed to be modular, so new capabilities can be added. The software components and integration methods will be discussed.
Construction of integrated case environments.
Losavio, Francisca; Matteo, Alfredo; Pérez, María
2003-01-01
The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.
Terra Harvest software architecture
NASA Astrophysics Data System (ADS)
Humeniuk, Dave; Klawon, Kevin
2012-06-01
Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.
Next-generation digital camera integration and software development issues
NASA Astrophysics Data System (ADS)
Venkataraman, Shyam; Peters, Ken; Hecht, Richard
1998-04-01
This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.
Knowledge-acquisition tools for medical knowledge-based systems.
Lanzola, G; Quaglini, S; Stefanelli, M
1995-03-01
Knowledge-based systems (KBS) have been proposed to solve a large variety of medical problems. A strategic issue for KBS development and maintenance are the efforts required for both knowledge engineers and domain experts. The proposed solution is building efficient knowledge acquisition (KA) tools. This paper presents a set of KA tools we are developing within a European Project called GAMES II. They have been designed after the formulation of an epistemological model of medical reasoning. The main goal is that of developing a computational framework which allows knowledge engineers and domain experts to interact cooperatively in developing a medical KBS. To this aim, a set of reusable software components is highly recommended. Their design was facilitated by the development of a methodology for KBS construction. It views this process as comprising two activities: the tailoring of the epistemological model to the specific medical task to be executed and the subsequent translation of this model into a computational architecture so that the connections between computational structures and their knowledge level counterparts are maintained. The KA tools we developed are illustrated taking examples from the behavior of a KBS we are building for the management of children with acute myeloid leukemia.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
An Object-Oriented Network-Centric Software Architecture for Physical Computing
NASA Astrophysics Data System (ADS)
Palmer, Richard
1997-08-01
Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.
Systems Architecture for Fully Autonomous Space Missions
NASA Technical Reports Server (NTRS)
Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)
2002-01-01
The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.
The Software Architecture of Global Climate Models
NASA Astrophysics Data System (ADS)
Alexander, K. A.; Easterbrook, S. M.
2011-12-01
It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States, and Europe, we attempt to fill this gap in research. We describe the various representations of the climate system as computer programs, and account for architectural differences between models. Most GCMs now practice component-based software engineering, where Earth system components (such as the atmosphere or land surface) are present as highly encapsulated sub-models. This architecture facilitates a mix-and-match approach to climate modelling that allows for convenient sharing of model components between institutions, but it also leads to difficulty when choosing where to draw the lines between systems that are not encapsulated in the real world, such as sea ice. We also examine different styles of couplers in GCMs, which manage interaction and data flow between components. Finally, we pay particular attention to the varying levels of complexity in GCMs, both between and within models. Many GCMs have some components that are significantly more complex than others, a phenomenon which can be explained by the respective institution's research goals as well as the origin of the model components. In conclusion, although some features of software architecture have been adopted by every GCM we examined, other features show a wide range of different design choices and strategies. These architectural differences may provide new insights into variability and spread between models.
System on chip module configured for event-driven architecture
Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.
2017-10-17
A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.
Design and reliability analysis of DP-3 dynamic positioning control architecture
NASA Astrophysics Data System (ADS)
Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru
2011-12-01
As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.
NASA Technical Reports Server (NTRS)
Srinivasan, J.; Farrington, A.; Gray, A.
2001-01-01
They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.
LTSA Conformance Testing to Architectural Design of LMS Using Ontology
ERIC Educational Resources Information Center
Sengupta, Souvik; Dasgupta, Ranjan
2017-01-01
This paper proposes a new methodology for checking conformance of the software architectural design of Learning Management System (LMS) to Learning Technology System Architecture (LTSA). In our approach, the architectural designing of LMS follows the formal modeling style of Acme. An ontology is built to represent the LTSA rules and the software…
The widest practicable dissemination: The NASA technical report server
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Gottlich, Gretchen L.; Bianco, David J.; Binkley, Robert L.; Kellogg, Yvonne D.; Paulson, Sharon S.; Beaumont, Chris J.; Schmunk, Robert B.; Kurtz, Michael; Accomazzi, Alberto
1995-01-01
The search for innovative methods to distribute NASA's information lead a gross-roots team to create the NASA Technical Report Server (NTRS), which uses the World Wide Web and other popular Internet-based information systems as search engines. The NTRS is an inter-center effort which provides uniform access to various distributed publication servers residing on the Internet. Users have immediate desktop access to technical publications from NASA centers and institutes. This paper presents the NTRS architecture, usage metrics, and the lessons learned while implementing and maintaining the services over the initial 6-month period. The NTRS is largely constructed with freely available software running on existing hardware. NTRS builds upon existing hardware and software, and the resulting additional exposure for the body of literature contained will allow NASA to ensure that its institutional knowledge base will continue to receive the widest practicable and appropriate dissemination.
Generating target system specifications from a domain model using CLIPS
NASA Technical Reports Server (NTRS)
Sugumaran, Vijayan; Gomaa, Hassan; Kerschberg, Larry
1991-01-01
The quest for reuse in software engineering is still being pursued and researchers are actively investigating the domain modeling approach to software construction. There are several domain modeling efforts reported in the literature and they all agree that the components that are generated from domain modeling are more conducive to reuse. Once a domain model is created, several target systems can be generated by tailoring the domain model or by evolving the domain model and then tailoring it according to the specified requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using multiple views, namely, aggregation hierarchy, generalization/specialization hierarchies, object communication diagrams and state transition diagrams. The architecture of the Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is also presented. The preliminary version of KBRET is implemented in the C Language Integrated Production System (CLIPS).
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
NASA Astrophysics Data System (ADS)
Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.
2014-06-01
The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.
UML Profiles for Design Decisions and Non-Functional Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liming; Gorton, Ian
2007-06-30
A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements asmore » first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as« less
Model-Drive Architecture for Agent-Based Systems
NASA Technical Reports Server (NTRS)
Gradanin, Denis; Singh, H. Lally; Bohner, Shawn A.; Hinchey, Michael G.
2004-01-01
The Model Driven Architecture (MDA) approach uses a platform-independent model to define system functionality, or requirements, using some specification language. The requirements are then translated to a platform-specific model for implementation. An agent architecture based on the human cognitive model of planning, the Cognitive Agent Architecture (Cougaar) is selected for the implementation platform. The resulting Cougaar MDA prescribes certain kinds of models to be used, how those models may be prepared and the relationships of the different kinds of models. Using the existing Cougaar architecture, the level of application composition is elevated from individual components to domain level model specifications in order to generate software artifacts. The software artifacts generation is based on a metamodel. Each component maps to a UML structured component which is then converted into multiple artifacts: Cougaar/Java code, documentation, and test cases.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients.
Velickovski, Filip; Ceccaroni, Luigi; Roca, Josep; Burgos, Felip; Galdiz, Juan B; Marina, Nuria; Lluch-Ariet, Magí
2014-11-28
The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems.
Clinical Decision Support Systems (CDSS) for preventive management of COPD patients
2014-01-01
Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health information systems. PMID:25471545
Software structure for Vega/Chara instrument
NASA Astrophysics Data System (ADS)
Clausse, J.-M.
2008-07-01
VEGA (Visible spEctroGraph and polArimeter) is one of the focal instruments of the CHARA array at Mount Wilson near Los Angeles. Its control system is based on techniques developed on the GI2T interferometer (Grand Interferometre a 2 Telescopes) and on the SIRIUS fibered hyper telescope testbed at OCA (Observatoire de la Cote d'Azur). This article describes the software and electronics architecture of the instrument. It is based on local network architecture and uses also Virtual Private Network connections. The server part is based on Windows XP (VC++). The control software is on Linux (C, GTK). For the control of the science detector and the fringe tracking systems, distributed API use real-time techniques. The control software gathers all the necessary informations of the instrument. It allows an automatic management of the instrument by using an original task scheduler. This architecture intends to drive the instrument from remote sites, such as our institute in South of France.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).
Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)
Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610
JPL Facilities and Software for Collaborative Design: 1994 - Present
NASA Technical Reports Server (NTRS)
DeFlorio, Paul A.
2004-01-01
The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.
Interactive Nonlinear Structural Analysis: Enhancement.
1981-07-31
3251 Hanover Street Palo Alto, California 94304 i " 8 17 040 . G IS T GRAPHICS- INTERACTIVE STRUCTURAL ANALYSIS VIA THE GIFTS /STAGS SOFTWARE ASSEMBLY...GIST Software Components Page Section 3.0 Introduction * 2 3.1 GIFTS Architecture . . . . . . . . . . . . . 4 3.2 STAGS Architecture . . . 5 3.3 The... GIFTS ->STAGS Adaptor . . . . . . . . . . 6 3.4 The STAGS-> GIFTS Adaptor . . . . . . . . . . 37 3.5 The GIST Control Module . . . . . . . . . . 55 GIST
Architecting for Sustainable Software Delivery
2012-06-01
14 CrossTalk—May/June 2012 RAPID AND AGILE STABILITY Architecting for Sustainable Software Delivery Ronald J. Koontz , Boeing Robert L. Nord...Figure 2, and additional architecture documentation can be found in the work of Koontz [9, 10, 11]. Designing for extensibility promotes continued...Mapping of Practices to Agile and Architecture Criteria CrossTalk—May/June 2012 19 RAPID AND AGILE STABILITY ABOUT THE AUTHORS Ronald J. Koontz
Power, Avionics and Software Communication Network Architecture
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.
2014-01-01
This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).
Generic Software for Emulating Multiprocessor Architectures.
1985-05-01
RD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR 1/2 AlRCHITECTURES(J) MASSACHUSETTS INST OF TECH CAMBRIDGE U LRS LAB FOR COMPUTER SCIENCE R...AREA & WORK UNIT NUMBERS MIT Laboratory for Computer Science 545 Technology Square Cambridge, MA 02139 ____________ I I. CONTROLLING OFFICE NAME AND...aide If neceeasy end Identify by block number) Computer architecture, emulation, simulation, dataf low 20. ABSTRACT (Continue an reverse slde It
Towards a Framework for Evaluating and Comparing Diagnosis Algorithms
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia,David; Kuhn, Lukas; deKleer, Johan; vanGemund, Arjan; Feldman, Alexander
2009-01-01
Diagnostic inference involves the detection of anomalous system behavior and the identification of its cause, possibly down to a failed unit or to a parameter of a failed unit. Traditional approaches to solving this problem include expert/rule-based, model-based, and data-driven methods. Each approach (and various techniques within each approach) use different representations of the knowledge required to perform the diagnosis. The sensor data is expected to be combined with these internal representations to produce the diagnosis result. In spite of the availability of various diagnosis technologies, there have been only minimal efforts to develop a standardized software framework to run, evaluate, and compare different diagnosis technologies on the same system. This paper presents a framework that defines a standardized representation of the system knowledge, the sensor data, and the form of the diagnosis results and provides a run-time architecture that can execute diagnosis algorithms, send sensor data to the algorithms at appropriate time steps from a variety of sources (including the actual physical system), and collect resulting diagnoses. We also define a set of metrics that can be used to evaluate and compare the performance of the algorithms, and provide software to calculate the metrics.
Knowledge Production in an Architectural Practice and a University Architectural Department
ERIC Educational Resources Information Center
Winberg, Chris
2006-01-01
Processes of knowledge production by professional architects and architects-in-training were studied and compared. Both professionals and students were involved in the production of knowledge about the architectural heritage of historical buildings in Cape Town. In a study of the artefacts produced, observations of the processes by means of which…
A Knowledge Conversion Model Based on the Cognitive Load Theory for Architectural Design Education
ERIC Educational Resources Information Center
Wu, Yun-Wu; Liao, Shin; Wen, Ming-Hui; Weng, Kuo-Hua
2017-01-01
The education of architectural design requires balanced curricular arrangements of respectively theoretical knowledge and practical skills to really help students build their knowledge structures, particularly helping them in solving the problems of cognitive load. The purpose of this study is to establish an architectural design knowledge…
Relating Business Goals to Architecturally Significant Requirements for Software Systems
2010-05-01
must respond within five seconds” [ EPF 2010]. A major source of architecturally significant requirements is the set of business goals that led to the...Projects for Competitive Advantage, Center for Business Practices, 1999. [ EPF 2010] Eclipse Process Framework Project. Concept: Architecturally
Intelligent web agents for a 3D virtual community
NASA Astrophysics Data System (ADS)
Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar
2003-08-01
In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.
A federated design for a neurobiological simulation engine: the CBI federated software architecture.
Cornelis, Hugo; Coop, Allan D; Bower, James M
2012-01-01
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.
A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture
Cornelis, Hugo; Coop, Allan D.; Bower, James M.
2012-01-01
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154
Analyzing and designing object-oriented missile simulations with concurrency
NASA Astrophysics Data System (ADS)
Randorf, Jeffrey Allen
2000-11-01
A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling environment are discussed.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multicore, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to approx.50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multi-core, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to .50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Saranummi, Niilo
2005-01-01
The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.
Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B
2014-01-13
Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.
NASA Technical Reports Server (NTRS)
Wright, Mary A.; Regelbrugge, Marc E.; Felippa, Carlos A.
1989-01-01
This is the fourth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 4 describes the nominal-record data management component of the NICE software. It is intended for all users.
NASA Technical Reports Server (NTRS)
King, Ellis; Hart, Jeremy; Odegard, Ryan
2010-01-01
The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.
UAF: a generic OPC unified architecture framework
NASA Astrophysics Data System (ADS)
Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans
2012-09-01
As an emerging Service Oriented Architecture (SOA) specically designed for industrial automation and process control, the OPC Unied Architecture specication should be regarded as an attractive candidate for controlling scientic instrumentation. Even though an industry-backed standard such as OPC UA can oer substantial added value to these projects, its inherent complexity poses an important obstacle for adopting the technology. Building OPC UA applications requires considerable eort, even when taking advantage of a COTS Software Development Kit (SDK). The OPC Unied Architecture Framework (UAF) attempts to reduce this burden by introducing an abstraction layer between the SDK and the application code in order to achieve a better separation of the technical and the functional concerns. True to its industrial origin, the primary requirement of the framework is to maintain interoperability by staying close to the standard specications, and by expecting the minimum compliance from other OPC UA servers and clients. UAF can therefore be regarded as a software framework to quickly and comfortably develop and deploy OPC UA-based applications, while remaining compatible to third party OPC UA-compliant toolkits, servers (such as PLCs) and clients (such as SCADA software). In the rst phase, as covered by this paper, only the client-side of UAF has been tackled in order to transparently handle discovery, session management, subscriptions, monitored items etc. We describe the design principles and internal architecture of our open-source software project, the rst results of the framework running at the Mercator Telescope, and we give a preview of the planned server-side implementation.
The K9 On-Board Rover Architecture
NASA Technical Reports Server (NTRS)
Bresina, John L.; Bualat, Maria; Fair, Michael; Washington, Richard; Wright, Anne
2006-01-01
This paper describes the software architecture of NASA Ames Research Center s K9 rover. The goal of the onboard software architecture team was to develop a modular, flexible framework that would allow both high- and low-level control of the K9 hardware. Examples of low-level control are the simple drive or pan/tilt commands which are handled by the resource managers, and examples of high-level control are the command sequences which are handled by the conditional executive. In between these two control levels are complex behavioral commands which are handled by the pilot, such as drive to goal with obstacle avoidance or visually servo to a target. This paper presents the design of the architecture as of Fall 2000. We describe the state of the architecture implementation as well as its current evolution. An early version of the architecture was used for K9 operations during a dual-rover field experiment conducted by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) from May 14 to May 16, 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie Turner
When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rationalmore » DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201« less
A Public Health Grid (PHGrid): Architecture and value proposition for 21st century public health.
Savel, T; Hall, K; Lee, B; McMullin, V; Miles, M; Stinn, J; White, P; Washington, D; Boyd, T; Lenert, L
2010-07-01
This manuscript describes the value of and proposal for a high-level architectural framework for a Public Health Grid (PHGrid), which the authors feel has the capability to afford the public health community a robust technology infrastructure for secure and timely data, information, and knowledge exchange, not only within the public health domain, but between public health and the overall health care system. The CDC facilitated multiple Proof-of-Concept (PoC) projects, leveraging an open-source-based software development methodology, to test four hypotheses with regard to this high-level framework. The outcomes of the four PoCs in combination with the use of the Federal Enterprise Architecture Framework (FEAF) and the newly emerging Federal Segment Architecture Methodology (FSAM) was used to develop and refine a high-level architectural framework for a Public Health Grid infrastructure. The authors were successful in documenting a robust high-level architectural framework for a PHGrid. The documentation generated provided a level of granularity needed to validate the proposal, and included examples of both information standards and services to be implemented. Both the results of the PoCs as well as feedback from selected public health partners were used to develop the granular documentation. A robust high-level cohesive architectural framework for a Public Health Grid (PHGrid) has been successfully articulated, with its feasibility demonstrated via multiple PoCs. In order to successfully implement this framework for a Public Health Grid, the authors recommend moving forward with a three-pronged approach focusing on interoperability and standards, streamlining the PHGrid infrastructure, and developing robust and high-impact public health services. Published by Elsevier Ireland Ltd.
1993-09-30
97 Accesion For NTIS CRA&I DTIC TAB Unannounced 0 Justification ----- ---.......................... Ry Di. t ,:; t,.: 1...months of effort. The product was important for demonstrating to IBM management the potential of the Cleanroom methodology. 3.2.4 Software Architecture ...for Oscilloscopes Using Z (Tektronix) Tektronix in Beaverton, Oregon, used Z to develop a reusable software architecture to be shared among a number
Irregular Applications: Architectures & Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feo, John T.; Villa, Oreste; Tumeo, Antonino
Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.
NASA Technical Reports Server (NTRS)
Schoppers, Marcel
1994-01-01
The design of a flexible, real-time software architecture for trajectory planning and automatic control of redundant manipulators is described. Emphasis is placed on a technique of designing control systems that are both flexible and robust yet have good real-time performance. The solution presented involves an artificial intelligence algorithm that dynamically reprograms the real-time control system while planning system behavior.
GBU-X bounding requirements for highly flexible munitions
NASA Astrophysics Data System (ADS)
Bagby, Patrick T.; Shaver, Jonathan; White, Reed; Cafarelli, Sergio; Hébert, Anthony J.
2017-04-01
This paper will present the results of an investigation into requirements for existing software and hardware solutions for open digital communication architectures that support weapon subsystem integration. The underlying requirements of such a communication architecture would be to achieve the lowest latency possible at a reasonable cost point with respect to the mission objective of the weapon. The determination of the latency requirements of the open architecture software and hardware were derived through the use of control system and stability margins analyses. Studies were performed on the throughput and latency of different existing communication transport methods. The two architectures that were tested in this study include Data Distribution Service (DDS) and Modular Open Network Architecture (MONARCH). This paper defines what levels of latency can be achieved with current technology and how this capability may translate to future weapons. The requirements moving forward within communications solutions are discussed.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
2011-01-01
Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364
The Nebula Standard Computer Architecture,
good target for high level languages, the designers also adopted a visibility approach in architecture design that provides more freedom for the hardware implementor while still maintaining software portability. (Author)
Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations
Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali
2015-01-01
Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414
Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.
Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali
2015-01-01
Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.
A conceptual model for megaprogramming
NASA Technical Reports Server (NTRS)
Tracz, Will
1990-01-01
Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described.
The software architecture to control the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Oya, I.; Füßling, M.; Antonino, P. O.; Conforti, V.; Hagge, L.; Melkumyan, D.; Morgenstern, A.; Tosti, G.; Schwanke, U.; Schwarz, J.; Wegner, P.; Colomé, J.; Lyard, E.
2016-07-01
The Cherenkov Telescope Array (CTA) project is an initiative to build two large arrays of Cherenkov gamma- ray telescopes. CTA will be deployed as two installations, one in the northern and the other in the southern hemisphere, containing dozens of telescopes of different sizes. CTA is a big step forward in the field of ground- based gamma-ray astronomy, not only because of the expected scientific return, but also due to the order-of- magnitude larger scale of the instrument to be controlled. The performance requirements associated with such a large and distributed astronomical installation require a thoughtful analysis to determine the best software solutions. The array control and data acquisition (ACTL) work-package within the CTA initiative will deliver the software to control and acquire the data from the CTA instrumentation. In this contribution we present the current status of the formal ACTL system decomposition into software building blocks and the relationships among them. The system is modelled via the Systems Modelling Language (SysML) formalism. To cope with the complexity of the system, this architecture model is sub-divided into different perspectives. The relationships with the stakeholders and external systems are used to create the first perspective, the context of the ACTL software system. Use cases are employed to describe the interaction of those external elements with the ACTL system and are traced to a hierarchy of functionalities (abstract system functions) describing the internal structure of the ACTL system. These functions are then traced to fully specified logical elements (software components), the deployment of which as technical elements, is also described. This modelling approach allows us to decompose the ACTL software in elements to be created and the ow of information within the system, providing us with a clear way to identify sub-system interdependencies. This architectural approach allows us to build the ACTL system model and trace requirements to deliverables (source code, documentation, etc.), and permits the implementation of a flexible use-case driven software development approach thanks to the traceability from use cases to the logical software elements. The Alma Common Software (ACS) container/component framework, used for the control of the Atacama Large Millimeter/submillimeter Array (ALMA) is the basis for the ACTL software and as such it is considered as an integral part of the software architecture.
About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture
NASA Astrophysics Data System (ADS)
Grauer, Manfred; Barth, Thomas
2004-06-01
Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.
Software architecture of the III/FBI segment of the FBI's integrated automated identification system
NASA Astrophysics Data System (ADS)
Booker, Brian T.
1997-02-01
This paper will describe the software architecture of the Interstate Identification Index (III/FBI) Segment of the FBI's Integrated Automated Fingerprint Identification System (IAFIS). IAFIS is currently under development, with deployment to begin in 1998. III/FBI will provide the repository of criminal history and photographs for criminal subjects, as well as identification data for military and civilian federal employees. Services provided by III/FBI include maintenance of the criminal and civil data, subject search of the criminal and civil data, and response generation services for IAFIS. III/FBI software will be comprised of both COTS and an estimated 250,000 lines of developed C code. This paper will describe the following: (1) the high-level requirements of the III/FBI software; (2) the decomposition of the III/FBI software into Computer Software Configuration Items (CSCIs); (3) the top-level design of the III/FBI CSCIs; and (4) the relationships among the developed CSCIs and the COTS products that will comprise the III/FBI software.
2010-06-01
DATES COVEREDAPR 2009 – JAN 2010 (From - To) APR 2009 – JAN 2010 4. TITLE AND SUBTITLE EMERGING NEUROMORPHIC COMPUTING ARCHITECTURES AND ENABLING...14. ABSTRACT The highly cross-disciplinary emerging field of neuromorphic computing architectures for cognitive information processing applications...belief systems, software, computer engineering, etc. In our effort to develop cognitive systems atop a neuromorphic computing architecture, we explored
Formal Foundations for the Specification of Software Architecture.
1995-03-01
Architectures For- mally: A Case-Study Using KWIC." Kestrel Institute, Palo Alto, CA 94304, April 1994. 58. Kang, Kyo C. Feature-Oriented Domain Analysis ( FODA ...6.3.5 Constraint-Based Architectures ................. 6-60 6.4 Summary ......... ............................. 6-63 VII. Analysis of Process-Based...between these architec- ture theories were investigated. A feasibility analysis on an image processing application demonstrated that architecture theories
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.
2003-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).
A knowledge-base generating hierarchical fuzzy-neural controller.
Kandadai, R M; Tien, J M
1997-01-01
We present an innovative fuzzy-neural architecture that is able to automatically generate a knowledge base, in an extractable form, for use in hierarchical knowledge-based controllers. The knowledge base is in the form of a linguistic rule base appropriate for a fuzzy inference system. First, we modify Berenji and Khedkar's (1992) GARIC architecture to enable it to automatically generate a knowledge base; a pseudosupervised learning scheme using reinforcement learning and error backpropagation is employed. Next, we further extend this architecture to a hierarchical controller that is able to generate its own knowledge base. Example applications are provided to underscore its viability.
Towards an Open, Distributed Software Architecture for UxS Operations
NASA Technical Reports Server (NTRS)
Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette
2015-01-01
To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.
Architecture of a framework for providing information services for public transport.
García, Carmelo R; Pérez, Ricardo; Lorenzo, Alvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino
2012-01-01
This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Teaching human poses interactively to a social robot.
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A
2013-09-17
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.
The Domain-Specific Software Architecture Program
1992-06-01
Kang, K.C; Cohen, S.C: Jess, J.A; Novak, W.E; Peterson, A.S. Feature- Oriented Domain Analysis ( FODA ) Feasibility Study. (CMU/SEI-90-TR-21, ADA235785...perspective of a con- trols engineer solving a problem using an iterative process of simulation and analysis . The CMU/SEI-92-SR-9 1 I ~math AnalysislP...for schedulability analysis and Markov processes for the determination of reliability. Software architectures are derived from these formal models. ORA
Software Architecture of Sensor Data Distribution In Planetary Exploration
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo
2006-01-01
Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.
Evolutionary Telemetry and Command Processor (TCP) architecture
NASA Technical Reports Server (NTRS)
Schneider, John R.
1992-01-01
A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.
Software-Based Safety Systems in Space - Learning from other Domains
NASA Astrophysics Data System (ADS)
Klicker, M.; Putzer, H.
2012-01-01
Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-05-01
AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Simulations were performed on tomato plants to demonstrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-01-01
Background and Aims AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. Methods The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Key Results Simulations were performed on tomato plants to demostrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. Conclusions The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment. PMID:17766310
Medical Data Architecture Capabilities and Design
NASA Technical Reports Server (NTRS)
Middour, C.; Krihak, M.; Lindsey, A.; Marker, N.; Wolfe, S.; Winther, S.; Ronzano, K.; Bolles, D.; Toscano, W.; Shaw, T.
2017-01-01
Mission constraints will challenge the delivery of medical care on a long-term, deep space explorationmission. This type of mission will be restricted in the availability of medical knowledge, skills, procedures and resourcesto prevent, diagnose, and treat in-flight medical events. Challenges to providing medical care are anticipated, includingresource and resupply constraints, delayed communications and no ability for medical evacuation. The Medical DataArchitecture (MDA) project will enable medical care capability in this constrained environment.The first version of thesystem, called Test Bed 1, includes capabilities for automated data collection, data storage and data retrieval to provideinformation to the Crew Medical Officer (CMO). Test Bed 1 seeks to establish a data architecture foundation and developa scalable data management system through modular design and standardized interfaces. In addition, it will demonstrateto stakeholders the potential for an improved, automated, flow of data to and from the medical system over the currentmethods employed on the International Space Station (ISS). It integrates a set of external devices, software andprocesses, and a Subjective, Objective, Assessment, and Plan (SOAP) note commonly used by clinicians. Medical datalike electrocardiogram plots, heart rate, skin temperature, respiration rate, medications taken, and more are collectedfrom devices and stored in the Electronic Medical Records (EMR) system, and reported to crew and clinician. Devicesintegrated include the Astroskin biosensor vest and IMED CARDIAX electrocardiogram (ECG) device with INEED MDECG Glove, and the NASA-developed Medical Dose Tracker application.The system is designed to be operated as astandalone system, and can be deployed in a variety of environments, from a laptop to a data center. The system isprimarily composed of open-source software tools, and is designed to be modular, so new capabilities can be added. Thesoftware components and integration methods will be discussed.
Sensor Open System Architecture (SOSA) evolution for collaborative standards development
NASA Astrophysics Data System (ADS)
Collier, Charles Patrick; Lipkin, Ilya; Davidson, Steven A.; Baldwin, Rusty; Orlovsky, Michael C.; Ibrahim, Tim
2017-04-01
The Sensor Open System Architecture (SOSA) is a C4ISR-focused technical and economic collaborative effort between the Air Force, Navy, Army, the Department of Defense (DoD), Industry, and other Governmental agencies to develop (and incorporate) a technical Open Systems Architecture standard in order to maximize C4ISR sub-system, system, and platform affordability, re-configurability, and hardware/software/firmware re-use. The SOSA effort will effectively create an operational and technical framework for the integration of disparate payloads into C4ISR systems; with a focus on the development of a modular decomposition (defining functions and behaviors) and associated key interfaces (physical and logical) for common multi-purpose architecture for radar, EO/IR, SIGINT, EW, and Communications. SOSA addresses hardware, software, and mechanical/electrical interfaces. The modular decomposition will produce a set of re-useable components, interfaces, and sub-systems that engender reusable capabilities. This, in effect, creates a realistic and affordable ecosystem enabling mission effectiveness through systematic re-use of all available re-composed hardware, software, and electrical/mechanical base components and interfaces. To this end, SOSA will leverage existing standards as much as possible and evolve the SOSA architecture through modification, reuse, and enhancements to achieve C4ISR goals. This paper will present accomplishments over the first year of SOSA initiative.
Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests
NASA Astrophysics Data System (ADS)
Johnson, Dale
2009-04-01
Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.
Conceptual Modeling in the Time of the Revolution: Part II
NASA Astrophysics Data System (ADS)
Mylopoulos, John
Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.
Exploring Asynchronous Many-Task Runtime Systems toward Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Samuel; Baker, Gavin Matthew; Gamell, Marc
2015-10-01
Major exascale computing reports indicate a number of software challenges to meet the dramatic change of system architectures in near future. While several-orders-of-magnitude increase in parallelism is the most commonly cited of those, hurdles also include performance heterogeneity of compute nodes across the system, increased imbalance between computational capacity and I/O capabilities, frequent system interrupts, and complex hardware architectures. Asynchronous task-parallel programming models show a great promise in addressing these issues, but are not yet fully understood nor developed su ciently for computational science and engineering application codes. We address these knowledge gaps through quantitative and qualitative exploration of leadingmore » candidate solutions in the context of engineering applications at Sandia. In this poster, we evaluate MiniAero code ported to three leading candidate programming models (Charm++, Legion and UINTAH) to examine the feasibility of these models that permits insertion of new programming model elements into an existing code base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldevilla, M.; Salmons, S.; Espinosa, B.
The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a uniquemore » repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)« less
Implementing partnership-driven clinical federated electronic health record data sharing networks.
Stephens, Kari A; Anderson, Nicholas; Lin, Ching-Ping; Estiri, Hossein
2016-09-01
Building federated data sharing architectures requires supporting a range of data owners, effective and validated semantic alignment between data resources, and consistent focus on end-users. Establishing these resources requires development methodologies that support internal validation of data extraction and translation processes, sustaining meaningful partnerships, and delivering clear and measurable system utility. We describe findings from two federated data sharing case examples that detail critical factors, shared outcomes, and production environment results. Two federated data sharing pilot architectures developed to support network-based research associated with the University of Washington's Institute of Translational Health Sciences provided the basis for the findings. A spiral model for implementation and evaluation was used to structure iterations of development and support knowledge share between the two network development teams, which cross collaborated to support and manage common stages. We found that using a spiral model of software development and multiple cycles of iteration was effective in achieving early network design goals. Both networks required time and resource intensive efforts to establish a trusted environment to create the data sharing architectures. Both networks were challenged by the need for adaptive use cases to define and test utility. An iterative cyclical model of development provided a process for developing trust with data partners and refining the design, and supported measureable success in the development of new federated data sharing architectures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recent Developments in Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Luquette, Richard J.
2005-01-01
The Formation Flying Test-Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-tc-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on many recent improvements. Two significant upgrades to the FFTB are a message-oriented middleware (MOM) architecture, and a software crosslink for inter-spacecraft ranging. The MOM architecture provides a common messaging bus for software agents, easing integration, arid supporting the GSFC Mission Services Evolution Center (GMSEC) architecture via software bridge. Additionally, the FFTB s hardware capabilities are expanding. Recently, two Low-Power Transceivers (LPTs) with ranging capability have been introduced into the FFTB. The LPT crosslinks will be connected to a modified Crosslink Channel Simulator (CCS), which applies realistic space-environment effects to the Radio Frequency (RF) signals produced by the LPTs.
Video sensor architecture for surveillance applications.
Sánchez, Jordi; Benet, Ginés; Simó, José E
2012-01-01
This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.
Design and Testing of Space Telemetry SCA Waveform
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
Generic Software Architecture for Launchers
NASA Astrophysics Data System (ADS)
Carre, Emilien; Gast, Philippe; Hiron, Emmanuel; Leblanc, Alain; Lesens, David; Mescam, Emmanuelle; Moro, Pierre
2015-09-01
The definition and reuse of generic software architecture for launchers is not so usual for several reasons: the number of European launcher families is very small (Ariane 5 and Vega for these last decades); the real time constraints (reactivity and determinism needs) are very hard; low levels of versatility are required (implying often an ad hoc development of the launcher mission). In comparison, satellites are often built on a generic platform made up of reusable hardware building blocks (processors, star-trackers, gyroscopes, etc.) and reusable software building blocks (middleware, TM/TC, On Board Control Procedure, etc.). If some of these reasons are still valid (e.g. the limited number of development), the increase of the available CPU power makes today an approach based on a generic time triggered middleware (ensuring the full determinism of the system) and a centralised mission and vehicle management (offering more flexibility in the design and facilitating the long term maintenance) achievable. This paper presents an example of generic software architecture which could be envisaged for future launchers, based on the previously described principles and supported by model driven engineering and automatic code generation.
Video Sensor Architecture for Surveillance Applications
Sánchez, Jordi; Benet, Ginés; Simó, José E.
2012-01-01
This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. PMID:22438723
Space Telecommunications Radio System Software Architecture Concepts and Analysis
NASA Technical Reports Server (NTRS)
Handler, Louis M.; Hall, Charles S.; Briones, Janette C.; Blaser, Tammy M.
2008-01-01
The Space Telecommunications Radio System (STRS) project investigated various Software Defined Radio (SDR) architectures for Space. An STRS architecture has been selected that separates the STRS operating environment from its various waveforms and also abstracts any specialized hardware to limit its effect on the operating environment. The design supports software evolution where new functionality is incorporated into the radio. Radio hardware functionality has been moving from hardware based ASICs into firmware and software based processors such as FPGAs, DSPs and General Purpose Processors (GPPs). Use cases capture the requirements of a system by describing how the system should interact with the users or other systems (the actors) to achieve a specific goal. The Unified Modeling Language (UML) is used to illustrate the Use Cases in a variety of ways. The Top Level Use Case diagram shows groupings of the use cases and how the actors are involved. The state diagrams depict the various states that a system or object may be in and the transitions between those states. The sequence diagrams show the main flow of activity as described in the use cases.
2007-10-01
Architecture ................................................................................ 14 Figure 2. Eclipse Java Model...16 Figure 3. Eclipse Java Model at the Source Code Level...24 Figure 9. Java Source Code
Intelligent systems technology infrastructure for integrated systems
NASA Technical Reports Server (NTRS)
Lum, Henry
1991-01-01
A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.
Integrated System Health Management: Pilot Operational Implementation in a Rocket Engine Test Stand
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Schmalzel, John L.; Morris, Jonathan A.; Turowski, Mark P.; Franzl, Richard
2010-01-01
This paper describes a credible implementation of integrated system health management (ISHM) capability, as a pilot operational system. Important core elements that make possible fielding and evolution of ISHM capability have been validated in a rocket engine test stand, encompassing all phases of operation: stand-by, pre-test, test, and post-test. The core elements include an architecture (hardware/software) for ISHM, gateways for streaming real-time data from the data acquisition system into the ISHM system, automated configuration management employing transducer electronic data sheets (TEDS?s) adhering to the IEEE 1451.4 Standard for Smart Sensors and Actuators, broadcasting and capture of sensor measurements and health information adhering to the IEEE 1451.1 Standard for Smart Sensors and Actuators, user interfaces for management of redlines/bluelines, and establishment of a health assessment database system (HADS) and browser for extensive post-test analysis. The ISHM system was installed in the Test Control Room, where test operators were exposed to the capability. All functionalities of the pilot implementation were validated during testing and in post-test data streaming through the ISHM system. The implementation enabled significant improvements in awareness about the status of the test stand, and events and their causes/consequences. The architecture and software elements embody a systems engineering, knowledge-based approach; in conjunction with object-oriented environments. These qualities are permitting systematic augmentation of the capability and scaling to encompass other subsystems.
Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C
2011-08-22
We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).
2011-01-01
Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449
Considerations for the Next Revision of NASA's Space Telecommunications Radio System Architecture
NASA Technical Reports Server (NTRS)
Johnson, Sandra K.; Handler, Louis M.; Briones, Janette C.
2016-01-01
Development of NASA's Software Defined Radio architecture, the Space Telecommunication Radio System (STRS), was initiated in 2004 with a goal of reducing the cost, risk and schedule when implementing Software Defined Radios (SDR) for National Aeronautics and Space Administration (NASA) space missions. Since STRS was first flown in 2012 on three Software Defined Radios on the Space Communication and Navigation (SCaN) Testbed, only minor changes have been made to the architecture. Multiple entities have since implemented the architecture and provided significant feedback for consideration for the next revision of the standard. The focus for the first set of updates to the architecture is items that enhance application portability. Items that require modifications to existing applications before migrating to the updated architecture will only be considered if there is compelling reasons to make the change. The significant suggestions that were further evaluated for consideration include expanding and clarifying the timing Application Programming Interfaces (APIs), improving handle name and identification (ID) definitions and use, and multiple items related to implementation of STRS Devices. In addition to ideas suggested while implementing STRS, SDR technology has evolved significantly and this impact to the architecture needs to be considered. These include incorporating cognitive concepts - learning from past decisions and making new decisions that the radio can act upon. SDRs are also being developed that do not contain a General Purpose Module - which is currently required for the platform to be STRS compliant. The purpose of this paper is to discuss the comments received, provide a summary of the evaluation considerations, and examine planned dispositions.
AADL and Model-based Engineering
2014-10-20
and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software
WISE: Automated support for software project management and measurement. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ramakrishnan, Sudhakar
1995-01-01
One important aspect of software development and IV&V is measurement. Unless a software development effort is measured in some way, it is difficult to judge the effectiveness of current efforts and predict future performances. Collection of metrics and adherence to a process are difficult tasks in a software project. Change activity is a powerful indicator of project status. Automated systems that can handle change requests, issues, and other process documents provide an excellent platform for tracking the status of the project. A World Wide Web based architecture is developed for (a) making metrics collection an implicit part of the software process, (b) providing metric analysis dynamically, (c) supporting automated tools that can complement current practices of in-process improvement, and (d) overcoming geographical barrier. An operational system (WISE) instantiates this architecture allowing for the improvement of software process in a realistic environment. The tool tracks issues in software development process, provides informal communication between the users with different roles, supports to-do lists (TDL), and helps in software process improvement. WISE minimizes the time devoted to metrics collection, analysis, and captures software change data. Automated tools like WISE focus on understanding and managing the software process. The goal is improvement through measurement.
Second Generation Product Line Engineering Takes Hold in the DoD
2014-01-01
Feature- Oriented Domain Analysis ( FODA ) Feasibility Study” (CMU/SEI-90- TR-021, ADA235785). Pittsburgh, PA: Software Engineering Institute...software product line engineering and software architecture documentation and analysis . Clements is co-author of three practitioner-oriented books about
Composable Framework Support for Software-FMEA Through Model Execution
NASA Astrophysics Data System (ADS)
Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco
2016-08-01
Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.
Cost Estimation of Software Development and the Implications for the Program Manager
1992-06-01
Software Lifecycle Model (SLIM), the Jensen System-4 model, the Software Productivity, Quality, and Reliability Estimator ( SPQR \\20), the Constructive...function models in current use are the Software Productivity, Quality, and Reliability Estimator ( SPQR /20) and the Software Architecture Sizing and...Estimator ( SPQR /20) was developed by T. Capers Jones of Software Productivity Research, Inc., in 1985. The model is intended to estimate the outcome
Kamel Boulos, Maged N; Wheeler, Steve
2007-03-01
Web 2.0 sociable technologies and social software are presented as enablers in health and health care, for organizations, clinicians, patients and laypersons. They include social networking services, collaborative filtering, social bookmarking, folksonomies, social search engines, file sharing and tagging, mashups, instant messaging, and online multi-player games. The more popular Web 2.0 applications in education, namely wikis, blogs and podcasts, are but the tip of the social software iceberg. Web 2.0 technologies represent a quite revolutionary way of managing and repurposing/remixing online information and knowledge repositories, including clinical and research information, in comparison with the traditional Web 1.0 model. The paper also offers a glimpse of future software, touching on Web 3.0 (the Semantic Web) and how it could be combined with Web 2.0 to produce the ultimate architecture of participation. Although the tools presented in this review look very promising and potentially fit for purpose in many health care applications and scenarios, careful thinking, testing and evaluation research are still needed in order to establish 'best practice models' for leveraging these emerging technologies to boost our teaching and learning productivity, foster stronger 'communities of practice', and support continuing medical education/professional development (CME/CPD) and patient education.
Taking advantage of ground data systems attributes to achieve quality results in testing software
NASA Technical Reports Server (NTRS)
Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.
1994-01-01
During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.
Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Lux, James P.
2014-01-01
The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.
Software Defined Radio Architecture Contributions to Next Generation Space Communications
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John
2015-01-01
Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications systems, as well as those communications and navigation systems operated by international space agencies and civilian and government agencies. In this paper, we review the philosophies, technologies, architectural attributes, mission services, and communications capabilities that form the structure of candidate next-generation integrated communication architectures for space communications and navigation. A key area that this paper explores is from the development and operation of the software defined radio for the NASA Space Communications and Navigation (SCaN) Testbed currently on the International Space Station (ISS). Evaluating the lessons learned from development and operation feed back into the communications architecture. Leveraging the reconfigurability provides a change in the way that operations are done and must be considered. Quantifying the impact on the NASA Space Telecommunications Radio System (STRS) software defined radio architecture provides feedback to keep the standard useful and up to date. NASA is not the only customer of these radios. Software defined radios are developed for other applications, and taking advantage of these developments promotes an architecture that is cost effective and sustainable. Developments in the following areas such as an updated operating environment, higher data rates, networking and security can be leveraged. The ability to sustain an architecture that uses radios for multiple markets can lower costs and keep new technology infused.
Enhancement of computer system for applications software branch
NASA Technical Reports Server (NTRS)
Bykat, Alex
1987-01-01
Presented is a compilation of the history of a two-month project concerned with a survey, evaluation, and specification of a new computer system for the Applications Software Branch of the Software and Data Management Division of Information and Electronic Systems Laboratory of Marshall Space Flight Center, NASA. Information gathering consisted of discussions and surveys of branch activities, evaluation of computer manufacturer literature, and presentations by vendors. Information gathering was followed by evaluation of their systems. The criteria of the latter were: the (tentative) architecture selected for the new system, type of network architecture supported, software tools, and to some extent the price. The information received from the vendors, as well as additional research, lead to detailed design of a suitable system. This design included considerations of hardware and software environments as well as personnel issues such as training. Design of the system culminated in a recommendation for a new computing system for the Branch.
The Golden Age of Software Architecture: A Comprehensive Survey
2006-02-01
UML [14], under the leadership of (at the time) Rational, has integrated a number of design notations and developed a method for applying them...yes 97 survey, model Garlan. Research directions in SA [28] 54 yes 93 specific domains Cremer et al. The SA for scenario control in the Iowa...Environment of the Domain-Specific Software Architecture Project, ADAGE-IBM-92-11, Version 2.0, November, 1993 [23] J. Cremer , J. Kearney, Y. Papelis, and
2017-09-01
via visual sensors onboard the UAV. Both the hardware and software architecture design are discussed at length. Then, a series of tests that were...visual sensors onboard the UAV. Both the hardware and software architecture design are discussed at length. Then, a series of tests that were conducted...and representing the change in time . (1) Horn and Schunck (1981) further simplified this equation by taking the Taylor series
Algorithms and software for solving finite element equations on serial and parallel architectures
NASA Technical Reports Server (NTRS)
George, Alan
1989-01-01
Over the past 15 years numerous new techniques have been developed for solving systems of equations and eigenvalue problems arising in finite element computations. A package called SPARSPAK has been developed by the author and his co-workers which exploits these new methods. The broad objective of this research project is to incorporate some of this software in the Computational Structural Mechanics (CSM) testbed, and to extend the techniques for use on multiprocessor architectures.
EASY-SIM: A Visual Simulation System Software Architecture with an ADA 9X Application Framework
1994-12-01
devop -_ ment of software systems within a domain. Because an architecture promotes reuse at the design level, systems developers do not have to devote...physically separated actors into a battlefield situation, The interaction be- tween the various simulators is accomplished by means of network connec...realized that it would be more productive to make reusable components from scratch (Sny93,31-32]. Of notable exception were the network communications
Achieving High Performance With TCP Over 40 GbE on NUMA Architectures for CMS Data Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bawej, Tomasz; et al.
2014-01-01
TCP and the socket abstraction have barely changed over the last two decades, but at the network layer there has been a giant leap from a few megabits to 100 gigabits in bandwidth. At the same time, CPU architectures have evolved into the multicore era and applications are expected to make full use of all available resources. Applications in the data acquisition domain based on the standard socket library running in a Non-Uniform Memory Access (NUMA) architecture are unable to reach full efficiency and scalability without the software being adequately aware about the IRQ (Interrupt Request), CPU and memory affinities.more » During the first long shutdown of LHC, the CMS DAQ system is going to be upgraded for operation from 2015 onwards and a new software component has been designed and developed in the CMS online framework for transferring data with sockets. This software attempts to wrap the low-level socket library to ease higher-level programming with an API based on an asynchronous event driven model similar to the DAT uDAPL API. It is an event-based application with NUMA optimizations, that allows for a high throughput of data across a large distributed system. This paper describes the architecture, the technologies involved and the performance measurements of the software in the context of the CMS distributed event building.« less
A reprogrammable receiver architecture for wireless signal interception
NASA Astrophysics Data System (ADS)
Yao, Timothy S.
2003-09-01
In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.
An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition
NASA Astrophysics Data System (ADS)
Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni
2010-08-01
This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).
Mark 4A antenna control system data handling architecture study
NASA Technical Reports Server (NTRS)
Briggs, H. C.; Eldred, D. B.
1991-01-01
A high-level review was conducted to provide an analysis of the existing architecture used to handle data and implement control algorithms for NASA's Deep Space Network (DSN) antennas and to make system-level recommendations for improving this architecture so that the DSN antennas can support the ever-tightening requirements of the next decade and beyond. It was found that the existing system is seriously overloaded, with processor utilization approaching 100 percent. A number of factors contribute to this overloading, including dated hardware, inefficient software, and a message-passing strategy that depends on serial connections between machines. At the same time, the system has shortcomings and idiosyncrasies that require extensive human intervention. A custom operating system kernel and an obscure programming language exacerbate the problems and should be modernized. A new architecture is presented that addresses these and other issues. Key features of the new architecture include a simplified message passing hierarchy that utilizes a high-speed local area network, redesign of particular processing function algorithms, consolidation of functions, and implementation of the architecture in modern hardware and software using mainstream computer languages and operating systems. The system would also allow incremental hardware improvements as better and faster hardware for such systems becomes available, and costs could potentially be low enough that redundancy would be provided economically. Such a system could support DSN requirements for the foreseeable future, though thorough consideration must be given to hard computational requirements, porting existing software functionality to the new system, and issues of fault tolerance and recovery.
Considerations for the Next Revision of STRS
NASA Technical Reports Server (NTRS)
Johnson, Sandra K.; Handler, Louis M.; Briones, Janette C.
2016-01-01
Development of NASAs Software Defined Radio architecture, the Space Telecommunication Radio System (STRS), was initiated in 2004 with a goal of reducing the cost, risk and schedule when implementing Software Defined Radios (SDR) for NASA space missions. Since STRS was first flown in 2012 on three Software Defined Radios on the Space Communication and Navigation (SCaN) Testbed, only minor changes have been made to the architecture. Multiple entities have since implemented the architecture and have provided significant feedback for consideration for the next revision of the standard. The focus for the first set of updates to the architecture is items that enhance application portability. Items that require modifications to existing applications before migrating to the updated architecture will only be considered if there is compelling reasons to make the change. The significant suggestions that were further evaluated for consideration include expanding and clarifying the timing Application Programming Interfaces (APIs), improving handle name and identification (ID) definitions and use, and multiple items related to implementation of STRS Devices. In addition to ideas suggested while implementing STRS, SDR technology has evolved significantly and this impact to the architecture needs to be considered. These include incorporating cognitive concepts - learning from past decisions and making new decisions that the radio can act upon. SDRs are also being developed that do not contain a General Purpose Module which is currently required for the platform to be STRS compliant. The purpose of this paper is to discuss the comments received, provide a summary of the evaluation considerations, and examine planned dispositions
ERIC Educational Resources Information Center
Arumi, Francisco N.
Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
Software/hardware distributed processing network supporting the Ada environment
NASA Astrophysics Data System (ADS)
Wood, Richard J.; Pryk, Zen
1993-09-01
A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.
Applying an MVC Framework for The System Development Life Cycle with Waterfall Model Extended
NASA Astrophysics Data System (ADS)
Hardyanto, W.; Purwinarko, A.; Sujito, F.; Masturi; Alighiri, D.
2017-04-01
This paper describes the extension of the waterfall model using MVC architectural pattern for software development. The waterfall model is the based model of the most widely used in software development, yet there are still many problems in it. The general issue usually happens on data changes that cause the delays on the process itself. On the other hand, the security factor on the software as well as one of the major problems. This study uses PHP programming language for implementation. Although this model can be implemented in several programming languages with the same concept. This study is based on MVC architecture so that it can improve the performance of both software development and maintenance, especially concerning security, validation, database access, and routing.
Architecture of a Framework for Providing Information Services for Public Transport
García, Carmelo R.; Pérez, Ricardo; Lorenzo, Álvaro; Quesada-Arencibia, Alexis; Alayón, Francisco; Padrón, Gabino
2012-01-01
This paper presents OnRoute, a framework for developing and running ubiquitous software that provides information services to passengers of public transportation, including payment systems and on-route guidance services. To achieve a high level of interoperability, accessibility and context awareness, OnRoute uses the ubiquitous computing paradigm. To guarantee the quality of the software produced, the reliable software principles used in critical contexts, such as automotive systems, are also considered by the framework. The main components of its architecture (run-time, system services, software components and development discipline) and how they are deployed in the transportation network (stations and vehicles) are described in this paper. Finally, to illustrate the use of OnRoute, the development of a guidance service for travellers is explained. PMID:22778585
NASA Astrophysics Data System (ADS)
Guzman, J. C.; Bennett, T.
2008-08-01
The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1990-01-01
An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.
NASA Data Acquisitions System (NDAS) Software Architecture
NASA Technical Reports Server (NTRS)
Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark
2012-01-01
The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).
-7024 Greg's expertise is in the design and development of software for engineering applications. His experience includes project management, software architectural design, various software development the pre- and post-processors used in the analysis of data from both land-based and offshore wind
Teaching Software Componentization: A Bar Chart Java Bean
ERIC Educational Resources Information Center
Mitri, Michel
2010-01-01
In the current object-oriented paradigm, software construction increasingly involves creating and utilizing "software components". These components can serve a variety of functions, from common algorithmic processes to database connectivity to graphical interfaces. The advantage of component architectures is that programmers can use pre-existing…
Component-based integration of chemistry and optimization software.
Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L
2004-11-15
Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich
2017-04-01
Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.
A "Knowledge Trading Game" for Collaborative Design Learning in an Architectural Design Studio
ERIC Educational Resources Information Center
Wang, Wan-Ling; Shih, Shen-Guan; Chien, Sheng-Fen
2010-01-01
Knowledge-sharing and resource exchange are the key to the success of collaborative design learning. In an architectural design studio, design knowledge entails learning efforts that need to accumulate and recombine dispersed and complementary pieces of knowledge. In this research, firstly, "Knowledge Trading Game" is proposed to be a way for…
OASIS: a data and software distribution service for Open Science Grid
NASA Astrophysics Data System (ADS)
Bockelman, B.; Caballero Bejar, J.; De Stefano, J.; Hover, J.; Quick, R.; Teige, S.
2014-06-01
The Open Science Grid encourages the concept of software portability: a user's scientific application should be able to run at as many sites as possible. It is necessary to provide a mechanism for OSG Virtual Organizations to install software at sites. Since its initial release, the OSG Compute Element has provided an application software installation directory to Virtual Organizations, where they can create their own sub-directory, install software into that sub-directory, and have the directory shared on the worker nodes at that site. The current model has shortcomings with regard to permissions, policies, versioning, and the lack of a unified, collective procedure or toolset for deploying software across all sites. Therefore, a new mechanism for data and software distributing is desirable. The architecture for the OSG Application Software Installation Service (OASIS) is a server-client model: the software and data are installed only once in a single place, and are automatically distributed to all client sites simultaneously. Central file distribution offers other advantages, including server-side authentication and authorization, activity records, quota management, data validation and inspection, and well-defined versioning and deletion policies. The architecture, as well as a complete analysis of the current implementation, will be described in this paper.
Autonomous Performance Monitoring System: Monitoring and Self-Tuning (MAST)
NASA Technical Reports Server (NTRS)
Peterson, Chariya; Ziyad, Nigel A.
2000-01-01
Maintaining the long-term performance of software onboard a spacecraft can be a major factor in the cost of operations. In particular, the task of controlling and maintaining a future mission of distributed spacecraft will undoubtedly pose a great challenge, since the complexity of multiple spacecraft flying in formation grows rapidly as the number of spacecraft in the formation increases. Eventually, new approaches will be required in developing viable control systems that can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we propose a methodology that aims to maintain the accuracy of flight software, while reducing the computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning (MAST) method consists of two parts: a flight software monitoring algorithm and a tuning algorithm. The dependency on the software being monitored is mostly contained in the monitoring process, while the tuning process is a generic algorithm independent of the detailed knowledge on the software. This architecture will enable MAST to be applicable to different onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration, and formation control. An advantage of MAST over conventional techniques such as filter or batch least square is that the tuning algorithm uses machine learning approach to handle uncertainty in the problem domain, resulting in reducing over all computational complexity. The underlying concept of this technique is a reinforcement learning scheme based on cumulative probability generated by the historical performance of the system. The success of MAST will depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the tuning solutions exist.
IPAD products and implications for the future
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.
1980-01-01
The betterment of productivity through the improvement of product quality and the reduction of cost is addressed. Productivity improvement is sought through (1) reduction of required resources, (2) improved ask results through the management of such saved resources, (3) reduced downstream costs through manufacturing-oriented engineering, and (4) lowered risks in the making of product design decisions. The IPAD products are both hardware architecture and software distributed over a number of heterogeneous computers in this architecture. These IPAD products are described in terms of capability and engineering usefulness. The future implications of state-of-the-art IPAD hardware and software architectures are discussed in terms of their impact on the functions and on structures of organizations concerned with creating products.
NASA Technical Reports Server (NTRS)
Smith, T. B., III; Lala, J. H.
1984-01-01
The FTMP architecture is a high reliability computer concept modeled after a homogeneous multiprocessor architecture. Elements of the FTMP are operated in tight synchronism with one another and hardware fault-detection and fault-masking is provided which is transparent to the software. Operating system design and user software design is thus greatly simplified. Performance of the FTMP is also comparable to that of a simplex equivalent due to the efficiency of fault handling hardware. The FTMP project constructed an engineering module of the FTMP, programmed the machine and extensively tested the architecture through fault injection and other stress testing. This testing confirmed the soundness of the FTMP concepts.
ASAC Executive Assistant Architecture Description Summary
NASA Technical Reports Server (NTRS)
Roberts, Eileen; Villani, James A.
1997-01-01
In this technical document, we describe the system architecture developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, discuss our choice for an architecture methodology, the Domain Specific Software Architecture (DSSA), and the DSSA approach to developing a system architecture, and describe the development process and the results of the ASAC EA system architecture. The document has six appendices.
Coordinating space telescope operations in an integrated planning and scheduling architecture
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela
1992-01-01
The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.
STRS Compliant FPGA Waveform Development
NASA Technical Reports Server (NTRS)
Nappier, Jennifer; Downey, Joseph
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.
On the Inevitable Intertwining of Requirements and Architecture
NASA Astrophysics Data System (ADS)
Sutcliffe, Alistair
The chapter investigates the relationship between architecture and requirements, arguing that architectural issues need to be addressed early in the RE process. Three trends are driving architectural implications for RE: the growth of intelligent, context-aware and adaptable systems. First the relationship between architecture and requirements is considered from a theoretical viewpoint of problem frames and abstract conceptual models. The relationships between architectural decisions and non-functional requirements is reviewed, and then the impact of architecture on the RE process is assessed using a case study of developing configurable, semi-intelligent software to support medical researchers in e-science domains.
INL Generic Robot Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Generic Robot Architecture is a generic, extensible software framework that can be applied across a variety of different robot geometries, sensor suites and low-level proprietary control application programming interfaces (e.g. mobility, aria, aware, player, etc.).
GNC Architecture Design for ARES Simulation. Revision 3.0. Revision 3.0
NASA Technical Reports Server (NTRS)
Gay, Robert
2006-01-01
The purpose of this document is to describe the GNC architecture and associated interfaces for all ARES simulations. Establishing a common architecture facilitates development across the ARES simulations and provides an efficient mechanism for creating an end-to-end simulation capability. In general, the GNC architecture is the frame work in which all GNC development takes place, including sensor and effector models. All GNC software applications have a standard location within the architecture making integration easier and, thus more efficient.
Architectural Analysis of Dynamically Reconfigurable Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly
2010-01-01
oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.
Computer Sciences and Data Systems, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: software engineering; university grants; institutes; concurrent processing; sparse distributed memory; distributed operating systems; intelligent data management processes; expert system for image analysis; fault tolerant software; and architecture research.
Simplified programming and control of automated radiosynthesizers through unit operations.
Claggett, Shane B; Quinn, Kevin M; Lazari, Mark; Moore, Melissa D; van Dam, R Michael
2013-07-15
Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client-server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client-server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client-server architecture provided robustness and flexibility.
Simplified programming and control of automated radiosynthesizers through unit operations
2013-01-01
Background Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. Methods Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client–server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. Results The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client–server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. Conclusions We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client–server architecture provided robustness and flexibility. PMID:23855995
Design and Architecture of Collaborative Online Communities: A Quantitative Analysis
ERIC Educational Resources Information Center
Aviv, Reuven; Erlich, Zippy; Ravid, Gilad
2004-01-01
This paper considers four aspects of online communities. Design, mechanisms, architecture, and the constructed knowledge. We hypothesize that different designs of communities drive different mechanisms, which give rise to different architectures, which in turn result in different levels of collaborative knowledge construction. To test this chain…
ERIC Educational Resources Information Center
Henderson, Rebecca M.; Clark, Kim B.
1990-01-01
Using an empirical study of the semiconductor photolithographic alignment equipment industry, this paper shows that architectural innovations destroy the usefulness of established firms' architectural knowledge. Because this knowledge is embedded in the firms' structure and information-processing procedures, the destruction is hard to detect.…
A resilient and secure software platform and architecture for distributed spacecraft
NASA Astrophysics Data System (ADS)
Otte, William R.; Dubey, Abhishek; Karsai, Gabor
2014-06-01
A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.
A research on the security of wisdom campus based on geospatial big data
NASA Astrophysics Data System (ADS)
Wang, Haiying
2018-05-01
There are some difficulties in wisdom campus, such as geospatial big data sharing, function expansion, data management, analysis and mining geospatial big data for a characteristic, especially the problem of data security can't guarantee cause prominent attention increasingly. In this article we put forward a data-oriented software architecture which is designed by the ideology of orienting data and data as kernel, solve the problem of traditional software architecture broaden the campus space data research, develop the application of wisdom campus.
Using a software-defined computer in teaching the basics of computer architecture and operation
NASA Astrophysics Data System (ADS)
Kosowska, Julia; Mazur, Grzegorz
2017-08-01
The paper describes the concept and implementation of SDC_One software-defined computer designed for experimental and didactic purposes. Equipped with extensive hardware monitoring mechanisms, the device enables the students to monitor the computer's operation on bus transfer cycle or instruction cycle basis, providing the practical illustration of basic aspects of computer's operation. In the paper, we describe the hardware monitoring capabilities of SDC_One and some scenarios of using it in teaching the basics of computer architecture and microprocessor operation.
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
2012-07-01
and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general
An Object-Oriented Architecture for Intelligent Tutoring Systems. Technical Report No. LSP-3.
ERIC Educational Resources Information Center
Bonar, Jeffrey; And Others
This technical report describes a generic architecture for building intelligent tutoring systems which is developed around objects that represent the knowledge elements to be taught by the tutor. Each of these knowledge elements, called "bites," inherits both a knowledge organization describing the kind of knowledge represented and…
NASA Astrophysics Data System (ADS)
Berdychowski, Piotr P.; Zabolotny, Wojciech M.
2010-09-01
The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.
SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions
NASA Technical Reports Server (NTRS)
Kao, Cheng-Yan; Lee, Seok-Hua
1992-01-01
The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project.
Multistage switching hardware and software implementations for student experiment purpose
NASA Astrophysics Data System (ADS)
Sani, A.; Suherman
2018-02-01
Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.
Connecting Architecture and Implementation
NASA Astrophysics Data System (ADS)
Buchgeher, Georg; Weinreich, Rainer
Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.
An architecture for rule based system explanation
NASA Technical Reports Server (NTRS)
Fennel, T. R.; Johannes, James D.
1990-01-01
A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.
Judicious use of custom development in an open source component architecture
NASA Astrophysics Data System (ADS)
Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.
2014-12-01
Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.
A qualitative approach to systemic diagnosis of the SSME
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.; Maul, William A.
1993-01-01
A generic software architecture has been developed for posttest diagnostics of rocket engines, and is presently being applied to the posttest analysis of the SSME. This investigation deals with the Systems Section module of the architecture, which is presently under development. Overviews of the manual SSME systems analysis process and the overall SSME diagnostic system architecture are presented.
Three-Dimensional Nanobiocomputing Architectures With Neuronal Hypercells
2007-06-01
Neumann architectures, and CMOS fabrication. Novel solutions of massive parallel distributed computing and processing (pipelined due to systolic... and processing platforms utilizing molecular hardware within an enabling organization and architecture. The design technology is based on utilizing a...Microsystems and Nanotechnologies investigated a novel 3D3 (Hardware Software Nanotechnology) technology to design super-high performance computing
A fault-tolerant intelligent robotic control system
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Tso, Kam Sing
1993-01-01
This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.
Optimum-AIV: A planning and scheduling system for spacecraft AIV
NASA Technical Reports Server (NTRS)
Arentoft, M. M.; Fuchs, Jens J.; Parrod, Y.; Gasquet, Andre; Stader, J.; Stokes, I.; Vadon, H.
1991-01-01
A project undertaken for the European Space Agency (ESA) is presented. The project is developing a knowledge based software system for planning and scheduling of activities for spacecraft assembly, integration, and verification (AIV). The system extends into the monitoring of plan execution and the plan repair phase. The objectives are to develop an operational kernel of a planning, scheduling, and plan repair tool, called OPTIMUM-AIV, and to provide facilities which will allow individual projects to customize the kernel to suit its specific needs. The kernel shall consist of a set of software functionalities for assistance in initial specification of the AIV plan, in verification and generation of valid plans and schedules for the AIV activities, and in interactive monitoring and execution problem recovery for the detailed AIV plans. Embedded in OPTIMUM-AIV are external interfaces which allow integration with alternative scheduling systems and project databases. The current status of the OPTIMUM-AIV project, as of Jan. 1991, is that a further analysis of the AIV domain has taken place through interviews with satellite AIV experts, a software requirement document (SRD) for the full operational tool was approved, and an architectural design document (ADD) for the kernel excluding external interfaces is ready for review.
Modular digital holographic fringe data processing system
NASA Technical Reports Server (NTRS)
Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.
1985-01-01
A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.
Software architecture of biomimetic underwater vehicle
NASA Astrophysics Data System (ADS)
Praczyk, Tomasz; Szymak, Piotr
2016-05-01
Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In order to obtain operational independence, the vehicles have to be equipped with a specialized software. The main task of the software is to move the vehicle along a trajectory with collision avoidance. Moreover, the software has also to manage different devices installed on the vehicle board, e.g. to start and stop cameras, sonars etc. In addition to the software embedded on the vehicle board, the software responsible for managing the vehicle by the operator is also necessary. Its task is to define mission of the vehicle, to start, to stop the mission, to send emergency commands, to monitor vehicle parameters, and to control the vehicle in remotely operated mode. An important objective of the software is also to support development and tests of other software components. To this end, a simulation environment is necessary, i.e. simulation model of the vehicle and all its key devices, the model of the sea environment, and the software to visualize behavior of the vehicle. The paper presents architecture of the software designed for biomimetic autonomous underwater vehicle (BAUV) that is being constructed within the framework of the scientific project financed by Polish National Center of Research and Development.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
Investigation of an advanced fault tolerant integrated avionics system
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.
1986-01-01
Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.
The NASA Auralization Framework and Plugin Architecture
NASA Technical Reports Server (NTRS)
Aumann, Aric R.; Tuttle, Brian C.; Chapin, William L.; Rizzi, Stephen A.
2015-01-01
NASA has a long history of investigating human response to aircraft flyover noise and in recent years has developed a capability to fully auralize the noise of aircraft during their design. This capability is particularly useful for unconventional designs with noise signatures significantly different from the current fleet. To that end, a flexible software architecture has been developed to facilitate rapid integration of new simulation techniques for noise source synthesis and propagation, and to foster collaboration amongst researchers through a common releasable code base. The NASA Auralization Framework (NAF) is a skeletal framework written in C++ with basic functionalities and a plugin architecture that allows users to mix and match NAF capabilities with their own methods through the development and use of dynamically linked libraries. This paper presents the NAF software architecture and discusses several advanced auralization techniques that have been implemented as plugins to the framework.
Distributed computing environments for future space control systems
NASA Technical Reports Server (NTRS)
Viallefont, Pierre
1993-01-01
The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
Achieving Better Buying Power through Acquisition of Open Architecture Software Systems: Volume 1
2016-01-06
supporting “Bring Your Own Devices” (BYOD)? 22 New business models for OA software components ● Franchising ● Enterprise licensing ● Metered usage...paths IP and cybersecurity requirements will need continuous attention! 35 New business models for OA software components ● Franchising ● Enterprise
ArchE - An Architecture Design Assistant
2007-08-02
Architecture Design Assistant Len Bass August 2, 2007 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...ArchE - An Architecture Design Assistant 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...X, Module X 3 Author / Presenter, Date if Needed What is ArchE? ArchE is a software architecture design assistant, which: • Takes quality and
Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.
2004-01-01
NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.
Integrated Environment for Development and Assurance
2015-01-26
Jan 26, 2015 © 2015 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems introduce a new class of...eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects...Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
The ALMA software architecture
NASA Astrophysics Data System (ADS)
Schwarz, Joseph; Farris, Allen; Sommer, Heiko
2004-09-01
The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.
Hufnagel, S; Harbison, K; Silva, J; Mettala, E
1994-01-01
This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.
NASA Technical Reports Server (NTRS)
Jordan, Eric A.
2004-01-01
Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Stable, Thermally Conductive Fillers for Bolted Joints; Connecting to Thermocouples with Fewer Lead Wires; Zipper Connectors for Flexible Electronic Circuits; Safety Interlock for Angularly Misdirected Power Tool; Modular, Parallel Pulse-Shaping Filter Architectures; High-Fidelity Piezoelectric Audio Device; Photovoltaic Power Station with Ultracapacitors for Storage; Time Analyzer for Time Synchronization and Monitor of the Deep Space Network; Program for Computing Albedo; Integrated Software for Analyzing Designs of Launch Vehicles; Abstract-Reasoning Software for Coordinating Multiple Agents; Software Searches for Better Spacecraft-Navigation Models; Software for Partly Automated Recognition of Targets; Antistatic Polycarbonate/Copper Oxide Composite; Better VPS Fabrication of Crucibles and Furnace Cartridges; Burn-Resistant, Strong Metal-Matrix Composites; Self-Deployable Spring-Strip Booms; Explosion Welding for Hermetic Containerization; Improved Process for Fabricating Carbon Nanotube Probes; Automated Serial Sectioning for 3D Reconstruction; and Parallel Subconvolution Filtering Architectures.
LHCb Kalman Filter cross architecture studies
NASA Astrophysics Data System (ADS)
Cámpora Pérez, Daniel Hugo
2017-10-01
The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions the Online system needs to process in software, in order to filter events in real time. 30 million collisions per second will pass through a selection chain, where each step is executed conditional to its prior acceptance. The Kalman Filter is a fit applied to all reconstructed tracks which, due to its time characteristics and early execution in the selection chain, consumes 40% of the whole reconstruction time in the current trigger software. This makes the Kalman Filter a time-critical component as the LHCb trigger evolves into a full software trigger in the Upgrade. I present a new Kalman Filter algorithm for LHCb that can efficiently make use of any kind of SIMD processor, and its design is explained in depth. Performance benchmarks are compared between a variety of hardware architectures, including x86_64 and Power8, and the Intel Xeon Phi accelerator, and the suitability of said architectures to efficiently perform the LHCb Reconstruction process is determined.
Mallam, Steven C; Lundh, Monica; MacKinnon, Scott N
2017-03-01
Computer-aided solutions are essential for naval architects to manage and optimize technical complexities when developing a ship's design. Although there are an array of software solutions aimed to optimize the human element in design, practical ergonomics methodologies and technological solutions have struggled to gain widespread application in ship design processes. This paper explores how a new ergonomics technology is perceived by naval architecture students using a mixed-methods framework. Thirteen Naval Architecture and Ocean Engineering Masters students participated in the study. Overall, results found participants perceived the software and its embedded ergonomics tools to benefit their design work, increasing their empathy and ability to understand the work environment and work demands end-users face. However, participant's questioned if ergonomics could be practically and efficiently implemented under real-world project constraints. This revealed underlying social biases and a fundamental lack of understanding in engineering postgraduate students regarding applied ergonomics in naval architecture. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
Sustainable Software Decisions for Long-term Projects (Invited)
NASA Astrophysics Data System (ADS)
Shepherd, A.; Groman, R. C.; Chandler, C. L.; Gaylord, D.; Sun, M.
2013-12-01
Adopting new, emerging technologies can be difficult for established projects that are positioned to exist for years to come. In some cases the challenge lies in the pre-existing software architecture. In others, the challenge lies in the fluctuation of resources like people, time and funding. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) was created in late 2006 by combining the data management offices for the U.S. GLOBEC and U.S. JGOFS programs to publish data for researchers funded by the National Science Foundation (NSF). Since its inception, BCO-DMO has been supporting access and discovery of these data through web-accessible software systems, and the office has worked through many of the challenges of incorporating new technologies into its software systems. From migrating human readable, flat file metadata storage into a relational database, and now, into a content management system (Drupal) to incorporating controlled vocabularies, new technologies can radically affect the existing software architecture. However, through the use of science-driven use cases, effective resource management, and loosely coupled software components, BCO-DMO has been able to adapt its existing software architecture to adopt new technologies. One of the latest efforts at BCO-DMO revolves around applying metadata semantics for publishing linked data in support of data discovery. This effort primarily affects the metadata web interface software at http://bco-dmo.org and the geospatial interface software at http://mapservice.bco-dmo.org/. With guidance from science-driven use cases and consideration of our resources, implementation decisions are made using a strategy to loosely couple the existing software systems to the new technologies. The results of this process led to the use of REST web services and a combination of contributed and custom Drupal modules for publishing BCO-DMO's content using the Resource Description Framework (RDF) via an instance of the Virtuoso Open-Source triplestore.
A Novel Architecture for E-Learning Knowledge Assessment Systems
ERIC Educational Resources Information Center
Gierlowski, Krzysztof; Nowicki, Krzysztof
2009-01-01
In this article we propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. Our research proved that such architecture, while well suited for…
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros
2014-06-25
The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.
Heterogeneous computing architecture for fast detection of SNP-SNP interactions
2014-01-01
Background The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. Results We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. Conclusions General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems. PMID:24964802
The ADEPT Framework for Intelligent Autonomy
NASA Technical Reports Server (NTRS)
Ricard, Michael; Kolitz, Stephan
2003-01-01
This paper describes the design and implementation of Draper Laboratory's All-Domain Execution and Planning Technology (ADEPT) architecture for intelligent autonomy. Intelligent autonomy is the ability to plan and execute complex activities in a manner that provides rapid, effective response to stochastic and dynamic mission events. Thus, intelligent autonomy enables the high-level reasoning and adaptive behavior for an unmanned vehicle that is provided by an operator in man-in-the-loop systems. Draper s intelligent autonomy has architecture evolved over a decade and a half beginning in the mid 1980's culminating in an operational experiment funded under DARPA's Autonomous Minehunting and Mapping Technologies (AMMT) unmanned undersea vehicle program. ADEPT continues to be refined through its application to current programs that involve air vehicles, satellites and higher-level planning used to direct multiple vehicles. The objective of ADEPT is to solidify a proven, dependable software approach that can be quickly applied to new vehicles and domains. The architecture can be viewed as a hierarchical extension of the sense-think-act paradigm of intelligence and has strong parallels with the military's Observe-Orient-Decide-Act (OODA) loop. The key elements of the architecture are planning and decision-making nodes comprising modules for situation assessment, plan generation, plan implementation and coordination. A reusable, object-oriented software framework has been developed that implements these functions. As the architecture is applied to new areas, only the application specific software needs to be developed. This paper describes the core architecture in detail and discusses how this has been applied in the undersea, air, ground and space domains.
Scalable Architecture for Multihop Wireless ad Hoc Networks
NASA Technical Reports Server (NTRS)
Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee
2004-01-01
A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hsien-Hsin S
The overall objective of this research project is to develop novel architectural techniques as well as system software to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous, self-adapting, introspective, with self-healing capability under the circumstances of improper operations, abnormal workloads, and malicious attacks. The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Authentication control and its implication to security, (5) Digital right management, (5) Microarchitectural denial-of-service attacks on shared resources. During the period of the project, we developed several architectural techniquesmore » and system software for achieving a robust, secure, and reliable computing system toward our goal.« less
Field Tested Service Oriented Robotic Architecture: Case Study
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Utz, Hanz
2012-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.
NASA Technical Reports Server (NTRS)
Tick, Evan
1987-01-01
This note describes an efficient software emulator for the Warren Abstract Machine (WAM) Prolog architecture. The version of the WAM implemented is called Lcode. The Lcode emulator, written in C, executes the 'naive reverse' benchmark at 3900 LIPS. The emulator is one of a set of tools used to measure the memory-referencing characteristics and performance of Prolog programs. These tools include a compiler, assembler, and memory simulators. An overview of the Lcode architecture is given here, followed by a description and listing of the emulator code implementing each Lcode instruction. This note will be of special interest to those studying the WAM and its performance characteristics. In general, this note will be of interest to those creating efficient software emulators for abstract machine architectures.
An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications.
d'Acierno, Antonio; Esposito, Massimo; De Pietro, Giuseppe
2013-01-01
The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have been developed to aid the physician in interpreting clinical data and thus to improve the quality of the whole process. Fuzzy logic, a well established attempt at the formalization and mechanization of human capabilities in reasoning and deciding with noisy information, can be profitably used. Recently, we informally proposed a general methodology to automatically build DDSSs on the top of fuzzy knowledge extracted from data. We carefully refine and formalize our methodology that includes six stages, where the first three stages work with crisp rules, whereas the last three ones are employed on fuzzy models. Its strength relies on its generality and modularity since it supports the integration of alternative techniques in each of its stages. The methodology is designed and implemented in the form of a modular and portable software architecture according to a component-based approach. The architecture is deeply described and a summary inspection of the main components in terms of UML diagrams is outlined as well. A first implementation of the architecture has been then realized in Java following the object-oriented paradigm and used to instantiate a DDSS example aimed at accurately diagnosing breast masses as a proof of concept. The results prove the feasibility of the whole methodology implemented in terms of the architecture proposed.
An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications
2013-01-01
Background The diagnosis of many diseases can be often formulated as a decision problem; uncertainty affects these problems so that many computerized Diagnostic Decision Support Systems (in the following, DDSSs) have been developed to aid the physician in interpreting clinical data and thus to improve the quality of the whole process. Fuzzy logic, a well established attempt at the formalization and mechanization of human capabilities in reasoning and deciding with noisy information, can be profitably used. Recently, we informally proposed a general methodology to automatically build DDSSs on the top of fuzzy knowledge extracted from data. Methods We carefully refine and formalize our methodology that includes six stages, where the first three stages work with crisp rules, whereas the last three ones are employed on fuzzy models. Its strength relies on its generality and modularity since it supports the integration of alternative techniques in each of its stages. Results The methodology is designed and implemented in the form of a modular and portable software architecture according to a component-based approach. The architecture is deeply described and a summary inspection of the main components in terms of UML diagrams is outlined as well. A first implementation of the architecture has been then realized in Java following the object-oriented paradigm and used to instantiate a DDSS example aimed at accurately diagnosing breast masses as a proof of concept. Conclusions The results prove the feasibility of the whole methodology implemented in terms of the architecture proposed. PMID:23368970
Vega-Barbas, Mario; Pau, Iván; Martín-Ruiz, María Luisa; Seoane, Fernando
2015-03-25
Smart spaces foster the development of natural and appropriate forms of human-computer interaction by taking advantage of home customization. The interaction potential of the Smart Home, which is a special type of smart space, is of particular interest in fields in which the acceptance of new technologies is limited and restrictive. The integration of smart home design patterns with sensitive solutions can increase user acceptance. In this paper, we present the main challenges that have been identified in the literature for the successful deployment of sensitive services (e.g., telemedicine and assistive services) in smart spaces and a software architecture that models the functionalities of a Smart Home platform that are required to maintain and support such sensitive services. This architecture emphasizes user interaction as a key concept to facilitate the acceptance of sensitive services by end-users and utilizes activity theory to support its innovative design. The application of activity theory to the architecture eases the handling of novel concepts, such as understanding of the system by patients at home or the affordability of assistive services. Finally, we provide a proof-of-concept implementation of the architecture and compare the results with other architectures from the literature.
TMT approach to observatory software development process
NASA Astrophysics Data System (ADS)
Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder
2016-07-01
The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate effective communications; adopting an agile-based software development process across the observatory to enable frequent software releases to help mitigate subsystem interdependencies; defining concise scope and work packages for each of the OSW subsystems to facilitate effective outsourcing of software deliverables to the ITCC partner, and to enable performance monitoring and risk management. At this stage, the architecture and high-level design of the software system has been established and reviewed. During construction each subsystem will have a final design phase with reviews, followed by implementation and testing. The results of the TMT approach to the Observatory Software development process will only be preliminary at the time of the submittal of this paper, but it is anticipated that the early results will be a favorable indication of progress.
Table-driven configuration and formatting of telemetry data in the Deep Space Network
NASA Technical Reports Server (NTRS)
Manning, Evan
1994-01-01
With a restructured software architecture for telemetry system control and data processing, the NASA/Deep Space Network (DSN) has substantially improved its ability to accommodate a wide variety of spacecraft in an era of 'better, faster, cheaper'. In the new architecture, the permanent software implements all capabilities needed by any system user, and text tables specify how these capabilities are to be used for each spacecraft. Most changes can now be made rapidly, outside of the traditional software development cycle. The system can be updated to support a new spacecraft through table changes rather than software changes, reducing the implementation, test, and delivery cycle for such a change from three months to three weeks. The mechanical separation of the text table files from the program software, with tables only loaded into memory when that mission is being supported, dramatically reduces the level of regression testing required. The format of each table is a different compromise between ease of human interpretation, efficiency of computer interpretation, and flexibility.
NASA Astrophysics Data System (ADS)
Biscarros, D.; Cantenot, C.; Séronie-Vivien, J.; Schmidt, G.
AstroBus on-board software is a customisable software for ERC32 based avionics implementing standard ESA Packet Utilization Standard functions. Its architecture based on generic design templates and relying on a library providing standard PUS TC, TM and event services enhances its reusability on various programs. Finally, AstroBus on-board software development and validation environment is based on last generation tools providing an optimised customisation environment.
Analytical Design of Evolvable Software for High-Assurance Computing
2001-02-14
Mathematical expression for the Total Sum of Squares which measures the variability that results when all values are treated as a combined sample coming from...primarily interested in background on software design and high-assurance computing, research in software architecture generation or evaluation...respectively. Those readers solely interested in the validation of a software design approach should at the minimum read Chapter 6 followed by Chapter
Airland Battlefield Environment (ALBE) Tactical Decision Aid (TDA) Demonstration Program,
1987-11-12
Management System (DBMS) software, GKS graphics libraries, and user interface software. These components of the ATB system software architecture will be... knowlede base ano auqent the decision mak:n• process by providing infocr-mation useful in the formulation and execution of battlefield strategies...Topographic Laboratories as an Engineer. Ms. Capps is managing the software development of the AirLand Battlefield Environment (ALBE) geographic
Software Technology for Adaptable, Reliable Systems (STARS)
1994-03-25
Tmeline(3), SECOMO(3), SEER(3), GSFC Software Engineering Lab Model(l), SLIM(4), SEER-SEM(l), SPQR (2), PRICE-S(2), internally-developed models(3), APMSS(1...3 " Timeline - 3 " SASET (Software Architecture Sizing Estimating Tool) - 2 " MicroMan 11- 2 * LCM (Logistics Cost Model) - 2 * SPQR - 2 * PRICE-S - 2
Study on establishment of Body of Knowledge of Taiwan's Traditional Wooden Structure Technology
NASA Astrophysics Data System (ADS)
Huang, M. T.; Chiou, S. C.; Hsu, T. W.; Su, P. C.
2015-08-01
The timber technology of the Taiwan traditional architecture is brought by the immigrants in the Southern Fujian of China in the early, which has been inherited for a hundred years. In the past, these traditional timber technologies were taught by mentoring, however, due to the change of the social form, the construction of the traditional architecture was faded away, and what is gradually replaced is the repair work of the traditional architecture, therefore, the construction method of the timber technology, use form of the tool and other factors are very different from previous one, and the core technology is faced with the dilemma of endangered loss. There are many relevant studies on architectural style, construction method of technology, schools of craftsman, technical capacity of craftsman and other timber technologies, or the technology preservation is carried out by dictating the historical record, studying the skills and other ways, but for the timber craftsman repairing the traditional architecture on the front line, there is still space for discussing whether to maintain the original construction method and maintain the due repair quality for the core technology. This paper classified the timber technology knowledge with the document analysis method and expert interview method, carried out the architecture analysis of knowledge hierarchy, and finally, built the preliminary framework of the timber technology knowledge system of the Taiwan traditional architecture, and built the standard formulation available for craftsman training and skills identification by virtue of the knowledge system, so that the craftsman did not affect the technical capacity due to the change of the knowledge instruction system, thus, affecting the repair quality of the traditional architecture; and in addition, the building of the database system can also be derived by means of the knowledge structure, so as to integrate the consistency of the contents of core technical capacity. It can be used as the interpretation data; the knowledge is standardized and the authority file is established, which is regarded as a technical specification, so that the technology is standardized, thus, avoid loss or distort.
NASA Technical Reports Server (NTRS)
Martin, R. G. (Editor); Atkinson, D. J.; James, M. L.; Lawson, D. L.; Porta, H. J.
1990-01-01
The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations.
EON: a component-based approach to automation of protocol-directed therapy.
Musen, M A; Tu, S W; Das, A K; Shahar, Y
1996-01-01
Provision of automated support for planning protocol-directed therapy requires a computer program to take as input clinical data stored in an electronic patient-record system and to generate as output recommendations for therapeutic interventions and laboratory testing that are defined by applicable protocols. This paper presents a synthesis of research carried out at Stanford University to model the therapy-planning task and to demonstrate a component-based architecture for building protocol-based decision-support systems. We have constructed general-purpose software components that (1) interpret abstract protocol specifications to construct appropriate patient-specific treatment plans; (2) infer from time-stamped patient data higher-level, interval-based, abstract concepts; (3) perform time-oriented queries on a time-oriented patient database; and (4) allow acquisition and maintenance of protocol knowledge in a manner that facilitates efficient processing both by humans and by computers. We have implemented these components in a computer system known as EON. Each of the components has been developed, evaluated, and reported independently. We have evaluated the integration of the components as a composite architecture by implementing T-HELPER, a computer-based patient-record system that uses EON to offer advice regarding the management of patients who are following clinical trial protocols for AIDS or HIV infection. A test of the reuse of the software components in a different clinical domain demonstrated rapid development of a prototype application to support protocol-based care of patients who have breast cancer. PMID:8930854
How do I resolve problems reading the binary data?
Atmospheric Science Data Center
2014-12-08
... affecting compilation would be differing versions of the operating system and compilers the read software are being run on. Big ... Unix machines are Big Endian architecture while Linux systems are Little Endian architecture. Data generated on a Unix machine are ...
STRS Compliant FPGA Waveform Development
NASA Technical Reports Server (NTRS)
Nappier, Jennifer; Downey, Joseph; Mortensen, Dale
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.