Automated support for experience-based software management
NASA Technical Reports Server (NTRS)
Valett, Jon D.
1992-01-01
To effectively manage a software development project, the software manager must have access to key information concerning a project's status. This information includes not only data relating to the project of interest, but also, the experience of past development efforts within the environment. This paper describes the concepts and functionality of a software management tool designed to provide this information. This tool, called the Software Management Environment (SME), enables the software manager to compare an ongoing development effort with previous efforts and with models of the 'typical' project within the environment, to predict future project status, to analyze a project's strengths and weaknesses, and to assess the project's quality. In order to provide these functions the tool utilizes a vast corporate memory that includes a data base of software metrics, a set of models and relationships that describe the software development environment, and a set of rules that capture other knowledge and experience of software managers within the environment. Integrating these major concepts into one software management tool, the SME is a model of the type of management tool needed for all software development organizations.
Development of a comprehensive software engineering environment
NASA Technical Reports Server (NTRS)
Hartrum, Thomas C.; Lamont, Gary B.
1987-01-01
The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.
2010-04-01
for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems
Creating an open environment software infrastructure
NASA Technical Reports Server (NTRS)
Jipping, Michael J.
1992-01-01
As the development of complex computer hardware accelerates at increasing rates, the ability of software to keep pace is essential. The development of software design tools, however, is falling behind the development of hardware for several reasons, the most prominent of which is the lack of a software infrastructure to provide an integrated environment for all parts of a software system. The research was undertaken to provide a basis for answering this problem by investigating the requirements of open environments.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Dewitte, Paul S.; Crump, John W.; Ackley, Keith A.
1992-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at effectively combining tool and data integration mechanisms with a model of the software development process to provide an intelligent integrated software development environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The Advanced Software Development Workstation (ASDW) program is conducting research into development of advanced technologies for Computer Aided Software Engineering (CASE).
Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Mittman, David S.; Shams, Khawaja, S.; Bachmann, Andrew G.; Ludowise, Melissa
2013-01-01
This software simplifies the process of having to set up an Eclipse IDE programming environment for the members of the cross-NASA center project, Ensemble. It achieves this by assembling all the necessary add-ons and custom tools/preferences. This software is unique in that it allows developers in the Ensemble Project (approximately 20 to 40 at any time) across multiple NASA centers to set up a development environment almost instantly and work on Ensemble software. The software automatically has the source code repositories and other vital information and settings included. The Eclipse IDE is an open-source development framework. The NASA (Ensemble-specific) version of the software includes Ensemble-specific plug-ins as well as settings for the Ensemble project. This software saves developers the time and hassle of setting up a programming environment, making sure that everything is set up in the correct manner for Ensemble development. Existing software (i.e., standard Eclipse) requires an intensive setup process that is both time-consuming and error prone. This software is built once by a single user and tested, allowing other developers to simply download and use the software
NASA Technical Reports Server (NTRS)
Voigt, S. (Editor); Beskenis, S. (Editor)
1985-01-01
Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.
Software development environment, appendix F
NASA Technical Reports Server (NTRS)
Riddle, W. E.
1980-01-01
The current status in the area of software development environments is assessed. The purposes of environments, the types of environments, the constituents of an environment, the issue of environment integration, and the problems which must be solved in preparing an environment are discussed. Some general maxims to guide near-term future work are proposed.
Software development environments: Present and future, appendix D
NASA Technical Reports Server (NTRS)
Riddle, W. E.
1980-01-01
Computerized environments which facilitate the development of appropriately functioning software systems are discussed. Their current status is reviewed and several trends exhibited by their history are identified. A number of principles, some at (slight) variance with the historical trends, are suggested and it is argued that observance of these principles is critical to achieving truly effective and efficient software development support environments.
Software environment for implementing engineering applications on MIMD computers
NASA Technical Reports Server (NTRS)
Lopez, L. A.; Valimohamed, K. A.; Schiff, S.
1990-01-01
In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.
Flight dynamics system software development environment (FDS/SDE) tutorial
NASA Technical Reports Server (NTRS)
Buell, John; Myers, Philip
1986-01-01
A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.
Artificial intelligence and the space station software support environment
NASA Technical Reports Server (NTRS)
Marlowe, Gilbert
1986-01-01
In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.
ERIC Educational Resources Information Center
Ge, Xun; Huang, Kun; Dong, Yifei
2010-01-01
A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…
Toolpack mathematical software development environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterweil, L.
1982-07-21
The purpose of this research project was to produce a well integrated set of tools for the support of numerical computation. The project entailed the specification, design and implementation of both a diversity of tools and an innovative tool integration mechanism. This large configuration of tightly integrated tools comprises an environment for numerical software development, and has been named Toolpack/IST (Integrated System of Tools). Following the creation of this environment in prototype form, the environment software was readied for widespread distribution by transitioning it to a development organization for systematization, documentation and distribution. It is expected that public release ofmore » Toolpack/IST will begin imminently and will provide a basis for evaluation of the innovative software approaches taken as well as a uniform set of development tools for the numerical software community.« less
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les
1991-01-01
The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.
Software Management Environment (SME) concepts and architecture, revision 1
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1992-01-01
This document presents the concepts and architecture of the Software Management Environment (SME), developed for the Software Engineering Branch of the Flight Dynamic Division (FDD) of GSFC. The SME provides an integrated set of experience-based management tools that can assist software development managers in managing and planning flight dynamics software development projects. This document provides a high-level description of the types of information required to implement such an automated management tool.
Ground Systems Development Environment (GSDE) interface requirements analysis
NASA Technical Reports Server (NTRS)
Church, Victor E.; Philips, John; Hartenstein, Ray; Bassman, Mitchell; Ruskin, Leslie; Perez-Davila, Alfredo
1991-01-01
A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment.
NASA Technical Reports Server (NTRS)
Weiss, D. M.
1981-01-01
Error data obtained from two different software development environments are compared. To obtain data that was complete, accurate, and meaningful, a goal-directed data collection methodology was used. Changes made to software were monitored concurrently with its development. Similarities common to both environments are included: (1) the principal error was in the design and implementation of single routines; (2) few errors were the result of changes, required more than one attempt to correct, and resulted in other errors; (3) relatively few errors took more than a day to correct.
Knowledge-based approach for generating target system specifications from a domain model
NASA Technical Reports Server (NTRS)
Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan
1992-01-01
Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.
A distributed data acquisition software scheme for the Laboratory Telerobotic Manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.L.; Glassell, R.L.; Rowe, J.C.
1990-01-01
A custom software architecture was developed for use in the Laboratory Telerobotic Manipulator (LTM) to provide support for the distributed data acquisition electronics. This architecture was designed to provide a comprehensive development environment that proved to be useful for both hardware and software debugging. This paper describes the development environment and the operational characteristics of the real-time data acquisition software. 8 refs., 5 figs.
Managing the Software Development Process
NASA Technical Reports Server (NTRS)
Lubelczky, Jeffrey T.; Parra, Amy
1999-01-01
The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.
NASA Technical Reports Server (NTRS)
Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo
1992-01-01
A set of functional requirements for software configuration management (CM) and metrics reporting for Space Station Freedom ground systems software are described. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the Space Station Training Facility (SSTF) and the Space Station Control Center (SSCC), and the target systems for SSCC and SSTF. The focus is on the CM of the software following delivery to NASA and on the software metrics that relate to the quality and maintainability of the delivered software. The CM and metrics requirements address specific problems that occur in large-scale software development. Mechanisms to assist in the continuing improvement of mission operations software development are described.
NASA Technical Reports Server (NTRS)
Hammrs, Stephan R.
2008-01-01
Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.
Software Management Environment (SME) installation guide
NASA Technical Reports Server (NTRS)
Kistler, David; Jeletic, Kellyann
1992-01-01
This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information.
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Beckman, Carol S.; Benzinger, Leonora; Beshers, George; Hammerslag, David; Kimball, John; Kirslis, Peter A.; Render, Hal; Richards, Paul; Terwilliger, Robert
1985-01-01
The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented.
Software Management Environment (SME): Components and algorithms
NASA Technical Reports Server (NTRS)
Hendrick, Robert; Kistler, David; Valett, Jon
1994-01-01
This document presents the components and algorithms of the Software Management Environment (SME), a management tool developed for the Software Engineering Branch (Code 552) of the Flight Dynamics Division (FDD) of the Goddard Space Flight Center (GSFC). The SME provides an integrated set of visually oriented experienced-based tools that can assist software development managers in managing and planning software development projects. This document describes and illustrates the analysis functions that underlie the SME's project monitoring, estimation, and planning tools. 'SME Components and Algorithms' is a companion reference to 'SME Concepts and Architecture' and 'Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules.'
A Simulated Learning Environment for Teaching Medicine Dispensing Skills
Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som
2016-01-01
Objective. To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. Design. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. Conclusion. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment. PMID:26941437
Programming support environment issues in the Byron programming environment
NASA Technical Reports Server (NTRS)
Larsen, Matthew J.
1986-01-01
Issues are discussed which programming support environments need to address in order to successfully support software engineering. These concerns are divided into two categories. The first category, issues of how software development is supported by an environment, includes support of the full life cycle, methodology flexibility, and support of software reusability. The second category contains issues of how environments should operate, such as tool reusability and integration, user friendliness, networking, and use of a central data base. This discussion is followed by an examination of Byron, an Ada based programming support environment developed at Intermetrics, focusing on the solutions Byron offers to these problems, including the support provided for software reusability and the test and maintenance phases of the life cycle. The use of Byron in project development is described briefly, and some suggestions for future Byron tools and user written tools are presented.
The Software Management Environment (SME)
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Decker, William; Buell, John
1988-01-01
The Software Management Environment (SME) is a research effort designed to utilize the past experiences and results of the Software Engineering Laboratory (SEL) and to incorporate this knowledge into a tool for managing projects. SME provides the software development manager with the ability to observe, compare, predict, analyze, and control key software development parameters such as effort, reliability, and resource utilization. The major components of the SME, the architecture of the system, and examples of the functionality of the tool are discussed.
NASA Technical Reports Server (NTRS)
Griesel, Martha Ann
1988-01-01
Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.
Airlift Operation Modeling Using Discrete Event Simulation (DES)
2009-12-01
Java ......................................................................................................20 2. Simkit...JRE Java Runtime Environment JVM Java Virtual Machine lbs Pounds LAM Load Allocation Mode LRM Landing Spot Reassignment Mode LEGO Listener Event...SOFTWARE DEVELOPMENT ENVIRONMENT The following are the software tools and development environment used for constructing the models. 1. Java Java
Software Management Environment (SME) release 9.4 user reference material
NASA Technical Reports Server (NTRS)
Hendrick, R.; Kistler, D.; Manter, K.
1992-01-01
This document contains user reference material for the Software Management Environment (SME) prototype, developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides an overview of the SME, a description of all functions, and detailed instructions concerning the software's installation and use.
Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment
NASA Technical Reports Server (NTRS)
Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun
2006-01-01
Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to integrate existing mission applications for sequence development, sequence validation, and high level activity planning, and other functions into a component-based environment. For each of these, we used a somewhat different technique based upon the structure and usage of the existing application.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
Rover Attitude and Pointing System Simulation Testbed
NASA Technical Reports Server (NTRS)
Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam
2009-01-01
The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
Proceedings, Conference on the Computing Environment for Mathematical Software
NASA Technical Reports Server (NTRS)
1981-01-01
Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.
The TAME Project: Towards improvement-oriented software environments
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Rombach, H. Dieter
1988-01-01
Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.
NASA Technical Reports Server (NTRS)
Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo
1992-01-01
This report is one of a series discussing configuration management (CM) topics for Space Station ground systems software development. It provides a description of the Software Support Environment (SSE)-developed Software Test Management (STM) capability, and discusses the possible use of this capability for management of developed software during testing performed on target platforms. This is intended to supplement the formal documentation of STM provided by the SEE Project. How STM can be used to integrate contractor CM and formal CM for software before delivery to operations is described. STM provides a level of control that is flexible enough to support integration and debugging, but sufficiently rigorous to insure the integrity of the testing process.
Research into software executives for space operations support
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1990-01-01
Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements.
Naming in a Programming Support Environment.
1984-02-01
and Control, 1974. 10. T. E. Cheatham. An Overview of the Harvard Program Development System. I; Software Engineering Environments, H. Hunke, Ed.. North...Holland Publishing Compary, 1981, pp. 253-266. 11. T. E. Cheatham. Comparing Programming Support Environments. In Software Engineering Environments...Company. 1981. Third Edition 16. F. DeRemer and H Kron Programming -inthe Large Versus Programming -in-theSmall. IEEE Transactions on Software Engineering
Implementing Extreme Programming in Distributed Software Project Teams: Strategies and Challenges
NASA Astrophysics Data System (ADS)
Maruping, Likoebe M.
Agile software development methods and distributed forms of organizing teamwork are two team process innovations that are gaining prominence in today's demanding software development environment. Individually, each of these innovations has yielded gains in the practice of software development. Agile methods have enabled software project teams to meet the challenges of an ever turbulent business environment through enhanced flexibility and responsiveness to emergent customer needs. Distributed software project teams have enabled organizations to access highly specialized expertise across geographic locations. Although much progress has been made in understanding how to more effectively manage agile development teams and how to manage distributed software development teams, managers have little guidance on how to leverage these two potent innovations in combination. In this chapter, I outline some of the strategies and challenges associated with implementing agile methods in distributed software project teams. These are discussed in the context of a study of a large-scale software project in the United States that lasted four months.
Space Station Software Recommendations
NASA Technical Reports Server (NTRS)
Voigt, S. (Editor)
1985-01-01
Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.
INTERIM -- Starlink Software Environment
NASA Astrophysics Data System (ADS)
Pearce, Dave; Pavelin, Cliff; Lawden, M. D.
Early versions of this paper were based on a number of other papers produced at a very early stage of the Starlink project. They contained a description of a specific implementation of a subroutine library, speculations on the desirable attributes of a software environment, and future development plans. They reflected the experimental nature of the Starlink software environment at that time. Since then, the situation has changed. The implemented subroutine library, INTERIM_DIR:INTERIM.OLB, is now a well established and widely used piece of software. A completely new Starlink software environment (ADAM) has been developed and distributed. Thus the library released in 1980 as `STARLINK' and now called `INTERIM' has reached the end of its development cycle and is now frozen in its current state, apart from bug corrections. This paper has, therefore, been completely rewritten and restructured to reflect the new situation. Its aim is to describe the facilities of the INTERIM subroutine library as clearly and concisely as possible. It avoids speculation, discussion of design decisions, and announcements of future plans.
Rapid Development of Custom Software Architecture Design Environments
1999-08-01
the tools themselves. This dissertation describes a new approach to capturing and using architectural design expertise in software architecture design environments...A language and tools are presented for capturing and encapsulating software architecture design expertise within a conceptual framework...of architectural styles and design rules. The design expertise thus captured is supported with an incrementally configurable software architecture
An empirical study of software design practices
NASA Technical Reports Server (NTRS)
Card, David N.; Church, Victor E.; Agresti, William W.
1986-01-01
Software engineers have developed a large body of software design theory and folklore, much of which was never validated. The results of an empirical study of software design practices in one specific environment are presented. The practices examined affect module size, module strength, data coupling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices were extracted from 887 FORTRAN modules developed for five flight dynamics software projects monitored by the Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault rate was analyzed using a contingency table procedure. The results show that some recommended design practices, despite their intuitive appeal, are ineffective in this environment, whereas others are very effective.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William
2017-01-01
NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.
COSTMODL: An automated software development cost estimation tool
NASA Technical Reports Server (NTRS)
Roush, George B.
1991-01-01
The cost of developing computer software continues to consume an increasing portion of many organizations' total budgets, both in the public and private sector. As this trend develops, the capability to produce reliable estimates of the effort and schedule required to develop a candidate software product takes on increasing importance. The COSTMODL program was developed to provide an in-house capability to perform development cost estimates for NASA software projects. COSTMODL is an automated software development cost estimation tool which incorporates five cost estimation algorithms including the latest models for the Ada language and incrementally developed products. The principal characteristic which sets COSTMODL apart from other software cost estimation programs is its capacity to be completely customized to a particular environment. The estimation equations can be recalibrated to reflect the programmer productivity characteristics demonstrated by the user's organization, and the set of significant factors which effect software development costs can be customized to reflect any unique properties of the user's development environment. Careful use of a capability such as COSTMODL can significantly reduce the risk of cost overruns and failed projects.
Framework Support For Knowledge-Based Software Development
NASA Astrophysics Data System (ADS)
Huseth, Steve
1988-03-01
The advent of personal engineering workstations has brought substantial information processing power to the individual programmer. Advanced tools and environment capabilities supporting the software lifecycle are just beginning to become generally available. However, many of these tools are addressing only part of the software development problem by focusing on rapid construction of self-contained programs by a small group of talented engineers. Additional capabilities are required to support the development of large programming systems where a high degree of coordination and communication is required among large numbers of software engineers, hardware engineers, and managers. A major player in realizing these capabilities is the framework supporting the software development environment. In this paper we discuss our research toward a Knowledge-Based Software Assistant (KBSA) framework. We propose the development of an advanced framework containing a distributed knowledge base that can support the data representation needs of tools, provide environmental support for the formalization and control of the software development process, and offer a highly interactive and consistent user interface.
An approach to integrating and creating flexible software environments
NASA Technical Reports Server (NTRS)
Bellman, Kirstie L.
1992-01-01
Engineers and scientists are attempting to represent, analyze, and reason about increasingly complex systems. Many researchers have been developing new ways of creating increasingly open environments. In this research on VEHICLES, a conceptual design environment for space systems, an approach was developed, called 'wrapping', to flexibility and integration based on the collection and then processing of explicit qualitative descriptions of all the software resources in the environment. Currently, a simulation is available, VSIM, used to study both the types of wrapping descriptions and the processes necessary to use the metaknowledge to combine, select, adapt, and explain some of the software resources used in VEHICLES. What was learned about the types of knowledge necessary for the wrapping approach is described along with the implications of wrapping for several key software engineering issues.
Workflow-Based Software Development Environment
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
2013-01-01
The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
Web-Based Environment for Maintaining Legacy Software
NASA Technical Reports Server (NTRS)
Tigges, Michael; Thompson, Nelson; Orr, Mark; Fox, Richard
2007-01-01
Advanced Tool Integration Environment (ATIE) is the name of both a software system and a Web-based environment created by the system for maintaining an archive of legacy software and expertise involved in developing the legacy software. ATIE can also be used in modifying legacy software and developing new software. The information that can be encapsulated in ATIE includes experts documentation, input and output data of tests cases, source code, and compilation scripts. All of this information is available within a common environment and retained in a database for ease of access and recovery by use of powerful search engines. ATIE also accommodates the embedment of supporting software that users require for their work, and even enables access to supporting commercial-off-the-shelf (COTS) software within the flow of the experts work. The flow of work can be captured by saving the sequence of computer programs that the expert uses. A user gains access to ATIE via a Web browser. A modern Web-based graphical user interface promotes efficiency in the retrieval, execution, and modification of legacy code. Thus, ATIE saves time and money in the support of new and pre-existing programs.
Singularity: Scientific containers for mobility of compute.
Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.
Singularity: Scientific containers for mobility of compute
Kurtzer, Gregory M.; Bauer, Michael W.
2017-01-01
Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014
Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678
Automated construction of node software using attributes in a ubiquitous sensor network environment.
Lee, Woojin; Kim, Juil; Kang, JangMook
2010-01-01
In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.
Framework for Development of Object-Oriented Software
NASA Technical Reports Server (NTRS)
Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan
2004-01-01
The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.
Software life cycle methodologies and environments
NASA Technical Reports Server (NTRS)
Fridge, Ernest
1991-01-01
Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.
The component-based architecture of the HELIOS medical software engineering environment.
Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C
1994-12-01
The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.
NASA Astrophysics Data System (ADS)
Biscarros, D.; Cantenot, C.; Séronie-Vivien, J.; Schmidt, G.
AstroBus on-board software is a customisable software for ERC32 based avionics implementing standard ESA Packet Utilization Standard functions. Its architecture based on generic design templates and relying on a library providing standard PUS TC, TM and event services enhances its reusability on various programs. Finally, AstroBus on-board software development and validation environment is based on last generation tools providing an optimised customisation environment.
ERIC Educational Resources Information Center
Fonkert, Karen L.
2012-01-01
This study analyzes the nature of student interaction and discourse in an environment that includes the use of Java-based, curriculum-embedded mathematical software. The software "CPMP-Tools" was designed as part of the development of the second edition of the "Core-Plus Mathematics" curriculum. The use of the software on…
Airland Battlefield Environment (ALBE) Tactical Decision Aid (TDA) Demonstration Program,
1987-11-12
Management System (DBMS) software, GKS graphics libraries, and user interface software. These components of the ATB system software architecture will be... knowlede base ano auqent the decision mak:n• process by providing infocr-mation useful in the formulation and execution of battlefield strategies...Topographic Laboratories as an Engineer. Ms. Capps is managing the software development of the AirLand Battlefield Environment (ALBE) geographic
Assessment Environment for Complex Systems Software Guide
NASA Technical Reports Server (NTRS)
2013-01-01
This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.
A component-based software environment for visualizing large macromolecular assemblies.
Sanner, Michel F
2005-03-01
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.
C-C1-04: Building a Health Services Information Technology Research Environment
Gehrum, David W; Jones, JB; Romania, Gregory J; Young, David L; Lerch, Virginia R; Bruce, Christa A; Donkochik, Diane; Stewart, Walter F
2010-01-01
Background: The electronic health record (EHR) has opened a new era for health services research (HSR) where information technology (IT) is used to re-engineer care processes. While the EHR provides one means of advancing novel solutions, a promising strategy is to develop tools (e.g., online questionnaires, visual display tools, decision support) distinct from, but which interact with, the EHR. Development of such software tools outside the EHR offers an advantage in flexibility, sophistication, and ultimately in portability to other settings. However, institutional IT departments have an imperative to protect patient data and to standardize IT processes to ensure system-level security and support traditional business needs. Such imperatives usually present formidable process barriers to testing novel software solutions. We describe how, in collaboration with our IT department, we are creating an environment and a process that allows for routine and rapid testing of novel software solutions. Methods: We convened a working group consisting of IT and research personnel with expertise in information security, database design/management, web design, EHR programming, and health services research. The working group was tasked with developing a research IT environment to accomplish two objectives: maintain network/ data security and regulatory compliance; allow researchers working with external vendors to rapidly prototype and, in a clinical setting, test web-based tools. Results: Two parallel solutions, one focused on hardware, the second on oversight and management, were developed. First, we concluded that three separate, staged development environments were required to allow external vendor access for testing software and for transitioning software to be used in a clinic. In parallel, the extant oversight process for approving/managing access to internal/external personnel had to be altered to reflect the scope and scale of discrete research projects, as opposed to an enterpriselevel approach to IT management. Conclusions: Innovation in health services software development requires a flexible, scalable IT environment adapted to the unique objectives of a HSR software development model. In our experience, implementing the hardware solution is less challenging than the cultural change required to implement such a model and the modifications to administrative and oversight processes to sustain an environment for rapid product development and testing.
Virtual acoustic environments for comprehensive evaluation of model-based hearing devices.
Grimm, Giso; Luberadzka, Joanna; Hohmann, Volker
2018-06-01
Create virtual acoustic environments (VAEs) with interactive dynamic rendering for applications in audiology. A toolbox for creation and rendering of dynamic virtual acoustic environments (TASCAR) that allows direct user interaction was developed for application in hearing aid research and audiology. The software architecture and the simulation methods used to produce VAEs are outlined. Example environments are described and analysed. With the proposed software, a tool for simulation of VAEs is available. A set of VAEs rendered with the proposed software was described.
Software development environments: Status and trends
NASA Technical Reports Server (NTRS)
Duffel, Larry E.
1988-01-01
Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.
NASA Astrophysics Data System (ADS)
Sharma, Amita; Sarangdevot, S. S.
2010-11-01
Aspect-Oriented Programming (AOP) methodology has been investigated in development of real world business application software—Financial Accounting Software. Eclipse-AJDT environment has been used as open source enhanced IDE support for programming in AOP language—Aspect J. Crosscutting concerns have been identified and modularized as aspects. This reduces the complexity of the design considerably due to elimination of code scattering and tangling. Improvement in modularity, quality and performance is achieved. The study concludes that AOP methodology in Eclipse-AJDT environment offers powerful support for modular design and implementation of real world quality business software.
Measuring the impact of computer resource quality on the software development process and product
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Valett, Jon; Hall, Dana
1985-01-01
The availability and quality of computer resources during the software development process was speculated to have measurable, significant impact on the efficiency of the development process and the quality of the resulting product. Environment components such as the types of tools, machine responsiveness, and quantity of direct access storage may play a major role in the effort to produce the product and in its subsequent quality as measured by factors such as reliability and ease of maintenance. During the past six years, the NASA Goddard Space Flight Center has conducted experiments with software projects in an attempt to better understand the impact of software development methodologies, environments, and general technologies on the software process and product. Data was extracted and examined from nearly 50 software development projects. All were related to support of satellite flight dynamics ground-based computations. The relationship between computer resources and the software development process and product as exemplified by the subject NASA data was examined. Based upon the results, a number of computer resource-related implications are provided.
An information model for use in software management estimation and prediction
NASA Technical Reports Server (NTRS)
Li, Ningda R.; Zelkowitz, Marvin V.
1993-01-01
This paper describes the use of cluster analysis for determining the information model within collected software engineering development data at the NASA/GSFC Software Engineering Laboratory. We describe the Software Management Environment tool that allows managers to predict development attributes during early phases of a software project and the modifications we propose to allow it to develop dynamic models for better predictions of these attributes.
ERIC Educational Resources Information Center
Eisen, Daniel
2013-01-01
This study explores how project managers, working for private federal IT contractors, experience and understand managing the development of software applications for U.S. federal government agencies. Very little is known about how they manage their projects in this challenging environment. Software development is a complex task and only grows in…
Architecture independent environment for developing engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Valimohamed, Karim A.; Lopez, L. A.
1990-01-01
Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.
Computer-Aided Software Engineering - An approach to real-time software development
NASA Technical Reports Server (NTRS)
Walker, Carrie K.; Turkovich, John J.
1989-01-01
A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.
Software support environment design knowledge capture
NASA Technical Reports Server (NTRS)
Dollman, Tom
1990-01-01
The objective of this task is to assess the potential for using the software support environment (SSE) workstations and associated software for design knowledge capture (DKC) tasks. This assessment will include the identification of required capabilities for DKC and hardware/software modifications needed to support DKC. Several approaches to achieving this objective are discussed and interim results are provided: (1) research into the problem of knowledge engineering in a traditional computer-aided software engineering (CASE) environment, like the SSE; (2) research into the problem of applying SSE CASE tools to develop knowledge based systems; and (3) direct utilization of SSE workstations to support a DKC activity.
1984-01-01
between projects and between host development systems, and between projects, using an integrated Programming Support Environment. The discussion assumes...the availability of some of the facilities that were proposed for inclusion in the UK CHAPSE (CHILL Ada Programming Support Environment). C’ Accession...life cycle of a product. In a programming support envirorment (PSE) with an underlying database, the software can be stored in the databave and
Tailoring a software production environment for a large project
NASA Technical Reports Server (NTRS)
Levine, D. R.
1984-01-01
A software production environment was constructed to meet the specific goals of a particular large programming project. These goals, the specific solutions as implemented, and the experiences on a project of over 100,000 lines of source code are discussed. The base development environment for this project was an ordinary PWB Unix (tm) system. Several important aspects of the development process required support not available in the existing tool set.
Modular Infrastructure for Rapid Flight Software Development
NASA Technical Reports Server (NTRS)
Pires, Craig
2010-01-01
This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).
Comparing Acquisition Strategies: Open Architecture versus Product Lines
2010-04-30
software • New SOW language for accepting software deliveries – Enables third-party reuse • Additional SOW language regarding conducting software code walkthroughs and for using integrated development environments ...change the business environment must be the primary factor that drives the technical approach. Accordingly, there are business case decisions to be...elements of a system design should be made available to the customer to observe throughout the design process. Electronic access to the design environment
Developing smartphone apps for behavioural studies: The AlcoRisk app case study.
Smith, Anthony; de Salas, Kristy; Lewis, Ian; Schüz, Benjamin
2017-08-01
Smartphone apps have emerged as valuable research tools to sample human behaviours at their time of occurrence within natural environments. Human behaviour sampling methods, such as Ecological Momentary Assessment (EMA), aim to facilitate research that is situated in ecologically valid real world environments rather than laboratory environments. Researchers have trialled a range of EMA smartphone apps to sample human behaviours such as dieting, physical activity and smoking. Software development processes for EMA smartphones apps, however, are not widely documented with little guidance provided for the integration of complex multidisciplinary behavioural and technical fields. In this paper, the AlcoRisk app for studying alcohol consumption and risk taking tendencies is presented alongside a software development process that integrates these multidisciplinary fields. The software development process consists of three stages including requirements analysis, feature and interface design followed by app implementation. Results from a preliminary feasibility study support the efficacy of the AlcoRisk app's software development process. Copyright © 2017 Elsevier Inc. All rights reserved.
A Virtual World Workshop Environment for Learning Agile Software Development Techniques
ERIC Educational Resources Information Center
Parsons, David; Stockdale, Rosemary
2012-01-01
Multi-User Virtual Environments (MUVEs) are the subject of increasing interest for educators and trainers. This article reports on a longitudinal project that seeks to establish a virtual agile software development workshop hosted in the Open Wonderland MUVE, designed to help learners to understand the basic principles of some core agile software…
Knowledge Sharing through Pair Programming in Learning Environments: An Empirical Study
ERIC Educational Resources Information Center
Kavitha, R. K.; Ahmed, M. S.
2015-01-01
Agile software development is an iterative and incremental methodology, where solutions evolve from self-organizing, cross-functional teams. Pair programming is a type of agile software development technique where two programmers work together with one computer for developing software. This paper reports the results of the pair programming…
Tcl as a Software Environment for a TCS
NASA Astrophysics Data System (ADS)
Terrett, David L.
2002-12-01
This paper describes how the Tcl scripting language and C API has been used as the software environment for a telescope pointing kernel so that new pointing algorithms and software architectures can be developed and tested without needing a real-time operating system or real-time software environment. It has enabled development to continue outside the framework of a specific telescope project while continuing to build a system that is sufficiently complete to be capable of controlling real hardware but expending minimum effort on replacing the services that would normally by provided by a real-time software environment. Tcl is used as a scripting language for configuring the system at startup and then as the command interface for controlling the running system; the Tcl C language API is used to provided a system independent interface to file and socket I/O and other operating system services. The pointing algorithms themselves are implemented as a set of C++ objects calling C library functions that implement the algorithms described in [2]. Although originally designed as a test and development environment, the system, running as a soft real-time process on Linux, has been used to test the SOAR mount control system and will be used as the pointing kernel of the SOAR telescope control system
Software Maintenance of the Subway Environment Simulation Computer Program
DOT National Transportation Integrated Search
1980-12-01
This document summarizes the software maintenance activities performed to support the Subway Environment Simulation (SES) Computer Program. The SES computer program is a design-oriented analytic tool developed during a recent five-year research proje...
NASA Technical Reports Server (NTRS)
Basili, V. R.; Zelkowitz, M. V.
1978-01-01
In a brief evaluation of software-related considerations, it is found that suitable approaches for software development depend to a large degree on the characteristics of the particular project involved. An analysis is conducted of development problems in an environment in which ground support software is produced for spacecraft control. The amount of work involved is in the range from 6 to 10 man-years. Attention is given to a general project summary, a programmer/analyst survey, a component summary, a component status report, a resource summary, a change report, a computer program run analysis, aspects of data collection on a smaller scale, progress forecasting, problems of overhead, and error analysis.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).
Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.
Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA)
Lee, Yong-Gu; Lyons, Kevin W.; Feng, Shaw C.
2004-01-01
A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design. PMID:27366610
The Development of Ada (Trademark) Software for Secure Environments
1986-05-23
Telecommunications environment, This paper discusses software socurity and seeks to demostrate how the Ada programming language can be utilizec as a tool...complexity 4 . We use abstraction in our lives every day to control complexity; the principles of abstraction for software engineering are ro different...systems. These features directly sup,) )-t t.ie m odernp software engineering principles d1 s I , , 1 t, thne previous section. This is not surprising
Projecting manpower to attain quality
NASA Technical Reports Server (NTRS)
Rone, K. Y.
1983-01-01
The resulting model is useful as a projection tool but must be validated in order to be used as an on-going software cost engineering tool. A procedure is developed to facilitate the tracking of model projections and actual data to allow the model to be tuned. Finally, since the model must be used in an environment of overlapping development activities on a progression of software elements in development and maintenance, a manpower allocation model is developed for use in a steady state development/maintenance environment. In these days of soaring software costs it becomes increasingly important to properly manage a software development project. One element of the management task is the projection and tracking of manpower required to perform the task. In addition, since the total cost of the task is directly related to the initial quality built into the software, it becomes a necessity to project the development manpower in a way to attain that quality. An approach to projecting and tracking manpower with quality in mind is described.
Porting and refurbishment of the WSS TNG control software
NASA Astrophysics Data System (ADS)
Caproni, Alessandro; Zacchei, Andrea; Vuerli, Claudio; Pucillo, Mauro
2004-09-01
The Workstation Software Sytem (WSS) is the high level control software of the Italian Galileo Galilei Telescope settled in La Palma Canary Island developed at the beginning of '90 for HP-UX workstations. WSS may be seen as a middle layer software system that manages the communications between the real time systems (VME), different workstations and high level applications providing a uniform distributed environment. The project to port the control software from the HP workstation to Linux environment started at the end of 2001. It is aimed to refurbish the control software introducing some of the new software technologies and languages, available for free in the Linux operating system. The project was realized by gradually substituting each HP workstation with a Linux PC with the goal to avoid main changes in the original software running under HP-UX. Three main phases characterized the project: creation of a simulated control room with several Linux PCs running WSS (to check all the functionality); insertion in the simulated control room of some HPs (to check the mixed environment); substitution of HP workstation in the real control room. From a software point of view, the project introduces some new technologies, like multi-threading, and the possibility to develop high level WSS applications with almost every programming language that implements the Berkley sockets. A library to develop java applications has also been created and tested.
The dynamics of software development project management: An integrative systems dynamic perspective
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.; Abdel-Hamid, T.
1984-01-01
Rather than continuing to focus on software development projects per se, the system dynamics modeling approach outlined is extended to investigate a broader set of issues pertaining to the software development organization. Rather than trace the life cycle(s) of one or more software projects, the focus is on the operations of a software development department as a continuous stream of software products are developed, placed into operation, and maintained. A number of research questions are ""ripe'' for investigating including: (1) the efficacy of different organizational structures in different software development environments, (2) personnel turnover, (3) impact of management approaches such as management by objectives, and (4) the organizational/environmental determinants of productivity.
Towards understanding software: 15 years in the SEL
NASA Technical Reports Server (NTRS)
Mcgarry, Frank; Pajerski, Rose
1990-01-01
For 15 years, the Software Engineering Laboratory (SEL) at GSFC has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software, and software processes within a production software environment. The SEL comprises three major organizations: (1) the GSFC Flight Dynamics Division; (2) the University of Maryland Computer Science Department; and (3) the Computer Sciences Corporation Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents: all describing some aspect of the software engineering technology that has undergone analysis in the flight dynamics environment. The studies range from small controlled experiments (such as analyzing the effectiveness of code reading versus functional testing) to large, multiple-project studies (such as assessing the impacts of Ada on a production environment). The key findings that NASA feels have laid the foundation for ongoing and future software development and research activities are summarized.
Lessons learned in transitioning to an open systems environment
NASA Technical Reports Server (NTRS)
Boland, Dillard E.; Green, David S.; Steger, Warren L.
1994-01-01
Software development organizations, both commercial and governmental, are undergoing rapid change spurred by developments in the computing industry. To stay competitive, these organizations must adopt new technologies, skills, and practices quickly. Yet even for an organization with a well-developed set of software engineering models and processes, transitioning to a new technology can be expensive and risky. Current industry trends are leading away from traditional mainframe environments and toward the workstation-based, open systems world. This paper presents the experiences of software engineers on three recent projects that pioneered open systems development for NASA's Flight Dynamics Division of the Goddard Space Flight Center (GSFC).
Reuseable Objects Software Environment (ROSE): Introduction to Air Force Software Reuse Workshop
NASA Technical Reports Server (NTRS)
Cottrell, William L.
1994-01-01
The Reusable Objects Software Environment (ROSE) is a common, consistent, consolidated implementation of software functionality using modern object oriented software engineering including designed-in reuse and adaptable requirements. ROSE is designed to minimize abstraction and reduce complexity. A planning model for the reverse engineering of selected objects through object oriented analysis is depicted. Dynamic and functional modeling are used to develop a system design, the object design, the language, and a database management system. The return on investment for a ROSE pilot program and timelines are charted.
Kim, Jong Bae; Brienza, David M
2006-01-01
A Remote Accessibility Assessment System (RAAS) that uses three-dimensional (3-D) reconstruction technology is being developed; it enables clinicians to assess the wheelchair accessibility of users' built environments from a remote location. The RAAS uses commercial software to construct 3-D virtualized environments from photographs. We developed custom screening algorithms and instruments for analyzing accessibility. Characteristics of the camera and 3-D reconstruction software chosen for the system significantly affect its overall reliability. In this study, we performed an accuracy assessment to verify that commercial hardware and software can construct accurate 3-D models by analyzing the accuracy of dimensional measurements in a virtual environment and a comparison of dimensional measurements from 3-D models created with four cameras/settings. Based on these two analyses, we were able to specify a consumer-grade digital camera and PhotoModeler (EOS Systems, Inc, Vancouver, Canada) software for this system. Finally, we performed a feasibility analysis of the system in an actual environment to evaluate its ability to assess the accessibility of a wheelchair user's typical built environment. The field test resulted in an accurate accessibility assessment and thus validated our system.
The personal receiving document management and the realization of email function in OAS
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-05-01
This software is an independent software system, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs. This software is an independent software system, using the current popular B/S (browser/server) structure and ASP.NET technology development, using the Windows 7 operating system, Microsoft SQL Server2005 Visual2008 and database as a development platform, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs.
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
Software technology insertion: A study of success factors
NASA Technical Reports Server (NTRS)
Lydon, Tom
1990-01-01
Managing software development in large organizations has become increasingly difficult due to increasing technical complexity, stricter government standards, a shortage of experienced software engineers, competitive pressure for improved productivity and quality, the need to co-develop hardware and software together, and the rapid changes in both hardware and software technology. The 'software factory' approach to software development minimizes risks while maximizing productivity and quality through standardization, automation, and training. However, in practice, this approach is relatively inflexible when adopting new software technologies. The methods that a large multi-project software engineering organization can use to increase the likelihood of successful software technology insertion (STI), especially in a standardized engineering environment, are described.
Software Innovation in a Mission Critical Environment
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2015-01-01
Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.
Sire: An Automated Software Development Environment.
1983-12-01
understanding the fundamental nature of the software process" (Osterweil, 1981: 35). In fact, the optimal environment for most applications is found by extending... resource planning and other management concerns that cause these problems. Therefore, a complete ASDE should attempt to provide the -21...management with some type of control over the project without impeding the actual development process. Facilities that estimate current resource
2008-03-01
software- development environment. ▶ Frank W. Bentrem, Ph.D., John T. Sample, Ph.D., and Michael M. Harris he Naval Research Labor - atory (NRL) is the...sonars (Through-the-Sensor technology), supercomputer generated numer- ical models, and historical/ clima - tological databases. It uses a vari- ety of
AIDA: An Integrated Authoring Environment for Educational Software.
ERIC Educational Resources Information Center
Mendes, Antonio Jose; Mendes, Teresa
1996-01-01
Describes an integrated authoring environment, AIDA ("Ambiente Integrado de Desenvolvimento de Aplicacoes educacionais"), that was developed at the University of Coimbra (Portugal) for educational software. Highlights include the design module, a prototyping tool that allows for multimedia, simulations, and modularity; execution module;…
Integrating interface slicing into software engineering processes
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.
Software Engineering Guidebook
NASA Technical Reports Server (NTRS)
Connell, John; Wenneson, Greg
1993-01-01
The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Badger, W.; Beckman, C. S.; Beshers, G.; Hammerslag, D.; Kimball, J.; Kirslis, P. A.; Render, H.; Richards, P.; Terwilliger, R.
1984-01-01
The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described.
Ada(R) Test and Verification System (ATVS)
NASA Technical Reports Server (NTRS)
Strelich, Tom
1986-01-01
The Ada Test and Verification System (ATVS) functional description and high level design are completed and summarized. The ATVS will provide a comprehensive set of test and verification capabilities specifically addressing the features of the Ada language, support for embedded system development, distributed environments, and advanced user interface capabilities. Its design emphasis was on effective software development environment integration and flexibility to ensure its long-term use in the Ada software development community.
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.
1986-01-01
Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan
1993-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2012-01-01
NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2013-01-01
NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
Validation and Verification of LADEE Models and Software
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2013-01-01
The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.
A view of software management issues
NASA Technical Reports Server (NTRS)
Manley, J. H.
1985-01-01
The Software Development Environment (SDE) Panel addressed key programmatic, scope, and structural issues raised by its members and the general audience regarding the proposed software development environment for the Space Station program. The general team approach taken by this group led to a consensus on 18 recommendations to NASA mangament regarding the acquisition and definition of the SDE. This approach was keyed by the initial issues presentation given to the general audience. Additional issues (for a total of 23) were developed by the panelists in their first closed session from which key areas were selected and discussed in open session. These discussions led to key recommendations which are summarized and described.
Butterfly valve in a virtual environment
NASA Astrophysics Data System (ADS)
Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.
2017-11-01
Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
Calculation and use of an environment's characteristic software metric set
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Selby, Richard W., Jr.
1985-01-01
Since both cost/quality and production environments differ, this study presents an approach for customizing a characteristic set of software metrics to an environment. The approach is applied in the Software Engineering Laboratory (SEL), a NASA Goddard production environment, to 49 candidate process and product metrics of 652 modules from six (51,000 to 112,000 lines) projects. For this particular environment, the method yielded the characteristic metric set (source lines, fault correction effort per executable statement, design effort, code effort, number of I/O parameters, number of versions). The uses examined for a characteristic metric set include forecasting the effort for development, modification, and fault correction of modules based on historical data.
Proceedings of the 19th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1994-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.
Chanu, A; Aboussouan, E; Tamaz, S; Martel, S
2006-01-01
Software architecture for the navigation of a ferromagnetic untethered device in a 1D and 2D phantom environment is briefly described. Navigation is achieved using the real-time capabilities of a Siemens 1.5 T Avanto MRI system coupled with a dedicated software environment and a specially developed 3D tracking pulse sequence. Real-time control of the magnetic core is executed through the implementation of a simple PID controller. 1D and 2D experimental results are presented.
Design and Pedagogical Issues in the Development of the InSight Series of Instructional Software.
ERIC Educational Resources Information Center
Baro, John A.; Lehmkulke, Stephen
1993-01-01
Design issues in development of InSight software for optometric education include choice of hardware, identification of audience, definition of scope and limitations of content, selection of user interface and programing environment, obtaining user feedback, and software distribution. Pedagogical issues include practicality and improvement on…
Developing sustainable software solutions for bioinformatics by the “ Butterfly” paradigm
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2014-01-01
Software design and sustainable software engineering are essential for the long-term development of bioinformatics software. Typical challenges in an academic environment are short-term contracts, island solutions, pragmatic approaches and loose documentation. Upcoming new challenges are big data, complex data sets, software compatibility and rapid changes in data representation. Our approach to cope with these challenges consists of iterative intertwined cycles of development (“ Butterfly” paradigm) for key steps in scientific software engineering. User feedback is valued as well as software planning in a sustainable and interoperable way. Tool usage should be easy and intuitive. A middleware supports a user-friendly Graphical User Interface (GUI) as well as a database/tool development independently. We validated the approach of our own software development and compared the different design paradigms in various software solutions. PMID:25383181
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.
1987-01-01
The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management.
Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment
NASA Technical Reports Server (NTRS)
Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.
2005-01-01
Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.
Intelligent Agents for Design and Synthesis Environments: My Summary
NASA Technical Reports Server (NTRS)
Norvig, Peter
1999-01-01
This presentation gives a summary of intelligent agents for design synthesis environments. We'll start with the conclusions, and work backwards to justify them. First, an important assumption is that agents (whatever they are) are good for software engineering. This is especially true for software that operates in an uncertain, changing environment. The "real world" of physical artifacts is like that: uncertain in what we can measure, changing in that things are always breaking down, and we must interact with non-software entities. The second point is that software engineering techniques can contribute to good design. There may have been a time when we wanted to build simple artifacts containing little or no software. But modern aircraft and spacecraft are complex, and rely on a great deal of software. So better software engineering leads to better designed artifacts, especially when we are designing a series of related artifacts and can amortize the costs of software development. The third point is that agents are especially useful for design tasks, above and beyond their general usefulness for software engineering, and the usefulness of software engineering to design.
Distributed agile software development for the SKA
NASA Astrophysics Data System (ADS)
Wicenec, Andreas; Parsons, Rebecca; Kitaeff, Slava; Vinsen, Kevin; Wu, Chen; Nelson, Paul; Reed, David
2012-09-01
The SKA software will most probably be developed by many groups distributed across the globe and coming from dierent backgrounds, like industries and research institutions. The SKA software subsystems will have to cover a very wide range of dierent areas, but still they have to react and work together like a single system to achieve the scientic goals and satisfy the challenging data ow requirements. Designing and developing such a system in a distributed fashion requires proper tools and the setup of an environment to allow for ecient detection and tracking of interface and integration issues in particular in a timely way. Agile development can provide much faster feedback mechanisms and also much tighter collaboration between the customer (scientist) and the developer. Continuous integration and continuous deployment on the other hand can provide much faster feedback of integration issues from the system level to the subsystem developers. This paper describes the results obtained from trialing a potential SKA development environment based on existing science software development processes like ALMA, the expected distribution of the groups potentially involved in the SKA development and experience gained in the development of large scale commercial software projects.
Experiences in integrating auto-translated state-chart designs for model checking
NASA Technical Reports Server (NTRS)
Pingree, P. J.; Benowitz, E. G.
2003-01-01
In the complex environment of JPL's flight missions with increasing dependency on advanced software designs, traditional software validation methods of simulation and testing are being stretched to adequately cover the needs of software development.
NASA Technical Reports Server (NTRS)
Brown, David B.
1990-01-01
The results of research and development efforts are described for Task one, Phase two of a general project entitled The Development of a Program Analysis Environment for Ada. The scope of this task includes the design and development of a prototype system for testing Ada software modules at the unit level. The system is called Query Utility Environment for Software Testing of Ada (QUEST/Ada). The prototype for condition coverage provides a platform that implements expert system interaction with program testing. The expert system can modify data in the instrument source code in order to achieve coverage goals. Given this initial prototype, it is possible to evaluate the rule base in order to develop improved rules for test case generation. The goals of Phase two are the following: (1) to continue to develop and improve the current user interface to support the other goals of this research effort (i.e., those related to improved testing efficiency and increased code reliable); (2) to develop and empirically evaluate a succession of alternative rule bases for the test case generator such that the expert system achieves coverage in a more efficient manner; and (3) to extend the concepts of the current test environment to address the issues of Ada concurrency.
Definition and testing of the hydrologic component of the pilot land data system
NASA Technical Reports Server (NTRS)
Ragan, Robert M.; Sircar, Jayanta K.
1987-01-01
The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.
Towards a mature measurement environment: Creating a software engineering research environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.
1990-01-01
Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The space station data management system involves networks of computing resources that must work cooperatively and reliably over an indefinite life span. This program requires a long schedule of modular growth and an even longer period of maintenance and operation. The development and operation of space station computing resources will involve a spectrum of systems and software life cycle activities distributed across a variety of hosts, an integration, verification, and validation host with test bed, and distributed targets. The requirement for the early establishment and use of an apporopriate Computer Systems and Software Engineering Support Environment is identified. This environment will support the Research and Development Productivity challenges presented by the space station computing system.
NASA Astrophysics Data System (ADS)
de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.
2014-10-01
Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.
Software Past, Present, and Future: Views from Government, Industry and Academia
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Page, Jerry; Evangelist, Michael
2000-01-01
Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.
CHIME: A Metadata-Based Distributed Software Development Environment
2005-01-01
structures by using typography , graphics , and animation. The Software Im- mersion in our conceptual model for CHIME can be seen as a form of Software...Even small- to medium-sized development efforts may involve hundreds of artifacts -- design documents, change requests, test cases and results, code...for managing and organizing information from all phases of the software lifecycle. CHIME is designed around an XML-based metadata architecture, in
SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M
1998-01-01
SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.
Software Acquisition Improvement in the Aeronautical Systems Center
2008-09-01
software fielded, a variety of different methods were suggested by the interviewees. These included blocks, suites and other tailored processes developed...12 Selection of Research Method ...DoD look to the commercial market to buy tools, methods , environments, and application software, instead of custom-built software (DSB: 1987). These
ClassCompass: A Software Design Mentoring System
ERIC Educational Resources Information Center
Coelho, Wesley; Murphy, Gail
2007-01-01
Becoming a quality software developer requires practice under the guidance of an expert mentor. Unfortunately, in most academic environments, there are not enough experts to provide any significant design mentoring for software engineering students. To address this problem, we present a collaborative software design tool intended to maximize an…
ERIC Educational Resources Information Center
Kamthan, Pankaj
2007-01-01
Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…
On-Board Software Payload Platform over RTEMS and LEON3FT Processing Units
NASA Astrophysics Data System (ADS)
Martins, Rodolfo; Ribeiro, Pedro; Furano, Gianluca; Costa Pinto, Joao; Habinc, Sandi
2013-08-01
Under ESA and Inmarsat ARTES 8 Alphabus/Alphasat specific programme a technology demonstration payload (TDP) was developed. The payload called TDP8 is an Environment Effects Facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the on-board software payload platform approach developed since then and based on the TDP8 validation activities.
Aubry, S; Pousse, A; Sarliève, P; Laborie, L; Delabrousse, E; Kastler, B
2006-11-01
To model vertebrae in 3D to improve radioanatomic knowledge of the spine with the vascular and nerve environment and simulate CT-guided interventions. Vertebra acquisitions were made with multidetector CT. We developed segmentation software and specific viewer software using the Delphi programming environment. This segmentation software makes it possible to model 3D high-resolution segments of vertebrae and their environment from multidetector CT acquisitions. Then the specific viewer software provides multiplanar reconstructions of the CT volume and the possibility to select different 3D objects of interest. This software package improves radiologists' radioanatomic knowledge through a new 3D anatomy presentation. Furthermore, the possibility of inserting virtual 3D objects in the volume can simulate CT-guided intervention. The first volumetric radioanatomic software has been born. Furthermore, it simulates CT-guided intervention and consequently has the potential to facilitate learning interventions using CT guidance.
An approach to software cost estimation
NASA Technical Reports Server (NTRS)
Mcgarry, F.; Page, J.; Card, D.; Rohleder, M.; Church, V.
1984-01-01
A general procedure for software cost estimation in any environment is outlined. The basic concepts of work and effort estimation are explained, some popular resource estimation models are reviewed, and the accuracy of source estimates is discussed. A software cost prediction procedure based on the experiences of the Software Engineering Laboratory in the flight dynamics area and incorporating management expertise, cost models, and historical data is described. The sources of information and relevant parameters available during each phase of the software life cycle are identified. The methodology suggested incorporates these elements into a customized management tool for software cost prediction. Detailed guidelines for estimation in the flight dynamics environment developed using this methodology are presented.
1990-02-01
inspections are performed before each formal review of each software life cycle phase. * Required software audits are performed . " The software is acceptable... Audits : Software audits are performed bySQA consistent with thegeneral audit rules and an auditreportis prepared. Software Quality Inspection (SQI...DSD Software Development Method 3-34 DEFINITION OF ACRONYMS Acronym Full Name or Description MACH Methode d’Analyse et de Conception Flierarchisee
THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE
The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...
The use of emulator-based simulators for on-board software maintenance
NASA Astrophysics Data System (ADS)
Irvine, M. M.; Dartnell, A.
2002-07-01
Traditionally, onboard software maintenance activities within the space sector are performed using hardware-based facilities. These facilities are developed around the use of hardware emulation or breadboards containing target processors. Some sort of environment is provided around the hardware to support the maintenance actives. However, these environments are not easy to use to set-up the required test scenarios, particularly when the onboard software executes in a dynamic I/O environment, e.g. attitude control software, or data handling software. In addition, the hardware and/or environment may not support the test set-up required during investigations into software anomalies, e.g. raise spurious interrupt, fail memory, etc, and the overall "visibility" of the software executing may be limited. The Software Maintenance Simulator (SOMSIM) is a tool that can support the traditional maintenance facilities. The following list contains some of the main benefits that SOMSIM can provide: Low cost flexible extension to existing product - operational simulator containing software processor emulator; System-level high-fidelity test-bed in which software "executes"; Provides a high degree of control/configuration over the entire "system", including contingency conditions perhaps not possible with real hardware; High visibility and control over execution of emulated software. This paper describes the SOMSIM concept in more detail, and also describes the SOMSIM study being carried out for ESA/ESOC by VEGA IT GmbH.
Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard
2018-06-01
Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .
A new practice-driven approach to develop software in a cyber-physical system environment
NASA Astrophysics Data System (ADS)
Jiang, Yiping; Chen, C. L. Philip; Duan, Junwei
2016-02-01
Cyber-physical system (CPS) is an emerging area, which cannot work efficiently without proper software handling of the data and business logic. Software and middleware is the soul of the CPS. The software development of CPS is a critical issue because of its complicity in a large scale realistic system. Furthermore, object-oriented approach (OOA) is often used to develop CPS software, which needs some improvements according to the characteristics of CPS. To develop software in a CPS environment, a new systematic approach is proposed in this paper. It comes from practice, and has been evolved from software companies. It consists of (A) Requirement analysis in event-oriented way, (B) architecture design in data-oriented way, (C) detailed design and coding in object-oriented way and (D) testing in event-oriented way. It is a new approach based on OOA; the difference when compared with OOA is that the proposed approach has different emphases and measures in every stage. It is more accord with the characteristics of event-driven CPS. In CPS software development, one should focus on the events more than the functions or objects. A case study of a smart home system is designed to reveal the effectiveness of the approach. It shows that the approach is also easy to be operated in the practice owing to some simplifications. The running result illustrates the validity of this approach.
Construction of integrated case environments.
Losavio, Francisca; Matteo, Alfredo; Pérez, María
2003-01-01
The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.
ELISA, a demonstrator environment for information systems architecture design
NASA Technical Reports Server (NTRS)
Panem, Chantal
1994-01-01
This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.
Using an architectural approach to integrate heterogeneous, distributed software components
NASA Technical Reports Server (NTRS)
Callahan, John R.; Purtilo, James M.
1995-01-01
Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.
NMRbox: A Resource for Biomolecular NMR Computation.
Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C
2017-04-25
Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.
An overview of platforms for cloud based development.
Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I
2016-01-01
This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.
Spatial information and modeling system for transportation (SIMST) : final report.
DOT National Transportation Integrated Search
1992-06-01
This project was directed toward research in the development of spatial information systems for transportation. The project and all software development was done in the Intergraph MGE environment. One objective was to investigate software tools for l...
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III
1991-01-01
Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.
Tools for Embedded Computing Systems Software
NASA Technical Reports Server (NTRS)
1978-01-01
A workshop was held to assess the state of tools for embedded systems software and to determine directions for tool development. A synopsis of the talk and the key figures of each workshop presentation, together with chairmen summaries, are presented. The presentations covered four major areas: (1) tools and the software environment (development and testing); (2) tools and software requirements, design, and specification; (3) tools and language processors; and (4) tools and verification and validation (analysis and testing). The utility and contribution of existing tools and research results for the development and testing of embedded computing systems software are described and assessed.
Programming Language Software For Graphics Applications
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1993-01-01
New approach reduces repetitive development of features common to different applications. High-level programming language and interactive environment with access to graphical hardware and software created by adding graphical commands and other constructs to standardized, general-purpose programming language, "Scheme". Designed for use in developing other software incorporating interactive computer-graphics capabilities into application programs. Provides alternative to programming entire applications in C or FORTRAN, specifically ameliorating design and implementation of complex control and data structures typifying applications with interactive graphics. Enables experimental programming and rapid development of prototype software, and yields high-level programs serving as executable versions of software-design documentation.
Evolving software reengineering technology for the emerging innovative-competitive era
NASA Technical Reports Server (NTRS)
Hwang, Phillip Q.; Lock, Evan; Prywes, Noah
1994-01-01
This paper reports on a multi-tool commercial/military environment combining software Domain Analysis techniques with Reusable Software and Reengineering of Legacy Software. It is based on the development of a military version for the Department of Defense (DOD). The integrated tools in the military version are: Software Specification Assistant (SSA) and Software Reengineering Environment (SRE), developed by Computer Command and Control Company (CCCC) for Naval Surface Warfare Center (NSWC) and Joint Logistics Commanders (JLC), and the Advanced Research Project Agency (ARPA) STARS Software Engineering Environment (SEE) developed by Boeing for NAVAIR PMA 205. The paper describes transitioning these integrated tools to commercial use. There is a critical need for the transition for the following reasons: First, to date, 70 percent of programmers' time is applied to software maintenance. The work of these users has not been facilitated by existing tools. The addition of Software Reengineering will also facilitate software maintenance and upgrading. In fact, the integrated tools will support the entire software life cycle. Second, the integrated tools are essential to Business Process Reengineering, which seeks radical process innovations to achieve breakthrough results. Done well, process reengineering delivers extraordinary gains in process speed, productivity and profitability. Most importantly, it discovers new opportunities for products and services in collaboration with other organizations. Legacy computer software must be changed rapidly to support innovative business processes. The integrated tools will provide commercial organizations important competitive advantages. This, in turn, will increase employment by creating new business opportunities. Third, the integrated system will produce much higher quality software than use of the tools separately. The reason for this is that producing or upgrading software requires keen understanding of extremely complex applications which is facilitated by the integrated tools. The radical savings in the time and cost associated with software, due to use of CASE tools that support combined Reuse of Software and Reengineering of Legacy Code, will add an important impetus to improving the automation of enterprises. This will be reflected in continuing operations, as well as in innovating new business processes. The proposed multi-tool software development is based on state of the art technology, which will be further advanced through the use of open systems for adding new tools and experience in their use.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
The Software Engineering Laboratory: An operational software experience factory
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon
1992-01-01
For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.
ERIC Educational Resources Information Center
Debuse, Justin C. W.; Lawley, Meredith
2012-01-01
Existing research and practice in software development environments shows no clear consensus on the most appropriate development tools to use; these may range from simple text editors through teaching-oriented examples to full commercial integrated development environments (IDEs). This study addresses this gap by examining student perceptions of…
Adaptable Computing Environment/Self-Assembling Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osbourn, Gordon C.; Bouchard, Ann M.; Bartholomew, John W.
Complex software applications are difficult to learn to use and to remember how to use. Further, the user has no control over the functionality available in a given application. The software we use can be created and modified only by a relatively small group of elite, highly skilled artisans known as programmers. "Normal users" are powerless to create and modify software themselves, because the tools for software development, designed by and for programmers, are a barrier to entry. This software, when completed, will be a user-adaptable computing environment in which the user is really in control of his/her own software,more » able to adapt the system, make new parts of the system interactive, and even modify the behavior of the system itself. Som key features of the basic environment that have been implemented are (a) books in bookcases, where all data is stored, (b) context-sensitive compass menus (compass, because the buttons are located in compass directions relative to the mouose cursor position), (c) importing tabular data and displaying it in a book, (d) light-weight table querying/sorting, (e) a Reach&Get capability (sort of a "smart" copy/paste that prevents the user from copying invalid data), and (f) a LogBook that automatically logs all user actions that change data or the system itself. To bootstrap toward full end-user adaptability, we implemented a set of development tools. With the development tools, compass menus can be made and customized.« less
Ground Systems Development Environment (GSDE) software configuration management
NASA Technical Reports Server (NTRS)
Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo
1992-01-01
This report presents a review of the software configuration management (CM) plans developed for the Space Station Training Facility (SSTF) and the Space Station Control Center. The scope of the CM assessed in this report is the Systems Integration and Testing Phase of the Ground Systems development life cycle. This is the period following coding and unit test and preceding delivery to operational use. This report is one of a series from a study of the interfaces among the Ground Systems Development Environment (GSDE), the development systems for the SSTF and the SSCC, and the target systems for SSCC and SSTF. This is the last report in the series. The focus of this report is on the CM plans developed by the contractors for the Mission Systems Contract (MSC) and the Training Systems Contract (TSC). CM requirements are summarized and described in terms of operational software development. The software workflows proposed in the TSC and MSC plans are reviewed in this context, and evaluated against the CM requirements defined in earlier study reports. Recommendations are made to improve the effectiveness of CM while minimizing its impact on the developers.
Software For Computing Reliability Of Other Software
NASA Technical Reports Server (NTRS)
Nikora, Allen; Antczak, Thomas M.; Lyu, Michael
1995-01-01
Computer Aided Software Reliability Estimation (CASRE) computer program developed for use in measuring reliability of other software. Easier for non-specialists in reliability to use than many other currently available programs developed for same purpose. CASRE incorporates mathematical modeling capabilities of public-domain Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) computer program and runs in Windows software environment. Provides menu-driven command interface; enabling and disabling of menu options guides user through (1) selection of set of failure data, (2) execution of mathematical model, and (3) analysis of results from model. Written in C language.
Monitoring software development through dynamic variables
NASA Technical Reports Server (NTRS)
Doerflinger, Carl W.; Basili, Victor R.
1983-01-01
Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.
NASA Technical Reports Server (NTRS)
1998-01-01
Under an SBIR (Small Business Innovative Research) contract with Johnson Space Center, Knowledge Based Systems Inc. (KBSI) developed an intelligent software environment for modeling and analyzing mission planning activities, simulating behavior, and, using a unique constraint propagation mechanism, updating plans with each change in mission planning activities. KBSI developed this technology into a commercial product, PROJECTLINK, a two-way bridge between PROSIm, KBSI's process modeling and simulation software and leading project management software like Microsoft Project and Primavera's SureTrak Project Manager.
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
NASA Technical Reports Server (NTRS)
Howes, Norman R.
1986-01-01
The Space Station DMS (Data Management System) is the onboard component of the Space Station Information System (SSIS) that includes the computers, networks and software that support the various core and payload subsystems of the Space Station. TAVERNS (Test And Validation Environment for Remote Networked Systems) is a distributed approach for development and validation of application software for Space Station. The TAVERNS concept assumes that the different subsystems will be developed by different contractors who may be geographically separated. The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD VAX. The software services described in the DMS Test Bed User's Manual are being emulated on the VAX together with simulations of some of the core subsystems and a simulation of the DCN. The TAVERNS Emulator will be accessible remotely from any VAX that can communicate with the ASD VAX.
Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R
2009-01-01
We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.
Software development predictors, error analysis, reliability models and software metric analysis
NASA Technical Reports Server (NTRS)
Basili, Victor
1983-01-01
The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.
Space Shuttle Software Development and Certification
NASA Technical Reports Server (NTRS)
Orr, James K.; Henderson, Johnnie A
2000-01-01
Man-rated software, "software which is in control of systems and environments upon which human life is critically dependent," must be highly reliable. The Space Shuttle Primary Avionics Software System is an excellent example of such a software system. Lessons learn from more than 20 years of effort have identified basic elements that must be present to achieve this high degree of reliability. The elements include rigorous application of appropriate software development processes, use of trusted tools to support those processes, quantitative process management, and defect elimination and prevention. This presentation highlights methods used within the Space Shuttle project and raises questions that must be addressed to provide similar success in a cost effective manner on future long-term projects where key application development tools are COTS rather than internally developed custom application development tools
Software Implemented Fault-Tolerant (SIFT) user's guide
NASA Technical Reports Server (NTRS)
Green, D. F., Jr.; Palumbo, D. L.; Baltrus, D. W.
1984-01-01
Program development for a Software Implemented Fault Tolerant (SIFT) computer system is accomplished in the NASA LaRC AIRLAB facility using a DEC VAX-11 to interface with eight Bendix BDX 930 flight control processors. The interface software which provides this SIFT program development capability was developed by AIRLAB personnel. This technical memorandum describes the application and design of this software in detail, and is intended to assist both the user in performance of SIFT research and the systems programmer responsible for maintaining and/or upgrading the SIFT programming environment.
NASA Technical Reports Server (NTRS)
Lawrence, Stella
1992-01-01
This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.
Software errors and complexity: An empirical investigation
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Perricone, Berry T.
1983-01-01
The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.
Software errors and complexity: An empirical investigation
NASA Technical Reports Server (NTRS)
Basili, V. R.; Perricone, B. T.
1982-01-01
The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.
Software Cost-Estimation Model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1985-01-01
Software Cost Estimation Model SOFTCOST provides automated resource and schedule model for software development. Combines several cost models found in open literature into one comprehensive set of algorithms. Compensates for nearly fifty implementation factors relative to size of task, inherited baseline, organizational and system environment and difficulty of task.
NASA Technical Reports Server (NTRS)
Fletcher, Daryl P.; Alena, Richard L.; Akkawi, Faisal; Duncavage, Daniel P.
2004-01-01
This paper presents some of the challenges associated with bringing software projects from the research world into an operationa1 environment. While the core functional components of research-oriented software applications can have great utility in an operational setting, these applications often lack aspects important in an operational environment such as logging and security. Furthermore, these stand-alone applications, sometimes developed in isolation from one another, can produce data products useful to other applications in a software ecosystem.
APRON: A Cellular Processor Array Simulation and Hardware Design Tool
NASA Astrophysics Data System (ADS)
Barr, David R. W.; Dudek, Piotr
2009-12-01
We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.
Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Farfan-Ale, Jose Arturo; Loroño-Pino, Maria Alba; Garcia-Rejon, Julian; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Najera-Vazquez, Rosario; Fernandez-Salas, Ildefonso; Calderon-Martinez, Joaquin; Dominguez-Galera, Marco; Mis-Avila, Pedro; Morris, Natashia; Coleman, Michael; Moore, Chester G; Beaty, Barry J; Eisen, Lars
2008-09-01
Novel, inexpensive solutions are needed for improved management of vector-borne and other diseases in resource-poor environments. Emerging free software providing access to satellite imagery and simple editing tools (e.g. Google Earth) complement existing geographic information system (GIS) software and provide new opportunities for: (i) strengthening overall public health capacity through development of information for city infrastructures; and (ii) display of public health data directly on an image of the physical environment. We used freely accessible satellite imagery and a set of feature-making tools included in the software (allowing for production of polygons, lines and points) to generate information for city infrastructure and to display disease data in a dengue decision support system (DDSS) framework. Two cities in Mexico (Chetumal and Merida) were used to demonstrate that a basic representation of city infrastructure useful as a spatial backbone in a DDSS can be rapidly developed at minimal cost. Data layers generated included labelled polygons representing city blocks, lines representing streets, and points showing the locations of schools and health clinics. City blocks were colour-coded to show presence of dengue cases. The data layers were successfully imported in a format known as shapefile into a GIS software. The combination of Google Earth and free GIS software (e.g. HealthMapper, developed by WHO, and SIGEpi, developed by PAHO) has tremendous potential to strengthen overall public health capacity and facilitate decision support system approaches to prevention and control of vector-borne diseases in resource-poor environments.
Collected software engineering papers, volume 7
NASA Technical Reports Server (NTRS)
1989-01-01
A collection is presented of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period Dec. 1988 to Oct. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the seven papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.
Collected software engineering papers, volume 6
NASA Technical Reports Server (NTRS)
1988-01-01
A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.
Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming
NASA Astrophysics Data System (ADS)
Fisher, Ward
2014-05-01
Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.
Bonnal, Raoul J P; Aerts, Jan; Githinji, George; Goto, Naohisa; MacLean, Dan; Miller, Chase A; Mishima, Hiroyuki; Pagani, Massimiliano; Ramirez-Gonzalez, Ricardo; Smant, Geert; Strozzi, Francesco; Syme, Rob; Vos, Rutger; Wennblom, Trevor J; Woodcroft, Ben J; Katayama, Toshiaki; Prins, Pjotr
2012-04-01
Biogem provides a software development environment for the Ruby programming language, which encourages community-based software development for bioinformatics while lowering the barrier to entry and encouraging best practices. Biogem, with its targeted modular and decentralized approach, software generator, tools and tight web integration, is an improved general model for scaling up collaborative open source software development in bioinformatics. Biogem and modules are free and are OSS. Biogem runs on all systems that support recent versions of Ruby, including Linux, Mac OS X and Windows. Further information at http://www.biogems.info. A tutorial is available at http://www.biogems.info/howto.html bonnal@ingm.org.
Practical Applications of Digital Pathology.
Saeed-Vafa, Daryoush; Magliocco, Anthony M
2015-04-01
Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.
One approach for evaluating the Distributed Computing Design System (DCDS)
NASA Technical Reports Server (NTRS)
Ellis, J. T.
1985-01-01
The Distributed Computer Design System (DCDS) provides an integrated environment to support the life cycle of developing real-time distributed computing systems. The primary focus of DCDS is to significantly increase system reliability and software development productivity, and to minimize schedule and cost risk. DCDS consists of integrated methodologies, languages, and tools to support the life cycle of developing distributed software and systems. Smooth and well-defined transistions from phase to phase, language to language, and tool to tool provide a unique and unified environment. An approach to evaluating DCDS highlights its benefits.
PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment
NASA Technical Reports Server (NTRS)
Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.
1995-01-01
PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Bailey, John; Stark, Mike
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Scrum-Based Learning Environment: Fostering Self-Regulated Learning
ERIC Educational Resources Information Center
Linden, Tanya
2018-01-01
Academics teaching software development courses are experimenting with teaching methods aiming to improve students' learning experience and learning outcomes. Since Agile software development is gaining popularity in industry due to positive effects on managing projects, academics implement similar Agile approaches in student-centered learning…
Development of an Environment for Software Reliability Model Selection
1992-09-01
now is directed to other related problems such as tools for model selection, multiversion programming, and software fault tolerance modeling... multiversion programming, 7. Hlardware can be repaired by spare modules, which is not. the case for software, 2-6 N. Preventive maintenance is very important
Automated Test Environment for a Real-Time Control System
NASA Technical Reports Server (NTRS)
Hall, Ronald O.
1994-01-01
An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.
Automated Software Development Workstation (ASDW)
NASA Technical Reports Server (NTRS)
Fridge, Ernie
1990-01-01
Software development is a serious bottleneck in the construction of complex automated systems. An increase of the reuse of software designs and components has been viewed as a way to relieve this bottleneck. One approach to achieving software reusability is through the development and use of software parts composition systems. A software parts composition system is a software development environment comprised of a parts description language for modeling parts and their interfaces, a catalog of existing parts, a composition editor that aids a user in the specification of a new application from existing parts, and a code generator that takes a specification and generates an implementation of a new application in a target language. The Automated Software Development Workstation (ASDW) is an expert system shell that provides the capabilities required to develop and manipulate these software parts composition systems. The ASDW is now in Beta testing at the Johnson Space Center. Future work centers on responding to user feedback for capability and usability enhancement, expanding the scope of the software lifecycle that is covered, and in providing solutions to handling very large libraries of reusable components.
Measures and metrics for software development
NASA Technical Reports Server (NTRS)
1984-01-01
The evaluations of and recommendations for the use of software development measures based on the practical and analytical experience of the Software Engineering Laboratory are discussed. The basic concepts of measurement and system of classification for measures are described. The principal classes of measures defined are explicit, analytic, and subjective. Some of the major software measurement schemes appearing in the literature are derived. The applications of specific measures in a production environment are explained. These applications include prediction and planning, review and assessment, and evaluation and selection.
Advances in Games Technology: Software, Models, and Intelligence
ERIC Educational Resources Information Center
Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai
2009-01-01
Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…
A measurement system for large, complex software programs
NASA Technical Reports Server (NTRS)
Rone, Kyle Y.; Olson, Kitty M.; Davis, Nathan E.
1994-01-01
This paper describes measurement systems required to forecast, measure, and control activities for large, complex software development and support programs. Initial software cost and quality analysis provides the foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of software systems, the relationship between the functionality, quality, cost, and schedule of the product must be considered. This explicit relationship is dictated by the criticality of the software being developed. This balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and developers with respect to the processes being employed.
Insights into software development in Japan
NASA Technical Reports Server (NTRS)
Duvall, Lorraine M.
1992-01-01
The interdependence of the U.S.-Japanese economies makes it imperative that we in the United States understand how business and technology developments take place in Japan. We can gain insight into these developments in software engineering by studying the context in which Japanese software is developed, the practices that are used, the problems encountered, the setting surrounding these problems, and the resolution of these problems. Context includes the technological and sociological characteristics of the software development environment, the software processes applied, personnel involved in the development process, and the corporate and social culture surrounding the development. Presented in this paper is a summary of results of a study that addresses these issues. Data for this study was collected during a three month visit to Japan where the author interviewed 20 software managers representing nine companies involved in developing software in Japan. These data are compared to similar data from the United States in which 12 managers from five companies were interviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kris A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
Color graphics, interactive processing, and the supercomputer
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen
1987-01-01
The development of a common graphics environment for the NASA Langley Research Center user community and the integration of a supercomputer into this environment is examined. The initial computer hardware, the software graphics packages, and their configurations are described. The addition of improved computer graphics capability to the supercomputer, and the utilization of the graphic software and hardware are discussed. Consideration is given to the interactive processing system which supports the computer in an interactive debugging, processing, and graphics environment.
Hazardous Environment Robotics
NASA Technical Reports Server (NTRS)
1996-01-01
Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.
Software architecture of biomimetic underwater vehicle
NASA Astrophysics Data System (ADS)
Praczyk, Tomasz; Szymak, Piotr
2016-05-01
Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In order to obtain operational independence, the vehicles have to be equipped with a specialized software. The main task of the software is to move the vehicle along a trajectory with collision avoidance. Moreover, the software has also to manage different devices installed on the vehicle board, e.g. to start and stop cameras, sonars etc. In addition to the software embedded on the vehicle board, the software responsible for managing the vehicle by the operator is also necessary. Its task is to define mission of the vehicle, to start, to stop the mission, to send emergency commands, to monitor vehicle parameters, and to control the vehicle in remotely operated mode. An important objective of the software is also to support development and tests of other software components. To this end, a simulation environment is necessary, i.e. simulation model of the vehicle and all its key devices, the model of the sea environment, and the software to visualize behavior of the vehicle. The paper presents architecture of the software designed for biomimetic autonomous underwater vehicle (BAUV) that is being constructed within the framework of the scientific project financed by Polish National Center of Research and Development.
User-driven integrated software lives: ``Paleomag'' paleomagnetics analysis on the Macintosh
NASA Astrophysics Data System (ADS)
Jones, Craig H.
2002-12-01
"PaleoMag," a paleomagnetics analysis package originally developed for the Macintosh operating system in 1988, allows examination of demagnetization of individual samples and analysis of directional data from collections of samples. Prior to recent reinvigorated development of the software for both Macintosh and Windows, it was widely used despite not running properly on machines and operating systems sold after 1995. This somewhat surprising situation demonstrates that there is a continued need for integrated analysis software within the earth sciences, in addition to well-developed scripting and batch-mode software. One distinct advantage of software like PaleoMag is in the ability to combine quality control with analysis within a unique graphical environment. Because such demands are frequent within the earth sciences, means of nurturing the development of similar software should be found.
1986-06-10
the solution of the base could be the solution of the target. If expert systems are to mimic humans , then they should inherently utilize analogy. In the...expert systems environment, the theory of frames for representing knowledge developed partly because humans usually solve problems by first seeing if...Goals," Computer, May 1975, p. 17. 8. A.I. Wasserman, "Some Principles of User Software Engineering for Information Systems ," Digest of Papers, COMPCON
ERIC Educational Resources Information Center
Trainer, Erik Harrison
2012-01-01
Trust plays an important role in collaborations because it creates an environment in which people can openly exchange ideas and information with one another and engineer innovative solutions together with less perceived risk. The rise in globally distributed software development has created an environment in which workers are likely to have less…
ERIC Educational Resources Information Center
Cornelius, Sarah
2014-01-01
"How to" guides and software training resources support the development of the skills and confidence needed to teach in virtual classrooms using web-conferencing software. However, these sources do not often reveal the subtleties of what it is like to be a facilitator in such an environment--what it feels like, what issues might emerge…
Glossary of software engineering laboratory terms
NASA Technical Reports Server (NTRS)
1982-01-01
A glossary of terms used in the Software Engineering Laboratory (SEL) is presented. The terms are defined within the context of the software development environment for flight dynamics at Goddard Space Flight Center. A concise reference for clarifying and understanding the language employed in SEL documents and data collection forms is provided.
3D Visualization for Phoenix Mars Lander Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol
2012-01-01
Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA-Ames Space Act Agreement, Coryphaeus Software and Simauthor, Inc., developed an Aviation Performance Measuring System (APMS). This software, developed for the aerospace and airline industry, enables the replay of Digital Flight Data Recorder (DFDR) data in a flexible, user-configurable, real-time, high fidelity 3D (three dimensional) environment.
Integrated Environment for Development and Assurance
2015-01-26
Jan 26, 2015 © 2015 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems introduce a new class of...eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects...Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of
Upgrading Custom Simulink Library Components for Use in Newer Versions of Matlab
NASA Technical Reports Server (NTRS)
Stewart, Camiren L.
2014-01-01
The Spaceport Command and Control System (SCCS) at Kennedy Space Center (KSC) is a control system for monitoring and launching manned launch vehicles. Simulations of ground support equipment (GSE) and the launch vehicle systems are required throughout the life cycle of SCCS to test software, hardware, and procedures to train the launch team. The simulations of the GSE at the launch site in conjunction with off-line processing locations are developed using Simulink, a piece of Commercial Off-The-Shelf (COTS) software. The simulations that are built are then converted into code and ran in a simulation engine called Trick, a Government off-the-shelf (GOTS) piece of software developed by NASA. In the world of hardware and software, it is not uncommon to see the products that are utilized be upgraded and patched or eventually fade away into an obsolete status. In the case of SCCS simulation software, Matlab, a MathWorks product, has released a number of stable versions of Simulink since the deployment of the software on the Development Work Stations in the Linux environment (DWLs). The upgraded versions of Simulink has introduced a number of new tools and resources that, if utilized fully and correctly, will save time and resources during the overall development of the GSE simulation and its correlating documentation. Unfortunately, simply importing the already built simulations into the new Matlab environment will not suffice as it will produce results that may not be expected as they were in the version that is currently being utilized. Thus, an upgrade execution plan was developed and executed to fully upgrade the simulation environment to one of the latest versions of Matlab.
Viceconti, M; Testi, D; Gori, R; Zannoni, C
2000-01-01
The present work describes a technology transfer project called HIPCOM devoted to the re-engineering of the process used by a medical devices manufacturer to design custom-made hip prostheses. Although it started with insufficient support from the end-user management, a very tight scheduling and a moderate budget, the project developed into what is considered by all partners a success story. In particular, the development of the design software, called HIPCOM Interactive Design Environment (HIDE) was completed in a time shorter than any optimistic expectation. The software was quite stable since its first beta version, and once introduced at the user site it fully replaced the original procedure in less than two months. One year after the early adoption, more than 80 custom-made prostheses had been designed with HIDE and the user had reported only two bugs, both cosmetics. The scope of the present work was to report the development experience and to investigate the reasons for these positive results, with particular reference to the development procedure and the software architecture. The choice of TCL/TK as development language and the adoption of well-defined software architecture were found to be the success key factors. Other important determinants were found to be the adoption of an incremental software engineering strategy, well suited for small to medium projects and the presence in the development staff of a technology transfer expert.
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A., E-mail: turnerja@ornl.gov; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goalsmore » and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.« less
The UNIX Operating System: A Model for Software Design.
ERIC Educational Resources Information Center
Kernighan, Brian W.; Morgan, Samuel P.
1982-01-01
Describes UNIX time-sharing operating system, including the program environment, software development tools, flexibility and ease of change, portability and other advantages, and five applications and three nonapplications of the system. (JN)
Quality and standardization of telecommunication switching system software
NASA Astrophysics Data System (ADS)
Ranko, K.; Hivensaio, J.; Myllykangas, A.
1981-12-01
The purpose of this paper has been to illustrate quality and standardization of switching system software from the authors point of view with the aim of developing standardization in the user environment.
1979-12-01
team progranming in reducing software dleveloup- ment costs relative to ad hoc approaches and improving software product quality relative to...are interpreted as demonstrating the advantages of disciplined team programming in reducing software development costs relative to ad hoc approaches...is due oartialty to the cost and imoracticality of a valiI experimental setup within a oroauct ion environment. Thus the question remains, are
Leveraging object-oriented development at Ames
NASA Technical Reports Server (NTRS)
Wenneson, Greg; Connell, John
1994-01-01
This paper presents lessons learned by the Software Engineering Process Group (SEPG) from results of supporting two projects at NASA Ames using an Object Oriented Rapid Prototyping (OORP) approach supported by a full featured visual development environment. Supplemental lessons learned from a large project in progress and a requirements definition are also incorporated. The paper demonstrates how productivity gains can be made by leveraging the developer with a rich development environment, correct and early requirements definition using rapid prototyping, and earlier and better effort estimation and software sizing through object-oriented methods and metrics. Although the individual elements of OO methods, RP approach and OO metrics had been used on other separate projects, the reported projects were the first integrated usage supported by a rich development environment. Overall the approach used was twice as productive (measured by hours per OO Unit) as a C++ development.
A progress report on a NASA research program for embedded computer systems software
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Senn, E. H.; Will, R. W.; Straeter, T. A.
1979-01-01
The paper presents the results of the second stage of the Multipurpose User-oriented Software Technology (MUST) program. Four primary areas of activities are discussed: programming environment, HAL/S higher-order programming language support, the Integrated Verification and Testing System (IVTS), and distributed system language research. The software development environment is provided by the interactive software invocation system. The higher-order programming language (HOL) support chosen for consideration is HAL/S mainly because at the time it was one of the few HOLs with flight computer experience and it is the language used on the Shuttle program. The overall purpose of IVTS is to provide a 'user-friendly' software testing system which is highly modular, user controlled, and cooperative in nature.
A streamlined software environment for situated skills
NASA Technical Reports Server (NTRS)
Yu, Sophia T.; Slack, Marc G.; Miller, David P.
1994-01-01
This paper documents a powerful set of software tools used for developing situated skills. These situated skills form the reactive level of a three-tiered intelligent agent architecture. The architecture is designed to allow these skills to be manipulated by a task level engine which is monitoring the current situation and selecting skills necessary for the current task. The idea is to coordinate the dynamic activations and deactivations of these situated skills in order to configure the reactive layer for the task at hand. The heart of the skills environment is a data flow mechanism which pipelines the currently active skills for execution. A front end graphical interface serves as a debugging facility during skill development and testing. We are able to integrate skills developed in different languages into the skills environment. The power of the skills environment lies in the amount of time it saves for the programmer to develop code for the reactive layer of a robot.
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
Locking Down the Software Development Environment
2014-12-01
OpenSSL code [13]. The OpenSSL software is, as the name implies, open source, a result of many developers coding beginning in 1998 using the C...programming language to build crypto services. OpenSSL is used widely both on the Internet and in firmware [13], further delaying the ability of many
Constraint-Driven Software Design: An Escape from the Waterfall Model.
ERIC Educational Resources Information Center
de Hoog, Robert; And Others
1994-01-01
Presents the principles of a development methodology for software design based on a nonlinear, product-driven approach that integrates quality aspects. Two examples are given to show that the flexibility needed for building high quality systems leads to integrated development environments in which methodology, product, and tools are closely…
ERIC Educational Resources Information Center
Paul, A. K.; Anantharaman, R. N.
2004-01-01
Although organizational commitment has been discussed frequently in organizational psychology for almost four decades, few studies have involved software professionals. A study in India reveals that HRM practices such as employee-friendly work environment, career development, development oriented appraisal, and comprehensive training show a…
2007-09-01
example, an application developed in Sun’s Netbeans [2007] integrated development environment (IDE) uses Swing class object for graphical user... Netbeans Version 5.5.1 [Computer Software]. Santa Clara, CA: Sun Microsystems. Process Modeler Version 7.0 [Computer Software]. Santa Clara, Ca
A toolbox for developing bioinformatics software
Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M.
2012-01-01
Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787
A Survey On Management Of Software Engineering In Japan
NASA Astrophysics Data System (ADS)
Kadono, Yasuo; Tsubaki, Hiroe; Tsuruho, Seishiro
2008-05-01
The purpose of this study is to clarity the mechanism of how software engineering capabilities relate to the business performance of IT vendors in Japan. To do this, we developed a structural model using factors related to software engineering, business performance and competitive environment. By analyzing the data collected from 78 major IT vendors in Japan, we found that superior deliverables and business performance were correlated with the effort expended particularly on human resource development, quality assurance, research and development and process improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.A.
In computing landscape which has a plethora of different hardware architectures and supporting software systems ranging from compilers to operating systems, there is an obvious and strong need for a philosophy of software development that lends itself to the design and construction of portable code systems. The current efforts to standardize software bear witness to this need. SABrE is an effort to implement a software development environment which is itself portable and promotes the design and construction of portable applications. SABrE does not include such important tools as editors and compilers. Well built tools of that kind are readily availablemore » across virtually all computer platforms. The areas that SABrE addresses are at a higher level involving issues such as data portability, portable inter-process communication, and graphics. These blocks of functionality have particular significance to the kind of code development done at LLNL. That is partly why the general computing community has not supplied us with these tools already. This is another key feature of the software development environments which we must recognize. The general computing community cannot and should not be expected to produce all of the tools which we require.« less
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.
2010-01-01
NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.
Software engineering from a Langley perspective
NASA Technical Reports Server (NTRS)
Voigt, Susan
1994-01-01
A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.
1989-07-11
LITERATURE CITED [Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment," Datamation, 19, 5, (May 1973), pp 48-59. [Boeh76...Boehm, Barry W., "Software Engineering," IEEE Transactions on Computers, C-25, 12, (December 1976), pp 1226-1241. [Boeh81a] Boehm, Barry W., Software...Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ, (1981). [Boeh8lb] Boehm, Barry W., "An Experiment in Small Scale Application Software
NASA Technical Reports Server (NTRS)
Grubb, Matt
2016-01-01
The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For testing, plug-ins are implemented in COSMOS to control the NOS3 simulations, while the command and telemetry tools available in COSMOS are used to communicate with FSW. NOS3 is actively being used for FSW development and component testing of the Simulation-to-Flight 1 (STF-1) CubeSat. As NOS3 matures, hardware models have been added for common CubeSat components such as Novatel GPS receivers, ClydeSpace electrical power systems and batteries, ISISpace antenna systems, etc. In the future, NASA IVV plans to distribute NOS3 to other CubeSat developers and release the suite to the open-source community.
Applications of AN OO Methodology and Case to a Daq System
NASA Astrophysics Data System (ADS)
Bee, C. P.; Eshghi, S.; Jones, R.; Kolos, S.; Magherini, C.; Maidantchik, C.; Mapelli, L.; Mornacchi, G.; Niculescu, M.; Patel, A.; Prigent, D.; Spiwoks, R.; Soloviev, I.; Caprini, M.; Duval, P. Y.; Etienne, F.; Ferrato, D.; Le van Suu, A.; Qian, Z.; Gaponenko, I.; Merzliakov, Y.; Ambrosini, G.; Ferrari, R.; Fumagalli, G.; Polesello, G.
The RD13 project has evaluated the use of the Object Oriented Information Engineering (OOIE) method during the development of several software components connected to the DAQ system. The method is supported by a sophisticated commercial CASE tool (Object Management Workbench) and programming environment (Kappa) which covers the full life-cycle of the software including model simulation, code generation and application deployment. This paper gives an overview of the method, CASE tool, DAQ components which have been developed and we relate our experiences with the method and tool, its integration into our development environment and the spiral lifecycle it supports.
Glossary of Software Engineering Laboratory terms
NASA Technical Reports Server (NTRS)
1983-01-01
A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.
eXascale PRogramming Environment and System Software (XPRESS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Barbara; Gabriel, Edgar
Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-scale computing for both exascale and strongscaled problems. The XPRESS collaborative research project will advance the state-of-the-art in high performance computing and enable exascale computing for current and future DOE mission-critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less
Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research
Degenhart, Alan D.; Kelly, John W.; Ashmore, Robin C.; Collinger, Jennifer L.; Tyler-Kabara, Elizabeth C.; Weber, Douglas J.; Wang, Wei
2011-01-01
This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development. PMID:21687575
Craniux: a LabVIEW-based modular software framework for brain-machine interface research.
Degenhart, Alan D; Kelly, John W; Ashmore, Robin C; Collinger, Jennifer L; Tyler-Kabara, Elizabeth C; Weber, Douglas J; Wang, Wei
2011-01-01
This paper presents "Craniux," an open-access, open-source software framework for brain-machine interface (BMI) research. Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future BMI research and development.
PT-SAFE: a software tool for development and annunciation of medical audible alarms.
Bennett, Christopher L; McNeer, Richard R
2012-03-01
Recent reports by The Joint Commission as well as the Anesthesia Patient Safety Foundation have indicated that medical audible alarm effectiveness needs to be improved. Several recent studies have explored various approaches to improving the audible alarms, motivating the authors to develop real-time software capable of comparing such alarms. We sought to devise software that would allow for the development of a variety of audible alarm designs that could also integrate into existing operating room equipment configurations. The software is meant to be used as a tool for alarm researchers to quickly evaluate novel alarm designs. A software tool was developed for the purpose of creating and annunciating audible alarms. The alarms consisted of annunciators that were mapped to vital sign data received from a patient monitor. An object-oriented approach to software design was used to create a tool that is flexible and modular at run-time, can annunciate wave-files from disk, and can be programmed with MATLAB by the user to create custom alarm algorithms. The software was tested in a simulated operating room to measure technical performance and to validate the time-to-annunciation against existing equipment alarms. The software tool showed efficacy in a simulated operating room environment by providing alarm annunciation in response to physiologic and ventilator signals generated by a human patient simulator, on average 6.2 seconds faster than existing equipment alarms. Performance analysis showed that the software was capable of supporting up to 15 audible alarms on a mid-grade laptop computer before audio dropouts occurred. These results suggest that this software tool provides a foundation for rapidly staging multiple audible alarm sets from the laboratory to a simulation environment for the purpose of evaluating novel alarm designs, thus producing valuable findings for medical audible alarm standardization.
An evaluation of software tools for the design and development of cockpit displays
NASA Technical Reports Server (NTRS)
Ellis, Thomas D., Jr.
1993-01-01
The use of all-glass cockpits at the NASA Langley Research Center (LaRC) simulation facility has changed the means of design, development, and maintenance of instrument displays. The human-machine interface has evolved from a physical hardware device to a software-generated electronic display system. This has subsequently caused an increased workload at the facility. As computer processing power increases and the glass cockpit becomes predominant in facilities, software tools used in the design and development of cockpit displays are becoming both feasible and necessary for a more productive simulation environment. This paper defines LaRC requirements of a display software development tool and compares two available applications against these requirements. As a part of the software engineering process, these tools reduce development time, provide a common platform for display development, and produce exceptional real-time results.
Proceedings of the Fifteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1990-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.
An Interactive and Automated Software Development Environment.
1982-12-01
four levels. Each DFD has an accompanying textual description to aid the reader in understanding the diagram. Both the data flows and the operations...students using the SDW for major software developments. Students in the software engineering courses use the SDW as a pedagogical tool for learning the...the SDWE. For thiz reason, the modified SDWE Algorithmic Design is included as Appendix F. 172 Ui 4.4 Desigin RL the ProQiect Data Baes The Project
Software for marine ecological environment comprehensive monitoring system based on MCGS
NASA Astrophysics Data System (ADS)
Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.
2017-08-01
The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.
VERSE - Virtual Equivalent Real-time Simulation
NASA Technical Reports Server (NTRS)
Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel
2005-01-01
Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.
Scilab and Maxima Environment: Towards Free Software in Numerical Analysis
ERIC Educational Resources Information Center
Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro
2010-01-01
In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)
Mapping modern software process engineering techniques onto an HEP development environment
NASA Astrophysics Data System (ADS)
Wellisch, J. P.
2003-04-01
One of the most challenging issues faced in HEP in recent years is the question of how to capitalise on software development and maintenance experience in a continuous manner. To capitalise means in our context to evaluate and apply new process technologies as they arise, and to further evolve technologies already widely in use. It also implies the definition and adoption of standards. The CMS off-line software improvement effort aims at continual software quality improvement, and continual improvement in the efficiency of the working environment with the goal to facilitate doing great new physics. To achieve this, we followed a process improvement program based on ISO-15504, and Rational Unified Process. This experiment in software process improvement in HEP has been progressing now for a period of 3 years. Taking previous experience from ATLAS and SPIDER into account, we used a soft approach of continuous change within the limits of current culture to create of de facto software process standards within the CMS off line community as the only viable route to a successful software process improvement program in HEP. We will present the CMS approach to software process improvement in this process R&D, describe lessons learned, and mistakes made. We will demonstrate the benefits gained, and the current status of the software processes established in CMS off-line software.
Development of visual 3D virtual environment for control software
NASA Technical Reports Server (NTRS)
Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence
1991-01-01
Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.
NASA Astrophysics Data System (ADS)
Wang, Qiang
2017-09-01
As an important part of software engineering, the software process decides the success or failure of software product. The design and development feature of security software process is discussed, so is the necessity and the present significance of using such process. Coordinating the function software, the process for security software and its testing are deeply discussed. The process includes requirement analysis, design, coding, debug and testing, submission and maintenance. In each process, the paper proposed the subprocesses to support software security. As an example, the paper introduces the above process into the power information platform.
Implications of the Social Web Environment for User Story Education
ERIC Educational Resources Information Center
Fancott, Terrill; Kamthan, Pankaj; Shahmir, Nazlie
2012-01-01
In recent years, user stories have emerged in academia, as well as industry, as a notable approach for expressing user requirements of interactive software systems that are developed using agile methodologies. There are social aspects inherent to software development, in general, and user stories, in particular. This paper presents directions and…
ERIC Educational Resources Information Center
Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla
2014-01-01
Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…
Resource utilization during software development
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1988-01-01
This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.
Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.
2010-03-01
service consumers, and infrastructure. Techniques from any iterative and incremental software development methodology followed by the organiza- tion... Service -Oriented Architecture Environment (CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008. http://www.sei.cmu.edu...Integrating Legacy Software into a Service Oriented Architecture.” Proceedings of the 10th European Conference on Software Maintenance (CSMR 2006). Bari
Parallels in Computer-Aided Design Framework and Software Development Environment Efforts.
1992-05-01
de - sign kits, and tool and design management frameworks. Also, books about software engineer- ing environments [Long 91] and electronic design...tool integration [Zarrella 90], and agreement upon a universal de - sign automation framework, such as the CAD Framework Initiative (CFI) [Malasky 91...ments: identification, control, status accounting, and audit and review. The paper by Dart ex- tracts 15 CM concepts from existing SDEs and tools
DOT National Transportation Integrated Search
2012-07-01
This project has developed and implemented a software environment to utilize data collected by Traffic Management Centers (TMC) in Florida, in combination with data from other sources to support various applications. The environment allows capturing ...
Caesy: A software tool for computer-aided engineering
NASA Technical Reports Server (NTRS)
Wette, Matt
1993-01-01
A new software tool, Caesy, is described. This tool provides a strongly typed programming environment for research in the development of algorithms and software for computer-aided control system design. A description of the user language and its implementation as they currently stand are presented along with a description of work in progress and areas of future work.
Software Product Data (SPD) Current Environment Report
DOT National Transportation Integrated Search
1990-04-01
This report describes the Air Force organization and functions employed in the acquisition, use, and management of Software Product Data (SPD). The flow of data among the Air Force and contractors during the design, development, and post-production p...
Current And Future Directions Of Lens Design Software
NASA Astrophysics Data System (ADS)
Gustafson, Darryl E.
1983-10-01
The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.
Using Modern Methodologies with Maintenance Software
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Francis, Laurie K.; Smith, Benjamin D.
2014-01-01
Jet Propulsion Laboratory uses multi-mission software produced by the Mission Planning and Sequencing (MPS) team to process, simulate, translate, and package the commands that are sent to a spacecraft. MPS works under the auspices of the Multi-Mission Ground Systems and Services (MGSS). This software consists of nineteen applications that are in maintenance. The MPS software is classified as either class B (mission critical) or class C (mission important). The scheduling of tasks is difficult because mission needs must be addressed prior to performing any other tasks and those needs often spring up unexpectedly. Keeping track of the tasks that everyone is working on is also difficult because each person is working on a different software component. Recently the group adopted the Scrum methodology for planning and scheduling tasks. Scrum is one of the newer methodologies typically used in agile development. In the Scrum development environment, teams pick their tasks that are to be completed within a sprint based on priority. The team specifies the sprint length usually a month or less. Scrum is typically used for new development of one application. In the Scrum methodology there is a scrum master who is a facilitator who tries to make sure that everything moves smoothly, a product owner who represents the user(s) of the software and the team. MPS is not the traditional environment for the Scrum methodology. MPS has many software applications in maintenance, team members who are working on disparate applications, many users, and is interruptible based on mission needs, issues and requirements. In order to use scrum, the methodology needed adaptation to MPS. Scrum was chosen because it is adaptable. This paper is about the development of the process for using scrum, a new development methodology, with a team that works on disparate interruptible tasks on multiple software applications.
Standardized development of computer software. Part 1: Methods
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1976-01-01
This work is a two-volume set on standards for modern software engineering methodology. This volume presents a tutorial and practical guide to the efficient development of reliable computer software, a unified and coordinated discipline for design, coding, testing, documentation, and project organization and management. The aim of the monograph is to provide formal disciplines for increasing the probability of securing software that is characterized by high degrees of initial correctness, readability, and maintainability, and to promote practices which aid in the consistent and orderly development of a total software system within schedule and budgetary constraints. These disciplines are set forth as a set of rules to be applied during software development to drastically reduce the time traditionally spent in debugging, to increase documentation quality, to foster understandability among those who must come in contact with it, and to facilitate operations and alterations of the program as requirements on the program environment change.
Parameterized hardware description as object oriented hardware model implementation
NASA Astrophysics Data System (ADS)
Drabik, Pawel K.
2010-09-01
The paper introduces novel model for design, visualization and management of complex, highly adaptive hardware systems. The model settles component oriented environment for both hardware modules and software application. It is developed on parameterized hardware description research. Establishment of stable link between hardware and software, as a purpose of designed and realized work, is presented. Novel programming framework model for the environment, named Graphic-Functional-Components is presented. The purpose of the paper is to present object oriented hardware modeling with mentioned features. Possible model implementation in FPGA chips and its management by object oriented software in Java is described.
Maximizing reuse: Applying common sense and discipline
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Langston, James
1992-01-01
Computer Sciences Corporation (CSC)/System Sciences Division (SSD) has maintained a long-term relationship with NASA/Goddard, providing satellite mission ground-support software and services for 23 years. As a partner in the Software Engineering Laboratory (SEL) since 1976, CSC has worked closely with NASA/Goddard to improve the software engineering process. This paper examines the evolution of reuse programs in this uniquely stable environment and formulates certain recommendations for developing reuse programs as a business strategy and as an integral part of production. It focuses on the management strategy and philosophy that have helped make reuse successful in this environment.
Flight Software for the LADEE Mission
NASA Technical Reports Server (NTRS)
Cannon, Howard N.
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.
An approach to a real-time distribution system
NASA Technical Reports Server (NTRS)
Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui
1990-01-01
The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.
Space station: The role of software
NASA Technical Reports Server (NTRS)
Hall, D.
1985-01-01
Software will play a critical role throughout the Space Station Program. This presentation sets the stage and prompts participant interaction at the Software Issues Forum. The presentation is structured into three major topics: (1) an overview of the concept and status of the Space Station Program; (2) several charts designed to lay out the scope and role of software; and (3) information addressing the four specific areas selected for focus at the forum, specifically: software management, the software development environment, languages, and standards. NASA's current thinking is highlighted and some of the relevant critical issues are raised.
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2010-01-01
Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933
Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2011-07-01
Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A.; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
Turner, John A.; Clarno, Kevin; Sieger, Matt; ...
2016-09-08
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
Combining Agile and Traditional: Customer Communication in Distributed Environment
NASA Astrophysics Data System (ADS)
Korkala, Mikko; Pikkarainen, Minna; Conboy, Kieran
Distributed development is a radically increasing phenomenon in modern software development environments. At the same time, traditional and agile methodologies and combinations of those are being used in the industry. Agile approaches place a large emphasis on customer communication. However, existing knowledge on customer communication in distributed agile development seems to be lacking. In order to shed light on this topic and provide practical guidelines for companies in distributed agile environments, a qualitative case study was conducted in a large globally distributed software company. The key finding was that it might be difficult for an agile organization to get relevant information from a traditional type of customer organization, even though the customer communication was indicated to be active and utilized via multiple different communication media. Several challenges discussed in this paper referred to "information blackout" indicating the importance of an environment fostering meaningful communication. In order to evaluate if this environment can be created a set of guidelines is proposed.
Integrating automated support for a software management cycle into the TAME system
NASA Technical Reports Server (NTRS)
Sunazuka, Toshihiko; Basili, Victor R.
1989-01-01
Software managers are interested in the quantitative management of software quality, cost and progress. An integrated software management methodology, which can be applied throughout the software life cycle for any number purposes, is required. The TAME (Tailoring A Measurement Environment) methodology is based on the improvement paradigm and the goal/question/metric (GQM) paradigm. This methodology helps generate a software engineering process and measurement environment based on the project characteristics. The SQMAR (software quality measurement and assurance technology) is a software quality metric system and methodology applied to the development processes. It is based on the feed forward control principle. Quality target setting is carried out before the plan-do-check-action activities are performed. These methodologies are integrated to realize goal oriented measurement, process control and visual management. A metric setting procedure based on the GQM paradigm, a management system called the software management cycle (SMC), and its application to a case study based on NASA/SEL data are discussed. The expected effects of SMC are quality improvement, managerial cost reduction, accumulation and reuse of experience, and a highly visual management reporting system.
Software Development Technologies for Reactive, Real-Time, and Hybrid Systems
NASA Technical Reports Server (NTRS)
Manna, Zohar
1996-01-01
The research is directed towards the design and implementation of a comprehensive deductive environment for the development of high-assurance systems, especially reactive (concurrent, real-time, and hybrid) systems. Reactive systems maintain an ongoing interaction with their environment, and are among the most difficult to design and verify. The project aims to provide engineers with a wide variety of tools within a single, general, formal framework in which the tools will be most effective. The entire development process is considered, including the construction, transformation, validation, verification, debugging, and maintenance of computer systems. The goal is to automate the process as much as possible and reduce the errors that pervade hardware and software development.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Morgenstern, Wendy M.; Bartholomew, Maureen O.; McComas, David C.; Bauer, Frank H. (Technical Monitor)
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, attitude control, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on previous missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the perceived benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Using Automation to Improve the Flight Software Testing Process
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.
2001-01-01
One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.
Department of Defense High Performance Computing Modernization Program. 2006 Annual Report
2007-03-01
Department. We successfully completed several software development projects that introduced parallel, scalable production software now in use across the...imagined. They are developing and deploying weather and ocean models that allow our soldiers, sailors, marines and airmen to plan missions more effectively...and to navigate adverse environments safely. They are modeling molecular interactions leading to the development of higher energy fuels, munitions
Ensemble: an Architecture for Mission-Operations Software
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Powell, Mark; Fox, Jason; Rabe, Kenneth; Shu, IHsiang; McCurdy, Michael; Vera, Alonso
2008-01-01
Ensemble is the name of an open architecture for, and a methodology for the development of, spacecraft mission operations software. Ensemble is also potentially applicable to the development of non-spacecraft mission-operations- type software. Ensemble capitalizes on the strengths of the open-source Eclipse software and its architecture to address several issues that have arisen repeatedly in the development of mission-operations software: Heretofore, mission-operations application programs have been developed in disparate programming environments and integrated during the final stages of development of missions. The programs have been poorly integrated, and it has been costly to develop, test, and deploy them. Users of each program have been forced to interact with several different graphical user interfaces (GUIs). Also, the strategy typically used in integrating the programs has yielded serial chains of operational software tools of such a nature that during use of a given tool, it has not been possible to gain access to the capabilities afforded by other tools. In contrast, the Ensemble approach offers a low-risk path towards tighter integration of mission-operations software tools.
Automatic Commercial Permit Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grana, Paul
Final report for Folsom Labs’ Solar Permit Generator project, which has successfully completed, resulting in the development and commercialization of a software toolkit within the cloud-based HelioScope software environment that enables solar engineers to automatically generate and manage draft documents for permit submission.
NASA PC software evaluation project
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kuan, Julie C.
1986-01-01
The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.
A knowledge based software engineering environment testbed
NASA Technical Reports Server (NTRS)
Gill, C.; Reedy, A.; Baker, L.
1985-01-01
The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing
2007-09-01
Motion URL: http://www.blackberry.com/products/blackberry/index.shtml Software Name: Bricolage Company: Bricolage URL: http://www.bricolage.cc...Workflow Customizable control over editorial content. Bricolage Bricolage Feature Description Software Company Workflow Allows development...content for Nuxeo Collaborative Portal projects. Nuxeo Workspace Add, edit, delete, content through web interface. Bricolage Bricolage
ERIC Educational Resources Information Center
Acharya, Sushil; Manohar, Priyadarshan Anant; Wu, Peter; Maxim, Bruce; Hansen, Mary
2018-01-01
Active learning tools are critical in imparting real world experiences to the students within a classroom environment. This is important because graduates are expected to develop software that meets rigorous quality standards in functional and application domains with little to no training. However, there is a well-recognized need for the…
Software Simplifies the Sharing of Numerical Models
NASA Technical Reports Server (NTRS)
2014-01-01
To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.
NASA Technical Reports Server (NTRS)
Zhang, Zhong
1997-01-01
The development of large-scale, composite software in a geographically distributed environment is an evolutionary process. Often, in such evolving systems, striving for consistency is complicated by many factors, because development participants have various locations, skills, responsibilities, roles, opinions, languages, terminology and different degrees of abstraction they employ. This naturally leads to many partial specifications or viewpoints. These multiple views on the system being developed usually overlap. From another aspect, these multiple views give rise to the potential for inconsistency. Existing CASE tools do not efficiently manage inconsistencies in distributed development environment for a large-scale project. Based on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for requirements Evolution) toolkit aims to tackle inconsistency management issues within geographically distributed software development projects. Consequently, WHERE project helps make more robust software and support software assurance process. The long term goal of WHERE tools aims to the inconsistency analysis and management in requirements specifications. A framework based on Graph Grammar theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints. This systematic approach uses three basic operations (UNION, DIFFERENCE, INTERSECTION) to study the static behaviors of graphic and tabular notations. From these operations, subgraphs Query, Selection, Merge, Replacement operations can be derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the dynamic transformations of graphs. We discuss the feasibility of implementation these operations. Also, We present the process of porting original TCM (Toolkit for Conceptual Modeling) project from C++ to Java programming language in this thesis. A scenario based on NASA International Space Station Specification is discussed to show the applicability of our approach. Finally, conclusion and future work about inconsistency management issues in WHERE project will be summarized.
The Web Measurement Environment (WebME): A Tool for Combining and Modeling Distributed Data
NASA Technical Reports Server (NTRS)
Tesoriero, Roseanne; Zelkowitz, Marvin
1997-01-01
Many organizations have incorporated data collection into their software processes for the purpose of process improvement. However, in order to improve, interpreting the data is just as important as the collection of data. With the increased presence of the Internet and the ubiquity of the World Wide Web, the potential for software processes being distributed among several physically separated locations has also grown. Because project data may be stored in multiple locations and in differing formats, obtaining and interpreting data from this type of environment becomes even more complicated. The Web Measurement Environment (WebME), a Web-based data visualization tool, is being developed to facilitate the understanding of collected data in a distributed environment. The WebME system will permit the analysis of development data in distributed, heterogeneous environments. This paper provides an overview of the system and its capabilities.
NASA Technical Reports Server (NTRS)
Murray, Alex; Eng, Bjorn; Leff, Craig; Schwarz, Arnold
1997-01-01
In the development environment for ASTER level II product generation system, techniques have been incorporated to allow automated information sharing among all system elements, and to enable the use of sound software engineering techniques in the scripting languages.
LISP as an Environment for Software Design: Powerful and Perspicuous
Blum, Robert L.; Walker, Michael G.
1986-01-01
The LISP language provides a useful set of features for prototyping knowledge-intensive, clinical applications software that is not found In most other programing environments. Medical computer programs that need large medical knowledge bases, such as programs for diagnosis, therapeutic consultation, education, simulation, and peer review, are hard to design, evolve continually, and often require major revisions. They necessitate an efficient and flexible program development environment. The LISP language and programming environments bullt around it are well suited for program prototyping. The lingua franca of artifical intelligence researchers, LISP facllitates bullding complex systems because it is simple yet powerful. Because of its simplicity, LISP programs can read, execute, modify and even compose other LISP programs at run time. Hence, it has been easy for system developers to create programming tools that greatly speed the program development process, and that may be easily extended by users. This has resulted in the creation of many useful graphical interfaces, editors, and debuggers, which facllitate the development of knowledge-intensive medical applications.
ATLAS software configuration and build tool optimisation
NASA Astrophysics Data System (ADS)
Rybkin, Grigory; Atlas Collaboration
2014-06-01
ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.
Process membership in asynchronous environments
NASA Technical Reports Server (NTRS)
Ricciardi, Aleta M.; Birman, Kenneth P.
1993-01-01
The development of reliable distributed software is simplified by the ability to assume a fail-stop failure model. The emulation of such a model in an asynchronous distributed environment is discussed. The solution proposed, called Strong-GMP, can be supported through a highly efficient protocol, and was implemented as part of a distributed systems software project at Cornell University. The precise definition of the problem, the protocol, correctness proofs, and an analysis of costs are addressed.
Image-Processing Software For A Hypercube Computer
NASA Technical Reports Server (NTRS)
Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.
1992-01-01
Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.
Project management in the development of scientific software
NASA Astrophysics Data System (ADS)
Platz, Jochen
1986-08-01
This contribution is a rough outline of a comprehensive project management model for the development of software for scientific applications. The model was tested in the unique environment of the Siemens AG Corporate Research and Technology Division. Its focal points are the structuring of project content - the so-called phase organization, the project organization and the planning model used, and its particular applicability to innovative projects. The outline focuses largely on actual project management aspects rather than associated software engineering measures.
NASA Technical Reports Server (NTRS)
1994-01-01
A software management system, originally developed for Goddard Space Flight Center (GSFC) by Century Computing, Inc. has evolved from a menu and command oriented system to a state-of-the art user interface development system supporting high resolution graphics workstations. Transportable Applications Environment (TAE) was initially distributed through COSMIC and backed by a TAE support office at GSFC. In 1993, Century Computing assumed the support and distribution functions and began marketing TAE Plus, the system's latest version. The software is easy to use and does not require programming experience.
Fostering soft skills in project-oriented learning within an agile atmosphere
NASA Astrophysics Data System (ADS)
Chassidim, Hadas; Almog, Dani; Mark, Shlomo
2018-07-01
The project-oriented and Agile approaches have motivated a new generation of software engineers. Within the academic curriculum, the issue of whether students are being sufficiently prepared for the future has been raised. The objective of this work is to present the project-oriented environment as an influential factor that software engineering profession requires, using the second year course 'Software Development and Management in Agile Approach' as a case-study. This course combines academic topics, self-learned and soft skills implementation, the call for creativity, and the recognition of updated technologies and dynamic circumstances. The results of a survey that evaluated the perceived value of the course showed that the highest contribution of our environment was in the effectiveness of the team-work and the overall development process of the project.
Development of a change management system
NASA Technical Reports Server (NTRS)
Parks, Cathy Bonifas
1993-01-01
The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).
NASA Astrophysics Data System (ADS)
Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan
Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.
pyam: Python Implementation of YaM
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan
2012-01-01
pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.
Sarkar, Archana; Dutta, Arup; Dhingra, Usha; Dhingra, Pratibha; Verma, Priti; Juyal, Rakesh; Black, Robert E; Menon, Venugopal P; Kumar, Jitendra; Sazawal, Sunil
2006-08-01
In settings in developing countries, children often socialize with multiple socializing agents (peers, siblings, neighbors) apart from their parents, and thus, a measurement of a child's social interactions should be expanded beyond parental interactions. Since the environment plays a role in shaping a child's development, the measurement of child-socializing agents' interactions is important. We developed and used a computerized observational software Behavior and Social Interaction Software (BASIS) with a preloaded coding scheme installed on a handheld Palm device to record complex observations of interactions between children and socializing agents. Using BASIS, social interaction assessments were conducted on 573 preschool children for 1 h in their natural settings. Multiple screens with a set of choices in each screen were designed that included the child's location, broad activity, state, and interactions with child-socializing agents. Data were downloaded onto a computer and systematically analyzed. BASIS, installed on Palm OS (M-125), enabled the recording of the complex interactions of child-socializing agents that could not be recorded with manual forms. Thus, this tool provides an innovative and relatively accurate method for the systematic recording of social interactions in an unrestricted environment.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
Automated software development workstation
NASA Technical Reports Server (NTRS)
Prouty, Dale A.; Klahr, Philip
1988-01-01
A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.
Virtual Exercise Training Software System
NASA Technical Reports Server (NTRS)
Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.
2018-01-01
The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.
NASA Technical Reports Server (NTRS)
Steib, Michael
1991-01-01
The APD software features include: On-line help, Three level architecture, (Logic environments, Setup/Application environment, Data environment), Explanation capability, and File handling. The kinds of experimentation and record keeping that leads to effective expert systems is facilitated by: (1) a library of inferencing modules (in the logic environment); (2) an explanation capability which reveals logic strategies to users; (3) automated file naming conventions; (4) an information retrieval system; and (5) on-line help. These aid with effective use of knowledge, debugging and experimentation. Since the APD software anticipates the logical rules becoming complicated, it is embedded in a production system language (CLIPS) to insure the full power of the production system paradigm of CLIPS and availability of the procedural language C. The development is discussed of the APD software and three example applications: toy, experimental, and operational prototype for submarine maintenance predictions.
Security Risks: Management and Mitigation in the Software Life Cycle
NASA Technical Reports Server (NTRS)
Gilliam, David P.
2004-01-01
A formal approach to managing and mitigating security risks in the software life cycle is requisite to developing software that has a higher degree of assurance that it is free of security defects which pose risk to the computing environment and the organization. Due to its criticality, security should be integrated as a formal approach in the software life cycle. Both a software security checklist and assessment tools should be incorporated into this life cycle process and integrated with a security risk assessment and mitigation tool. The current research at JPL addresses these areas through the development of a Sotfware Security Assessment Instrument (SSAI) and integrating it with a Defect Detection and Prevention (DDP) risk management tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William Eugene
These slides describe different strategies for installing Python software. Although I am a big fan of Python software development, robust strategies for software installation remains a challenge. This talk describes several different installation scenarios. The Good: the user has administrative privileges - Installing on Windows with an installer executable, Installing with Linux application utility, Installing a Python package from the PyPI repository, and Installing a Python package from source. The Bad: the user does not have administrative privileges - Using a virtual environment to isolate package installations, and Using an installer executable on Windows with a virtual environment. The Ugly:more » the user needs to install an extension package from source - Installing a Python extension package from source, and PyCoinInstall - Managing builds for Python extension packages. The last item referring to PyCoinInstall describes a utility being developed for the COIN-OR software, which is used within the operations research community. COIN-OR includes a variety of Python and C++ software packages, and this script uses a simple plug-in system to support the management of package builds and installation.« less
A theoretical basis for the analysis of redundant software subject to coincident errors
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.; Lee, L. D.
1985-01-01
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.
Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko
2014-12-01
To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.
USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOL IN POLLUTION PREVENTION
Computer-Aided Process Engineering has become established in industry as a design tool. With the establishment of the CAPE-OPEN software specifications for process simulation environments. CAPE-OPEN provides a set of "middleware" standards that enable software developers to acces...
NASA Technical Reports Server (NTRS)
Hops, J. M.; Sherif, J. S.
1994-01-01
A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that noe new defects are introduced in the development phase of the software process; and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modifications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.
WISE: Automated support for software project management and measurement. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ramakrishnan, Sudhakar
1995-01-01
One important aspect of software development and IV&V is measurement. Unless a software development effort is measured in some way, it is difficult to judge the effectiveness of current efforts and predict future performances. Collection of metrics and adherence to a process are difficult tasks in a software project. Change activity is a powerful indicator of project status. Automated systems that can handle change requests, issues, and other process documents provide an excellent platform for tracking the status of the project. A World Wide Web based architecture is developed for (a) making metrics collection an implicit part of the software process, (b) providing metric analysis dynamically, (c) supporting automated tools that can complement current practices of in-process improvement, and (d) overcoming geographical barrier. An operational system (WISE) instantiates this architecture allowing for the improvement of software process in a realistic environment. The tool tracks issues in software development process, provides informal communication between the users with different roles, supports to-do lists (TDL), and helps in software process improvement. WISE minimizes the time devoted to metrics collection, analysis, and captures software change data. Automated tools like WISE focus on understanding and managing the software process. The goal is improvement through measurement.
A Software Laboratory Environment for Computer-Based Problem Solving.
ERIC Educational Resources Information Center
Kurtz, Barry L.; O'Neal, Micheal B.
This paper describes a National Science Foundation-sponsored project at Louisiana Technological University to develop computer-based laboratories for "hands-on" introductions to major topics of computer science. The underlying strategy is to develop structured laboratory environments that present abstract concepts through the use of…
Understanding the Requirements for Open Source Software
2009-06-17
GNOME and K Development Environment ( KDE ) for end-user interfaces, the Eclipse and NetBeans interactive development environments for Java-based Web...17 4.1. Informal Post-hoc Assertion of OSS Requirements vs . Requirements Elicitation...18 4.2. Requirements Reading, Sense-making, and Accountability vs . Requirements Analysis
Simulation Testing of Embedded Flight Software
NASA Technical Reports Server (NTRS)
Shahabuddin, Mohammad; Reinholtz, William
2004-01-01
Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.
Extreme Programming: Maestro Style
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2009-01-01
"Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Qiang
At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less
Software Project Management and Measurement on the World-Wide-Web (WWW)
NASA Technical Reports Server (NTRS)
Callahan, John; Ramakrishnan, Sudhaka
1996-01-01
We briefly describe a system for forms-based, work-flow management that helps members of a software development team overcome geographical barriers to collaboration. Our system, called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-Web service that allows for management and measurement of software development projects based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software development process, provides informal communication between the users with different roles, supports to-do lists, and helps in software process improvement. WISE minimizes the time devoted to metrics collection and analysis by providing implicit delivery of messages between users based on the content of project documents. The use of a database in WISE is hidden from the users who view WISE as maintaining a personal 'to-do list' of tasks related to the many projects on which they may play different roles.
NASA Technology Transfer - Human Robot Teaming
2016-12-23
Produced for Intelligent Robotics Group to show at January 2017 Consumer Electronics Show (CES). Highlights development of VERVE (Visual Environment for Remote Virtual Exploration) software used on K-10, K-REX, SPHERES and AstroBee projects for 3D awareness. Also mentions transfer of software to Nissan for their development in their Autonomous Vehicle project. Video includes Nissan's self-driving car around NASA Ames.
RELAP-7 Software Verification and Validation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling
This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less
The Hidden Job Requirements for a Software Engineer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.
In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may bemore » somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.« less
SEL's Software Process-Improvement Program
NASA Technical Reports Server (NTRS)
Basili, Victor; Zelkowitz, Marvin; McGarry, Frank; Page, Jerry; Waligora, Sharon; Pajerski, Rose
1995-01-01
The goals and operations of the Software Engineering Laboratory (SEL) is reviewed. For nearly 20 years the SEL has worked to understand, assess, and improve software and the development process within the production environment of the Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center. The SEL was established in 1976 with the goals of reducing: (1) the defect rate of delivered software, (2) the cost of software to support flight projects, and (3) the average time to produce mission-support software. After studying over 125 projects of FDD, the results have guided the standards, management practices, technologies, and the training within the division. The results of the studies have been a 75 percent reduction in defects, a 50 percent reduction in cost, and a 25 percent reduction in development time. Over time the goals of SEL have been clarified. The goals are now stated as: (1) Understand baseline processes and product characteristics, (2) Assess improvements that have been incorporated into the development projects, (3) Package and infuse improvements into the standard SEL process. The SEL improvement goal is to demonstrate continual improvement of the software process by carrying out analysis, measurement and feedback to projects with in the FDD environment. The SEL supports the understanding of the process by study of several processes including, the effort distribution, and error detection rates. The SEL assesses and refines the processes. Once the assessment and refinement of a process is completed, the SEL packages the process by capturing the process in standards, tools and training.
Development of the FITS tools package for multiple software environments
NASA Technical Reports Server (NTRS)
Pence, W. D.; Blackburn, J. K.
1992-01-01
The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.
Wearable Notification via Dissemination Service in a Pervasive Computing Environment
2015-09-01
context, state, and environment in a manner that would be transparent to a Soldier’s common operations. 15. SUBJECT TERMS pervasive computing, Android ...of user context shifts, i.e., changes in the user’s position, history , workflow, or resource interests. If the PCE is described as a 2-component...convenient viewing on the Glass’s screen just above the line of sight. All of the software developed uses Google’s Android open-source software stack
Greene, D D; Heeter, C
1998-01-01
Two new cancer patient information CD-ROMs extend the personal stories within virtual environments model of cancer patient information developed for Breast Cancer Lighthouse. Cancer Pain Retreat and Cancer Prevention Park: Games for Life are intended to inform and inspire users in an emotionally calming and intimately informative manner. The software offers users an experience--of visiting a virtual place and meeting and talking with patients and health care professionals.
ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A
NASA Technical Reports Server (NTRS)
Terwilliger, Robert B.; Campbell, Roy H.
1985-01-01
ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects.
RESEARCH AND DESIGN ABOUT VERSATILE 3D-CAD ENGINE FOR CONSTRUCTION
NASA Astrophysics Data System (ADS)
Tanaka, Shigenori; Kubota, Satoshi; Kitagawa, Etsuji; Monobe, Kantaro; Nakamura, Kenji
In the construction field of Japan, it is an important subject to build the environment where 3D-CAD data is used for CALS/EC, information construction, and an improvement in productivity. However, in the construction field, 3D-CAD software does not exist under the present circumstances. Then, in order to support development of domestic 3D-CAD software, it is required to develop a 3D-CAD engine. In this research, in order to familiarize the 3D-CAD software at low cost and quickly and build the environment where the 3D-CAD software is utilizable, investigation for designing a 3D-CAD engine is proposed. The target for investigation are the use scene of 3D-CAD, the seeds which accompany 3D-CAD, a standardization trend, existing products, IT component engineering. Based on results of the investigation, the functional requirements for the 3D-CAD engine for the construction field were concluded.
A Roadmap for Using Agile Development in a Traditional Environment
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas; Grenander, Sven
2006-01-01
One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.
A Roadmap for Using Agile Development in a Traditional Environment
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven
2006-01-01
One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.
Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
2002-01-01
The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects
Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.
2012-01-01
Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305
Technology transfer in software engineering
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1989-01-01
The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Project under the direction of NASA Johnson Space Center. AdaNET was established to promote the principles of software engineering to the software development industry. AdaNET will contain not only environments and tools, but also concepts, principles, models, standards, guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and private industry who are working in software development. It will seek new clients from those who have not yet adopted the principles and practices of software engineering. Some of the goals of AdaNET are to become known as an objective, authoritative source of new software engineering information and parts, to provide easy access to information and parts, and to keep abreast of innovations in the field.
Experimental software engineering: Seventeen years of lessons in the SEL
NASA Technical Reports Server (NTRS)
Mcgarry, Frank E.
1992-01-01
Seven key principles developed by the Software Engineering Laboratory (SEL) at the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA) are described. For the past 17 years, the SEL has been experimentally analyzing the development of production software as varying techniques and methodologies are applied in this one environment. The SEL has collected, archived, and studied detailed measures from more than 100 flight dynamics projects, thereby gaining significant insight into the effectiveness of numerous software techniques, as well as extensive experience in the overall effectiveness of 'Experimental Software Engineering'. This experience has helped formulate follow-on studies in the SEL, and it has helped other software organizations better understand just what can be accomplished and what cannot be accomplished through experimentation.
An interactive environment for the analysis of large Earth observation and model data sets
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.
1993-01-01
We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.
An interactive environment for the analysis of large Earth observation and model data sets
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.
1992-01-01
We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.
Space Station Information Systems
NASA Technical Reports Server (NTRS)
Pittman, Clarence W.
1988-01-01
The utility of the Space Station is improved, the ability to manage and integrate its development and operation enhanced, and the cost and risk of developing the software for it is minimized by three major information systems. The Space Station Information System (SSIS) provides for the transparent collection and dissemination of operational information to all users and operators. The Technical and Management Information System (TMIS) provides all the developers with timely and consistent program information and a project management 'window' to assess the project status. The Software Support Environment (SSE) provides automated tools and standards to be used by all software developers. Together, these three systems are vital to the successful execution of the program.
Stability analysis using SDSA tool
NASA Astrophysics Data System (ADS)
Goetzendorf-Grabowski, Tomasz; Mieszalski, Dawid; Marcinkiewicz, Ewa
2011-11-01
The SDSA (Simulation and Dynamic Stability Analysis) application is presented as a tool for analysing the dynamic characteristics of the aircraft just in the conceptual design stage. SDSA is part of the CEASIOM (Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods) software environment which was developed within the SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by the European Commission 6th Framework Program. SDSA can also be used as stand alone software, and integrated with other design and optimisation systems using software wrappers. This paper focuses on the main functionalities of SDSA and presents both computational and free flight experimental results to compare and validate the presented software. Two aircraft are considered, the EADS Ranger 2000 and the Warsaw University designed PW-6 glider. For the two cases considered here the SDSA software is shown to be an excellent tool for predicting dynamic characteristics of an aircraft.
A Validation Framework for the Long Term Preservation of High Energy Physics Data
NASA Astrophysics Data System (ADS)
Ozerov, Dmitri; South, David M.
2014-06-01
The study group on data preservation in high energy physics, DPHEP, is moving to a new collaboration structure, which will focus on the implementation of preservation projects, such as those described in the group's large scale report published in 2012. One such project is the development of a validation framework, which checks the compatibility of evolving computing environments and technologies with the experiments software for as long as possible, with the aim of substantially extending the lifetime of the analysis software, and hence of the usability of the data. The framework is designed to automatically test and validate the software and data of an experiment against changes and upgrades to the computing environment, as well as changes to the experiment software itself. Technically, this is realised using a framework capable of hosting a number of virtual machine images, built with different configurations of operating systems and the relevant software, including any necessary external dependencies.
A study of software standards used in the avionics industry
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.
1994-01-01
Within the past decade, software has become an increasingly common element in computing systems. In particular, the role of software used in the aerospace industry, especially in life- or safety-critical applications, is rapidly expanding. This intensifies the need to use effective techniques for achieving and verifying the reliability of avionics software. Although certain software development processes and techniques are mandated by government regulating agencies, no one methodology has been shown to consistently produce reliable software. The knowledge base for designing reliable software simply has not reached the maturity of its hardware counterpart. In an effort to increase our understanding of software, the Langley Research Center conducted a series of experiments over 15 years with the goal of understanding why and how software fails. As part of this program, the effectiveness of current industry standards for the development of avionics is being investigated. This study involves the generation of a controlled environment to conduct scientific experiments on software processes.
What does voice-processing technology support today?
Nakatsu, R; Suzuki, Y
1995-01-01
This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720
Requirements for a multifunctional code architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiihonen, O.; Juslin, K.
1997-07-01
The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results aremore » managed.« less
Software reliability models for critical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, H.; Pham, M.
This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the secondmore » place. 407 refs., 4 figs., 2 tabs.« less
Software reliability models for critical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, H.; Pham, M.
This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place.more » 407 refs., 4 figs., 2 tabs.« less
Use of the NetBeans Platform for NASA Robotic Conjunction Assessment Risk Analysis
NASA Technical Reports Server (NTRS)
Sabey, Nickolas J.
2014-01-01
The latest Java and JavaFX technologies are very attractive software platforms for customers involved in space mission operations such as those of NASA and the US Air Force. For NASA Robotic Conjunction Assessment Risk Analysis (CARA), the NetBeans platform provided an environment in which scalable software solutions could be developed quickly and efficiently. Both Java 8 and the NetBeans platform are in the process of simplifying CARA development in secure environments by providing a significant amount of capability in a single accredited package, where accreditation alone can account for 6-8 months for each library or software application. Capabilities either in use or being investigated by CARA include: 2D and 3D displays with JavaFX, parallelization with the new Streams API, and scalability through the NetBeans plugin architecture.
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
Developing tools for digital radar image data evaluation
NASA Technical Reports Server (NTRS)
Domik, G.; Leberl, F.; Raggam, J.
1986-01-01
The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.
Program For Generating Interactive Displays
NASA Technical Reports Server (NTRS)
Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl;
1991-01-01
Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute
Reengineering legacy software to object-oriented systems
NASA Technical Reports Server (NTRS)
Pitman, C.; Braley, D.; Fridge, E.; Plumb, A.; Izygon, M.; Mears, B.
1994-01-01
NASA has a legacy of complex software systems that are becoming increasingly expensive to maintain. Reengineering is one approach to modemizing these systems. Object-oriented technology, other modem software engineering principles, and automated tools can be used to reengineer the systems and will help to keep maintenance costs of the modemized systems down. The Software Technology Branch at the NASA/Johnson Space Center has been developing and testing reengineering methods and tools for several years. The Software Technology Branch is currently providing training and consulting support to several large reengineering projects at JSC, including the Reusable Objects Software Environment (ROSE) project, which is reengineering the flight analysis and design system (over 2 million lines of FORTRAN code) into object-oriented C++. Many important lessons have been learned during the past years; one of these is that the design must never be allowed to diverge from the code during maintenance and enhancement. Future work on open, integrated environments to support reengineering is being actively planned.
Advanced program development management software system. Software description and user's manual
NASA Technical Reports Server (NTRS)
1990-01-01
The objectives of this project were to apply emerging techniques and tools from the computer science discipline of paperless management to the activities of the Space Transportation and Exploration Office (PT01) in Marshall Space Flight Center (MSFC) Program Development, thereby enhancing the productivity of the workforce, the quality of the data products, and the collection, dissemination, and storage of information. The approach used to accomplish the objectives emphasized the utilization of finished form (off-the-shelf) software products to the greatest extent possible without impacting the performance of the end product, to pursue developments when necessary in the rapid prototyping environment to provide a mechanism for frequent feedback from the users, and to provide a full range of user support functions during the development process to promote testing of the software.
Software Engineering Laboratory Ada performance study: Results and implications
NASA Technical Reports Server (NTRS)
Booth, Eric W.; Stark, Michael E.
1992-01-01
The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.
The advanced software development workstation project
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III; Pitman, Charles L.
1991-01-01
The Advanced Software Development Workstation (ASDW) task is researching and developing the technologies required to support Computer Aided Software Engineering (CASE) with the emphasis on those advanced methods, tools, and processes that will be of benefit to support all NASA programs. Immediate goals are to provide research and prototype tools that will increase productivity, in the near term, in projects such as the Software Support Environment (SSE), the Space Station Control Center (SSCC), and the Flight Analysis and Design System (FADS) which will be used to support the Space Shuttle and Space Station Freedom. Goals also include providing technology for development, evolution, maintenance, and operations. The technologies under research and development in the ASDW project are targeted to provide productivity enhancements during the software life cycle phase of enterprise and information system modeling, requirements generation and analysis, system design and coding, and system use and maintenance. On-line user's guides will assist users in operating the developed information system with knowledge base expert assistance.
A Testbed for Evaluating Lunar Habitat Autonomy Architectures
NASA Technical Reports Server (NTRS)
Lawler, Dennis G.
2008-01-01
A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Developing a Cyberinfrastructure for integrated assessments of environmental contaminants.
Kaur, Taranjit; Singh, Jatinder; Goodale, Wing M; Kramar, David; Nelson, Peter
2005-03-01
The objective of this study was to design and implement prototype software for capturing field data and automating the process for reporting and analyzing the distribution of mercury. The four phase process used to design, develop, deploy and evaluate the prototype software is described. Two different development strategies were used: (1) design of a mobile data collection application intended to capture field data in a meaningful format and automate transfer into user databases, followed by (2) a re-engineering of the original software to develop an integrated database environment with improved methods for aggregating and sharing data. Results demonstrated that innovative use of commercially available hardware and software components can lead to the development of an end-to-end digital cyberinfrastructure that captures, records, stores, transmits, compiles and integrates multi-source data as it relates to mercury.
Software Design Improvements. Part 2; Software Quality and the Design and Inspection Process
NASA Technical Reports Server (NTRS)
Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom
1997-01-01
The application of assurance engineering techniques improves the duration of failure-free performance of software. The totality of features and characteristics of a software product are what determine its ability to satisfy customer needs. Software in safety-critical systems is very important to NASA. We follow the System Safety Working Groups definition for system safety software as: 'The optimization of system safety in the design, development, use and maintenance of software and its integration with safety-critical systems in an operational environment. 'If it is not safe, say so' has become our motto. This paper goes over methods that have been used by NASA to make software design improvements by focusing on software quality and the design and inspection process.
Embracing Open Software Development in Solar Physics
NASA Astrophysics Data System (ADS)
Hughitt, V. K.; Ireland, J.; Christe, S.; Mueller, D.
2012-12-01
We discuss two ongoing software projects in solar physics that have adopted best practices of the open source software community. The first, the Helioviewer Project, is a powerful data visualization tool which includes online and Java interfaces inspired by Google Maps (tm). This effort allows users to find solar features and events of interest, and download the corresponding data. Having found data of interest, the user now has to analyze it. The dominant solar data analysis platform is an open-source library called SolarSoft (SSW). Although SSW itself is open-source, the programming language used is IDL, a proprietary language with licensing costs that are prohibative for many institutions and individuals. SSW is composed of a collection of related scripts written by missions and individuals for solar data processing and analysis, without any consistent data structures or common interfaces. Further, at the time when SSW was initially developed, many of the best software development processes of today (mirrored and distributed version control, unit testing, continuous integration, etc.) were not standard, and have not since been adopted. The challenges inherent in developing SolarSoft led to a second software project known as SunPy. SunPy is an open-source Python-based library which seeks to create a unified solar data analysis environment including a number of core datatypes such as Maps, Lightcurves, and Spectra which have consistent interfaces and behaviors. By taking advantage of the large and sophisticated body of scientific software already available in Python (e.g. SciPy, NumPy, Matplotlib), and by adopting many of the best practices refined in open-source software development, SunPy has been able to develop at a very rapid pace while still ensuring a high level of reliability. The Helioviewer Project and SunPy represent two pioneering technologies in solar physics - simple yet flexible data visualization and a powerful, new data analysis environment. We discuss the development of both these efforts and how they are beginning to influence the solar physics community.
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Chen, Neil; Ng, Hok K.
2010-01-01
There is increased awareness of anthropogenic factors affecting climate change and urgency to slow the negative impact. Greenhouse gases, oxides of Nitrogen and contrails resulting from aviation affect the climate in different and uncertain ways. This paper develops a flexible simulation and optimization software architecture to study the trade-offs involved in reducing emissions. The software environment is used to conduct analysis of two approaches for avoiding contrails using the concepts of contrail frequency index and optimal avoidance trajectories.
Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations
NASA Astrophysics Data System (ADS)
Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien
2017-09-01
PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.
Using Open Source Software in Visual Simulation Development
2005-09-01
increased the use of the technology in training activities. Using open source/free software tools in the process can expand these possibilities...resulting in even greater cost reduction and allowing the flexibility needed in a training environment. This thesis presents a configuration and architecture...to be used when developing training visual simulations using both personal computers and open source tools. Aspects of the requirements needed in a
Developing Simulated Cyber Attack Scenarios Against Virtualized Adversary Networks
2017-03-01
MAST is a custom software framework originally designed to facilitate the training of network administrators on live networks using SimWare. The MAST...or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services ...scenario development and testing in a virtual test environment. Commercial and custom software tools that provide the ability to conduct network
GRC GSFC TDRSS Waveform Metrics Report
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.
2013-01-01
The report presents software metrics and porting metrics for the GGT Waveform. The porting was from a ground-based COTS SDR, the SDR-3000, to the CoNNeCT JPL SDR. The report does not address any of the Operating Environment (OE) software development, nor the original TDRSS waveform development at GSFC for the COTS SDR. With regard to STRS, the report presents compliance data and lessons learned.
A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, Laura Painton; Wyss, Gregory Dane
2004-07-01
This document is a reference guide for the UNIX Library/Standalone version of the Latin Hypercube Sampling Software. This software has been developed to generate Latin hypercube multivariate samples. This version runs on Linux or UNIX platforms. This manual covers the use of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the updated Windows version of LHS released in 1998 (SAND98-0210). However, some modifications were made to customize it for a UNIX environment and as a librarymore » that is called from the DAKOTA environment. This manual covers the use of the LHS code as a library and in the standalone mode under UNIX.« less
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization.
Jung, Sang-Kyu; McDonald, Karen
2011-08-16
Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization
2011-01-01
Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net. PMID:21846353
EVA: Collaborative Distributed Learning Environment Based in Agents.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Tellez, Rolando Quintero
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…
EVA: An Interactive Web-Based Collaborative Learning Environment
ERIC Educational Resources Information Center
Sheremetov, Leonid; Arenas, Adolfo Guzman
2002-01-01
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidd, M.E.C.
1997-02-01
The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.
HCI∧2 framework: a software framework for multimodal human-computer interaction systems.
Shen, Jie; Pantic, Maja
2013-12-01
This paper presents a novel software framework for the development and research in the area of multimodal human-computer interface (MHCI) systems. The proposed software framework, which is called the HCI∧2 Framework, is built upon publish/subscribe (P/S) architecture. It implements a shared-memory-based data transport protocol for message delivery and a TCP-based system management protocol. The latter ensures that the integrity of system structure is maintained at runtime. With the inclusion of bridging modules, the HCI∧2 Framework is interoperable with other software frameworks including Psyclone and ActiveMQ. In addition to the core communication middleware, we also present the integrated development environment (IDE) of the HCI∧2 Framework. It provides a complete graphical environment to support every step in a typical MHCI system development process, including module development, debugging, packaging, and management, as well as the whole system management and testing. The quantitative evaluation indicates that our framework outperforms other similar tools in terms of average message latency and maximum data throughput under a typical single PC scenario. To demonstrate HCI∧2 Framework's capabilities in integrating heterogeneous modules, we present several example modules working with a variety of hardware and software. We also present an example of a full system developed using the proposed HCI∧2 Framework, which is called the CamGame system and represents a computer game based on hand-held marker(s) and low-cost camera(s).
Designing application software in wide area network settings
NASA Technical Reports Server (NTRS)
Makpangou, Mesaac; Birman, Ken
1990-01-01
Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.
Open-source software: not quite endsville.
Stahl, Matthew T
2005-02-01
Open-source software will never achieve ubiquity. There are environments in which it simply does not flourish. By its nature, open-source development requires free exchange of ideas, community involvement, and the efforts of talented and dedicated individuals. However, pressures can come from several sources that prevent this from happening. In addition, openness and complex licensing issues invite misuse and abuse. Care must be taken to avoid the pitfalls of open-source software.
Evaluation and Validation (E&V) Team Public Report. Volume 5
1990-10-31
aspects, software engineering practices, etc. The E&V requirements which are developed will be used to guide the E&V technical effort. The currently...interoperability of Ada software engineering environment tools and data. The scope of the CAIS-A includes the functionality affecting transportability that is...requirement that they be CAIS conforming tools or data. That is, for example numerous CIVC data exist on special purpose software currently available
Knowledge-based reusable software synthesis system
NASA Technical Reports Server (NTRS)
Donaldson, Cammie
1989-01-01
The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.
Modelling and Implementation of Catalogue Cards Using FreeMarker
ERIC Educational Resources Information Center
Radjenovic, Jelen; Milosavljevic, Branko; Surla, Dusan
2009-01-01
Purpose: The purpose of this paper is to report on a study involving the specification (using Unified Modelling Language (UML) 2.0) of information requirements and implementation of the software components for generating catalogue cards. The implementation in a Java environment is developed using the FreeMarker software.…
Continuation of research into language concepts for the mission support environment
NASA Technical Reports Server (NTRS)
1991-01-01
A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.
Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station
NASA Technical Reports Server (NTRS)
Kirby, Randy L.; Mann, David; Prenger, Stephen G.; Craig, Wayne; Greenwood, Andrew; Morsics, Jonathan; Fricker, Charles H.; Quach, Son; Lechese, Paul
2003-01-01
United Space Alliance (USA) developed and used a new software development method to meet technical, schedule, and budget challenges faced during the development and delivery of the new Shuttle Telemetry Ground Station at Kennedy Space Center. This method, called Collaborative Software Development, enabled KSC to effectively leverage industrial software and build additional capabilities to meet shuttle system and operational requirements. Application of this method resulted in reduced time to market, reduced development cost, improved product quality, and improved programmer competence while developing technologies of benefit to a small company in California (AP Labs Inc.). Many modifications were made to the baseline software product (VMEwindow), which improved its quality and functionality. In addition, six new software capabilities were developed, which are the subject of this article and add useful functionality to the VMEwindow environment. These new software programs are written in C or VXWorks and are used in conjunction with other ground station software packages, such as VMEwindow, Matlab, Dataviews, and PVWave. The Space Shuttle Telemetry Ground Station receives frequency-modulation (FM) and pulse-code-modulated (PCM) signals from the shuttle and support equipment. The hardware architecture (see figure) includes Sun workstations connected to multiple PCM- and FM-processing VersaModule Eurocard (VME) chassis. A reflective memory network transports raw data from PCM Processors (PCMPs) to the programmable digital-to-analog (D/A) converters, strip chart recorders, and analysis and controller workstations.
"Virtual Cockpit Window" for a Windowless Aerospacecraft
NASA Technical Reports Server (NTRS)
Abernathy, Michael F.
2003-01-01
A software system processes navigational and sensory information in real time to generate a three-dimensional-appearing image of the external environment for viewing by crewmembers of a windowless aerospacecraft. The design of the particular aerospacecraft (the X-38) is such that the addition of a real transparent cockpit window to the airframe would have resulted in unacceptably large increases in weight and cost. When exerting manual control, an aircrew needs to see terrain, obstructions, and other features around the aircraft in order to land safely. The X-38 is capable of automated landing, but even when this capability is utilized, the crew still needs to view the external environment: From the very beginning of the United States space program, crews have expressed profound dislike for windowless vehicles. The wellbeing of an aircrew is considerably promoted by a three-dimensional view of terrain and obstructions. The present software system was developed to satisfy the need for such a view. In conjunction with a computer and display equipment that weigh less than would a real transparent window, this software system thus provides a virtual cockpit window. The key problem in the development of this software system was to create a realistic three-dimensional perspective view that is updated in real time. The problem was solved by building upon a pre-existing commercial program LandForm C3 that combines the speed of flight-simulator software with the power of geographic-information-system software to generate real-time, three-dimensional-appearing displays of terrain and other features of flight environments. In the development of the present software, the pre-existing program was modified to enable it to utilize real-time information on the position and attitude of the aerospacecraft to generate a view of the external world as it would appear to a person looking out through a window in the aerospacecraft. The development included innovations in realistic horizon-limit modeling, three-dimensional stereographic display, and interfaces for utilization of data from inertial-navigation devices, Global Positioning System receivers, and laser rangefinders.
A software engineering approach to expert system design and verification
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.; Goodwin, Mary Ann
1988-01-01
Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.
Baig, Hasan; Madsen, Jan
2017-01-15
Simulation and behavioral analysis of genetic circuits is a standard approach of functional verification prior to their physical implementation. Many software tools have been developed to perform in silico analysis for this purpose, but none of them allow users to interact with the model during runtime. The runtime interaction gives the user a feeling of being in the lab performing a real world experiment. In this work, we present a user-friendly software tool named D-VASim (Dynamic Virtual Analyzer and Simulator), which provides a virtual laboratory environment to simulate and analyze the behavior of genetic logic circuit models represented in an SBML (Systems Biology Markup Language). Hence, SBML models developed in other software environments can be analyzed and simulated in D-VASim. D-VASim offers deterministic as well as stochastic simulation; and differs from other software tools by being able to extract and validate the Boolean logic from the SBML model. D-VASim is also capable of analyzing the threshold value and propagation delay of a genetic circuit model. D-VASim is available for Windows and Mac OS and can be downloaded from bda.compute.dtu.dk/downloads/. haba@dtu.dk, jama@dtu.dk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Software-as-a-Service Vendors: Are They Ready to Successfully Deliver?
NASA Astrophysics Data System (ADS)
Heart, Tsipi; Tsur, Noa Shamir; Pliskin, Nava
Software as a service (SaaS) is a software sourcing option that allows organizations to remotely access enterprise applications, without having to install the application in-house. In this work we study vendors' readiness to deliver SaaS, a topic scarcely studied before. The innovation classification (evolutionary vs. revolutionary) and a new, Seven Fundamental Organizational Capabilities (FOCs) Model, are used as the theoretical frameworks. The Seven FOCs model suggests generic yet comprehensive set of capabilities that are required for organizational success: 1) sensing the stakeholders, 2) sensing the business environment, 3) sensing the knowledge environment, 4) process control, 5) process improvement, 6) new process development, and 7) appropriate resolution.
NASA Technical Reports Server (NTRS)
Fridge, Ernest M., III
1991-01-01
Programs in use today generally have all of the function and information processing capabilities required to do their specified job. However, older programs usually use obsolete technology, are not integrated properly with other programs, and are difficult to maintain. Reengineering is becoming a prominent discipline as organizations try to move their systems to more modern and maintainable technologies. The Johnson Space Center (JSC) Software Technology Branch (STB) is researching and developing a system to support reengineering older FORTRAN programs into more maintainable forms that can also be more readily translated to a modern languages such as FORTRAN 8x, Ada, or C. This activity has led to the development of maintenance strategies for design recovery and reengineering. These strategies include a set of standards, methodologies, and the concepts for a software environment to support design recovery and reengineering. A brief description of the problem being addressed and the approach that is being taken by the STB toward providing an economic solution to the problem is provided. A statement of the maintenance problems, the benefits and drawbacks of three alternative solutions, and a brief history of the STB experience in software reengineering are followed by the STB new FORTRAN standards, methodology, and the concepts for a software environment.
The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)
2002-01-01
NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.
A Problem-Solving Environment for Biological Network Informatics: Bio-Spice
2007-06-01
user an environment to access software tools. The Dashboard is built upon the NetBeans Integrated Development Environment (IDE), an open source Java...based integration platform was demonstrated. During the subsequent six month development cycle, the first version of the NetBeans based Bio-SPICE...frameworks (OAA, NetBeans , and Systems Biology Workbench (SBW)[15]), it becomes possible for Bio-SPICE tools to truly interoperate. This interoperation
CAD/CAM approach to improving industry productivity gathers momentum
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1982-01-01
Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined
Integrated design optimization research and development in an industrial environment
NASA Astrophysics Data System (ADS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-04-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Integrated design optimization research and development in an industrial environment
NASA Technical Reports Server (NTRS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-01-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
NASA Technical Reports Server (NTRS)
Messaro. Semma; Harrison, Phillip
2010-01-01
Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.
NASA Technical Reports Server (NTRS)
Brown, David B.
1988-01-01
A history of the Query Utility Environment for Software Testing (QUEST)/Ada is presented. A fairly comprehensive literature review which is targeted toward issues of Ada testing is given. The definition of the system structure and the high level interfaces are then presented. The design of the three major components is described. The QUEST/Ada IORL System Specifications to this point in time are included in the Appendix. A paper is also included in the appendix which gives statistical evidence of the validity of the test case generation approach which is being integrated into QUEST/Ada.
Empirical studies of design software: Implications for software engineering environments
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.
The software development process at the Chandra X-ray Center
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina
2008-08-01
Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.
The design of real time infrared image generation software based on Creator and Vega
NASA Astrophysics Data System (ADS)
Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu
2013-09-01
Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.
A communication channel model of the software process
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1988-01-01
Reported here is beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size), the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. Also derived is an upper bound to productivity that shows that software reuse is the only means than can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.
A communication channel model of the software process
NASA Technical Reports Server (NTRS)
Tausworthe, Robert C.
1988-01-01
Beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds is discussed. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size) the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. An upper bound to productivity is derived that shows that software reuse is the only means that can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.
Thermal modeling of NiH2 batteries
NASA Technical Reports Server (NTRS)
Ponthus, Agnes-Marie; Alexandre, Alain
1994-01-01
The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.
NASA Technical Reports Server (NTRS)
Hardwick, Charles
1991-01-01
Field studies were conducted by MCC to determine areas of research of mutual interest to MCC and JSC. NASA personnel from the Information Systems Directorate and research faculty from UHCL/RICIS visited MCC in Austin, Texas to examine tools and applications under development in the MCC Software Technology Program. MCC personnel presented workshops in hypermedia, design knowledge capture, and design recovery on site at JSC for ISD personnel. The following programs were installed on workstations in the Software Technology Lab, NASA/JSC: (1) GERM (Graphic Entity Relations Modeler); (2) gIBIS (Graphic Issues Based Information System); and (3) DESIRE (Design Recovery tool). These applications were made available to NASA for inspection and evaluation. Programs developed in the MCC Software Technology Program run on the SUN workstation. The programs do not require special configuration, but they will require larger than usual amounts of disk space and RAM to operate properly.
Learning from examples - Generation and evaluation of decision trees for software resource analysis
NASA Technical Reports Server (NTRS)
Selby, Richard W.; Porter, Adam A.
1988-01-01
A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.
Implications of Responsive Space on the Flight Software Architecture
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.
NASA Astrophysics Data System (ADS)
Fraser, Ryan; Gross, Lutz; Wyborn, Lesley; Evans, Ben; Klump, Jens
2015-04-01
Recent investments in HPC, cloud and Petascale data stores, have dramatically increased the scale and resolution that earth science challenges can now be tackled. These new infrastructures are highly parallelised and to fully utilise them and access the large volumes of earth science data now available, a new approach to software stack engineering needs to be developed. The size, complexity and cost of the new infrastructures mean any software deployed has to be reliable, trusted and reusable. Increasingly software is available via open source repositories, but these usually only enable code to be discovered and downloaded. As a user it is hard for a scientist to judge the suitability and quality of individual codes: rarely is there information on how and where codes can be run, what the critical dependencies are, and in particular, on the version requirements and licensing of the underlying software stack. A trusted software framework is proposed to enable reliable software to be discovered, accessed and then deployed on multiple hardware environments. More specifically, this framework will enable those who generate the software, and those who fund the development of software, to gain credit for the effort, IP, time and dollars spent, and facilitate quantification of the impact of individual codes. For scientific users, the framework delivers reviewed and benchmarked scientific software with mechanisms to reproduce results. The trusted framework will have five separate, but connected components: Register, Review, Reference, Run, and Repeat. 1) The Register component will facilitate discovery of relevant software from multiple open source code repositories. The registration process of the code should include information about licensing, hardware environments it can be run on, define appropriate validation (testing) procedures and list the critical dependencies. 2) The Review component is targeting on the verification of the software typically against a set of benchmark cases. This will be achieved by linking the code in the software framework to peer review forums such as Mozilla Science or appropriate Journals (e.g. Geoscientific Model Development Journal) to assist users to know which codes to trust. 3) Referencing will be accomplished by linking the Software Framework to groups such as Figshare or ImpactStory that help disseminate and measure the impact of scientific research, including program code. 4) The Run component will draw on information supplied in the registration process, benchmark cases described in the review and relevant information to instantiate the scientific code on the selected environment. 5) The Repeat component will tap into existing Provenance Workflow engines that will automatically capture information that relate to a particular run of that software, including identification of all input and output artefacts, and all elements and transactions within that workflow. The proposed trusted software framework will enable users to rapidly discover and access reliable code, reduce the time to deploy it and greatly facilitate sharing, reuse and reinstallation of code. Properly designed it could enable an ability to scale out to massively parallel systems and be accessed nationally/ internationally for multiple use cases, including Supercomputer centres, cloud facilities, and local computers.
Why and how Mastering an Incremental and Iterative Software Development Process
NASA Astrophysics Data System (ADS)
Dubuc, François; Guichoux, Bernard; Cormery, Patrick; Mescam, Jean Christophe
2004-06-01
One of the key issues regularly mentioned in the current software crisis of the space domain is related to the software development process that must be performed while the system definition is not yet frozen. This is especially true for complex systems like launchers or space vehicles.Several more or less mature solutions are under study by EADS SPACE Transportation and are going to be presented in this paper. The basic principle is to develop the software through an iterative and incremental process instead of the classical waterfall approach, with the following advantages:- It permits systematic management and incorporation of requirements changes over the development cycle with a minimal cost. As far as possible the most dimensioning requirements are analyzed and developed in priority for validating very early the architecture concept without the details.- A software prototype is very quickly available. It improves the communication between system and software teams, as it enables to check very early and efficiently the common understanding of the system requirements.- It allows the software team to complete a whole development cycle very early, and thus to become quickly familiar with the software development environment (methodology, technology, tools...). This is particularly important when the team is new, or when the environment has changed since the previous development. Anyhow, it improves a lot the learning curve of the software team.These advantages seem very attractive, but mastering efficiently an iterative development process is not so easy and induces a lot of difficulties such as:- How to freeze one configuration of the system definition as a development baseline, while most of thesystem requirements are completely and naturally unstable?- How to distinguish stable/unstable and dimensioning/standard requirements?- How to plan the development of each increment?- How to link classical waterfall development milestones with an iterative approach: when should theclassical reviews be performed: Software Specification Review? Preliminary Design Review? CriticalDesign Review? Code Review? Etc...Several solutions envisaged or already deployed by EADS SPACE Transportation will be presented, both from a methodological and technological point of view:- How the MELANIE EADS ST internal methodology improves the concurrent engineering activitiesbetween GNC, software and simulation teams in a very iterative and reactive way.- How the CMM approach can help by better formalizing Requirements Management and Planningprocesses.- How the Automatic Code Generation with "certified" tools (SCADE) can still dramatically shorten thedevelopment cycle.Then the presentation will conclude by showing an evaluation of the cost and planning reduction based on a pilot application by comparing figures on two similar projects: one with the classical waterfall process, the other one with an iterative and incremental approach.
Telescience Resource Kit Software Lifecycle
NASA Technical Reports Server (NTRS)
Griner, Carolyn S.; Schneider, Michelle
1998-01-01
The challenge of a global operations capability led to the Telescience Resource Kit (TReK) project, an in-house software development project of the Mission Operations Laboratory (MOL) at NASA's Marshall Space Flight Center (MSFC). The TReK system is being developed as an inexpensive comprehensive personal computer- (PC-) based ground support system that can be used by payload users from their home sites to interact with their payloads on board the International Space Station (ISS). The TReK project is currently using a combination of the spiral lifecycle model and the incremental lifecycle model. As with any software development project, there are four activities that can be very time consuming: Software design and development, project documentation, testing, and umbrella activities, such as quality assurance and configuration management. In order to produce a quality product, it is critical that each of these activities receive the appropriate amount of attention. For TReK, the challenge was to lay out a lifecycle and project plan that provides full support for these activities, is flexible, provides a way to deal with changing risks, can accommodate unknowns, and can respond to changes in the environment quickly. This paper will provide an overview of the TReK lifecycle, a description of the project's environment, and a general overview of project activities.
Software cost/resource modeling: Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. J.
1980-01-01
A parametric software cost estimation model prepared for JPL deep space network (DSN) data systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models, such as those of the General Research Corporation, Doty Associates, IBM (Walston-Felix), Rome Air Force Development Center, University of Maryland, and Rayleigh-Norden-Putnam. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software lifecycle statistics. The estimation model output scales a standard DSN work breakdown structure skeleton, which is then input to a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.
Advances in knowledge-based software engineering
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems.
Lessons Learned in the First Year Operating Software Defined Radios in Space
NASA Technical Reports Server (NTRS)
Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard
2014-01-01
Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDRs approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.
Lessons Learned in the First Year Operating Software Defined Radios in Space
NASA Technical Reports Server (NTRS)
Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard
2014-01-01
Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDR's approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.
Contingency theoretic methodology for agent-based web-oriented manufacturing systems
NASA Astrophysics Data System (ADS)
Durrett, John R.; Burnell, Lisa J.; Priest, John W.
2000-12-01
The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.
Sneak Analysis Application Guidelines
1982-06-01
Hardware Program Change Cost Trend, Airborne Environment ....... ....................... 111 3-11 Relative Software Program Change Costs...113 3-50 Derived Software Program Change Cost by Phase,* Airborne Environment ..... ............... 114 3-51 Derived Software Program Change...Cost by Phase, Ground/Water Environment ... ............. .... 114 3-52 Total Software Program Change Costs ................ 115 3-53 Sneak Analysis
Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
NASA Technical Reports Server (NTRS)
Fordyce, Jess
1996-01-01
Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.
Improved Air Combat Awareness; with AESA and Next-Generation Signal Processing
2002-09-01
competence network Building techniques Software development environment Communication Computer architecture Modeling Real-time programming Radar...memory access, skewed load and store, 3.2 GB/s BW • Performance: 400 MFLOPS Runtime environment Custom runtime routines Driver routines Hardware
NASA Technical Reports Server (NTRS)
Brown, Robert L.; Doyle, Dee; Haines, Richard F.; Slocum, Michael
1989-01-01
As part of the Telescience Testbed Pilot Program, the Universities Space Research Association/ Research Institute for Advanced Computer Science (USRA/RIACS) proposed to support remote communication by providing a network of human/machine interfaces, computer resources, and experimental equipment which allows: remote science, collaboration, technical exchange, and multimedia communication. The telescience workstation is intended to provide a local computing environment for telescience. The purpose of the program are as follows: (1) to provide a suitable environment to integrate existing and new software for a telescience workstation; (2) to provide a suitable environment to develop new software in support of telescience activities; (3) to provide an interoperable environment so that a wide variety of workstations may be used in the telescience program; (4) to provide a supportive infrastructure and a common software base; and (5) to advance, apply, and evaluate the telescience technolgy base. A prototype telescience computing environment designed to bring practicing scientists in domains other than their computer science into a modern style of doing their computing was created and deployed. This environment, the Telescience Windowing Environment, Phase 1 (TeleWEn-1), met some, but not all of the goals stated above. The TeleWEn-1 provided a window-based workstation environment and a set of tools for text editing, document preparation, electronic mail, multimedia mail, raster manipulation, and system management.
The software analysis project for the Office of Human Resources
NASA Technical Reports Server (NTRS)
Tureman, Robert L., Jr.
1994-01-01
There were two major sections of the project for the Office of Human Resources (OHR). The first section was to conduct a planning study to analyze software use with the goal of recommending software purchases and determining whether the need exists for a file server. The second section was analysis and distribution planning for retirement planning computer program entitled VISION provided by NASA Headquarters. The software planning study was developed to help OHR analyze the current administrative desktop computing environment and make decisions regarding software acquisition and implementation. There were three major areas addressed by the study: current environment new software requirements, and strategies regarding the implementation of a server in the Office. To gather data on current environment, employees were surveyed and an inventory of computers were produced. The surveys were compiled and analyzed by the ASEE fellow with interpretation help by OHR staff. New software requirements represented a compilation and analysis of the surveyed requests of OHR personnel. Finally, the information on the use of a server represents research done by the ASEE fellow and analysis of survey data to determine software requirements for a server. This included selection of a methodology to estimate the number of copies of each software program required given current use and estimated growth. The report presents the results of the computing survey, a description of the current computing environment, recommenations for changes in the computing environment, current software needs, management advantages of using a server, and management considerations in the implementation of a server. In addition, detailed specifications were presented for the hardware and software recommendations to offer a complete picture to OHR management. The retirement planning computer program available to NASA employees will aid in long-range retirement planning. The intended audience is the NASA civil service employee with several years until retirement. The employee enters current salary and savings information as well as goals concerning salary at retirement, assumptions on inflation, and the return on investments. The program produces a picture of the employee's retirement income from all sources based on the assumptions entered. A session showing features of the program was conducted for key personnel at the Center. After analysis, it was decided to offer the program through the Learning Center starting in August 1994.
NASA Astrophysics Data System (ADS)
Kuhlmann, Arne; Herd, Daniel; Röβler, Benjamin; Gallmann, Eva; Jungbluth, Thomas
In pig production software and electronic systems are widely used for process control and management. Unfortunately most devices on farms are proprietary solutions and autonomically working. To unify data communication of devices in agricultural husbandry, the international standard ISOagriNET (ISO 17532:2007) was developed. It defines data formats and exchange protocols, to link up devices like climate controls, feeding systems and sensors, but also management software. The aim of the research project, "Information and Data Collection in Livestock Systems" is to develop an ISOagriNET compliant IT system, a so called Farming Cell. It integrates all electronic components to acquire the available data and information for pig fattening. That way, an additional benefit to humans, animals and the environment regarding process control and documentation, can be generated. Developing the Farming Cell is very complex; in detail it is very difficult and long-winded to integrate hardware and software by various vendors into an ISOagriNET compliant IT system. This ISOagriNET prototype shows as a test environment the potential of this new standard.
The M68HC11 gripper controller software. Thesis
NASA Technical Reports Server (NTRS)
Tsai, Jodi Wei-Duk
1991-01-01
This thesis discusses the development of firmware for the 68HC11 gripper controller. A general description of the software and hardware interfaces is given. The C library interface for the gripper is then described and followed by a detailed discussion of the software architecture of the firmware. A procedure to assemble and download 68HC11 programs is presented in the form of a tutorial. The tools used to implement this environment are then described. Finally, the implementation of the configuration management scheme used to manage all CIRSSE software is presented.
CARDS: A blueprint and environment for domain-specific software reuse
NASA Technical Reports Server (NTRS)
Wallnau, Kurt C.; Solderitsch, Anne Costa; Smotherman, Catherine
1992-01-01
CARDS (Central Archive for Reusable Defense Software) exploits advances in domain analysis and domain modeling to identify, specify, develop, archive, retrieve, understand, and reuse domain-specific software components. An important element of CARDS is to provide visibility into the domain model artifacts produced by, and services provided by, commercial computer-aided software engineering (CASE) technology. The use of commercial CASE technology is important to provide rich, robust support for the varied roles involved in a reuse process. We refer to this kind of use of knowledge representation systems as supporting 'knowledge-based integration.'
Agile methods in biomedical software development: a multi-site experience report.
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-05-30
Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.
Agile methods in biomedical software development: a multi-site experience report
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-01-01
Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914
Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox
ERIC Educational Resources Information Center
Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima
2011-01-01
Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…
Enhancement of Spatial Thinking with Virtual Spaces 1.0
ERIC Educational Resources Information Center
Hauptman, Hanoch
2010-01-01
Developing a software environment to enhance 3D geometric proficiency demands the consideration of theoretical views of the learning process. Simultaneously, this effort requires taking into account the range of tools that technology offers, as well as their limitations. In this paper, we report on the design of Virtual Spaces 1.0 software, a…
ERIC Educational Resources Information Center
Lee, Young-Jin
2011-01-01
This study investigates whether a visual programming environment called Etoys could enable teachers to create software applications meeting their own instructional needs. Twenty-four teachers who participated in the study successfully developed their own educational computer programs in the educational technology course employing cognitive…
The Environmental Control and Life Support System (ECLSS) advanced automation project
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, Ray
1990-01-01
The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.
Application Reuse Library for Software, Requirements, and Guidelines
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Thronesbery, Carroll
1994-01-01
Better designs are needed for expert systems and other operations automation software, for more reliable, usable and effective human support. A prototype computer-aided Application Reuse Library shows feasibility of supporting concurrent development and improvement of advanced software by users, analysts, software developers, and human-computer interaction experts. Such a library expedites development of quality software, by providing working, documented examples, which support understanding, modification and reuse of requirements as well as code. It explicitly documents and implicitly embodies design guidelines, standards and conventions. The Application Reuse Library provides application modules with Demo-and-Tester elements. Developers and users can evaluate applicability of a library module and test modifications, by running it interactively. Sub-modules provide application code and displays and controls. The library supports software modification and reuse, by providing alternative versions of application and display functionality. Information about human support and display requirements is provided, so that modifications will conform to guidelines. The library supports entry of new application modules from developers throughout an organization. Example library modules include a timer, some buttons and special fonts, and a real-time data interface program. The library prototype is implemented in the object-oriented G2 environment for developing real-time expert systems.
Parallel computation and the Basis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.R.
1992-12-16
A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to-use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communication costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis and Parallelmore » Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less
Parallel computation and the basis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.R.
1993-05-01
A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communications costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis andmore » Parallel Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less
WinTRAX: A raytracing software package for the design of multipole focusing systems
NASA Astrophysics Data System (ADS)
Grime, G. W.
2013-07-01
The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.
Enhancing Computer Science Education with a Wireless Intelligent Simulation Environment
ERIC Educational Resources Information Center
Cook, Diane J.; Huber, Manfred; Yerraballi, Ramesh; Holder, Lawrence B.
2004-01-01
The goal of this project is to develop a unique simulation environment that can be used to increase students' interest and expertise in Computer Science curriculum. Hands-on experience with physical or simulated equipment is an essential ingredient for learning, but many approaches to training develop a separate piece of equipment or software for…
A New Approach to Developing Interactive Software Modules Through Graduate Education
NASA Astrophysics Data System (ADS)
Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.
2014-06-01
Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive, educational, online software modules can be developed effectively by students as a curriculum component of an advanced science course. We discuss a set of 15 such modules developed by Harvard University graduate students to demonstrate various concepts related to astronomy and physics. Their successful development of these modules demonstrates that online software tools for education and outreach on specialized topics can be produced while simultaneously fulfilling project-based learning objectives. We describe a set of technologies suitable for module development and present in detail four examples of modules developed by the students. We offer recommendations for incorporating educational software development within a graduate curriculum and conclude by discussing the relevance of this novel approach to new online learning environments like edX.
Scalable Performance Environments for Parallel Systems
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.
1991-01-01
As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.
New technologies for supporting real-time on-board software development
NASA Astrophysics Data System (ADS)
Kerridge, D.
1995-03-01
The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.
Fault tolerant testbed evaluation, phase 1
NASA Technical Reports Server (NTRS)
Caluori, V., Jr.; Newberry, T.
1993-01-01
In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Ri Yi
2018-06-01
Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.
Near-infrared face recognition utilizing open CV software
NASA Astrophysics Data System (ADS)
Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.
2014-06-01
Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.
Managing Scientific Software Complexity with Bocca and CCA
Allan, Benjamin A.; Norris, Boyana; Elwasif, Wael R.; ...
2008-01-01
In high-performance scientific software development, the emphasis is often on short time to first solution. Even when the development of new components mostly reuses existing components or libraries and only small amounts of new code must be created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs, we introduce Bocca, the first tool to enablemore » application developers to perform rapid component prototyping while maintaining robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive build environment for creating and managing applications composed of Common Component Architecture components. Of critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++, Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something that works, and evolve it to the user's purpose.« less
Proceedings of Tenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1985-01-01
Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.
NASA Technical Reports Server (NTRS)
Greenspan, Sol; Feblowitz, Mark
1992-01-01
ACME is an experimental environment for investigating new approaches to modeling and analysis of system requirements and designs. ACME is built on and extends object-oriented conceptual modeling techniques and knowledge representation and reasoning (KRR) tools. The most immediate intended use for ACME is to help represent, understand, and communicate system designs during the early stages of system planning and requirements engineering. While our research is ostensibly aimed at software systems in general, we are particularly motivated to make an impact in the telecommunications domain, especially in the area referred to as Intelligent Networks (IN's). IN systems contain the software to provide services to users of a telecommunications network (e.g., call processing services, information services, etc.) as well as the software that provides the internal infrastructure for providing the services (e.g., resource management, billing, etc.). The software includes not only systems developed by the network proprietors but also by a growing group of independent service software providers.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
Development of Data Processing Software for NBI Spectroscopic Analysis System
NASA Astrophysics Data System (ADS)
Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong
2015-04-01
A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation
Bringing your tools to CyVerse Discovery Environment using Docker
Devisetty, Upendra Kumar; Kennedy, Kathleen; Sarando, Paul; Merchant, Nirav; Lyons, Eric
2016-01-01
Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks) can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse’s Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse’s production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE) which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use. PMID:27803802
Bringing your tools to CyVerse Discovery Environment using Docker.
Devisetty, Upendra Kumar; Kennedy, Kathleen; Sarando, Paul; Merchant, Nirav; Lyons, Eric
2016-01-01
Docker has become a very popular container-based virtualization platform for software distribution that has revolutionized the way in which scientific software and software dependencies (software stacks) can be packaged, distributed, and deployed. Docker makes the complex and time-consuming installation procedures needed for scientific software a one-time process. Because it enables platform-independent installation, versioning of software environments, and easy redeployment and reproducibility, Docker is an ideal candidate for the deployment of identical software stacks on different compute environments such as XSEDE and Amazon AWS. CyVerse's Discovery Environment also uses Docker for integrating its powerful, community-recommended software tools into CyVerse's production environment for public use. This paper will help users bring their tools into CyVerse Discovery Environment (DE) which will not only allows users to integrate their tools with relative ease compared to the earlier method of tool deployment in DE but will also help users to share their apps with collaborators and release them for public use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
PD5: a general purpose library for primer design software.
Riley, Michael C; Aubrey, Wayne; Young, Michael; Clare, Amanda
2013-01-01
Complex PCR applications for large genome-scale projects require fast, reliable and often highly sophisticated primer design software applications. Presently, such applications use pipelining methods to utilise many third party applications and this involves file parsing, interfacing and data conversion, which is slow and prone to error. A fully integrated suite of software tools for primer design would considerably improve the development time, the processing speed, and the reliability of bespoke primer design software applications. The PD5 software library is an open-source collection of classes and utilities, providing a complete collection of software building blocks for primer design and analysis. It is written in object-oriented C(++) with an emphasis on classes suitable for efficient and rapid development of bespoke primer design programs. The modular design of the software library simplifies the development of specific applications and also integration with existing third party software where necessary. We demonstrate several applications created using this software library that have already proved to be effective, but we view the project as a dynamic environment for building primer design software and it is open for future development by the bioinformatics community. Therefore, the PD5 software library is published under the terms of the GNU General Public License, which guarantee access to source-code and allow redistribution and modification. The PD5 software library is downloadable from Google Code and the accompanying Wiki includes instructions and examples: http://code.google.com/p/primer-design.
Software Process Assessment (SPA)
NASA Technical Reports Server (NTRS)
Rosenberg, Linda H.; Sheppard, Sylvia B.; Butler, Scott A.
1994-01-01
NASA's environment mirrors the changes taking place in the nation at large, i.e. workers are being asked to do more work with fewer resources. For software developers at NASA's Goddard Space Flight Center (GSFC), the effects of this change are that we must continue to produce quality code that is maintainable and reusable, but we must learn to produce it more efficiently and less expensively. To accomplish this goal, the Data Systems Technology Division (DSTD) at GSFC is trying a variety of both proven and state-of-the-art techniques for software development (e.g., object-oriented design, prototyping, designing for reuse, etc.). In order to evaluate the effectiveness of these techniques, the Software Process Assessment (SPA) program was initiated. SPA was begun under the assumption that the effects of different software development processes, techniques, and tools, on the resulting product must be evaluated in an objective manner in order to assess any benefits that may have accrued. SPA involves the collection and analysis of software product and process data. These data include metrics such as effort, code changes, size, complexity, and code readability. This paper describes the SPA data collection and analysis methodology and presents examples of benefits realized thus far by DSTD's software developers and managers.
Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.
2016-01-01
The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.
An Environment for Incremental Development of Distributed Extensible Asynchronous Real-time Systems
NASA Technical Reports Server (NTRS)
Ames, Charles K.; Burleigh, Scott; Briggs, Hugh C.; Auernheimer, Brent
1996-01-01
Incremental parallel development of distributed real-time systems is difficult. Architectural techniques and software tools developed at the Jet Propulsion Laboratory's (JPL's) Flight System Testbed make feasible the integration of complex systems in various stages of development.
Smith, M.; Murphy, D.; Laxmisan, A.; Sittig, D.; Reis, B.; Esquivel, A.; Singh, H.
2013-01-01
Summary Background Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider’s prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. Objectives The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. Methods We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA’s EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Results Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility’s “test” EHR system, thus demonstrating technical compatibility. Conclusion To address the factors involved in missed test results, we developed a software prototype to account for technical, usability, organizational, and workflow needs. Our evaluation has shown the feasibility of the prototype as a means of facilitating better follow-up for cancer-related abnormal test results. PMID:24155789
Smith, M; Murphy, D; Laxmisan, A; Sittig, D; Reis, B; Esquivel, A; Singh, H
2013-01-01
Abnormal test results do not always receive timely follow-up, even when providers are notified through electronic health record (EHR)-based alerts. High workload, alert fatigue, and other demands on attention disrupt a provider's prospective memory for tasks required to initiate follow-up. Thus, EHR-based tracking and reminding functionalities are needed to improve follow-up. The purpose of this study was to develop a decision-support software prototype enabling individual and system-wide tracking of abnormal test result alerts lacking follow-up, and to conduct formative evaluations, including usability testing. We developed a working prototype software system, the Alert Watch And Response Engine (AWARE), to detect abnormal test result alerts lacking documented follow-up, and to present context-specific reminders to providers. Development and testing took place within the VA's EHR and focused on four cancer-related abnormal test results. Design concepts emphasized mitigating the effects of high workload and alert fatigue while being minimally intrusive. We conducted a multifaceted formative evaluation of the software, addressing fit within the larger socio-technical system. Evaluations included usability testing with the prototype and interview questions about organizational and workflow factors. Participants included 23 physicians, 9 clinical information technology specialists, and 8 quality/safety managers. Evaluation results indicated that our software prototype fit within the technical environment and clinical workflow, and physicians were able to use it successfully. Quality/safety managers reported that the tool would be useful in future quality assurance activities to detect patients who lack documented follow-up. Additionally, we successfully installed the software on the local facility's "test" EHR system, thus demonstrating technical compatibility. To address the factors involved in missed test results, we developed a software prototype to account for technical, usability, organizational, and workflow needs. Our evaluation has shown the feasibility of the prototype as a means of facilitating better follow-up for cancer-related abnormal test results.
Analysis and specification tools in relation to the APSE
NASA Technical Reports Server (NTRS)
Hendricks, John W.
1986-01-01
Ada and the Ada Programming Support Environment (APSE) specifically address the phases of the system/software life cycle which follow after the user's problem was translated into system and software development specifications. The waterfall model of the life cycle identifies the analysis and requirements definition phases as preceeding program design and coding. Since Ada is a programming language and the APSE is a programming support environment, they are primarily targeted to support program (code) development, tecting, and maintenance. The use of Ada based or Ada related specification languages (SLs) and program design languages (PDLs) can extend the use of Ada back into the software design phases of the life cycle. Recall that the standardization of the APSE as a programming support environment is only now happening after many years of evolutionary experience with diverse sets of programming support tools. Restricting consideration to one, or even a few chosen specification and design tools, could be a real mistake for an organization or a major project such as the Space Station, which will need to deal with an increasingly complex level of system problems. To require that everything be Ada-like, be implemented in Ada, run directly under the APSE, and fit into a rigid waterfall model of the life cycle would turn a promising support environment into a straight jacket for progress.
The use of Graphic User Interface for development of a user-friendly CRS-Stack software
NASA Astrophysics Data System (ADS)
Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah
2017-04-01
The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.
A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH
Sadasivam, Rajani S.; Tanik, Murat M.
2013-01-01
Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436
A meta-composite software development approach for translational research.
Sadasivam, Rajani S; Tanik, Murat M
2013-06-01
Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.
Development of a Real-Time General-Purpose Digital Signal Processing Laboratory System.
1983-12-01
should serve several important purposes: to familiarize students with the use of common DSP tools in an instructional environment, to serve as a research ...of Dayton Research Institute researchers for DSP software and DSP system design insight. 3. Formulation of statement of requirements for development...Neither the University of Dayton nor its Research Institute have a DSP computer system. While UD offered no software or DSP system design information
A software bus for thread objects
NASA Technical Reports Server (NTRS)
Callahan, John R.; Li, Dehuai
1995-01-01
The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.
A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience.
Hodge, Victoria; Jessop, Mark; Fletcher, Martyn; Weeks, Michael; Turner, Aaron; Jackson, Tom; Ingram, Colin; Smith, Leslie; Austin, Jim
2016-01-01
The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met.
2002-09-01
seconds per minute that the runtime environment was up and running. Defect Categories. The labels of the 5 defect categories. 78 Cosmetic Defects...The name that corresponds to QSM’s cosmetic defects. Cosmetic defects can be described as deferred, such as errors in format of displays or...2002. [Fent00] Fenton , N. E. and Neil, M. Software Metrics: Roadmap. Proceedings of the Conference on the Future of Software Engineering, 2000, pp
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
Software Schedules Missions, Aids Project Management
NASA Technical Reports Server (NTRS)
2008-01-01
NASA missions require advanced planning, scheduling, and management, and the Space Agency has worked extensively to develop the programs and software suites necessary to facilitate these complex missions. These enormously intricate undertakings have hundreds of active components that need constant management and monitoring. It is no surprise, then, that the software developed for these tasks is often applicable in other high-stress, complex environments, like in government or industrial settings. NASA work over the past few years has resulted in a handful of new scheduling, knowledge-management, and research tools developed under contract with one of NASA s partners. These tools have the unique responsibility of supporting NASA missions, but they are also finding uses outside of the Space Program.
NASA Technical Reports Server (NTRS)
Liebowitz, J.
1985-01-01
The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.
The Cloud-Based Integrated Data Viewer (IDV)
NASA Astrophysics Data System (ADS)
Fisher, Ward
2015-04-01
Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.
NEDE: an open-source scripting suite for developing experiments in 3D virtual environments.
Jangraw, David C; Johri, Ansh; Gribetz, Meron; Sajda, Paul
2014-09-30
As neuroscientists endeavor to understand the brain's response to ecologically valid scenarios, many are leaving behind hyper-controlled paradigms in favor of more realistic ones. This movement has made the use of 3D rendering software an increasingly compelling option. However, mastering such software and scripting rigorous experiments requires a daunting amount of time and effort. To reduce these startup costs and make virtual environment studies more accessible to researchers, we demonstrate a naturalistic experimental design environment (NEDE) that allows experimenters to present realistic virtual stimuli while still providing tight control over the subject's experience. NEDE is a suite of open-source scripts built on the widely used Unity3D game development software, giving experimenters access to powerful rendering tools while interfacing with eye tracking and EEG, randomizing stimuli, and providing custom task prompts. Researchers using NEDE can present a dynamic 3D virtual environment in which randomized stimulus objects can be placed, allowing subjects to explore in search of these objects. NEDE interfaces with a research-grade eye tracker in real-time to maintain precise timing records and sync with EEG or other recording modalities. Python offers an alternative for experienced programmers who feel comfortable mastering and integrating the various toolboxes available. NEDE combines many of these capabilities with an easy-to-use interface and, through Unity's extensive user base, a much more substantial body of assets and tutorials. Our flexible, open-source experimental design system lowers the barrier to entry for neuroscientists interested in developing experiments in realistic virtual environments. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knypiński, Łukasz
2017-12-01
In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.
NASA Astrophysics Data System (ADS)
Zyelyk, Ya. I.; Semeniv, O. V.
2015-12-01
The state of the problem of the post-launch calibration of the satellite electro-optic remote sensors and its solutions in Ukraine is analyzed. The database is improved and dynamic services for user interaction with database from the environment of open geographical information system Quantum GIS for information support of calibration activities are created. A dynamic application under QGIS is developed, implementing these services in the direction of the possibility of data entering, editing and extraction from the database, using the technology of object-oriented programming and of modern complex program design patterns. The functional and algorithmic support of this dynamic software and its interface are developed.
Enabling Agile Testing through Continuous Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolberg, Sean E.
2009-08-24
A Continuous Integration system is often considered one of the key elements involved in supporting an agile software development and testing environment. As a traditional software tester transitioning to an agile development environment it became clear to me that I would need to put this essential infrastructure in place and promote improved development practices in order to make the transition to agile testing possible. This experience report discusses a continuous integration implementation I lead last year. The initial motivations for implementing continuous integration are discussed and a pre and post-assessment using Martin Fowler's "Practices of Continuous Integration" is provided alongmore » with the technical specifics of the implementation. Finally, I’ll wrap up with a retrospective of my experiences implementing and promoting continuous integration within the context of agile testing.« less
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
Lessons learned applying CASE methods/tools to Ada software development projects
NASA Technical Reports Server (NTRS)
Blumberg, Maurice H.; Randall, Richard L.
1993-01-01
This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.
QERx- A Faster than Real-Time Emulator for Space Processors
NASA Astrophysics Data System (ADS)
Carvalho, B.; Pidgeon, A.; Robinson, P.
2012-08-01
Developing software for space systems is challenging. Especially because, in order to be sure it can cope with the harshness of the environment and the imperative requirements and constrains imposed by the platform were it will run, it needs to be tested exhaustively. Software Validation Facilities (SVF) are known to the industry and developers, and provide the means to run the On-Board Software (OBSW) in a realistic environment, allowing the development team to debug and test the software.But the challenge is to be able to keep up with the performance of the new processors (LEON2 and LEON3), which need to be emulated within the SVF. Such processor emulators are also used in Operational Simulators, used to support mission preparation and train mission operators. These simulators mimic the satellite and its behaviour, as realistically as possible. For test/operational efficiency reasons and because they will need to interact with external systems, both these uses cases require the processor emulators to provide real-time, or faster, performance.It is known to the industry that the performance of previously available emulators is not enough to cope with the performance of the new processors available in the market. SciSys approached this problem with dynamic translation technology trying to keep costs down by avoiding a hardware solution and keeping the integration flexibility of full software emulation.SciSys presented “QERx: A High Performance Emulator for Software Validation and Simulations” [1], in a previous DASIA event. Since then that idea has evolved and QERx has been successfully validated. SciSys is now presenting QERx as a product that can be tailored to fit different emulation needs. This paper will present QERx latest developments and current status.
Web accessibility and open source software.
Obrenović, Zeljko
2009-07-01
A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.
Navy Collaborative Integrated Information Technology Initiative
2000-01-11
investigating the development and application of collaborative multimedia conferencing software for education and other groupwork activities. We are extending...an alternative environment for place-based synchronous groupwork . The new environment is based on the same collaborative infrastructure as the...alternative environment for place- based synchronous groupwork . This information is being used as an initial user profile, requirements analysis
Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment
USDA-ARS?s Scientific Manuscript database
Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...
Software and Courseware for a Multimedia Educational Environment.
ERIC Educational Resources Information Center
Le Corre, Yves; Schwartz, Jacob
Prepared for a 1984 Organisation for Economic Cooperation and Development (OECD) conference, this report on the educational applications of new information technologies focuses primarily on the use of interactive audiovisual systems. Potential advantages of interactive multimedia educational environments are discussed and examples are given of…
On the Design and Development of a UML-Based Visual Environment for Novice Programmers
ERIC Educational Resources Information Center
Moor, Brian D.; Deek, Fadi P.
2006-01-01
Few beginners find learning to program easy. There are many factors at work in this phenomenon with some being simply inherent in the subject itself, while others have more to do with deficiencies in learning methods and resources. As a result, many programming environments, software applications, and learning tools have been developed to address…
Spacecraft Internal Acoustic Environment Modeling
NASA Technical Reports Server (NTRS)
Allen, Christopher; Chu, S. Reynold
2008-01-01
The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.
Research and Development of Rapid Design Systems for Aerospace Structure
NASA Technical Reports Server (NTRS)
Schaeffer, Harry G.
1999-01-01
This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.
It's Not How Multi the Media, It's How the Media Is Used.
ERIC Educational Resources Information Center
Feifer, R.; Allender, L.
Multimedia educational software is often a glitzy version of old technology. Some educational software has become better as developers began to ask, "In what ways can the computer facilitate learning, that were not possible before?" One answer to this question is: provide a simulated environment for the learner to interact with. For multimedia to…
ERIC Educational Resources Information Center
Fernández-Alemán, José Luis; Carrillo-de-Gea, Juan Manuel; Meca, Joaquín Vidal; Ros, Joaquín Nicolás; Toval, Ambrosio; Idri, Ali
2016-01-01
This paper presents the results of two educational experiments carried out to determine whether the process of specifying requirements (catalog-based reuse as opposed to conventional specification) has an impact on effectiveness and productivity in co-located and distributed software development environments. The participants in the experiments…
Image Understanding Architecture
1991-09-01
architecture to support real-time, knowledge -based image understanding , and develop the software support environment that will be needed to utilize...NUMBER OF PAGES Image Understanding Architecture, Knowledge -Based Vision, AI Real-Time Computer Vision, Software Simulator, Parallel Processor IL PRICE... information . In addition to sensory and knowledge -based processing it is useful to introduce a level of symbolic processing. Thus, vision researchers
Integrating automated structured analysis and design with Ada programming support environments
NASA Technical Reports Server (NTRS)
Hecht, Alan; Simmons, Andy
1986-01-01
Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.
Experiences Supporting the Lunar Reconnaissance Orbiter Camera: the Devops Model
NASA Astrophysics Data System (ADS)
Licht, A.; Estes, N. M.; Bowman-Cisnesros, E.; Hanger, C. D.
2013-12-01
Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) Science Operations Center (SOC) is responsible for instrument targeting, product processing, and archiving [1]. The LROC SOC maintains over 1,000,000 observations with over 300 TB of released data. Processing challenges compound with the acquisition of over 400 Gbits of observations daily creating the need for a robust, efficient, and reliable suite of specialized software. Development Environment: The LROC SOC's software development methodology has evolved over time. Today, the development team operates in close cooperation with the systems administration team in a model known in the IT industry as DevOps. The DevOps model enables a highly productive development environment that facilitates accomplishment of key goals within tight schedules[2]. The LROC SOC DevOps model incorporates industry best practices including prototyping, continuous integration, unit testing, code coverage analysis, version control, and utilizing existing open source software. Scientists and researchers at LROC often prototype algorithms and scripts in a high-level language such as MATLAB or IDL. After the prototype is functionally complete the solution is implemented as production ready software by the developers. Following this process ensures that all controls and requirements set by the LROC SOC DevOps team are met. The LROC SOC also strives to enhance the efficiency of the operations staff by way of weekly presentations and informal mentoring. Many small scripting tasks are assigned to the cognizant operations personnel (end users), allowing for the DevOps team to focus on more complex and mission critical tasks. In addition to leveraging open source software the LROC SOC has also contributed to the open source community by releasing Lunaserv [3]. Findings: The DevOps software model very efficiently provides smooth software releases and maintains team momentum. Scientists prototyping their work has proven to be very efficient as developers do not need to spend time iterating over small changes. Instead, these changes are realized in early prototypes and implemented before the task is seen by developers. The development practices followed by the LROC SOC DevOps team help facilitate a high level of software quality that is necessary for LROC SOC operations. Application to the Scientific Community: There is no replacement for having software developed by professional developers. While it is beneficial for scientists to write software, this activity should be seen as prototyping, which is then made production ready by professional developers. When constructed properly, even a small development team has the ability to increase the rate of software development for a research group while creating more efficient, reliable, and maintainable products. This strategy allows scientists to accomplish more, focusing on teamwork, rather than software development, which may not be their primary focus. 1. Robinson et al. (2010) Space Sci. Rev. 150, 81-124 2. DeGrandis. (2011) Cutter IT Journal. Vol 24, No. 8, 34-39 3. Estes, N.M.; Hanger, C.D.; Licht, A.A.; Bowman-Cisneros, E.; Lunaserv Web Map Service: History, Implementation Details, Development, and Uses, http://adsabs.harvard.edu/abs/2013LPICo1719.2609E.
NASA Technical Reports Server (NTRS)
Mclean, David R.; Tuchman, Alan; Potter, William J.
1991-01-01
Recently, many expert systems were developed in a LISP environment and then ported to the real world C environment before the final system is delivered. This situation may require that the entire system be completely rewritten in C and may actually result in a system which is put together as quickly as possible with little regard for maintainability and further evolution. With the introduction of high performance UNIX and X-windows based workstations, a great deal of the advantages of developing a first system in the LISP environment have become questionable. A C-based AI development effort is described which is based on a software tools approach with emphasis on reusability and maintainability of code. The discussion starts with simple examples of how list processing can easily be implemented in C and then proceeds to the implementations of frames and objects which use dynamic memory allocation. The implementation of procedures which use depth first search, constraint propagation, context switching and a blackboard-like simulation environment are described. Techniques for managing the complexity of C-based AI software are noted, especially the object-oriented techniques of data encapsulation and incremental development. Finally, all these concepts are put together by describing the components of planning software called the Planning And Resource Reasoning (PARR) shell. This shell was successfully utilized for scheduling services of the Tracking and Data Relay Satellite System for the Earth Radiation Budget Satellite since May 1987 and will be used for operations scheduling of the Explorer Platform in November 1991.
Multimodality Data Integration in Epilepsy
Muzik, Otto; Chugani, Diane C.; Zou, Guangyu; Hua, Jing; Lu, Yi; Lu, Shiyong; Asano, Eishi; Chugani, Harry T.
2007-01-01
An important goal of software development in the medical field is the design of methods which are able to integrate information obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of qualitatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically. This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among biochemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quantitative variables (such as the spatial proximity index, SPI) characterizing the relationship between complementing modalities on a more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environment in twelve children (mean age 5.2 ± 4.3 years) with medically intractable partial epilepsy who underwent both high-resolution structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better understanding of the underlying disease mechanisms. PMID:17710251
Development of a Multi-Disciplinary Computing Environment (MDICE)
NASA Technical Reports Server (NTRS)
Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.
1999-01-01
The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.
ImTK: an open source multi-center information management toolkit
NASA Astrophysics Data System (ADS)
Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.
2008-03-01
The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.
Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.
2014-01-01
Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138
Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M
2014-01-01
(1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.
Experimental Internet Environment Software Development
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.
AXAF user interfaces for heterogeneous analysis environments
NASA Technical Reports Server (NTRS)
Mandel, Eric; Roll, John; Ackerman, Mark S.
1992-01-01
The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.
Principles of Faithful Execution in the implementation of trusted objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George
2003-09-01
We begin with the following definitions: Definition: A trusted volume is the computing machinery (including communication lines) within which data is assumed to be physically protected from an adversary. A trusted volume provides both integrity and privacy. Definition: Program integrity consists of the protection necessary to enable the detection of changes in the bits comprising a program as specified by the developer, for the entire time that the program is outside a trusted volume. For ease of discussion we consider program integrity to be the aggregation of two elements: instruction integrity (detection of changes in the bits within an instructionmore » or block of instructions), and sequence integrity (detection of changes in the locations of instructions within a program). Definition: Faithful Execution (FE) is a type of software protection that begins when the software leaves the control of the developer and ends within the trusted volume of a target processor. That is, FE provides program integrity, even while the program is in execution. (As we will show below, FE schemes are a function of trusted volume size.) FE is a necessary quality for computing. Without it we cannot trust computations. In the early days of computing FE came for free since the software never left a trusted volume. At that time the execution environment was the same as the development environment. In some circles that environment was referred to as a ''closed shop:'' all of the software that was used there was developed there. When an organization bought a large computer from a vendor the organization would run its own operating system on that computer, use only its own editors, only its own compilers, only its own debuggers, and so on. However, with the continuing maturity of computing technology, FE becomes increasingly difficult to achieve« less
Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Deep Space Network (DSN) Data Systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit DSN software life cycle statistics. The estimation model output scales a standard DSN Work Breakdown Structure skeleton, which is then input into a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.
NASA Astrophysics Data System (ADS)
Gonçalves, Vânia
The environments of software development and software provision are shifting to Web-based platforms supported by Platform/Software as a Service (PaaS/SaaS) models. This paper will make the case that there is equally an opportunity for mobile operators to identify additional sources of revenue by exposing network functionalities through Web-based service platforms. By elaborating on the concepts, benefits and risks of SaaS and PaaS, several factors that should be taken into consideration in applying these models to the telecom world are delineated.
Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems
NASA Astrophysics Data System (ADS)
Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.
2017-07-01
A hardware-software platform is presented, which is designed for the development and hardware-in-the-loop simulation of flying vehicle control systems. This platform ensures the construction of the mathematical model of the plant, development of algorithms and software for onboard radioelectronic equipment and ground control station, and visualization of the three-dimensional model of the vehicle and external environment of the cockpit in the simulator training mode.
A Tale of Two Observing Systems: Interoperability in the World of Microsoft Windows
NASA Astrophysics Data System (ADS)
Babin, B. L.; Hu, L.
2008-12-01
Louisiana Universities Marine Consortium's (LUMCON) and Dauphin Island Sea Lab's (DISL) Environmental Monitoring System provide a unified coastal ocean observing system. These two systems are mirrored to maintain autonomy while offering an integrated data sharing environment. Both systems collect data via Campbell Scientific Data loggers, store the data in Microsoft SQL servers, and disseminate the data in real- time on the World Wide Web via Microsoft Internet Information Servers and Active Server Pages (ASP). The utilization of Microsoft Windows technologies presented many challenges to these observing systems as open source tools for interoperability grow. The current open source tools often require the installation of additional software. In order to make data available through common standards formats, "home grown" software has been developed. One example of this is the development of software to generate xml files for transmission to the National Data Buoy Center (NDBC). OOSTethys partners develop, test and implement easy-to-use, open-source, OGC-compliant software., and have created a working prototype of networked, semantically interoperable, real-time data systems. Partnering with OOSTethys, we are developing a cookbook to implement OGC web services. The implementation will be written in ASP, will run in a Microsoft operating system environment, and will serve data via Sensor Observation Services (SOS). This cookbook will give observing systems running Microsoft Windows the tools to easily participate in the Open Geospatial Consortium (OGC) Oceans Interoperability Experiment (OCEANS IE).
Using Selection Pressure as an Asset to Develop Reusable, Adaptable Software Systems
NASA Technical Reports Server (NTRS)
Berrick, Stephen; Lynnes, Christopher
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) at NASA has over the years developed and honed several reusable architectural components for supporting large-scale data centers with a large customer base. These include a processing system (S4PM) and an archive system (S4PA) based upon a workflow engine called the Simple Scalable Script based Science Processor (S4P) and an online data visualization and analysis system (Giovanni). These subsystems are currently reused internally in a variety of combinations to implement customized data management on behalf of instrument science teams and other science investigators. Some of these subsystems (S4P and S4PM) have also been reused by other data centers for operational science processing. Our experience has been that development and utilization of robust interoperable and reusable software systems can actually flourish in environments defined by heterogeneous commodity hardware systems the emphasis on value-added customer service and the continual goal for achieving higher cost efficiencies. The repeated internal reuse that is fostered by such an environment encourages and even forces changes to the software that make it more reusable and adaptable. Allowing and even encouraging such selective pressures to software development has been a key factor In the success of S4P and S4PM which are now available to the open source community under the NASA Open source Agreement
A distributed analysis and visualization system for model and observational data
NASA Technical Reports Server (NTRS)
Wilhelmson, Robert B.
1994-01-01
Software was developed with NASA support to aid in the analysis and display of the massive amounts of data generated from satellites, observational field programs, and from model simulations. This software was developed in the context of the PATHFINDER (Probing ATmospHeric Flows in an Interactive and Distributed EnviRonment) Project. The overall aim of this project is to create a flexible, modular, and distributed environment for data handling, modeling simulations, data analysis, and visualization of atmospheric and fluid flows. Software completed with NASA support includes GEMPAK analysis, data handling, and display modules for which collaborators at NASA had primary responsibility, and prototype software modules for three-dimensional interactive and distributed control and display as well as data handling, for which NSCA was responsible. Overall process control was handled through a scientific and visualization application builder from Silicon Graphics known as the Iris Explorer. In addition, the GEMPAK related work (GEMVIS) was also ported to the Advanced Visualization System (AVS) application builder. Many modules were developed to enhance those already available in Iris Explorer including HDF file support, improved visualization and display, simple lattice math, and the handling of metadata through development of a new grid datatype. Complete source and runtime binaries along with on-line documentation is available via the World Wide Web at: http://redrock.ncsa.uiuc.edu/ PATHFINDER/pathre12/top/top.html.
Technical Performance Assessment: Mission Success in Software Acquisition Management
2010-04-27
Examples Design constraints make software acquisition and development t l iti lex reme y cr ca Application domain – Operational Flight Program, Air...environment – used to produce the software Ri k t t bli h d d i t i d i k ts managemen – es a s e an ma n a ne r s managemen systems Milestone reviews...Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that
NASA Astrophysics Data System (ADS)
Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit
2017-12-01
Reactive transport modeling contributes to understand geophysical and geochemical processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external geochemical and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.
A hardware/software environment to support R D in intelligent machines and mobile robotic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1990-01-01
The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots).more » The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.« less
Animatronics, Children and Computation
ERIC Educational Resources Information Center
Sempere, Andrew
2005-01-01
In this article, we present CTRL_SPACE: a design for a software environment with companion hardware, developed to introduce preliterate children to basic computational concepts by means of an animatronic face, whose individual features serve as an analogy for a programmable object. In addition to presenting the environment, this article briefly…
ERIC Educational Resources Information Center
Mitchell, Donald P.; Scigliano, John A.
2000-01-01
Describes the development of an online learning environment for a visually impaired professional. Topics include physical barriers, intellectual barriers, psychological barriers, and technological barriers; selecting appropriate hardware and software; and combining technologies that include personal computers, Web-based resources, network…
Open system environment procurement
NASA Technical Reports Server (NTRS)
Fisher, Gary
1994-01-01
Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.
Software engineering techniques and CASE tools in RD13
NASA Astrophysics Data System (ADS)
Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.
1994-12-01
The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.
The Package-Based Development Process in the Flight Dynamics Division
NASA Technical Reports Server (NTRS)
Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil
1997-01-01
The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.
The development and evaluation of a medical imaging training immersive environment
Bridge, Pete; Gunn, Therese; Kastanis, Lazaros; Pack, Darren; Rowntree, Pamela; Starkey, Debbie; Mahoney, Gaynor; Berry, Clare; Braithwaite, Vicki; Wilson-Stewart, Kelly
2014-01-01
Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment. PMID:26229652
NASA Technical Reports Server (NTRS)
Stephan, Amy; Erikson, Carol A.
1991-01-01
As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim
1993-01-01
The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.
Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.
2016-12-01
We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for promotion of data processing collected by the IMS Network.
Integrated prototyping environment for programmable automation
NASA Astrophysics Data System (ADS)
da Costa, Francis; Hwang, Vincent S. S.; Khosla, Pradeep K.; Lumia, Ronald
1992-11-01
We propose a rapid prototyping environment for robotic systems, based on tenets of modularity, reconfigurability and extendibility that may help build robot systems `faster, better, and cheaper.' Given a task specification, (e.g., repair brake assembly), the user browses through a library of building blocks that include both hardware and software components. Software advisors or critics recommend how blocks may be `snapped' together to speedily construct alternative ways to satisfy task requirements. Mechanisms to allow `swapping' competing modules for comparative test and evaluation studies are also included in the prototyping environment. After some iterations, a stable configuration or `wiring diagram' emerges. This customized version of the general prototyping environment still contains all the hooks needed to incorporate future improvements in component technologies and to obviate unplanned obsolescence. The prototyping environment so described is relevant for both interactive robot programming (telerobotics) and iterative robot system development (prototyping).
Development of real-time software environments for NASA's modern telemetry systems
NASA Technical Reports Server (NTRS)
Horner, Ward; Sabia, Steve
1989-01-01
An effort has been made to maintain maximum performance and flexibility for NASA-Goddard's VLSI telemetry system elements through the development of two real-time systems: (1) the Base System Environment, which supports generic system integration and furnishes the basic porting of various manufacturers' cards, and (2) the Modular Environment for Data Systems, which supports application-specific developments and furnishes designers with a set of tested generic library functions that can be employed to speed up the development of such application-specific real-time codes. The performance goals and design rationale for these two systems are discussed.
Simulation Environment for Orion Launch Abort System Control Design Studies
NASA Technical Reports Server (NTRS)
McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.
2007-01-01
The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.