A Quantitative Study of Global Software Development Teams, Requirements, and Software Projects
ERIC Educational Resources Information Center
Parker, Linda L.
2016-01-01
The study explored the relationship between global software development teams, effective software requirements, and stakeholders' perception of successful software development projects within the field of information technology management. It examined the critical relationship between Global Software Development (GSD) teams creating effective…
The Effects of Development Team Skill on Software Product Quality
NASA Technical Reports Server (NTRS)
Beaver, Justin M.; Schiavone, Guy A.
2006-01-01
This paper provides an analysis of the effect of the skill/experience of the software development team on the quality of the final software product. A method for the assessment of software development team skill and experience is proposed, and was derived from a workforce management tool currently in use by the National Aeronautics and Space Administration. Using data from 26 smallscale software development projects, the team skill measures are correlated to 5 software product quality metrics from the ISO/IEC 9126 Software Engineering Product Quality standard. in the analysis of the results, development team skill is found to be a significant factor in the adequacy of the design and implementation. In addition, the results imply that inexperienced software developers are tasked with responsibilities ill-suited to their skill level, and thus have a significant adverse effect on the quality of the software product. Keywords: software quality, development skill, software metrics
Implementing Extreme Programming in Distributed Software Project Teams: Strategies and Challenges
NASA Astrophysics Data System (ADS)
Maruping, Likoebe M.
Agile software development methods and distributed forms of organizing teamwork are two team process innovations that are gaining prominence in today's demanding software development environment. Individually, each of these innovations has yielded gains in the practice of software development. Agile methods have enabled software project teams to meet the challenges of an ever turbulent business environment through enhanced flexibility and responsiveness to emergent customer needs. Distributed software project teams have enabled organizations to access highly specialized expertise across geographic locations. Although much progress has been made in understanding how to more effectively manage agile development teams and how to manage distributed software development teams, managers have little guidance on how to leverage these two potent innovations in combination. In this chapter, I outline some of the strategies and challenges associated with implementing agile methods in distributed software project teams. These are discussed in the context of a study of a large-scale software project in the United States that lasted four months.
Management Guidelines for Database Developers' Teams in Software Development Projects
NASA Astrophysics Data System (ADS)
Rusu, Lazar; Lin, Yifeng; Hodosi, Georg
Worldwide job market for database developers (DBDs) is continually increasing in last several years. In some companies, DBDs are organized as a special team (DBDs team) to support other projects and roles. As a new role, the DBDs team is facing a major problem that there are not any management guidelines for them. The team manager does not know which kinds of tasks should be assigned to this team and what practices should be used during DBDs work. Therefore in this paper we have developed a set of management guidelines, which includes 8 fundamental tasks and 17 practices from software development process, by using two methodologies Capability Maturity Model (CMM) and agile software development in particular Scrum in order to improve the DBDs team work. Moreover the management guidelines developed here has been complemented with practices from authors' experience in this area and has been evaluated in the case of a software company. The management guidelines for DBD teams presented in this paper could be very usefully for other companies too that are using a DBDs team and could contribute towards an increase of the efficiency of these teams in their work on software development projects.
A Comparison of Authoring Software for Developing Mathematics Self-Learning Software Packages.
ERIC Educational Resources Information Center
Suen, Che-yin; Pok, Yang-ming
Four years ago, the authors started to develop a self-paced mathematics learning software called NPMaths by using an authoring package called Tencore. However, NPMaths had some weak points. A development team was hence formed to develop similar software called Mathematics On Line. This time the team used another development language called…
Leader Delegation and Trust in Global Software Teams
ERIC Educational Resources Information Center
Zhang, Suling
2008-01-01
Virtual teams are an important work structure in global software development. The distributed team structure enables access to a diverse set of expertise which is often not available in one location, to a cheaper labor force, and to a potentially accelerated development process that uses a twenty-four hour work structure. Many software teams…
SLS Flight Software Testing: Using a Modified Agile Software Testing Approach
NASA Technical Reports Server (NTRS)
Bolton, Albanie T.
2016-01-01
NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.
Ye, Xin
2018-01-01
The awareness of others’ activities has been widely recognized as essential in facilitating coordination in a team among Computer-Supported Cooperative Work communities. Several field studies of software developers in large software companies such as Microsoft have shown that coworker and artifact awareness are the most common information needs for software developers; however, they are also two of the seven most frequently unsatisfied information needs. To address this problem, we built a workspace awareness tool named TeamWATCH to visualize developer activities using a 3-D city metaphor. In this paper, we discuss the importance of awareness in software development, review existing workspace awareness tools, present the design and implementation of TeamWATCH, and evaluate how it could help detect and resolve conflicts earlier and better maintain group awareness via a controlled experiment. The experimental results showed that the subjects using TeamWATCH performed significantly better with respect to early conflict detection and resolution. PMID:29558519
Developing high-quality educational software.
Johnson, Lynn A; Schleyer, Titus K L
2003-11-01
The development of effective educational software requires a systematic process executed by a skilled development team. This article describes the core skills required of the development team members for the six phases of successful educational software development. During analysis, the foundation of product development is laid including defining the audience and program goals, determining hardware and software constraints, identifying content resources, and developing management tools. The design phase creates the specifications that describe the user interface, the sequence of events, and the details of the content to be displayed. During development, the pieces of the educational program are assembled. Graphics and other media are created, video and audio scripts written and recorded, the program code created, and support documentation produced. Extensive testing by the development team (alpha testing) and with students (beta testing) is conducted. Carefully planned implementation is most likely to result in a flawless delivery of the educational software and maintenance ensures up-to-date content and software. Due to the importance of the sixth phase, evaluation, we have written a companion article on it that follows this one. The development of a CD-ROM product is described including the development team, a detailed description of the development phases, and the lessons learned from the project.
Extreme Programming: Maestro Style
NASA Technical Reports Server (NTRS)
Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang; Powell, Mark
2009-01-01
"Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible.
An Investigation of Agility Issues in Scrum Teams Using Agility Indicators
NASA Astrophysics Data System (ADS)
Pikkarainen, Minna; Wang, Xiaofeng
Agile software development methods have emerged and become increasingly popular in recent years; yet the issues encountered by software development teams that strive to achieve agility using agile methods are yet to be explored systematically. Built upon a previous study that has established a set of indicators of agility, this study investigates what issues are manifested in software development teams using agile methods. It is focussed on Scrum teams particularly. In other words, the goal of the chapter is to evaluate Scrum teams using agility indicators and therefore to further validate previously presented agility indicators within the additional cases. A multiple case study research method is employed. The findings of the study reveal that the teams using Scrum do not necessarily achieve agility in terms of team autonomy, sharing, stability and embraced uncertainty. The possible reasons include previous organizational plan-driven culture, resistance towards the Scrum roles and changing resources.
Using Modern Methodologies with Maintenance Software
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Francis, Laurie K.; Smith, Benjamin D.
2014-01-01
Jet Propulsion Laboratory uses multi-mission software produced by the Mission Planning and Sequencing (MPS) team to process, simulate, translate, and package the commands that are sent to a spacecraft. MPS works under the auspices of the Multi-Mission Ground Systems and Services (MGSS). This software consists of nineteen applications that are in maintenance. The MPS software is classified as either class B (mission critical) or class C (mission important). The scheduling of tasks is difficult because mission needs must be addressed prior to performing any other tasks and those needs often spring up unexpectedly. Keeping track of the tasks that everyone is working on is also difficult because each person is working on a different software component. Recently the group adopted the Scrum methodology for planning and scheduling tasks. Scrum is one of the newer methodologies typically used in agile development. In the Scrum development environment, teams pick their tasks that are to be completed within a sprint based on priority. The team specifies the sprint length usually a month or less. Scrum is typically used for new development of one application. In the Scrum methodology there is a scrum master who is a facilitator who tries to make sure that everything moves smoothly, a product owner who represents the user(s) of the software and the team. MPS is not the traditional environment for the Scrum methodology. MPS has many software applications in maintenance, team members who are working on disparate applications, many users, and is interruptible based on mission needs, issues and requirements. In order to use scrum, the methodology needed adaptation to MPS. Scrum was chosen because it is adaptable. This paper is about the development of the process for using scrum, a new development methodology, with a team that works on disparate interruptible tasks on multiple software applications.
Predicting Software Suitability Using a Bayesian Belief Network
NASA Technical Reports Server (NTRS)
Beaver, Justin M.; Schiavone, Guy A.; Berrios, Joseph S.
2005-01-01
The ability to reliably predict the end quality of software under development presents a significant advantage for a development team. It provides an opportunity to address high risk components earlier in the development life cycle, when their impact is minimized. This research proposes a model that captures the evolution of the quality of a software product, and provides reliable forecasts of the end quality of the software being developed in terms of product suitability. Development team skill, software process maturity, and software problem complexity are hypothesized as driving factors of software product quality. The cause-effect relationships between these factors and the elements of software suitability are modeled using Bayesian Belief Networks, a machine learning method. This research presents a Bayesian Network for software quality, and the techniques used to quantify the factors that influence and represent software quality. The developed model is found to be effective in predicting the end product quality of small-scale software development efforts.
NASA Astrophysics Data System (ADS)
Monaghan, Conal; Bizumic, Boris; Reynolds, Katherine; Smithson, Michael; Johns-Boast, Lynette; van Rooy, Dirk
2015-01-01
One prominent approach in the exploration of the variations in project team performance has been to study two components of the aggregate personalities of the team members: conscientiousness and agreeableness. A second line of research, known as self-categorisation theory, argues that identifying as team members and the team's performance norms should substantially influence the team's performance. This paper explores the influence of both these perspectives in university software engineering project teams. Eighty students worked to complete a piece of software in small project teams during 2007 or 2008. To reduce limitations in statistical analysis, Monte Carlo simulation techniques were employed to extrapolate from the results of the original sample to a larger simulated sample (2043 cases, within 319 teams). The results emphasise the importance of taking into account personality (particularly conscientiousness), and both team identification and the team's norm of performance, in order to cultivate higher levels of performance in student software engineering project teams.
ERIC Educational Resources Information Center
Smith, James Robert
2012-01-01
This cross-sectional study explored how IT system and software development team members communicated in the workplace and whether teams that used more verbal communication (and less text-based communication) experienced higher levels of collaboration as measured using the Teamwork Quality (TWQ) scale. Although computer-mediated communication tools…
NASA Technical Reports Server (NTRS)
Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara
1994-01-01
The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.
NASA Astrophysics Data System (ADS)
Yetman, G.; Downs, R. R.
2011-12-01
Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may also have the additional benefits of guaranteed up-time, bug fixes, and vendor-added enhancements. Deploying commercial software can be advantageous for obtaining system or software components offered by a vendor that meet in-house requirements. The vendor can be contracted to provide installation, support and maintenance services as needed. Combining these options offers a menu of choices, enabling selection of system components or software modules that meet the evolving requirements encountered throughout the scientific data lifecycle.
NASA Technical Reports Server (NTRS)
Tijidjian, Raffi P.
2010-01-01
The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.
NASA Astrophysics Data System (ADS)
Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan
Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.
2014-05-18
intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques...with the intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved...intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques to
The (mis)use of subjective process measures in software engineering
NASA Technical Reports Server (NTRS)
Valett, Jon D.; Condon, Steven E.
1993-01-01
A variety of measures are used in software engineering research to develop an understanding of the software process and product. These measures fall into three broad categories: quantitative, characteristics, and subjective. Quantitative measures are those to which a numerical value can be assigned, for example effort or lines of code (LOC). Characteristics describe the software process or product; they might include programming language or the type of application. While such factors do not provide a quantitative measurement of a process or product, they do help characterize them. Subjective measures (as defined in this study) are those that are based on the opinion or opinions of individuals; they are somewhat unique and difficult to quantify. Capturing of subjective measure data typically involves development of some type of scale. For example, 'team experience' is one of the subjective measures that were collected and studied by the Software Engineering Laboratory (SEL). Certainly, team experience could have an impact on the software process or product; actually measuring a team's experience, however, is not a strictly mathematical exercise. Simply adding up each team member's years of experience appears inadequate. In fact, most researchers would agree that 'years' do not directly translate into 'experience.' Team experience must be defined subjectively and then a scale must be developed e.g., high experience versus low experience; or high, medium, low experience; or a different or more granular scale. Using this type of scale, a particular team's overall experience can be compared with that of other teams in the development environment. Defining, collecting, and scaling subjective measures is difficult. First, precise definitions of the measures must be established. Next, choices must be made about whose opinions will be solicited to constitute the data. Finally, care must be given to defining the right scale and level of granularity for measurement.
Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team
NASA Technical Reports Server (NTRS)
Wetherholt, Martha
2016-01-01
To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.
Student Team Projects in Information Systems Development: Measuring Collective Creative Efficacy
ERIC Educational Resources Information Center
Cheng, Hsiu-Hua; Yang, Heng-Li
2011-01-01
For information systems development project student teams, learning how to improve software development processes is an important training. Software process improvement is an outcome of a number of creative behaviours. Social cognitive theory states that the efficacy of judgment influences behaviours. This study explores the impact of three types…
Collaboration, Communication and Co-ordination in Agile Software Development Practice
NASA Astrophysics Data System (ADS)
Robinson, Hugh; Sharp, Helen
This chapter analyses the results of a series of observational studies of
Achieving Agility and Stability in Large-Scale Software Development
2013-01-16
temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon
Experiences Supporting the Lunar Reconnaissance Orbiter Camera: the Devops Model
NASA Astrophysics Data System (ADS)
Licht, A.; Estes, N. M.; Bowman-Cisnesros, E.; Hanger, C. D.
2013-12-01
Introduction: The Lunar Reconnaissance Orbiter Camera (LROC) Science Operations Center (SOC) is responsible for instrument targeting, product processing, and archiving [1]. The LROC SOC maintains over 1,000,000 observations with over 300 TB of released data. Processing challenges compound with the acquisition of over 400 Gbits of observations daily creating the need for a robust, efficient, and reliable suite of specialized software. Development Environment: The LROC SOC's software development methodology has evolved over time. Today, the development team operates in close cooperation with the systems administration team in a model known in the IT industry as DevOps. The DevOps model enables a highly productive development environment that facilitates accomplishment of key goals within tight schedules[2]. The LROC SOC DevOps model incorporates industry best practices including prototyping, continuous integration, unit testing, code coverage analysis, version control, and utilizing existing open source software. Scientists and researchers at LROC often prototype algorithms and scripts in a high-level language such as MATLAB or IDL. After the prototype is functionally complete the solution is implemented as production ready software by the developers. Following this process ensures that all controls and requirements set by the LROC SOC DevOps team are met. The LROC SOC also strives to enhance the efficiency of the operations staff by way of weekly presentations and informal mentoring. Many small scripting tasks are assigned to the cognizant operations personnel (end users), allowing for the DevOps team to focus on more complex and mission critical tasks. In addition to leveraging open source software the LROC SOC has also contributed to the open source community by releasing Lunaserv [3]. Findings: The DevOps software model very efficiently provides smooth software releases and maintains team momentum. Scientists prototyping their work has proven to be very efficient as developers do not need to spend time iterating over small changes. Instead, these changes are realized in early prototypes and implemented before the task is seen by developers. The development practices followed by the LROC SOC DevOps team help facilitate a high level of software quality that is necessary for LROC SOC operations. Application to the Scientific Community: There is no replacement for having software developed by professional developers. While it is beneficial for scientists to write software, this activity should be seen as prototyping, which is then made production ready by professional developers. When constructed properly, even a small development team has the ability to increase the rate of software development for a research group while creating more efficient, reliable, and maintainable products. This strategy allows scientists to accomplish more, focusing on teamwork, rather than software development, which may not be their primary focus. 1. Robinson et al. (2010) Space Sci. Rev. 150, 81-124 2. DeGrandis. (2011) Cutter IT Journal. Vol 24, No. 8, 34-39 3. Estes, N.M.; Hanger, C.D.; Licht, A.A.; Bowman-Cisneros, E.; Lunaserv Web Map Service: History, Implementation Details, Development, and Uses, http://adsabs.harvard.edu/abs/2013LPICo1719.2609E.
Architecture-Centric Development in Globally Distributed Projects
NASA Astrophysics Data System (ADS)
Sauer, Joachim
In this chapter architecture-centric development is proposed as a means to strengthen the cohesion of distributed teams and to tackle challenges due to geographical and temporal distances and the clash of different cultures. A shared software architecture serves as blueprint for all activities in the development process and ties them together. Architecture-centric development thus provides a plan for task allocation, facilitates the cooperation of globally distributed developers, and enables continuous integration reaching across distributed teams. Advice is also provided for software architects who work with distributed teams in an agile manner.
NA-42 TI Shared Software Component Library FY2011 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.
The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessiblemore » by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed by PNNL is the development and continued maintenance of the NA-42 TI Software Development Questionnaire. This questionnaire is intended to help software development teams working under NA-42 TI in documenting their development activities. When sufficiently completed, the questionnaire illustrates that the software development activities recorded incorporate significant aspects of the software engineering lifecycle. The questionnaire template is updated as comments are received from NA-42 and/or its development teams and revised versions distributed to those using the questionnaire. PNNL also maintains a list of questionnaire recipients. The blank questionnaire template, the AVID and AMS software being developed, and the completed AVID AMS specific questionnaire are being used as the initial content to be established in the TI Component Library. This report summarizes the approach taken to identify requirements, search for and evaluate technologies, and the approach taken for installation of the software needed to host the component library. Additionally, it defines the process by which users request access for the contribution and retrieval of library content.« less
1979-12-01
team progranming in reducing software dleveloup- ment costs relative to ad hoc approaches and improving software product quality relative to...are interpreted as demonstrating the advantages of disciplined team programming in reducing software development costs relative to ad hoc approaches...is due oartialty to the cost and imoracticality of a valiI experimental setup within a oroauct ion environment. Thus the question remains, are
Achieving Agility and Stability in Large-Scale Software Development
2013-01-16
temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer Framework...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon
Absorbing Software Testing into the Scrum Method
NASA Astrophysics Data System (ADS)
Tuomikoski, Janne; Tervonen, Ilkka
In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.
Using "Facebook" to Improve Communication in Undergraduate Software Development Teams
ERIC Educational Resources Information Center
Charlton, Terence; Devlin, Marie; Drummond, Sarah
2009-01-01
As part of the CETL ALiC initiative (Centre of Excellence in Teaching and Learning: Active Learning in Computing), undergraduate computing science students at Newcastle and Durham universities participated in a cross-site team software development project. To ensure we offer adequate resources to support this collaboration, we conducted an…
Workflow-Based Software Development Environment
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
2013-01-01
The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment
Payload Operations Support Team Tools
NASA Technical Reports Server (NTRS)
Askew, Bill; Barry, Matthew; Burrows, Gary; Casey, Mike; Charles, Joe; Downing, Nicholas; Jain, Monika; Leopold, Rebecca; Luty, Roger; McDill, David;
2007-01-01
Payload Operations Support Team Tools is a software system that assists in (1) development and testing of software for payloads to be flown aboard the space shuttles and (2) training of payload customers, flight controllers, and flight crews in payload operations
A self-referential HOWTO on release engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galassi, Mark C.
Release engineering is a fundamental part of the software development cycle: it is the point at which quality control is exercised and bug fixes are integrated. The way in which software is released also gives the end user her first experience of a software package, while in scientific computing release engineering can guarantee reproducibility. For these reasons and others, the release process is a good indicator of the maturity and organization of a development team. Software teams often do not put in place a release process at the beginning. This is unfortunate because the team does not have early andmore » continuous execution of test suites, and it does not exercise the software in the same conditions as the end users. I describe an approach to release engineering based on the software tools developed and used by the GNU project, together with several specific proposals related to packaging and distribution. I do this in a step-by-step manner, demonstrating how this very paper is written and built using proper release engineering methods. Because many aspects of release engineering are not exercised in the building of the paper, the accompanying software repository also contains examples of software libraries.« less
A Matrix Approach to Software Process Definition
NASA Technical Reports Server (NTRS)
Schultz, David; Bachman, Judith; Landis, Linda; Stark, Mike; Godfrey, Sally; Morisio, Maurizio; Powers, Edward I. (Technical Monitor)
2000-01-01
The Software Engineering Laboratory (SEL) is currently engaged in a Methodology and Metrics program for the Information Systems Center (ISC) at Goddard Space Flight Center (GSFC). This paper addresses the Methodology portion of the program. The purpose of the Methodology effort is to assist a software team lead in selecting and tailoring a software development or maintenance process for a specific GSFC project. It is intended that this process will also be compliant with both ISO 9001 and the Software Engineering Institute's Capability Maturity Model (CMM). Under the Methodology program, we have defined four standard ISO-compliant software processes for the ISC, and three tailoring criteria that team leads can use to categorize their projects. The team lead would select a process and appropriate tailoring factors, from which a software process tailored to the specific project could be generated. Our objective in the Methodology program is to present software process information in a structured fashion, to make it easy for a team lead to characterize the type of software engineering to be performed, and to apply tailoring parameters to search for an appropriate software process description. This will enable the team lead to follow a proven, effective software process and also satisfy NASA's requirement for compliance with ISO 9001 and the anticipated requirement for CMM assessment. This work is also intended to support the deployment of sound software processes across the ISC.
A new approach for instrument software at Gemini
NASA Astrophysics Data System (ADS)
Gillies, Kim; Nunez, Arturo; Dunn, Jennifer
2008-07-01
Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.
Requirements Engineering in Building Climate Science Software
NASA Astrophysics Data System (ADS)
Batcheller, Archer L.
Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the software team or users have control and responsibility for making changes in response to new scientific ideas. Thick infrastructure provides more functionality for users, but gives them less control of it. The stability of infrastructure trades off against the responsiveness that the infrastructure can have to user needs.
WFF TOPEX Software Documentation Overview, May 1999. Volume 2
NASA Technical Reports Server (NTRS)
Brooks, Ronald L.; Lee, Jeffrey
2003-01-01
This document provides an overview'of software development activities and the resulting products and procedures developed by the TOPEX Software Development Team (SWDT) at Wallops Flight Facility, in support of the WFF TOPEX Engineering Assessment and Verification efforts.
NASA Technical Reports Server (NTRS)
2001-01-01
Qualtech Systems, Inc. developed a complete software system with capabilities of multisignal modeling, diagnostic analysis, run-time diagnostic operations, and intelligent interactive reasoners. Commercially available as the TEAMS (Testability Engineering and Maintenance System) tool set, the software can be used to reveal unanticipated system failures. The TEAMS software package is broken down into four companion tools: TEAMS-RT, TEAMATE, TEAMS-KB, and TEAMS-RDS. TEAMS-RT identifies good, bad, and suspect components in the system in real-time. It reports system health results from onboard tests, and detects and isolates failures within the system, allowing for rapid fault isolation. TEAMATE takes over from where TEAMS-RT left off by intelligently guiding the maintenance technician through the troubleshooting procedure, repair actions, and operational checkout. TEAMS-KB serves as a model management and collection tool. TEAMS-RDS (TEAMS-Remote Diagnostic Server) has the ability to continuously assess a system and isolate any failure in that system or its components, in real time. RDS incorporates TEAMS-RT, TEAMATE, and TEAMS-KB in a large-scale server architecture capable of providing advanced diagnostic and maintenance functions over a network, such as the Internet, with a web browser user interface.
Enhancing Collaborative Learning through Group Intelligence Software
NASA Astrophysics Data System (ADS)
Tan, Yin Leng; Macaulay, Linda A.
Employers increasingly demand not only academic excellence from graduates but also excellent interpersonal skills and the ability to work collaboratively in teams. This paper discusses the role of Group Intelligence software in helping to develop these higher order skills in the context of an enquiry based learning (EBL) project. The software supports teams in generating ideas, categorizing, prioritizing, voting and multi-criteria decision making and automatically generates a report of each team session. Students worked in a Group Intelligence lab designed to support both face to face and computer-mediated communication and employers provided feedback at two key points in the year long team project. Evaluation of the effectiveness of Group Intelligence software in collaborative learning was based on five key concepts of creativity, participation, productivity, engagement and understanding.
Florida alternative NTCIP testing software (ANTS) for actuated signal controllers.
DOT National Transportation Integrated Search
2009-01-01
The scope of this research project did include the development of a software tool to test devices for NTCIP compliance. Development of the Florida Alternative NTCIP Testing Software (ANTS) was developed by the research team due to limitations found w...
Why and how Mastering an Incremental and Iterative Software Development Process
NASA Astrophysics Data System (ADS)
Dubuc, François; Guichoux, Bernard; Cormery, Patrick; Mescam, Jean Christophe
2004-06-01
One of the key issues regularly mentioned in the current software crisis of the space domain is related to the software development process that must be performed while the system definition is not yet frozen. This is especially true for complex systems like launchers or space vehicles.Several more or less mature solutions are under study by EADS SPACE Transportation and are going to be presented in this paper. The basic principle is to develop the software through an iterative and incremental process instead of the classical waterfall approach, with the following advantages:- It permits systematic management and incorporation of requirements changes over the development cycle with a minimal cost. As far as possible the most dimensioning requirements are analyzed and developed in priority for validating very early the architecture concept without the details.- A software prototype is very quickly available. It improves the communication between system and software teams, as it enables to check very early and efficiently the common understanding of the system requirements.- It allows the software team to complete a whole development cycle very early, and thus to become quickly familiar with the software development environment (methodology, technology, tools...). This is particularly important when the team is new, or when the environment has changed since the previous development. Anyhow, it improves a lot the learning curve of the software team.These advantages seem very attractive, but mastering efficiently an iterative development process is not so easy and induces a lot of difficulties such as:- How to freeze one configuration of the system definition as a development baseline, while most of thesystem requirements are completely and naturally unstable?- How to distinguish stable/unstable and dimensioning/standard requirements?- How to plan the development of each increment?- How to link classical waterfall development milestones with an iterative approach: when should theclassical reviews be performed: Software Specification Review? Preliminary Design Review? CriticalDesign Review? Code Review? Etc...Several solutions envisaged or already deployed by EADS SPACE Transportation will be presented, both from a methodological and technological point of view:- How the MELANIE EADS ST internal methodology improves the concurrent engineering activitiesbetween GNC, software and simulation teams in a very iterative and reactive way.- How the CMM approach can help by better formalizing Requirements Management and Planningprocesses.- How the Automatic Code Generation with "certified" tools (SCADE) can still dramatically shorten thedevelopment cycle.Then the presentation will conclude by showing an evaluation of the cost and planning reduction based on a pilot application by comparing figures on two similar projects: one with the classical waterfall process, the other one with an iterative and incremental approach.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on Exploration Mission 1.
Space and Missile Systems Center Standard: Software Development
2015-01-16
maintenance , or any other activity or combination of activities resulting in products . Within this standard, requirements to “develop,” “define...integration, reuse, reengineering, maintenance , or any other activity that results in products ). The term “developer” encompasses all software team...activities that results in software products . Software development includes new development, modification, reuse, reengineering, maintenance , and any other
Valjevac, Salih; Ridjanovic, Zoran; Masic, Izet
2009-01-01
CONFLICT OF INTEREST: NONE DECLARED SUMMARY Introduction Agency for healthcare quality and accreditation in Federation of Bosnia and Herzegovina (AKAZ) is authorized body in the field of healthcare quality and safety improvement and accreditation of healthcare institutions. Beside accreditation standards for hospitals and primary health care centers, AKAZ has also developed accreditation standards for family medicine teams. Methods Software development was primarily based on Accreditation Standards for Family Medicine Teams. Seven chapters / topics: (1. Physical factors; 2. Equipment; 3. Organization and Management; 4. Health promotion and illness prevention; 5. Clinical services; 6. Patient survey; and 7. Patient’s rights and obligations) contain 35 standards describing expected level of family medicine team’s quality. Based on accreditation standards structure and needs of different potential users, it was concluded that software backbone should be a database containing all accreditation standards, self assessment and external assessment details. In this article we will present the development of standardized software for self and external evaluation of quality of service in family medicine, as well as plans for the future development of this software package. Conclusion Electronic data gathering and storing enhances the management, access and overall use of information. During this project we came to conclusion that software for self assessment and external assessment is ideal for accreditation standards distribution, their overview by the family medicine team members, their self assessment and external assessment. PMID:24109157
User systems guidelines for software projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahamson, L.
1986-04-01
This manual presents guidelines for software standards which were developed so that software project-development teams and management involved in approving the software could have a generalized view of all phases in the software production procedure and the steps involved in completing each phase. Guidelines are presented for six phases of software development: project definition, building a user interface, designing software, writing code, testing code, and preparing software documentation. The discussions for each phase include examples illustrating the recommended guidelines. 45 refs. (DWL)
Knowledge Sharing through Pair Programming in Learning Environments: An Empirical Study
ERIC Educational Resources Information Center
Kavitha, R. K.; Ahmed, M. S.
2015-01-01
Agile software development is an iterative and incremental methodology, where solutions evolve from self-organizing, cross-functional teams. Pair programming is a type of agile software development technique where two programmers work together with one computer for developing software. This paper reports the results of the pair programming…
ERIC Educational Resources Information Center
Chen, Chung-Yang; Hong, Ya-Chun; Chen, Pei-Chi
2014-01-01
Software development relies heavily on teamwork; determining how to streamline this collaborative development is an essential training subject in computer and software engineering education. A team process known as the meetings-flow (MF) approach has recently been introduced in software capstone projects in engineering programs at various…
NASA Astrophysics Data System (ADS)
Aguilar Cisneros, Jorge; Vargas Martinez, Hector; Pedroza Melendez, Alejandro; Alonso Arevalo, Miguel
2013-09-01
Mexico is a country where the experience to build software for satellite applications is beginning. This is a delicate situation because in the near future we will need to develop software for the SATEX-II (Mexican Experimental Satellite). SATEX- II is a SOMECyTA's project (the Mexican Society of Aerospace Science and Technology). We have experienced applying software development methodologies, like TSP (Team Software Process) and SCRUM in other areas. Then, we analyzed these methodologies and we concluded: these can be applied to develop software for the SATEX-II, also, we supported these methodologies with SSP-05-0 Standard in particular with ESA PSS-05-11. Our analysis was focusing on main characteristics of each methodology and how these methodologies could be used with the ESA PSS 05-0 Standards. Our outcomes, in general, may be used by teams who need to build small satellites, but, in particular, these are going to be used when we will build the on board software applications for the SATEX-II.
ERIC Educational Resources Information Center
Monaghan, Conal; Bizumic, Boris; Reynolds, Katherine; Smithson, Michael; Johns-Boast, Lynette; van Rooy, Dirk
2015-01-01
One prominent approach in the exploration of the variations in project team performance has been to study two components of the aggregate personalities of the team members: conscientiousness and agreeableness. A second line of research, known as self-categorisation theory, argues that identifying as team members and the team's performance norms…
The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.
Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin
2007-11-01
This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.
Managing MDO Software Development Projects
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Salas, A. O.
2002-01-01
Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.
Learning to Write Programs with Others: Collaborative Quadruple Programming
ERIC Educational Resources Information Center
Arora, Ritu; Goel, Sanjay
2012-01-01
Most software development is carried out by teams of software engineers working collaboratively to achieve the desired goal. Consequently software development education not only needs to develop a student's ability to write programs that can be easily comprehended by others and be able to comprehend programs written by others, but also the ability…
Bosma, Laine; Balen, Robert M; Davidson, Erin; Jewesson, Peter J
2003-01-01
The development and integration of a personal digital assistant (PDA)-based point-of-care database into an intravenous resource nurse (IVRN) consultation service for the purposes of consultation management and service characterization are described. The IVRN team provides a consultation service 7 days a week in this 1000-bed tertiary adult care teaching hospital. No simple, reliable method for documenting IVRN patient care activity and facilitating IVRN-initiated patient follow-up evaluation was available. Implementation of a PDA database with exportability of data to statistical analysis software was undertaken in July 2001. A Palm IIIXE PDA was purchased and a three-table, 13-field database was developed using HanDBase software. During the 7-month period of data collection, the IVRN team recorded 4868 consultations for 40 patient care areas. Full analysis of service characteristics was conducted using SPSS 10.0 software. Team members adopted the new technology with few problems, and the authors now can efficiently track and analyze the services provided by their IVRN team.
Multidisciplinary Concurrent Design Optimization via the Internet
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Kelkar, Atul G.; Koganti, Gopichand
2001-01-01
A methodology is presented which uses commercial design and analysis software and the Internet to perform concurrent multidisciplinary optimization. The methodology provides a means to develop multidisciplinary designs without requiring that all software be accessible from the same local network. The procedures are amenable to design and development teams whose members, expertise and respective software are not geographically located together. This methodology facilitates multidisciplinary teams working concurrently on a design problem of common interest. Partition of design software to different machines allows each constituent software to be used on the machine that provides the most economy and efficiency. The methodology is demonstrated on the concurrent design of a spacecraft structure and attitude control system. Results are compared to those derived from performing the design with an autonomous FORTRAN program.
2017-03-17
NASA engineers and test directors gather in Firing Room 3 in the Launch Control Center at NASA's Kennedy Space Center in Florida, to watch a demonstration of the automated command and control software for the agency's Space Launch System (SLS) and Orion spacecraft. In front, far right, is Charlie Blackwell-Thompson, launch director for Exploration Mission 1 (EM-1). The software is called the Ground Launch Sequencer. It will be responsible for nearly all of the launch commit criteria during the final phases of launch countdowns. The Ground and Flight Application Software Team (GFAST) demonstrated the software. It was developed by the Command, Control and Communications team in the Ground Systems Development and Operations (GSDO) Program. GSDO is helping to prepare the center for the first test flight of Orion atop the SLS on EM-1.
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.
Effective Team Support: From Modeling to Software Agents
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia
2003-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.
NASA Technical Reports Server (NTRS)
Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia
2005-01-01
The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.
Production Techniques for Computer-Based Learning Material.
ERIC Educational Resources Information Center
Moonen, Jef; Schoenmaker, Jan
Experiences in the development of educational software in the Netherlands have included the use of individual and team approaches, the determination of software content and how it should be presented, and the organization of the entire development process, from experimental programs to prototype to final product. Because educational software is a…
Improving collaborative learning in online software engineering education
NASA Astrophysics Data System (ADS)
Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.
2017-11-01
Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.
Spacelab software development and integration concepts study report. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
1973-01-01
Software considerations were developed for incorporation in the spacelab systems design, and include management concepts for top-down structured programming, composite designs for modular programs, and team management methods for production programming.
Streamlining Software Aspects of Certification: Technical Team Report on the First Industry Workshop
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Holloway, C. Michael; Knight, John C.; Leveson, Nancy G.; Yang, Jeffrey C.; Dorsey, Cheryl A.; McCormick, G. Frank
1998-01-01
To address concerns about time and expense associated with software aspects of certification, the Federal Aviation Administration (FAA) began the Streamlining Software Aspects of Certification (SSAC) program. As part of this program, a Technical Team was established to determine whether the cost and time associated with certifying aircraft can be reduced while maintaining or improving safety, with the intent of impacting the FAA's Flight 2000 program. The Technical Team conducted a workshop to gain a better understanding of the major concerns in industry about software cost and schedule. Over 120 people attended the workshop, including representatives from the FAA,commercial transport and general aviation aircraft manufacturers and suppliers, and procurers and developers of non-airborne systems; and, more than 200 issues about software aspects of certification were recorded. This paper provides an overview of the SSAC program, motivation for the workshop, details of the workshop activities and outcomes, and recommendations for follow-on work.
KEYNOTE 2 : Rebuilding the Tower of Babel - Better Communication with Standards
2013-02-01
and a member of the Object Management Group (OMG) SysML specification team. He has been developing multi-national complex systems for almost 35 years...critical systems development, virtual team management, systems development, and software development with UML, SysML and Architectural Frameworks
A Capstone Course on Agile Software Development Using Scrum
ERIC Educational Resources Information Center
Mahnic, V.
2012-01-01
In this paper, an undergraduate capstone course in software engineering is described that not only exposes students to agile software development, but also makes it possible to observe the behavior of developers using Scrum for the first time. The course requires students to work as Scrum Teams, responsible for the implementation of a set of user…
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
Proposing an Evidence-Based Strategy for Software Requirements Engineering.
Lindoerfer, Doris; Mansmann, Ulrich
2016-01-01
This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.
Software Development in the Water Sciences: a view from the divide (Invited)
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2013-12-01
While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.
Contingency theoretic methodology for agent-based web-oriented manufacturing systems
NASA Astrophysics Data System (ADS)
Durrett, John R.; Burnell, Lisa J.; Priest, John W.
2000-12-01
The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.
Implementing Large Projects in Software Engineering Courses
ERIC Educational Resources Information Center
Coppit, David
2006-01-01
In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…
Flight Planning Branch NASA Co-op Tour
NASA Technical Reports Server (NTRS)
Marr, Aja M.
2013-01-01
This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.
Technology-driven dietary assessment: a software developer’s perspective
Buday, Richard; Tapia, Ramsey; Maze, Gary R.
2015-01-01
Dietary researchers need new software to improve nutrition data collection and analysis, but creating information technology is difficult. Software development projects may be unsuccessful due to inadequate understanding of needs, management problems, technology barriers or legal hurdles. Cost overruns and schedule delays are common. Barriers facing scientific researchers developing software include workflow, cost, schedule, and team issues. Different methods of software development and the role that intellectual property rights play are discussed. A dietary researcher must carefully consider multiple issues to maximize the likelihood of success when creating new software. PMID:22591224
Software Quality Assurance Metrics
NASA Technical Reports Server (NTRS)
McRae, Kalindra A.
2004-01-01
Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.
Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment
USDA-ARS?s Scientific Manuscript database
Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...
Empirical studies of design software: Implications for software engineering environments
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert
2005-01-01
The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less
Spaceport Command and Control System - Support Software Development
NASA Technical Reports Server (NTRS)
Tremblay, Shayne
2016-01-01
The Information Architecture Support (IAS) Team, the component of the Spaceport Command and Control System (SCCS) that is in charge of all the pre-runtime data, was in need of some report features to be added to their internal web application, Information Architecture (IA). Development of these reports is crucial for the speed and productivity of the development team, as they are needed to quickly and efficiently make specific and complicated data requests against the massive IA database. These reports were being put on the back burner, as other development of IA was prioritized over them, but the need for them resulted in internships being created to fill this need. The creation of these reports required learning Ruby on Rails development, along with related web technologies, and they will continue to serve IAS and other support software teams and their IA data needs.
TMT approach to observatory software development process
NASA Astrophysics Data System (ADS)
Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder
2016-07-01
The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate effective communications; adopting an agile-based software development process across the observatory to enable frequent software releases to help mitigate subsystem interdependencies; defining concise scope and work packages for each of the OSW subsystems to facilitate effective outsourcing of software deliverables to the ITCC partner, and to enable performance monitoring and risk management. At this stage, the architecture and high-level design of the software system has been established and reviewed. During construction each subsystem will have a final design phase with reviews, followed by implementation and testing. The results of the TMT approach to the Observatory Software development process will only be preliminary at the time of the submittal of this paper, but it is anticipated that the early results will be a favorable indication of progress.
Managing Communication among Geographically Distributed Teams: A Brazilian Case
NASA Astrophysics Data System (ADS)
Almeida, Ana Carina M.; de Farias Junior, Ivaldir H.; de S. Carneiro, Pedro Jorge
The growing demand for qualified professionals is making software companies opt for distributed software development (DSD). At the project conception, communication and synchronization of information are critical factors for success. However problems such as time-zone difference between teams, culture, language and different development processes among sites could difficult the communication among teams. In this way, the main goal of this paper is to describe the solution adopted by a Brazilian team to improve communication in a multisite project environment. The purposed solution was based on the best practices described in the literature, and the communication plan was created based on the infrastructure needed by the project. The outcome of this work is to minimize the impact of communication issues in multisite projects, increasing productivity, good understanding and avoiding rework on code and document writing.
Case Study: Accelerating Process Improvement by Integrating the TSP and CMMI
2007-06-01
Could software development teams and indi- viduals apply similar principles to improve their work? Watts S . Humphrey , a founder of the process...was an authorized PSP instructor. At Schwalb’s urging, Watts Humphrey briefed the SLT on the PSP and TSP, and after the briefing, the team... Humphrey 96] Humphrey , Watts S . Introduction to the Personal Software Process. Boston, MA: Addison- Wesley Publishing Company, Inc., 1996 (ISBN
Tutor Training in Computer Science: Tutor Opinions and Student Results.
ERIC Educational Resources Information Center
Carbone, Angela; Mitchell, Ian
Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…
ToxPredictor: a Toxicity Estimation Software Tool
The Computational Toxicology Team within the National Risk Management Research Laboratory has developed a software tool that will allow the user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be ac...
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
Fully Employing Software Inspections Data
NASA Technical Reports Server (NTRS)
Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally
2009-01-01
Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.
Ada training evaluation and recommendations from the Gamma Ray Observatory Ada Development Team
NASA Technical Reports Server (NTRS)
1985-01-01
The Ada training experiences of the Gamma Ray Observatory Ada development team are related, and recommendations are made concerning future Ada training for software developers. Training methods are evaluated, deficiencies in the training program are noted, and a recommended approach, including course outline, time allocation, and reference materials, is offered.
NASA Astrophysics Data System (ADS)
Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik
When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
Team Software Development for Aerothermodynamic and Aerodynamic Analysis and Design
NASA Technical Reports Server (NTRS)
Alexandrov, N.; Atkins, H. L.; Bibb, K. L.; Biedron, R. T.; Carpenter, M. H.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T.; Kleb, W. L.; Lee-Rausch, E. M.
2003-01-01
A collaborative approach to software development is described. The approach employs the agile development techniques: project retrospectives, Scrum status meetings, and elements of Extreme Programming to efficiently develop a cohesive and extensible software suite. The software product under development is a fluid dynamics simulator for performing aerodynamic and aerothermodynamic analysis and design. The functionality of the software product is achieved both through the merging, with substantial rewrite, of separate legacy codes and the authorship of new routines. Examples of rapid implementation of new functionality demonstrate the benefits obtained with this agile software development process. The appendix contains a discussion of coding issues encountered while porting legacy Fortran 77 code to Fortran 95, software design principles, and a Fortran 95 coding standard.
Towards a balanced software team formation based on Belbin team role using fuzzy technique
NASA Astrophysics Data System (ADS)
Omar, Mazni; Hasan, Bikhtiyar; Ahmad, Mazida; Yasin, Azman; Baharom, Fauziah; Mohd, Haslina; Darus, Norida Muhd
2016-08-01
In software engineering (SE), team roles play significant impact in determining the project success. To ensure the optimal outcome of the project the team is working on, it is essential to ensure that the team members are assigned to the right role with the right characteristics. One of the prevalent team roles is Belbin team role. A successful team must have a balance of team roles. Thus, this study demonstrates steps taken to determine balance of software team formation based on Belbin team role using fuzzy technique. Fuzzy technique was chosen because it allows analyzing of imprecise data and classifying selected criteria. In this study, two roles in Belbin team role, which are Shaper (Sh) and Plant (Pl) were chosen to assign the specific role in software team. Results show that the technique is able to be used for determining the balance of team roles. Future works will focus on the validation of the proposed method by using empirical data in industrial setting.
A Brief Survey of the Team Software ProcessSM (TSPSM)
2011-10-24
spent more than 20 years in industry as a software engineer, system designer, project leader, and development manager working on control systems...InnerWorkings, Inc. Instituto Tecnologico y de Estudios Superiores de Monterrey Siemens AG SILAC Ingenieria de Software S.A. de C.V
ERIC Educational Resources Information Center
Holcomb, Glenda S.
2010-01-01
This qualitative, phenomenological doctoral dissertation research study explored the software project team members perceptions of changing organizational cultures based on management decisions made at project deviation points. The research study provided a view into challenged or failing government software projects through the lived experiences…
TOPEX Software Document Series. Volume 5; Rev. 1; TOPEX GDR Processing
NASA Technical Reports Server (NTRS)
Lee, Jeffrey; Lockwood, Dennis; Hancock, David W., III
2003-01-01
This document is a compendium of the WFF TOPEX Software Development Team's knowledge regarding Geophysical Data Record (GDR) Processing. It includes many elements of a requirements document, a software specification document, a software design document, and a user's manual. In the more technical sections, this document assumes the reader is familiar with TOPEX and instrument files.
Streamlining Software Aspects of Certification: Report on the SSAC Survey
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Dorsey, Cheryl A.; Knight, John C.; Leveson, Nancy G.; McCormick, G. Frank
1999-01-01
The aviation system now depends on information technology more than ever before to ensure safety and efficiency. To address concerns about the efficacy of software aspects of the certification process, the Federal Aviation Administration (FAA) began the Streamlining Software Aspects of Certification (SSAC) program. The SSAC technical team was commissioned to gather data, analyze results, and propose recommendations to maximize efficiency and minimize cost and delay, without compromising safety. The technical team conducted two public workshops to identify and prioritize software approval issues, and conducted a survey to validate the most urgent of those issues. The SSAC survey, containing over two hundred questions about the FAA's software approval process, reached over four hundred industry software developers, aircraft manufacturers, and FAA designated engineering representatives. Three hundred people responded. This report presents the SSAC program rationale, survey process, preliminary findings, and recommendations.
Are the expected benefits of requirements reuse hampered by distance? An experiment.
Carrillo de Gea, Juan M; Nicolás, Joaquín; Fernández-Alemán, José L; Toval, Ambrosio; Idri, Ali
2016-01-01
Software development processes are often performed by distributed teams which may be separated by great distances. Global software development (GSD) has undergone a significant growth in recent years. The challenges concerning GSD are especially relevant to requirements engineering (RE). Stakeholders need to share a common ground, but there are many difficulties as regards the potentially variable interpretation of the requirements in different contexts. We posit that the application of requirements reuse techniques could alleviate this problem through the diminution of the number of requirements open to misinterpretation. This paper presents a reuse-based approach with which to address RE in GSD, with special emphasis on specification techniques, namely parameterised requirements and traceability relationships. An experiment was carried out with the participation of 29 university students enrolled on a Computer Science and Engineering course. Two main scenarios that represented co-localisation and distribution in software development were portrayed by participants from Spain and Morocco. The global teams achieved a slightly better performance than the co-located teams as regards effectiveness , which could be a result of the worse productivity of the global teams in comparison to the co-located teams. Subjective perceptions were generally more positive in the case of the distributed teams ( difficulty , speed and understanding ), with the exception of quality . A theoretical model has been proposed as an evaluation framework with which to analyse, from the point of view of the factor of distance, the effect of requirements specification techniques on a set of performance and perception-based variables. The experiment utilised a new internationalisation requirements catalogue. None of the differences found between co-located and distributed teams were significant according to the outcome of our statistical tests. The well-known benefits of requirements reuse in traditional co-located projects could, therefore, also be expected in GSD projects.
Team Software Process (TSP) Coach Mentoring Program Guidebook
2009-08-01
SEI TSP Initiative Team. • All training was conducted in English only, and observations were limited to English- speaking coaches and teams. The...Certified TSP Mentor Coach programs also enable the expansion of TSP implementation to non-English- speaking teams and organizations. This pro- gram also...Communication Needs Significant Improvement Could Benefit from Development Capable and Effective Role Model 1. I listen before speaking . 2. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia
2009-01-01
The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less
WFF TOPEX Software Documentation Altimeter Instrument File (AIF) Processing, October 1998. Volume 3
NASA Technical Reports Server (NTRS)
Lee, Jeffrey; Lockwood, Dennis
2003-01-01
This document is a compendium of the WFF TOPEX Software Development Team's knowledge regarding Sensor Data Record (SDR) Processing. It includes many elements of a requirements document, a software specification document, a software design document, and a user's manual. In the more technical sections, this document assumes the reader is familiar with TOPEX and instrument files.
NASA Technical Reports Server (NTRS)
Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David
1990-01-01
This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.
CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 9
2005-09-01
2004. 12. Humphrey , Watts . Introduction to the Personal Software Process SM. Addison- Wesley 1997. 13. Humphrey , Watts . Introduction to the Team...Personal Software ProcessSM (PSPSM)is a software development process orig- inated by Watts Humphrey at the Software Engineering Institute (SEI) in the...meets its commitments and bring a sense of control and predictability into an apparently chaotic project.u References 1. Humphrey , Watts . Coaching
Using iKidTools™ Software Support Systems to Develop and Implement Self-Monitoring Interventions
ERIC Educational Resources Information Center
Patti, Angela L.; Miller, Kevin J.
2011-01-01
Educational teams often are faced with the task of developing and implementing Behavioral Intervention Plans (BIPs) for students who present challenging and/or disruptive behaviors. This article describes the steps used to develop and implement a self-monitoring BIP that incorporated an innovative software system, iKidTools™. An authentic case…
Orion GN and C Model Based Development: Experience and Lessons Learned
NASA Technical Reports Server (NTRS)
Jackson, Mark C.; Henry, Joel R.
2012-01-01
The Orion Guidance Navigation and Control (GN&C) team is charged with developing GN&C algorithms for the Exploration Flight Test One (EFT-1) vehicle. The GN&C team is a joint team consisting primarily of Prime Contractor (Lockheed Martin) and NASA personnel and contractors. Early in the GN&C development cycle the team selected MATLAB/Simulink as the tool for developing GN&C algorithms and Mathworks autocode tools as the means for converting GN&C algorithms to flight software (FSW). This paper provides an assessment of the successes and problems encountered by the GN&C team from the perspective of Orion GN&C developers, integrators, FSW engineers and management. The Orion GN&C approach to graphical development, including simulation tools, standards development and autocode approaches are scored for the main activities that the team has completed through the development phases of the program.
TOPEX SDR Processing, October 1998. Volume 4
NASA Technical Reports Server (NTRS)
Lee, Jeffrey E.; Lockwood, Dennis W.
2003-01-01
This document is a compendium of the WFF TOPEX Software Development Team's knowledge regarding Sensor Data Record (SDR) Processing. It includes many elements of a requirements document, a software specification document, a software design document, and a user's manual. In the more technical sections, this document assumes the reader is familiar with TOPEX and instrument files.
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories
NASA Astrophysics Data System (ADS)
Sunetnanta, Thanwadee; Nobprapai, Ni-On; Gotel, Olly
The nature of distributed teams and the existence of multiple sites in offshore software development projects pose a challenging setting for software process improvement. Often, the improvement and appraisal of software processes is achieved through a turnkey solution where best practices are imposed or transferred from a company’s headquarters to its offshore units. In so doing, successful project health checks and monitoring for quality on software processes requires strong project management skills, well-built onshore-offshore coordination, and often needs regular onsite visits by software process improvement consultants from the headquarters’ team. This paper focuses on software process improvement as guided by the Capability Maturity Model Integration (CMMI) and proposes a model to evaluate the status of such improvement efforts in the context of distributed multi-site projects without some of this overhead. The paper discusses the application of quantitative CMMI assessment through the collection and analysis of project data gathered directly from project repositories to facilitate CMMI implementation and reduce the cost of such implementation for offshore-outsourced software development projects. We exemplify this approach to quantitative CMMI assessment through the analysis of project management data and discuss the future directions of this work in progress.
Software Program: Software Management Guidebook
NASA Technical Reports Server (NTRS)
1996-01-01
The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.
Effort Drivers Estimation for Brazilian Geographically Distributed Software Development
NASA Astrophysics Data System (ADS)
Almeida, Ana Carina M.; Souza, Renata; Aquino, Gibeon; Meira, Silvio
To meet the requirements of today’s fast paced markets, it is important to develop projects on time and with the minimum use of resources. A good estimate is the key to achieve this goal. Several companies have started to work with geographically distributed teams due to cost reduction and time-to-market. Some researchers indicate that this approach introduces new challenges, because the teams work in different time zones and have possible differences in culture and language. It is already known that the multisite development increases the software cycle time. Data from 15 DSD projects from 10 distinct companies were collected. The analysis shows drivers that impact significantly the total effort planned to develop systems using DSD approach in Brazil.
Penn State University ground software support for X-ray missions.
NASA Astrophysics Data System (ADS)
Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.
1995-03-01
The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.
Team Production of Learner-Controlled Courseware: A Progress Report.
ERIC Educational Resources Information Center
Bunderson, C. Victor
A project being conducted by the MITRE Corporation and Brigham Young University (BYU) is developing hardware, software, and courseware for the TICCIT (Time Shared, Interactive, Computer Controlled Information Television) computer-assisted instructional system. Four instructional teams at BYU, each having an instructional psychologist, subject…
Introduction to the Navigation Team: Johnson Space Center EG6 Internship
NASA Technical Reports Server (NTRS)
Gualdoni, Matthew
2017-01-01
The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.
Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray
This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less
NASA Technical Reports Server (NTRS)
Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.
1981-01-01
This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.
IMSF: Infinite Methodology Set Framework
NASA Astrophysics Data System (ADS)
Ota, Martin; Jelínek, Ivan
Software development is usually an integration task in enterprise environment - few software applications work autonomously now. It is usually a collaboration of heterogeneous and unstable teams. One serious problem is lack of resources, a popular result being outsourcing, ‘body shopping’, and indirectly team and team member fluctuation. Outsourced sub-deliveries easily become black boxes with no clear development method used, which has a negative impact on supportability. Such environments then often face the problems of quality assurance and enterprise know-how management. The used methodology is one of the key factors. Each methodology was created as a generalization of a number of solved projects, and each methodology is thus more or less connected with a set of task types. When the task type is not suitable, it causes problems that usually result in an undocumented ad-hoc solution. This was the motivation behind formalizing a simple process for collaborative software engineering. Infinite Methodology Set Framework (IMSF) defines the ICT business process of adaptive use of methods for classified types of tasks. The article introduces IMSF and briefly comments its meta-model.
2007-09-01
Motion URL: http://www.blackberry.com/products/blackberry/index.shtml Software Name: Bricolage Company: Bricolage URL: http://www.bricolage.cc...Workflow Customizable control over editorial content. Bricolage Bricolage Feature Description Software Company Workflow Allows development...content for Nuxeo Collaborative Portal projects. Nuxeo Workspace Add, edit, delete, content through web interface. Bricolage Bricolage
Biotechnology software in the digital age: are you winning?
Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S
2018-01-16
There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.
Team Software Process (TSP) Coach Mentoring Program Guidebook Version 1.1
2010-06-01
All training was conducted in English only, and observations were limited to English- speaking coaches and teams. The SEI-Certified TSP Coach...programs also enable the expansion of TSP implementation to non-English- speaking teams and organizations. This expanded capacity for qualifying candidate...Improvement Could Benefit from Development Capable and Effective Role Model 1. I listen before speaking . 2. I demonstrate persuasiveness in
EPOS Data and Service Provision
NASA Astrophysics Data System (ADS)
Bailo, Daniele; Jeffery, Keith G.; Atakan, Kuvvet; Harrison, Matt
2017-04-01
EPOS is now in IP (implementation phase) after a successful PP (preparatory phase). EPOS consists of essentially two components, one ICS (Integrated Core Services) representing the integrating ICT (Information and Communication Technology) and many TCS (Thematic Core Services) representing the scientific domains. The architecture developed, demonstrated and agreed within the project during the PP is now being developed utilising co-design with the TCS teams and agile, spiral methods within the ICS team. The 'heart' of EPOS is the metadata catalog. This provides for the ICS a digital representation of the TCS assets (services, data, software, equipment, expertise…) thus facilitating access, interoperation and (re-)use. A major part of the work has been interactions with the TCS. The original intention to harvest information from the TCS required (and still requires) discussions to understand fully the TCS organisational structures linked with rights, security and privacy; their (meta)data syntax (structure) and semantics (meaning); their workflows and methods of working and the services offered. To complicate matters further the TCS are each at varying stages of development and the ICS design has to accommodate pre-existing, developing and expected future standards for metadata, data, software and processes. Through information documents, questionnaires and interviews/meetings the EPOS ICS team has collected DDSS (Data, Data Products, Software and Services) information from the TCS. The ICS team developed a simplified metadata model for presentation to the TCS and the ICS team will perform the mapping and conversion from this model to the internal detailed technical metadata model using (CERIF: a EU recommendation to Member States maintained, developed and promoted by euroCRIS www.eurocris.org ). At the time of writing the final modifications of the EPOS metadata model are being made, and the mappings to CERIF designed, prior to the main phase of (meta)data collection into the EPOS metadata catalog. In parallel work proceeds on the user interface softsare, the APIs (Application Programming Interfaces) to the TCS services, the harvesting method and software, the AAAI (Authentication, Authorisation, Accounting Infrastructure) and the system manager. The next steps will involve interfaces to ICS-D (Distributed ICS i.e. facilities and services for computing, data storage, detectors and instruments for data collection etc.) to which requests, software and data will be deployed and from which data will be generated. Associated with this will be the development of the workflow system which will assist the end-user in building a workflow to achieve the scientific objectives.
The Use of Flexible, Interactive, Situation-Focused Software for the E-Learning of Mathematics.
ERIC Educational Resources Information Center
Farnsworth, Ralph Edward
This paper discusses the classroom, home, and distance use of new, flexible, interactive, application-oriented software known as Active Learning Suite. The actual use of the software, not just a controlled experiment, is reported on. Designed for the e-learning of university mathematics, the program was developed by a joint U.S.-Russia team and…
FY 2002 Report on Software Visualization Techniques for IV and V
NASA Technical Reports Server (NTRS)
Fotta, Michael E.
2002-01-01
One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.
Idea Paper: The Lifecycle of Software for Scientific Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubey, Anshu; McInnes, Lois C.
The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less
Real-Time Multimission Event Notification System for Mars Relay
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.
2013-01-01
As the Mars Relay Network is in constant flux (missions and teams going through their daily workflow), it is imperative that users are aware of such state changes. For example, a change by an orbiter team can affect operations on a lander team. This software provides an ambient view of the real-time status of the Mars network. The Mars Relay Operations Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay Network. As part of MaROS, a feature set was developed that operates on several levels of the software architecture. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. The result is a real-time event notification and management system, so mission teams can track and act upon events on a moment-by-moment basis. This software retrieves events from MaROS and displays them to the end user. Updates happen in real time, i.e., messages are pushed to the user while logged into the system, and queued when the user is not online for later viewing. The software does not do away with the email notifications, but augments them with in-line notifications. Further, this software expands the events that can generate a notification, and allows user-generated notifications. Existing software sends a smaller subset of mission-generated notifications via email. A common complaint of users was that the system-generated e-mails often "get lost" with other e-mail that comes in. This software allows for an expanded set (including user-generated) of notifications displayed in-line of the program. By separating notifications, this can improve a user's workflow.
Emerging Technologies for Software-Reliant Systems of Systems
2010-09-01
conditions, such as temperature, sound, vibration, light intensity , motion, or proximity to objects [Raghavendra 2006]. Cognitive Network A cognitive...systems evolutionary development emergent behavior geographic distribution Maier also defines four types of SoS based on their management...by multinational teams. Many organizations use offshoring as a way to reduce costs of software development. Large web- based systems often use
NASA Technology Transfer - Human Robot Teaming
2016-12-23
Produced for Intelligent Robotics Group to show at January 2017 Consumer Electronics Show (CES). Highlights development of VERVE (Visual Environment for Remote Virtual Exploration) software used on K-10, K-REX, SPHERES and AstroBee projects for 3D awareness. Also mentions transfer of software to Nissan for their development in their Autonomous Vehicle project. Video includes Nissan's self-driving car around NASA Ames.
NASA's TReK Project: A Case Study in Using the Spiral Model of Software Development
NASA Technical Reports Server (NTRS)
Hendrix, T. Dean; Schneider, Michelle P.
1998-01-01
Software development projects face numerous challenges that threaten their successful completion. Whether it is not enough money, too little time, or a case of "requirements creep" that has turned into a full sprint, projects must meet these challenges or face possible disastrous consequences. A robust, yet flexible process model can provide a mechanism through which software development teams can meet these challenges head on and win. This article describes how the spiral model has been successfully tailored to a specific project and relates some notable results to date.
A Team Building Model for Software Engineering Courses Term Projects
ERIC Educational Resources Information Center
Sahin, Yasar Guneri
2011-01-01
This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…
Software Capability Evaluation Version 2.0 Method Description
1994-06-01
These criteria are discussed below; they include training, team composition, team leadership , team member experience and knowledge, individual...previous SCEs. No more than one team member should have less than two years of professional software experience. 3 Leadership . Ideally, the team leader...features: e leadership - the assignment of responsibility the presence of sponsorship. * organizational policies - there are written po! ;goveming the
Patterns of change in design metaphor: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubblefield, W.A.
1998-04-01
Design metaphors play an important role in the development of many software projects. However, the influence of metaphors on project functionality, design methodology and the interactions among members of the development team is not well understood. This paper seeks insights into these issues by examining the experiences of a design team in building a system under the influence of a particularly strong design metaphor.
Cyber security best practices for the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badr, I.
2012-07-01
When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)
Scheduling System Assessment, and Development and Enhancement of Re-engineered Version of GPSS
NASA Technical Reports Server (NTRS)
Loganantharaj, Rasiah; Thomas, Bushrod; Passonno, Nicole
1996-01-01
The objective of this project is two-fold. First to provide an evaluation of a commercially developed version of the ground processing scheduling system (GPSS) for its applicability to the Kennedy Space Center (KSC) ground processing problem. Second, to work with the KSC GPSS development team and provide enhancement to the existing software. Systems reengineering is required to provide a sustainable system for the users and the software maintenance group. Using the LISP profile prototype code developed by the GPSS reverse reengineering groups as a building block, we have implemented the resource deconfliction portion of GPSS in common LISP using its object oriented features. The prototype corrects and extends some of the deficiencies of the current production version, plus it uses and builds on the classes from the development team's profile prototype.
Software Technology Transfer and Export Control.
1981-01-01
development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported
Learning Teamwork Skills in University Programming Courses
ERIC Educational Resources Information Center
Sancho-Thomas, Pilar; Fuentes-Fernandez, Ruben; Fernandez-Manjon, Baltasar
2009-01-01
University courses about computer programming usually seek to provide students not only with technical knowledge, but also with the skills required to work in real-life software projects. Nowadays, the development of software applications requires the coordinated efforts of the members of one or more teams. Therefore, it is important for software…
ERIC Educational Resources Information Center
Rogers, Camille, Ed.
The conference paper topics include: business and information technology (IT) education; knowledge management; teaching software applications; development of multimedia teaching materials; technology job skills in demand; IT management for executives; self-directed teams in information systems courses; a team building exercise to software…
Crawling The Web for Libre: Selecting, Integrating, Extending and Releasing Open Source Software
NASA Astrophysics Data System (ADS)
Truslove, I.; Duerr, R. E.; Wilcox, H.; Savoie, M.; Lopez, L.; Brandt, M.
2012-12-01
Libre is a project developed by the National Snow and Ice Data Center (NSIDC). Libre is devoted to liberating science data from its traditional constraints of publication, location, and findability. Libre embraces and builds on the notion of making knowledge freely available, and both Creative Commons licensed content and Open Source Software are crucial building blocks for, as well as required deliverable outcomes of the project. One important aspect of the Libre project is to discover cryospheric data published on the internet without prior knowledge of the location or even existence of that data. Inspired by well-known search engines and their underlying web crawling technologies, Libre has explored tools and technologies required to build a search engine tailored to allow users to easily discover geospatial data related to the polar regions. After careful consideration, the Libre team decided to base its web crawling work on the Apache Nutch project (http://nutch.apache.org). Nutch is "an open source web-search software project" written in Java, with good documentation, a significant user base, and an active development community. Nutch was installed and configured to search for the types of data of interest, and the team created plugins to customize the default Nutch behavior to better find and categorize these data feeds. This presentation recounts the Libre team's experiences selecting, using, and extending Nutch, and working with the Nutch user and developer community. We will outline the technical and organizational challenges faced in order to release the project's software as Open Source, and detail the steps actually taken. We distill these experiences into a set of heuristics and recommendations for using, contributing to, and releasing Open Source Software.
Team Oriented Robotic Exploration Task on Scorpion and K9 Platforms
NASA Technical Reports Server (NTRS)
Kirchner, Frank
2003-01-01
This final report describes the achievements that have been made in the project over the complete period of performance. The technical progress highlights the different areas of work in terms of Progress in Mechatronics, Sensor integration, Software Development. User Interfaces, Behavior Development and Experimental Results and System Testing. The different areas are: Mechatronics, Sensor integration, Software development, Experimental results and Basic System Testing, Behaviors Development and Advanced System Testing, User Interface and Wireless Communication.
NASA Technical Reports Server (NTRS)
Lockwood, Dennis W.; Conger, A. M.
2003-01-01
This document is a compendium of the WFF GFO Software Development Team's knowledge regarding of GDO CAL/VAL Data. It includes many elements of a requirements document, a software specification document, a software design document, and a user's guide. In the more technical sections, this document assumes the reader is familiar with GFO and its CAL/VAL Data.
Evaluation and Validation (E&V) Team Public Report. Volume 5
1990-10-31
aspects, software engineering practices, etc. The E&V requirements which are developed will be used to guide the E&V technical effort. The currently...interoperability of Ada software engineering environment tools and data. The scope of the CAIS-A includes the functionality affecting transportability that is...requirement that they be CAIS conforming tools or data. That is, for example numerous CIVC data exist on special purpose software currently available
Software Estimation: Developing an Accurate, Reliable Method
2011-08-01
Lake, CA ,93555- 6110 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S...Activity, the systems engineering team is responsible for system and software requirements. 2 . Process Dashboard is a software planning and tracking tool... CA 93555- 6110 760-939-6989 Brad Hodgins is an interim TSP Mentor Coach, SEI-Authorized TSP Coach, SEI-Certified PSP/TSP Instructor, and SEI
Implementing large projects in software engineering courses
NASA Astrophysics Data System (ADS)
Coppit, David
2006-03-01
In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.
Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN
NASA Astrophysics Data System (ADS)
Frederick, J. M.; Hammond, G. E.
2017-12-01
Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such as on-boarding new developers or one-time contributions, dealing with competitors or lookie-loos, and other downsides of complete transparency, as well as our approach to community engagement, including a user group email list, hosting short courses and workshops for new users, and maintaining a website. SAND2017-8174A
Implementing Kanban for agile process management within the ALMA Software Operations Group
NASA Astrophysics Data System (ADS)
Reveco, Johnny; Mora, Matias; Shen, Tzu-Chiang; Soto, Ruben; Sepulveda, Jorge; Ibsen, Jorge
2014-07-01
After the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA), the Software Operations Group in Chile has refocused its objectives to: (1) providing software support to tasks related to System Integration, Scientific Commissioning and Verification, as well as Early Science observations; (2) testing the remaining software features, still under development by the Integrated Computing Team across the world; and (3) designing and developing processes to optimize and increase the level of automation of operational tasks. Due to their different stakeholders, each of these tasks presents a wide diversity of importances, lifespans and complexities. Aiming to provide the proper priority and traceability for every task without stressing our engineers, we introduced the Kanban methodology in our processes in order to balance the demand on the team against the throughput of the delivered work. The aim of this paper is to share experiences gained during the implementation of Kanban in our processes, describing the difficulties we have found, solutions and adaptations that led us to our current but still evolving implementation, which has greatly improved our throughput, prioritization and problem traceability.
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina; ...
2017-03-01
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment
NASA Astrophysics Data System (ADS)
Jabro, A.; Jabro, J.
2012-04-01
PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.
Flight Software for the LADEE Mission
NASA Technical Reports Server (NTRS)
Cannon, Howard N.
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.
NASA Technical Reports Server (NTRS)
Garcia, Janette
2016-01-01
The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.
Sociotechnical Challenges of Developing an Interoperable Personal Health Record
Gaskin, G.L.; Longhurst, C.A.; Slayton, R.; Das, A.K.
2011-01-01
Objectives To analyze sociotechnical issues involved in the process of developing an interoperable commercial Personal Health Record (PHR) in a hospital setting, and to create guidelines for future PHR implementations. Methods This qualitative study utilized observational research and semi-structured interviews with 8 members of the hospital team, as gathered over a 28 week period of developing and adapting a vendor-based PHR at Lucile Packard Children’s Hospital at Stanford University. A grounded theory approach was utilized to code and analyze over 100 pages of typewritten field notes and interview transcripts. This grounded analysis allowed themes to surface during the data collection process which were subsequently explored in greater detail in the observations and interviews. Results Four major themes emerged: (1) Multidisciplinary teamwork helped team members identify crucial features of the PHR; (2) Divergent goals for the PHR existed even within the hospital team; (3) Differing organizational conceptions of the end-user between the hospital and software company differentially shaped expectations for the final product; (4) Difficulties with coordination and accountability between the hospital and software company caused major delays and expenses and strained the relationship between hospital and software vendor. Conclusions Though commercial interoperable PHRs have great potential to improve healthcare, the process of designing and developing such systems is an inherently sociotechnical process with many complex issues and barriers. This paper offers recommendations based on the lessons learned to guide future development of such PHRs. PMID:22003373
Supporting the Use of CERT (registered trademark) Secure Coding Standards in DoD Acquisitions
2012-07-01
Capability Maturity Model IntegrationSM (CMMI®) [Davis 2009]. SM Team Software Process, TSP, and Capability Maturity Model Integration are service...STP Software Test Plan TEP Test and Evaluation Plan TSP Team Software Process V & V verification and validation CMU/SEI-2012-TN-016 | 47...Supporting the Use of CERT® Secure Coding Standards in DoD Acquisitions Tim Morrow ( Software Engineering Institute) Robert Seacord ( Software
The shuttle main engine: A first look
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1996-01-01
Anyone entering the Space Shuttle Main Engine (SSME) team attends a two week course to become familiar with the design and workings of the engine. This course provides intensive coverage of the individual hardware items and their functions. Some individuals, particularly those involved with software maintenance and development, have felt overwhelmed by this volume of material and their lack of a logical framework in which to place it. To provide this logical framework, it was decided that a brief self-taught introduction to the overall operation of the SSME should be designed. To aid the people or new team members with an interest in the software, this new course should also explain the structure and functioning of the controller and its software. This paper presents a description of this presentation.
Bridging the Qualitative/Quantitative Software Divide
Annechino, Rachelle; Antin, Tamar M. J.; Lee, Juliet P.
2011-01-01
To compare and combine qualitative and quantitative data collected from respondents in a mixed methods study, the research team developed a relational database to merge survey responses stored and analyzed in SPSS and semistructured interview responses stored and analyzed in the qualitative software package ATLAS.ti. The process of developing the database, as well as practical considerations for researchers who may wish to use similar methods, are explored. PMID:22003318
2010-04-30
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining...previous and current complex SW development efforts, the program offices will have a source of objective lessons learned and metrics that can be applied...the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
Investigating Team Cohesion in COCOMO II.2000
ERIC Educational Resources Information Center
Snowdeal-Carden, Betty A.
2013-01-01
Software engineering is team oriented and intensely complex, relying on human collaboration and creativity more than any other engineering discipline. Poor software estimation is a problem that within the United States costs over a billion dollars per year. Effective measurement of team cohesion is foundationally important to gain accurate…
Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System
ERIC Educational Resources Information Center
Doman, Marguerite; Besmer, Andrew; Olsen, Anne
2015-01-01
In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…
Unobtrusive Monitoring of Spaceflight Team Functioning
NASA Technical Reports Server (NTRS)
Maidel, Veronica; Stanton, Jeffrey M.
2010-01-01
This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.
NASA Technical Reports Server (NTRS)
Ferrell, Bob A.; Lewis, Mark E.; Perotti, Jose M.; Brown, Barbara L.; Oostdyk, Rebecca L.; Goetz, Jesse W.
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC). Part of the0 overall implementation of National Aeronautics and Space Administration's (NASA's) CxP, FDIR is being implemented in three main components of the program (Ares, Orion, and Ground Operations/Processing). While not initially part of the design baseline for the CxP Ground Operations, NASA felt that FDIR is important enough to develop, that NASA's Exploration Systems Mission Directorate's (ESMD's) Exploration Technology Development Program (ETDP) initiated a task for it under their Integrated System Health Management (ISHM) research area. This task, referred to as the FDIIR project, is a multi-year multi-center effort. The primary purpose of the FDIR project is to develop a prototype and pathway upon which Fault Detection and Isolation (FDI) may be transitioned into the Ground Operations baseline. Currently, Qualtech Systems Inc (QSI) Commercial Off The Shelf (COTS) software products Testability Engineering and Maintenance System (TEAMS) Designer and TEAMS RDS/RT are being utilized in the implementation of FDI within the FDIR project. The TEAMS Designer COTS software product is being utilized to model the system with Functional Fault Models (FFMs). A limited set of systems in Ground Operations are being modeled by the FDIR project, and the entire Ares Launch Vehicle is being modeled under the Functional Fault Analysis (FFA) project at Marshall Space Flight Center (MSFC). Integration of the Ares FFMs and the Ground Processing FFMs is being done under the FDIR project also utilizing the TEAMS Designer COTS software product. One of the most significant challenges related to integration is to ensure that FFMs developed by different organizations can be integrated easily and without errors. Software Interface Control Documents (ICDs) for the FFMs and their usage will be addressed as the solution to this issue. In particular, the advantages and disadvantages of these ICDs across physically separate development groups will be delineated.
From, by, and for the OSSD: Software Engineering Education Using an Open Source Software Approach
ERIC Educational Resources Information Center
Huang, Kun; Dong, Yifei; Ge, Xun
2006-01-01
Computing is a complex, multidisciplinary field that requires a range of professional proficiencies. Computing students are expected to develop in-depth knowledge and skills, integrate and apply their knowledge flexibly to solve complex problems, and work successfully in teams. However, many students who graduate with degrees in computing fail to…
Agile Methods: Selected DoD Management and Acquisition Concerns
2011-10-01
SIDRE Software Intensive Innovative Development and Reengineering/Evolution SLIM Software Lifecycle Management -Estimate SLOC source lines of code...ISBN #0321502752 Coaching Agile Teams Lyssa Adkins ISBN #0321637704 Agile Project Management : Creating Innovative Products – Second Edition Jim...Accessed July 13, 2011. [Highsmith 2009] Highsmith, J. Agile Project Management : Creating Innovative Products, 2nd ed. Addison- Wesley, 2009
NASA Astrophysics Data System (ADS)
Kulas, M.; Borelli, Jose Luis; Gässler, Wolfgang; Peter, Diethard; Rabien, Sebastian; Orban de Xivry, Gilles; Busoni, Lorenzo; Bonaglia, Marco; Mazzoni, Tommaso; Rahmer, Gustavo
2014-07-01
Commissioning time for an instrument at an observatory is precious, especially the night time. Whenever astronomers come up with a software feature request or point out a software defect, the software engineers have the task to find a solution and implement it as fast as possible. In this project phase, the software engineers work under time pressure and stress to deliver a functional instrument control software (ICS). The shortness of development time during commissioning is a constraint for software engineering teams and applies to the ARGOS project as well. The goal of the ARGOS (Advanced Rayleigh guided Ground layer adaptive Optics System) project is the upgrade of the Large Binocular Telescope (LBT) with an adaptive optics (AO) system consisting of six Rayleigh laser guide stars and wavefront sensors. For developing the ICS, we used the technique Test- Driven Development (TDD) whose main rule demands that the programmer writes test code before production code. Thereby, TDD can yield a software system, that grows without defects and eases maintenance. Having applied TDD in a calm and relaxed environment like office and laboratory, the ARGOS team has profited from the benefits of TDD. Before the commissioning, we were worried that the time pressure in that tough project phase would force us to drop TDD because we would spend more time writing test code than it would be worth. Despite this concern at the beginning, we could keep TDD most of the time also in this project phase This report describes the practical application and performance of TDD including its benefits, limitations and problems during the ARGOS commissioning. Furthermore, it covers our experience with pair programming and continuous integration at the telescope.
Are Earth System model software engineering practices fit for purpose? A case study.
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Johns, T. C.
2009-04-01
We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.
Planning in context: A situated view of children's management of science projects
NASA Astrophysics Data System (ADS)
Marshall, Susan Katharine
This study investigated children's collaborative planning of a complex, long-term software design project. Using sociocultural methods, it examined over time the development of design teams' planning negotiations and tools to document the coconstruction of cultural frameworks to organize teams' shared understanding of what and how to plan. Results indicated that student teams developed frameworks to address a set of common planning functions that included design planning, project metaplanning (things such as division of labor or sharing of computer resources) and team collaboration management planning. There were also some between-team variations in planning frameworks, within a bandwidth of options. Teams engaged in opportunistic planning, which reflected shifts in strategies in response to new circumstances over time. Team members with past design project experience ("oldtimers") demonstrated the transfer of their planning framework to the current design task, and they supported the developing participation of "newcomers." Teams constructed physical tools (e.g. planning boards) that acted as visual representations of teams' planning frameworks, and inscriptions of team thinking. The assigned functions of the tools also shifted over time with changing project circumstances. The discussion reexamines current approaches to the study of planning and discusses their educational implications.
NASA Astrophysics Data System (ADS)
Fu, L.; West, P.; Zednik, S.; Fox, P. A.
2013-12-01
For simple portals such as vocabulary based services, which contain small amounts of data and require only hyper-textual representation, it is often an overkill to adopt the whole software stack of database, middleware and front end, or to use a general Web development framework as the starting point of development. Directly combining open source software is a much more favorable approach. However, our experience with the Coastal and Marine Spatial Planning Vocabulary (CMSPV) service portal shows that there are still issues such as system configuration and accommodating a new team member that need to be handled carefully. In this contribution, we share our experience in the context of the CMSPV portal, and focus on the tools and mechanisms we've developed to ease the configuration job and the incorporation process of new project members. We discuss the configuration issues that arise when we don't have complete control over how the software in use is configured and need to follow existing configuration styles that may not be well documented, especially when multiple pieces of such software need to work together as a combined system. As for the CMSPV portal, it is built on two pieces of open source software that are still under rapid development: a Fuseki data server and Epimorphics Linked Data API (ELDA) front end. Both lack mature documentation and tutorials. We developed comparison and labeling tools to ease the problem of system configuration. Another problem that slowed down the project is that project members came and went during the development process, so new members needed to start with a partially configured system and incomplete documentation left by old members. We developed documentation/tutorial maintenance mechanisms based on our comparison and labeling tools to make it easier for the new members to be incorporated into the project. These tools and mechanisms also provided benefit to other projects that reused the software components from the CMSPV system.
Software Project Management and Measurement on the World-Wide-Web (WWW)
NASA Technical Reports Server (NTRS)
Callahan, John; Ramakrishnan, Sudhaka
1996-01-01
We briefly describe a system for forms-based, work-flow management that helps members of a software development team overcome geographical barriers to collaboration. Our system, called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-Web service that allows for management and measurement of software development projects based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software development process, provides informal communication between the users with different roles, supports to-do lists, and helps in software process improvement. WISE minimizes the time devoted to metrics collection and analysis by providing implicit delivery of messages between users based on the content of project documents. The use of a database in WISE is hidden from the users who view WISE as maintaining a personal 'to-do list' of tasks related to the many projects on which they may play different roles.
Aviation Environmental Design Tool (AEDT): Version 2c: User Guide
DOT National Transportation Integrated Search
2016-09-12
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...
Aviation Environmental Design Tool (AEDT) version 2b, user guide
DOT National Transportation Integrated Search
2016-06-09
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...
Aviation Environmental Design Tool (AEDT) technical manual version 2a
DOT National Transportation Integrated Search
2014-01-01
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...
Aviation Environmental Design Tool (AEDT) technical manual : version 2c
DOT National Transportation Integrated Search
2016-09-12
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...
Aviation Environmental Design Tool (AEDT) user guide version 2a
DOT National Transportation Integrated Search
2014-01-23
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...
NASA Technical Reports Server (NTRS)
Rodriguez, Juan Jared
2014-01-01
The purpose of this report is to detail the tasks accomplished as a NASA NIFS intern for the summer 2014 session. This internship opportunity is to develop an issue tracker Ruby on Rails web application to improve the communication of developmental anomalies between the Support Software Computer Software Configuration Item (CSCI) teams, System Build and Information Architecture. As many may know software development is an arduous, time consuming, collaborative effort. It involves nearly as much work designing, planning, collaborating, discussing, and resolving issues as effort expended in actual development. This internship opportunity was put in place to help alleviate the amount of time spent discussing issues such as bugs, missing tests, new requirements, and usability concerns that arise during development and throughout the life cycle of software applications once in production.
Methodology for Software Reliability Prediction. Volume 2.
1987-11-01
The overall acquisition ,z program shall include the resources, schedule, management, structure , and controls necessary to ensure that specified AD...Independent Verification/Validation - Programming Team Structure - Educational Level of Team Members - Experience Level of Team Members * Methods Used...Prediction or Estimation Parameter Supported: Software - Characteristics 3. Objectives: Structured programming studies and Government Ur.’.. procurement
NASA Technical Reports Server (NTRS)
1995-01-01
Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.
A view of software management issues
NASA Technical Reports Server (NTRS)
Manley, J. H.
1985-01-01
The Software Development Environment (SDE) Panel addressed key programmatic, scope, and structural issues raised by its members and the general audience regarding the proposed software development environment for the Space Station program. The general team approach taken by this group led to a consensus on 18 recommendations to NASA mangament regarding the acquisition and definition of the SDE. This approach was keyed by the initial issues presentation given to the general audience. Additional issues (for a total of 23) were developed by the panelists in their first closed session from which key areas were selected and discussed in open session. These discussions led to key recommendations which are summarized and described.
Noninvasive Test Detects Cardiovascular Disease
NASA Technical Reports Server (NTRS)
2007-01-01
At NASA's Jet Propulsion Laboratory (JPL), NASA-developed Video Imaging Communication and Retrieval (VICAR) software laid the groundwork for analyzing images of all kinds. A project seeking to use imaging technology for health care diagnosis began when the imaging team considered using the VICAR software to analyze X-ray images of soft tissue. With marginal success using X-rays, the team applied the same methodology to ultrasound imagery, which was already digitally formatted. The new approach proved successful for assessing amounts of plaque build-up and arterial wall thickness, direct predictors of heart disease, and the result was a noninvasive diagnostic system with the ability to accurately predict heart health. Medical Technologies International Inc. (MTI) further developed and then submitted the technology to a vigorous review process at the FDA, which cleared the software for public use. The software, patented under the name Prowin, is being used in MTI's patented ArterioVision, a carotid intima-media thickness (CIMT) test that uses ultrasound image-capturing and analysis software to noninvasively identify the risk for the major cause of heart attack and strokes: atherosclerosis. ArterioVision provides a direct measurement of atherosclerosis by safely and painlessly measuring the thickness of the first two layers of the carotid artery wall using an ultrasound procedure and advanced image-analysis software. The technology is now in use in all 50 states and in many countries throughout the world.
NASA PC software evaluation project
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Kuan, Julie C.
1986-01-01
The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.
Development of N-version software samples for an experiment in software fault tolerance
NASA Technical Reports Server (NTRS)
Lauterbach, L.
1987-01-01
The report documents the task planning and software development phases of an effort to obtain twenty versions of code independently designed and developed from a common specification. These versions were created for use in future experiments in software fault tolerance, in continuation of the experimental series underway at the Systems Validation Methods Branch (SVMB) at NASA Langley Research Center. The 20 versions were developed under controlled conditions at four U.S. universities, by 20 teams of two researchers each. The versions process raw data from a modified Redundant Strapped Down Inertial Measurement Unit (RSDIMU). The specifications, and over 200 questions submitted by the developers concerning the specifications, are included as appendices to this report. Design documents, and design and code walkthrough reports for each version, were also obtained in this task for use in future studies.
Exploring the Use of a Test Automation Framework
NASA Technical Reports Server (NTRS)
Cervantes, Alex
2009-01-01
It is known that software testers, more often than not, lack the time needed to fully test the delivered software product within the time period allotted to them. When problems in the implementation phase of a development project occur, it normally causes the software delivery date to slide. As a result, testers either need to work longer hours, or supplementary resources need to be added to the test team in order to meet aggressive test deadlines. One solution to this problem is to provide testers with a test automation framework to facilitate the development of automated test solutions.
Lessons Learned from Deploying an Analytical Task Management Database
NASA Technical Reports Server (NTRS)
O'Neil, Daniel A.; Welch, Clara; Arceneaux, Joshua; Bulgatz, Dennis; Hunt, Mitch; Young, Stephen
2007-01-01
Defining requirements, missions, technologies, and concepts for space exploration involves multiple levels of organizations, teams of people with complementary skills, and analytical models and simulations. Analytical activities range from filling a To-Be-Determined (TBD) in a requirement to creating animations and simulations of exploration missions. In a program as large as returning to the Moon, there are hundreds of simultaneous analysis activities. A way to manage and integrate efforts of this magnitude is to deploy a centralized database that provides the capability to define tasks, identify resources, describe products, schedule deliveries, and generate a variety of reports. This paper describes a web-accessible task management system and explains the lessons learned during the development and deployment of the database. Through the database, managers and team leaders can define tasks, establish review schedules, assign teams, link tasks to specific requirements, identify products, and link the task data records to external repositories that contain the products. Data filters and spreadsheet export utilities provide a powerful capability to create custom reports. Import utilities provide a means to populate the database from previously filled form files. Within a four month period, a small team analyzed requirements, developed a prototype, conducted multiple system demonstrations, and deployed a working system supporting hundreds of users across the aeros pace community. Open-source technologies and agile software development techniques, applied by a skilled team enabled this impressive achievement. Topics in the paper cover the web application technologies, agile software development, an overview of the system's functions and features, dealing with increasing scope, and deploying new versions of the system.
Albert, S; Cristofari, J-P; Cox, A; Bensimon, J-L; Guedon, C; Barry, B
2011-12-01
The techniques of free tissue transfers are mainly used for mandibular reconstruction by specialized surgical teams. This type of reconstruction is mostly realized in matters of head and neck cancers affecting mandibular bone and requiring a wide surgical resection and interruption of the mandible. To decrease the duration of the operation, surgical procedure involves generally two teams, one devoted to cancer resection and the other one to raise the fibular flap and making the reconstruction. For a better preparation of this surgical procedure, we propose here the use of a medical imaging software enabling mandibular reconstructions in three dimensions using the CT-scan done during the initial disease-staging checkup. The software used is Osirix®, developed since 2004 by a team of radiologists from Geneva and UCLA, working on Apple® computers and downloadable free of charge in its basic version. We report here our experience of this software in 17 patients, with a preoperative modelling in three dimensions of the mandible, of the segment of mandible to be removed. It also forecasts the numbers of fragments of fibula needed and the location of osteotomies. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Trainer, Erik Harrison
2012-01-01
Trust plays an important role in collaborations because it creates an environment in which people can openly exchange ideas and information with one another and engineer innovative solutions together with less perceived risk. The rise in globally distributed software development has created an environment in which workers are likely to have less…
Developing Software for NASA Missions in the New Millennia
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike
2004-01-01
NASA is working on new mission concepts for exploration of the solar system. The concepts for these missions include swarms of hundreds of cooperating intelligent spacecraft which will be able to work in teams and gather more data than current single spacecraft missions. These spacecraft will not only have to operate independently for long periods of time on their own and in teams, but will also need to have autonomic properties of self healing, self configuring, self optimizing and self protecting for them to survive in the harsh space environment. Software for these types of missions has never been developed before and represents some of the challenges of software development in the new millennia. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm missions NASA is considering. The ANTS mission will use a swarm of one thousand pico-spacecraft that weigh less than five pounds. Using an insect colony analog, ANTS will explore the asteroid belt and catalog the mass, density, morphology, and chemical composition of the asteroids. Due to the size of the spacecraft, each will only carry a single miniaturized science instrument which will require them to cooperate in searching for asteroids that are of scientific interest. This article also discusses the ANTS mission, the properties the spacecraft will need and how that will effect future software development.
Leadership Behaviors of Management for Complex Adaptive Systems
2010-04-01
arson • The Five Dysfunctions of a Team - Patrick M. Lencioni Agile Development Practices • Agile Project Management with Scrum – Ken Schwaber...and down to the individual and team level – Relationships are not defined hierarchically, but rather through interactions across References: Mike...n – Consisting of parts intricately combined © Copyright 2009 Northrop GrummanCopyright 2010 Northrop Grumman 5 Predictable or Adaptive Software/IT
Development of Software Tools for ADA Compliance Data Collection, Management, and Inquiry
DOT National Transportation Integrated Search
2014-07-01
In this NUTC research project, the UNR research team developed an iOS application (named NDOT ADA Data) to efficiently and intuitively collect ADA inventory data with iPhones or iPads. This tool was developed to facilitate NDOT ADA data collect...
A Core Plug and Play Architecture for Reusable Flight Software Systems
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.
Software Innovation in a Mission Critical Environment
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2015-01-01
Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.
A Simulated Learning Environment for Teaching Medicine Dispensing Skills
Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som
2016-01-01
Objective. To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. Design. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. Conclusion. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment. PMID:26941437
Agile development approach for the observatory control software of the DAG 4m telescope
NASA Astrophysics Data System (ADS)
Güçsav, B. Bülent; ćoker, Deniz; Yeşilyaprak, Cahit; Keskin, Onur; Zago, Lorenzo; Yerli, Sinan K.
2016-08-01
Observatory Control Software for the upcoming 4m infrared telescope of DAG (Eastern Anatolian Observatory in Turkish) is in the beginning of its lifecycle. After the process of elicitation-validation of the initial requirements, we have been focused on preparation of a rapid conceptual design not only to see the big picture of the system but also to clarify the further development methodology. The existing preliminary designs for both software (including TCS and active optics control system) and hardware shall be presented here in brief to exploit the challenges the DAG software team has been facing with. The potential benefits of an agile approach for the development will be discussed depending on the published experience of the community and on the resources available to us.
Aviation Environmental Design Tool (AEDT) AEDT Standard Input File (ASIF) reference guide version 2a
DOT National Transportation Integrated Search
2014-01-01
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation : Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: : FAA, National Aeronautics a...
Aviation Environmental Design Tool (AEDT): Technical Manual Version 2b, Service Pack 2
DOT National Transportation Integrated Search
2016-05-01
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...
Aviation Environmental Design Tool (AEDT): technical manual, version 2b, service pack 3
DOT National Transportation Integrated Search
2016-05-03
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2b software system with the support of the following development team: FAA, National Aeronautics and S...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Ryan J.; Kuhmuench, Christoph; Richard, Stephen M.
2013-03-01
The National Geothermal Data System (NGDS) De- sign and Testing Team is developing NGDS software currently referred to as the “NGDS Node-In-A-Box”. The software targets organizations or individuals who wish to host at least one of the following: • an online repository containing resources for the NGDS; • an online site for creating metadata to register re- sources with the NGDS • NDGS-conformant Web APIs that enable access to NGDS data (e.g., WMS, WFS, WCS); • NDGS-conformant Web APIs that support dis- covery of NGDS resources via catalog service (e.g. CSW) • a web site that supports discovery and under-more » standing of NGDS resources A number of different frameworks for development of this online application were reviewed. The NGDS Design and Testing Team determined to use CKAN (http://ckan.org/), because it provides the closest match between out of the box functionality and NGDS node-in-a-box requirements. To achieve the NGDS vision and goals, this software development project has been inititated to provide NGDS data consumers with a highly functional inter- face to access the system, and to ease the burden on data providers who wish to publish data in the sys- tem. It is important to note that this software package constitutes a reference implementation. The NGDS software is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. A number of international organizations have ex- pressed interest in the NGDS approach to data access. The CKAN node implementation can provide a sim- ple path for deploying this technology in other set- tings.« less
DoD Agile Adoption: Necessary Considerations, Concerns, and Changes
2012-01-01
a large, highly visible display used by software development teams to track progress. The term was first coined by Alistar Cockburn. See <http://www.atlassian.com/ wallboards /information-radiators.jsp>
NASA Technical Reports Server (NTRS)
Trimble, Jay Phillip
2013-01-01
This is based on a previous talk on agile development. Methods for delivering software on a short cycle are described, including interactions with the customer, the affect on the team, and how to be more effective, streamlined and efficient.
Implementation of Task-Tracking Software for Clinical IT Management.
Purohit, Anne-Maria; Brutscheck, Clemens; Prokosch, Hans-Ulrich; Ganslandt, Thomas; Schneider, Martin
2017-01-01
Often in clinical IT departments, many different methods and IT systems are used for task-tracking and project organization. Based on managers' personal preferences and knowledge about project management methods, tools differ from team to team and even from employee to employee. This causes communication problems, especially when tasks need to be done in cooperation with different teams. Monitoring tasks and resources becomes impossible: there are no defined deliverables, which prevents reliable deadlines. Because of these problems, we implemented task-tracking software which is now in use across all seven teams at the University Hospital Erlangen. Over a period of seven months, a working group defined types of tasks (project, routine task, etc.), workflows, and views to monitor the tasks of the 7 divisions, 20 teams and 340 different IT services. The software has been in use since December 2016.
NASA Astrophysics Data System (ADS)
Siarto, J.
2014-12-01
As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.
NASA Technical Reports Server (NTRS)
Maidel, Veronica; Stanton, Jeffrey M.
2010-01-01
This document contains a literature review suggesting that research on industrial performance monitoring has limited value in assessing, understanding, and predicting team functioning in the context of space flight missions. The review indicates that a more relevant area of research explores the effectiveness of teams and how team effectiveness may be predicted through the elicitation of individual and team mental models. Note that the mental models referred to in this literature typically reflect a shared operational understanding of a mission setting such as the cockpit controls and navigational indicators on a flight deck. In principle, however, mental models also exist pertaining to the status of interpersonal relations on a team, collective beliefs about leadership, success in coordination, and other aspects of team behavior and cognition. Pursuing this idea, the second part of this document provides an overview of available off-the-shelf products that might assist in extraction of mental models and elicitation of emotions based on an analysis of communicative texts among mission personnel. The search for text analysis software or tools revealed no available tools to enable extraction of mental models automatically, relying only on collected communication text. Nonetheless, using existing software to analyze how a team is functioning may be relevant for selection or training, when human experts are immediately available to analyze and act on the findings. Alternatively, if output can be sent to the ground periodically and analyzed by experts on the ground, then these software packages might be employed during missions as well. A demonstration of two text analysis software applications is presented. Another possibility explored in this document is the option of collecting biometric and proxemic measures such as keystroke dynamics and interpersonal distance in order to expose various individual or dyadic states that may be indicators or predictors of certain elements of team functioning. This document summarizes interviews conducted with personnel currently involved in observing or monitoring astronauts or who are in charge of technology that allows communication and monitoring. The objective of these interviews was to elicit their perspectives on monitoring team performance during long-duration missions and the feasibility of potential automatic non-obtrusive monitoring systems. Finally, in the last section, the report describes several priority areas for research that can help transform team mental models, biometrics, and/or proxemics into workable systems for unobtrusive monitoring of space flight team effectiveness. Conclusions from this work suggest that unobtrusive monitoring of space flight personnel is likely to be a valuable future tool for assessing team functioning, but that several research gaps must be filled before prototype systems can be developed for this purpose.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen
2015-01-01
The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes.
Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance
NASA Astrophysics Data System (ADS)
Zhan, Yihong; Bai, Yu; Liu, Ziheng
As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.
Agile software development in an earned value world: a survival guide
NASA Astrophysics Data System (ADS)
Kantor, Jeffrey; Long, Kevin; Becla, Jacek; Economou, Frossie; Gelman, Margaret; Juric, Mario; Lambert, Ron; Krughoff, Simon; Swinbank, John D.; Wu, Xiuqin
2016-08-01
Agile methodologies are current best practice in software development. They are favored for, among other reasons, preventing premature optimization by taking a somewhat short-term focus, and allowing frequent replans/reprioritizations of upcoming development work based on recent results and current backlog. At the same time, funding agencies prescribe earned value management accounting for large projects which, these days, inevitably include substantial software components. Earned Value approaches emphasize a more comprehensive and typically longer-range plan, and tend to characterize frequent replans and reprioritizations as indicative of problems. Here we describe the planning, execution and reporting framework used by the LSST Data Management team, that navigates these opposite tensions.
Zooniverse - A Platform for Data-Driven Citizen Science
NASA Astrophysics Data System (ADS)
Smith, A.; Lintott, C.; Bamford, S.; Fortson, L.
2011-12-01
In July 2007 a team of astrophysicists created a web-based astronomy project called Galaxy Zoo in which members of the public were asked to classify galaxies from the Sloan Digital Sky Survey by their shape. Over the following year a community of more than 150,000 people classified each of the 1 million galaxies more than 50 times each. Four years later this community of 'citizen scientists' is more than 450,000 strong and is contributing their time and efforts to more than 10 Zooniverse projects each with its own science team and research case. With projects ranging from transcribing ancient greek texts (ancientlives.org) to lunar science (moonzoo.org) the challenges to the Zooniverse community have gone well beyond the relatively simple original Galaxy Zoo interface. Delivering a range of citizen science projects to a large web-based audience presents challenges on a number of fronts including interface design, data architecture/modelling and reduction techniques, web-infrastructure and software design. In this paper we will describe how the Zooniverse team (a collaboration of scientists, software developers and educators ) have developed tools and techniques to solve some of these issues.
Model-Driven Useware Engineering
NASA Astrophysics Data System (ADS)
Meixner, Gerrit; Seissler, Marc; Breiner, Kai
User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas R.; Pointer, William David; Sieger, Matt
2016-04-01
The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.
Burn Resuscitation Decision Support System (BRDSS)
2013-09-01
effective for burn care in the deployed and en route care settings. In this period, we completed Human Factors studies, hardware testing , software design ... designated U.S. Army Institute of Surgical Research (USAISR) clinical team. Phase 1 System Requirements and Software Development Arcos will draft a...airworthiness testing . The hardware finalists will be sent to U.S. Army Aeromedical Research Laboratory (USAARL) for critical airworthiness testing . Phase
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Victor, Elias; Vasquez, Angel L.; Urbina, Alfredo R.
2017-01-01
A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket.
Integrating CMMI and TSP/PSP: Using TSP Data to Create Process Performance Models
2009-11-01
Humphrey , Watts S . PSP : A Self-Improvement Process for Software Engineers. Addison-Wesley, 2005. http://www.sei.cmu.edu/library/abstracts/ books ...Engineering. Addison-Wesley, 2002. [ Humphrey 00] Humphrey , Watts S . The Personal Software Process ( PSP ) (CMU/SEI-2000-TR-022, ADA387268). Pittsburgh...0321305493.cfm [ Humphrey 06a] Humphrey , W. S . TSP: Leading a Development Team. Addison-Wesley, 2006.
Lattice QCD Application Development within the US DOE Exascale Computing Project
NASA Astrophysics Data System (ADS)
Brower, Richard; Christ, Norman; DeTar, Carleton; Edwards, Robert; Mackenzie, Paul
2018-03-01
In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.
Lattice QCD Application Development within the US DOE Exascale Computing Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brower, Richard; Christ, Norman; DeTar, Carleton
In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.
The Challenges of Being Agile in DoD
2013-02-01
term “Agile” will serve as an overarching term to represent all forms of iterative development whether Scrum , Lean Software Development, extreme...occur? • How do we know what the development team will deliver at the end of the Sprint? (A basic unit of development in Scrum that lasts for “time
2017-04-01
notice for non -US Government use and distribution. External use: This material may be reproduced in its entirety, without modification, and freely...Combinatorial Design Methods 4 2.1 Identification of Significant Improvement Opportunity 4 2.2 Methodology Development 4 2.3 Piloting...11 3 Process Performance Modeling and Analysis 13 3.1 Identification of Significant Improvement Opportunity 13 3.2 Methodology Development 13 3.3
Chargemaster maintenance: think 'spring cleaning' all year round.
Barton, Shawn; Lancaster, Dani; Bieker, Mike
2008-11-01
Steps toward maintaining a standardized chargemaster include: Building a corporate chargemaster maintenance team. Developing a core research function. Designating hospital liaisons. Publishing timely reports on facility compliance. Using system codes to identify charges. Selecting chargemaster maintenance software. Developing a standard chargemaster data repository. Educating staff.
NASA Astrophysics Data System (ADS)
Orngreen, Rikke; Clemmensen, Torkil; Pejtersen, Annelise Mark
The boundaries and work processes for how virtual teams interact are undergoing changes, from a tool and stand-alone application orientation, to the use of multiple generic platforms chosen and redesigned to the specific context. These are often at the same time designed both by professional software developers and the individual members of the virtual teams, rather than determined on a single organizational level. There may be no impact of the technology per se on individuals, groups or organizations, as the technology for virtual teams rather enhance situation ambiguity and disrupt existing task-artifact cycles. This ambiguous situation calls for new methods for empirical work analysis and interaction design that can help us understand how organizations, teams and individuals learn to organize, design and work in virtual teams in various networked contexts.
Recent and Planned Developments in the CARI Program
2013-04-01
software are available from the Radiobiology Research Team Website. The source code is available upon request. CARI-6 is based on the last major... Research Team at its newly founded Civil Aeromedical Research Institute (now called the Civil Aerospace Medical Institute, i.e., CAMI) to investigate...Administration, Office of Aerospace Medicine. Re- port DOT/FAA/AM-11/09, 2011. Online at: www. faa.gov/data_ research / research /med_humanfacs/ oamtechreports
Busby, Ben; Lesko, Matthew; Federer, Lisa
2016-01-01
In genomics, bioinformatics and other areas of data science, gaps exist between extant public datasets and the open-source software tools built by the community to analyze similar data types. The purpose of biological data science hackathons is to assemble groups of genomics or bioinformatics professionals and software developers to rapidly prototype software to address these gaps. The only two rules for the NCBI-assisted hackathons run so far are that 1) data either must be housed in public data repositories or be deposited to such repositories shortly after the hackathon's conclusion, and 2) all software comprising the final pipeline must be open-source or open-use. Proposed topics, as well as suggested tools and approaches, are distributed to participants at the beginning of each hackathon and refined during the event. Software, scripts, and pipelines are developed and published on GitHub, a web service providing publicly available, free-usage tiers for collaborative software development. The code resulting from each hackathon is published at https://github.com/NCBI-Hackathons/ with separate directories or repositories for each team.
The Texas Children's Hospital immunization forecaster: conceptualization to implementation.
Cunningham, Rachel M; Sahni, Leila C; Kerr, G Brady; King, Laura L; Bunker, Nathan A; Boom, Julie A
2014-12-01
Immunization forecasting systems evaluate patient vaccination histories and recommend the dates and vaccines that should be administered. We described the conceptualization, development, implementation, and distribution of a novel immunization forecaster, the Texas Children's Hospital (TCH) Forecaster. In 2007, TCH convened an internal expert team that included a pediatrician, immunization nurse, software engineer, and immunization subject matter experts to develop the TCH Forecaster. Our team developed the design of the model, wrote the software, populated the Excel tables, integrated the software, and tested the Forecaster. We created a table of rules that contained each vaccine's recommendations, minimum ages and intervals, and contraindications, which served as the basis for the TCH Forecaster. We created 15 vaccine tables that incorporated 79 unique dose states and 84 vaccine types to operationalize the entire United States recommended immunization schedule. The TCH Forecaster was implemented throughout the TCH system, the Indian Health Service, and the Virginia Department of Health. The TCH Forecast Tester is currently being used nationally. Immunization forecasting systems might positively affect adherence to vaccine recommendations. Efforts to support health care provider utilization of immunization forecasting systems and to evaluate their impact on patient care are needed.
Evolution of Software-Only-Simulation at NASA IV and V
NASA Technical Reports Server (NTRS)
McCarty, Justin; Morris, Justin; Zemerick, Scott
2014-01-01
Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.
2006-01-01
New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.
GASP-PL/I Simulation of Integrated Avionic System Processor Architectures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brent, G. A.
1978-01-01
A development study sponsored by NASA was completed in July 1977 which proposed a complete integration of all aircraft instrumentation into a single modular system. Instead of using the current single-function aircraft instruments, computers compiled and displayed inflight information for the pilot. A processor architecture called the Team Architecture was proposed. This is a hardware/software approach to high-reliability computer systems. A follow-up study of the proposed Team Architecture is reported. GASP-PL/1 simulation models are used to evaluate the operating characteristics of the Team Architecture. The problem, model development, simulation programs and results at length are presented. Also included are program input formats, outputs and listings.
Motivating Company Personnel by Applying the Semi-self-organized Teams Principle
NASA Astrophysics Data System (ADS)
Kumlander, Deniss
The only way nowadays to improve stability of software development process in the global rapidly evolving world is to be innovative and involve professionals into projects motivating them using both material and non material factors. In this paper self-organized teams are discussed. Unfortunately not all kind of organizations can benefit directly from agile method including applying self-organized teams. The paper proposes semi-self-organized teams presenting it as a new and promising motivating factor allowing deriving many positive sides of been self-organized and partly agile and been compliant to less strict conditions for following this innovating process. The semi-self organized teams are reliable at least in the short-term perspective and are simple to organize and support.
Next Generation Simulation Framework for Robotic and Human Space Missions
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven
2012-01-01
The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.
Human-computer interaction reflected in the design of user interfaces for general practitioners.
Stoicu-Tivadar, Lacramioara; Stoicu-Tivadar, Vasile
2006-01-01
To address the problem of properly built health information systems in general practice as an important issue for their approval and use in clinical practice. We present how a national general practitioner (GP) network was built, put in practice and several results of its activity seen from the clinician's and the software application team's points of view. We used a multi-level incremental development appropriate for the conditions of the required information system. After the development of the first version of the software components (based on rapid prototyping) of the sentinel network, a questionnaire addressed the needs and improvements required by the health professionals. Based on the answers, the functionality of the system and the interface were improved regarding the real needs expressed by the end-users. The network is functional and the collected data from the network are being processed using statistical methods. The academic software team developed a GP application that is well received by the GPs in the network, as resulted from the survey and discussions during the training period. As an added confirmation, several GPs outside the network enrolled after seeing the software at work. Another confirmation that we did a good job was that after the final presentation of the results of the project a representative from the Romanian Society for Cardiology expressed the wish of this society to access the data yielded by the network.
DOT National Transportation Integrated Search
2014-05-01
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2a software system with the support of the following development team: FAA, National Aeronautics and S...
DOT National Transportation Integrated Search
2016-12-01
The Federal Aviation Administration, Office of Environment and Energy (FAA-AEE) has developed the Aviation Environmental Design Tool (AEDT) version 2c software system with the support of the following development team: FAA, National Aeronautics and S...
Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H
2004-06-01
Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.
Autonomous Real Time Requirements Tracing
NASA Technical Reports Server (NTRS)
Plattsmier, George I.; Stetson, Howard K.
2014-01-01
One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders
Autonomous Real Time Requirements Tracing
NASA Technical Reports Server (NTRS)
Plattsmier, George; Stetson, Howard
2014-01-01
One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.
2017-04-19
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's second annual Swarmathon, 20 teams representing 22 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the moon or Mars.
2018-04-18
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
2018-04-17
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
Using the Agile Development Methodology and Applying Best Practice Project Management Processes
2014-12-01
side of this writing: Like finicky domestic helpers who announce that they ‘don’t do windows,’ I’ve often heard software developers state proudly...positioned or motivated, but rather because they were the least skilled developer (2012, 34). This result turned a team of what should be generalists
Telemetry Monitoring and Display Using LabVIEW
NASA Technical Reports Server (NTRS)
Wells, George; Baroth, Edmund C.
1993-01-01
The Measurement Technology Center of the Instrumentation Section configures automated data acquisition systems to meet the diverse needs of JPL's experimental research community. These systems are based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard, and Sun Microsystems) and often include integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities. These integrated systems may include sensors, signal conditioning, data acquisition interface cards, software, and a user interface. Graphical programming is used to simplify configuration of such systems. Employment of a graphical programming language is the most important factor in enabling the implementation of data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter's needs is also critical. An interactive approach to user interface construction and training of operators is also important. One application was created as a result of a competative effort between a graphical programming language team and a text-based C language programming team to verify the advantages of using a graphical programming language approach. With approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the original requirements to simulate a telemetry stream and provide utility programs. This application verified that using graphical programming can significantly reduce software development time. As a result of this initial effort, additional follow-on work was awarded to the graphical programming team.
Recipe for Success: Digital Viewables
NASA Technical Reports Server (NTRS)
LaPha, Steven; Gaydos, Frank
2014-01-01
The Engineering Services Contract (ESC) and Information Management Communication Support contract (IMCS) at Kennedy Space Center (KSC) provide services to NASA in respect to flight and ground systems design and development. These groups provides the necessary tools, aid, and best practice methodologies required for efficient, optimized design and process development. The team is responsible for configuring and implementing systems, software, along with training, documentation, and administering standards. The team supports over 200 engineers and design specialists with the use of Windchill, Creo Parametric, NX, AutoCAD, and a variety of other design and analysis tools.
Combining Architecture-Centric Engineering with the Team Software Process
2010-12-01
colleagues from Quarksoft and CIMAT have re- cently reported on their experiences in “Introducing Software Architecture Development Methods into a TSP...Postmortem Lessons, new goals, new requirements, new risk , etc. Business and technical goals Estimates, plans, process, commitment Work products...architecture to mitigate the risks unco- vered by the ATAM. At the end of the iteration, version 1.0 of the architec- ture is available. Implement a second
Costs and Benefits of Software Process Improvement
1997-12-01
Washington, DC 20503. 1. AGENCY USE ONLY ( Leave blank) 2. REPORT DATE December 1997 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4...in this field, an organization’s chance for success depends first on having an exceptional manager and an effective development team (PEOPLE...Secondly, it depends on its effective use of TECHNOLOGY, and finally, on its PROCESS maturity. [Ref. 4] In a software organization: PEOPLE refers to
Experimental Internet Environment Software Development
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.
Ada Programming Support Environment (APSE) Evaluation and Validation (E&V) Team
1991-12-31
standards. The purpose of the team was to assist the project in several ways. Raymond Szymanski of Wright Research Iand Development Center (WRDC, now...debuggers, program library systems, and compiler diagnostics. The test suite does not include explicit tests for the existence of language features . The...support software is a set of tools and procedures which assist in preparing and executing the test suite, in extracting data from the results of
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
Software quality and process improvement in scientific simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosiano, J.; Webster, R.
1997-11-01
This report contains viewgraphs on the quest to develope better simulation code quality through process modeling and improvement. This study is based on the experience of the authors and interviews with ten subjects chosen from simulation code development teams at LANL. This study is descriptive rather than scientific.
The Navy’s Management of Software Licenses Needs Improvement
2013-08-07
Enterprise Software Licensing ( ESL ) as a primary DON etliciency target. Through policy and Integrated Product Team actions, this efficiency...review, as well as with DoD Enterprise Software Initiative ( ESl ) Blanket Pw·chase Agreements and any r•elated fedeml Acquisition Regulation and General...organizational and multi-functional DON ESL team. The DON is also participating in DoD level enterprise softwru·e licensing project~ through the Dol
The software development process at the Chandra X-ray Center
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Evans, Ian N.; Fabbiano, Giuseppina
2008-08-01
Software development for the Chandra X-ray Center Data System began in the mid 1990's, and the waterfall model of development was mandated by our documents. Although we initially tried this approach, we found that a process with elements of the spiral model worked better in our science-based environment. High-level science requirements are usually established by scientists, and provided to the software development group. We follow with review and refinement of those requirements prior to the design phase. Design reviews are conducted for substantial projects within the development team, and include scientists whenever appropriate. Development follows agreed upon schedules that include several internal releases of the task before completion. Feedback from science testing early in the process helps to identify and resolve misunderstandings present in the detailed requirements, and allows review of intangible requirements. The development process includes specific testing of requirements, developer and user documentation, and support after deployment to operations or to users. We discuss the process we follow at the Chandra X-ray Center (CXC) to develop software and support operations. We review the role of the science and development staff from conception to release of software, and some lessons learned from managing CXC software development for over a decade.
The NCC project: A quality management perspective
NASA Technical Reports Server (NTRS)
Lee, Raymond H.
1993-01-01
The Network Control Center (NCC) Project introduced the concept of total quality management (TQM) in mid-1990. The CSC project team established a program which focused on continuous process improvement in software development methodology and consistent deliveries of high quality software products for the NCC. The vision of the TQM program was to produce error free software. Specific goals were established to allow continuing assessment of the progress toward meeting the overall quality objectives. The total quality environment, now a part of the NCC Project culture, has become the foundation for continuous process improvement and has resulted in the consistent delivery of quality software products over the last three years.
A recent Cleanroom success story: The Redwing project
NASA Technical Reports Server (NTRS)
Hausler, Philip A.
1992-01-01
Redwing is the largest completed Cleanroom software engineering project in IBM, both in terms of lines of code and project staffing. The product provides a decision-support facility that utilizes artificial intelligence (AI) technology for predicting and preventing complex operating problems in an MVS environment. The project used the Cleanroom process for development and realized a defect rate of 2.6 errors/KLOC, measured from first execution. This represents the total amount of errors that were found in testing and installation at three field test sites. Development productivity was 486 LOC/PM, which included all development labor expended in design specification through completion of incremental testing. In short, the Redwing team produced a complex systems software product with an extraordinarily low error rate, while maintaining high productivity. All of this was accomplished by a project team using Cleanroom for the first time. An 'introductory implementation' of Cleanroom was defined and used on Redwing. This paper describes the quality and productivity results, the Redwing project, and how Cleanroom was implemented.
The Cooperate Assistive Teamwork Environment for Software Description Languages.
Groenda, Henning; Seifermann, Stephan; Müller, Karin; Jaworek, Gerhard
2015-01-01
Versatile description languages such as the Unified Modeling Language (UML) are commonly used in software engineering across different application domains in theory and practice. They often use graphical notations and leverage visual memory for expressing complex relations. Those notations are hard to access for people with visual impairment and impede their smooth inclusion in an engineering team. Existing approaches provide textual notations but require manual synchronization between the notations. This paper presents requirements for an accessible and language-aware team work environment as well as our plan for the assistive implementation of Cooperate. An industrial software engineering team consisting of people with and without visual impairment will evaluate the implementation.
Architected Agile Solutions for Software-Reliant Systems
NASA Astrophysics Data System (ADS)
Boehm, Barry; Lane, Jo Ann; Koolmanojwong, Supannika; Turner, Richard
Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70% capabilities,” interoperability, net-centricity, and rapid adaptation to change. The latter need has led to increased interest in agile methods of software development, in which teams rely on shared tacit interpersonal knowledge rather than explicit documented knowledge. However, such systems often need to be scaled up to higher level of performance and assurance, requiring stronger architectural support. Several organizations have recently transformed themselves by developing successful combinations of agility and architecture that can scale to projects of up to 100 personnel. This chapter identifies a set of key principles for such architected agile solutions for software-reliant systems, provides guidance for how much architecting is enough, and illustrates the key principles with several case studies.
Software ``Best'' Practices: Agile Deconstructed
NASA Astrophysics Data System (ADS)
Fraser, Steven
This workshop will explore the intersection of agility and software development in a world of legacy code-bases and large teams. Organizations with hundreds of developers and code-bases exceeding a million or tens of millions of lines of code are seeking new ways to expedite development while retaining and attracting staff who desire to apply “agile” methods. This is a situation where specific agile practices may be embraced outside of their usual zone of applicability. Here is where practitioners must understand both what “best practices” already exist in the organization - and how they might be improved or modified by applying “agile” approaches.
End effector monitoring system: An illustrated case of operational prototyping
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll
1994-01-01
Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.
The role of metrics and measurements in a software intensive total quality management environment
NASA Technical Reports Server (NTRS)
Daniels, Charles B.
1992-01-01
Paramax Space Systems began its mission as a member of the Rockwell Space Operations Company (RSOC) team which was the successful bidder on a massive operations consolidation contract for the Mission Operations Directorate (MOD) at JSC. The contract awarded to the team was the Space Transportation System Operations Contract (STSOC). Our initial challenge was to accept responsibility for a very large, highly complex and fragmented collection of software from eleven different contractors and transform it into a coherent, operational baseline. Concurrently, we had to integrate a diverse group of people from eleven different companies into a single, cohesive team. Paramax executives recognized the absolute necessity to develop a business culture based on the concept of employee involvement to execute and improve the complex process of our new environment. Our executives clearly understood that management needed to set the example and lead the way to quality improvement. The total quality management policy and the metrics used in this endeavor are presented.
Delay Tolerant Networking on NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Johnson, Sandra; Eddy, Wesley
2016-01-01
This presentation covers the status of the implementation of an open source software that implements the specifications developed by the CCSDS Working Group. Interplanetary Overlay Network (ION) is open source software and it implements specifications that have been developed by two international working groups through IETF and CCSDS. ION was implemented on the SCaN Testbed, a testbed located on an external pallet on ISS, by the GRC team. The presentation will cover the architecture of the system, high level implementation details, and issues porting ION to VxWorks.
NASA employee utilizes Virtual Reality (VR) equipment
1991-10-28
S91-50404 (1 Nov 1991) --- Bebe Ly of the Information Systems Directorate's (ISD) Software Technology Branch at the Johnson Space Center (JSC) gives virtual reality a try. The stereo video goggles and head[phones allow her to see and hear in a computer-generated world and the gloves allow her to move around and grasp objects. Ly is a member of the team that developed the C Language Integrated production System (CLIPS) which has been instrumental in developing several of the systems to be demonstrated in an upcoming Software Technology Exposition at JSC.
Managing distributed software development in the Virtual Astronomical Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Plante, Raymond L.; Boneventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian
2012-09-01
The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides guidelines to ensure the project is cohesive and stays on track is key to success. Internal product deliveries with a planned test and feedback loop are critical. Release candidates are measured against use cases established early in the process, and provide the opportunity to assess priorities and make course corrections during development. Also key is the participation of a stakeholder such as a lead scientist who manages the technical questions, advises on priorities, and is actively involved as a lead tester. Finally, frequent scheduled communications (for example a bi-weekly tele-conference) assure issues are resolved quickly and the team is working toward a common vision.
The roles of the AAS Journals' Data Editors
NASA Astrophysics Data System (ADS)
Muench, August; NASA/SAO ADS, CERN/Zenodo.org, Harvard/CfA Wolbach Library
2018-01-01
I will summarize the community services provided by the AAS Journals' Data Editors to support authors’ when citing and preserving the software and data used in the published literature. In addition I will describe the life of a piece of code as it passes through the current workflows for software citation in astronomy. Using this “lifecycle” I will detail the ongoing work funded by a grant from the Alfred P. Sloan Foundation to the American Astronomical Society to improve the citation of software in the literature. The funded development team and advisory boards, made up of non-profit publishers, literature indexers, and preservation archives, is implementing the Force11 Software citation principles for astronomy Journals. The outcome of this work will be new workflows for authors and developers that fit in their current practices while enabling versioned citation of software and granular credit for its creators.
Infusing Software Assurance Research Techniques into Use
NASA Technical Reports Server (NTRS)
Pressburger, Thomas; DiVito, Ben; Feather, Martin S.; Hinchey, Michael; Markosian, Lawrence; Trevino, Luis C.
2006-01-01
Research in the software engineering community continues to lead to new development techniques that encompass processes, methods and tools. However, a number of obstacles impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may benefit them, and cannot afford to risk time and effort evaluating and trying one out while there remains uncertainty about whether it will work for them. Researchers cannot readily identify the practitioners whose problems would be amenable to their techniques, and, lacking feedback from practical applications, are hard-pressed to gauge the where and in what ways to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team established by NASA s Software Engineering Initiative to overcome these obstacles. .
Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R
2009-01-01
We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.
Schedule Analysis Software Saves Time for Project Planners
NASA Technical Reports Server (NTRS)
2015-01-01
Since the early 2000s, a resource management team at Marshall Space Flight Center has developed and improved the Schedule Test and Assessment Tool, a software add-on capable of analyzing, summarizing, and finding logic gaps in project schedules. Companies like Lanham, Maryland-based Vantage Systems Inc. use the tool to manage NASA projects, but it has also been released for free to more than 200 US companies, agencies, and other entities.
Extending Team Software Process (TSP) to Systems Engineering: A NAVAIR Experience Report
2010-03-01
instrumental in formulating the concepts and approaches presented in this report: Dan Burton, Anita Carleton, Timothy Chick, Mike Fehring, Watts Humphrey ...Senate,” GAO-04-393, Defense Acquisitions, 2004. http://www.gao.gov/new.items/d04393.pdf [ Humphrey 06] W. S . Humphrey , TSP: Leading a Development... Humphrey 08] W. S . Humphrey , “The Process Revolution,” CrossTalk The Journal of Defense Software Engineering, August 2008, Volume 28 Number 8
ERIC Educational Resources Information Center
Wong, Wilson; Pepe, James; Englander, Irv
2017-01-01
Information systems capstone projects aim to prepare students for what they will encounter in the industry after graduation. Corporate application development is often a complex endeavor that requires coordination between related products. For example, software development in the mobile application sector may require a coordinated parallel…
Exploring virtual mental practice in maintenance task training.
Bauerle, Tim; Brnich, Michael J; Navoyski, Jason
- This paper aims to contribute to a general understanding of mental practice by investigating the utility of and participant reaction to a virtual reality maintenance training among underground coal mine first responders. - Researchers at the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research (OMSHR) developed software to provide opportunities for mine rescue team members to learn to inspect, assemble and test their closed-circuit breathing apparatus and to practice those skills. In total, 31 mine rescue team members utilized OMSHR's BG 4 Benching Trainer software and provided feedback to the development team. After training, participants completed a brief post-training questionnaire, which included demographics, perceived training climate and general training evaluation items. - The results overall indicate a generally positive reaction to and high perceived utility of the BG 4 benching software. In addition, the perceived training climate appears to have an effect on the perceived utility of the mental practice virtual reality game, with benchmen from mines with more positive training climates reporting greater perceived efficacy in the training's ability to prepare trainees for real emergencies. - This paper helps to broaden current applications of mental practice and is one of the few empirical investigations into a non-rehabilitation virtual reality extension of mental practice. This paper also contributes to the growing literature advocating for greater usage of accurate and well-informed mental practice techniques, tools and methodologies, especially for occupational populations with limitations on exposure to hands-on training.
2010-12-01
PSP and TSP books by Watts Humphrey or in the TSP-MT (multi-team) process extension. A few additional items should be created, e.g., see OPD-2...Institute, Carnegie Mellon University, 2000. www.sei.cmu.edu/library/abstracts/reports/00tr023.cfm [ Humphrey 2005] Humphrey , Watts S . PSP : A Self... Humphrey 2006] Humphrey , Watts S . TSP: Coaching Development Teams. Addison Wesley, 2006 (ISBN 978- 0201731132). www.sei.cmu.edu/library/abstracts/
Busby, Ben; Lesko, Matthew; Federer, Lisa
2016-01-01
In genomics, bioinformatics and other areas of data science, gaps exist between extant public datasets and the open-source software tools built by the community to analyze similar data types. The purpose of biological data science hackathons is to assemble groups of genomics or bioinformatics professionals and software developers to rapidly prototype software to address these gaps. The only two rules for the NCBI-assisted hackathons run so far are that 1) data either must be housed in public data repositories or be deposited to such repositories shortly after the hackathon’s conclusion, and 2) all software comprising the final pipeline must be open-source or open-use. Proposed topics, as well as suggested tools and approaches, are distributed to participants at the beginning of each hackathon and refined during the event. Software, scripts, and pipelines are developed and published on GitHub, a web service providing publicly available, free-usage tiers for collaborative software development. The code resulting from each hackathon is published at https://github.com/NCBI-Hackathons/ with separate directories or repositories for each team. PMID:27134733
Agile methods in biomedical software development: a multi-site experience report.
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-05-30
Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.
Agile methods in biomedical software development: a multi-site experience report
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-01-01
Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914
Cognitive task analysis-based design and authoring software for simulation training.
Munro, Allen; Clark, Richard E
2013-10-01
The development of more effective medical simulators requires a collaborative team effort where three kinds of expertise are carefully coordinated: (1) exceptional medical expertise focused on providing complete and accurate information about the medical challenges (i.e., critical skills and knowledge) to be simulated; (2) instructional expertise focused on the design of simulation-based training and assessment methods that produce maximum learning and transfer to patient care; and (3) software development expertise that permits the efficient design and development of the software required to capture expertise, present it in an engaging way, and assess student interactions with the simulator. In this discussion, we describe a method of capturing more complete and accurate medical information for simulators and combine it with new instructional design strategies that emphasize the learning of complex knowledge. Finally, we describe three different types of software support (Development/Authoring, Run Time, and Post Run Time) required at different stages in the development of medical simulations and the instructional design elements of the software required at each stage. We describe the contributions expected of each kind of software and the different instructional control authoring support required. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
The Comparison of VLBI Data Analysis Using Software Globl and Globk
NASA Astrophysics Data System (ADS)
Guangli, W.; Xiaoya, W.; Jinling, L.; Wenyao, Z.
The comparison of different geodetic data analysis software is one of the quite of- ten mentioned topics. In this paper we try to find out the difference between software GLOBL and GLOBK when use them to process the same set of VLBI data. GLOBL is a software developed by VLBI team, geodesy branch, GSFC/NASA to process geode- tic VLBI data using algorithm of arc-parameter-elimination, while GLOBK using al- gorithm of kalman filtering is mainly used in GPS data analysis, and it is also used in VLBI data analysis. Our work focus on whether there are significant difference when use the two softwares to analyze the same VLBI data set and investigate the reasons caused the difference.
An agile implementation of SCRUM
NASA Astrophysics Data System (ADS)
Gannon, Michele
Is Agile a way to cut corners? To some, the use of an Agile Software Development Methodology has a negative connotation - “ Oh, you're just not producing any documentation” . So can a team with no experience in Agile successfully implement and use SCRUM?
An Open Source Tool to Test Interoperability
NASA Astrophysics Data System (ADS)
Bermudez, L. E.
2012-12-01
Scientists interact with information at various levels from gathering of the raw observed data to accessing portrayed processed quality control data. Geoinformatics tools help scientist on the acquisition, storage, processing, dissemination and presentation of geospatial information. Most of the interactions occur in a distributed environment between software components that take the role of either client or server. The communication between components includes protocols, encodings of messages and managing of errors. Testing of these communication components is important to guarantee proper implementation of standards. The communication between clients and servers can be adhoc or follow standards. By following standards interoperability between components increase while reducing the time of developing new software. The Open Geospatial Consortium (OGC), not only coordinates the development of standards but also, within the Compliance Testing Program (CITE), provides a testing infrastructure to test clients and servers. The OGC Web-based Test Engine Facility, based on TEAM Engine, allows developers to test Web services and clients for correct implementation of OGC standards. TEAM Engine is a JAVA open source facility, available at Sourceforge that can be run via command line, deployed in a web servlet container or integrated in developer's environment via MAVEN. The TEAM Engine uses the Compliance Test Language (CTL) and TestNG to test HTTP requests, SOAP services and XML instances against Schemas and Schematron based assertions of any type of web service, not only OGC services. For example, the OGC Web Feature Service (WFS) 1.0.0 test has more than 400 test assertions. Some of these assertions includes conformance of HTTP responses, conformance of GML-encoded data; proper values for elements and attributes in the XML; and, correct error responses. This presentation will provide an overview of TEAM Engine, introduction of how to test via the OGC Testing web site and description of performing local tests. It will also provide information about how to participate in the open source code development of TEAM Engine.
2017-04-19
A sign at the Kennedy Space Center Visitor Complex announces the second annual Swarmathon competition. Students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of cubes with AprilTags, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's second annual Swarmathon, 20 teams representing 22 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the moon or Mars.
NASA Work Breakdown Structure (WBS) Handbook
NASA Technical Reports Server (NTRS)
Terrell, Stefanie M.
2018-01-01
The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements.
Software Requirements Specification for Lunar IceCube
NASA Astrophysics Data System (ADS)
Glaser-Garbrick, Michael R.
Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.
Tang, Terence; Lim, Morgan E; Mansfield, Elizabeth; McLachlan, Alexander; Quan, Sherman D
2018-02-01
User involvement is vital to the success of health information technology implementation. However, involving clinician users effectively and meaningfully in complex healthcare organizations remains challenging. The objective of this paper is to share our real-world experience of applying a variety of user involvement methods in the design and implementation of a clinical communication and collaboration platform aimed at facilitating care of complex hospitalized patients by an interprofessional team of clinicians. We designed and implemented an electronic clinical communication and collaboration platform in a large community teaching hospital. The design team consisted of both technical and healthcare professionals. Agile software development methodology was used to facilitate rapid iterative design and user input. We involved clinician users at all stages of the development lifecycle using a variety of user-centered, user co-design, and participatory design methods. Thirty-six software releases were delivered over 24 months. User involvement has resulted in improvement in user interface design, identification of software defects, creation of new modules that facilitated workflow, and identification of necessary changes to the scope of the project early on. A variety of user involvement methods were complementary and benefited the design and implementation of a complex health IT solution. Combining these methods with agile software development methodology can turn designs into functioning clinical system to support iterative improvement. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ellis, Heidi J C; Nowling, Ronald J; Vyas, Jay; Martyn, Timothy O; Gryk, Michael R
2011-04-11
The CONNecticut Joint University Research (CONNJUR) team is a group of biochemical and software engineering researchers at multiple institutions. The vision of the team is to develop a comprehensive application that integrates a variety of existing analysis tools with workflow and data management to support the process of protein structure determination using Nuclear Magnetic Resonance (NMR). The use of multiple disparate tools and lack of data management, currently the norm in NMR data processing, provides strong motivation for such an integrated environment. This manuscript briefly describes the domain of NMR as used for protein structure determination and explains the formation of the CONNJUR team and its operation in developing the CONNJUR application. The manuscript also describes the evolution of the CONNJUR application through four prototypes and describes the challenges faced while developing the CONNJUR application and how those challenges were met.
Next Generation Workload Management and Analysis System for Big Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Kaushik
We report on the activities and accomplishments of a four-year project (a three-year grant followed by a one-year no cost extension) to develop a next generation workload management system for Big Data. The new system is based on the highly successful PanDA software developed for High Energy Physics (HEP) in 2005. PanDA is used by the ATLAS experiment at the Large Hadron Collider (LHC), and the AMS experiment at the space station. The program of work described here was carried out by two teams of developers working collaboratively at Brookhaven National Laboratory (BNL) and the University of Texas at Arlingtonmore » (UTA). These teams worked closely with the original PanDA team – for the sake of clarity the work of the next generation team will be referred to as the BigPanDA project. Their work has led to the adoption of BigPanDA by the COMPASS experiment at CERN, and many other experiments and science projects worldwide.« less
Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces
NASA Technical Reports Server (NTRS)
Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.
2012-01-01
The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.
CAD/CAE Integration Enhanced by New CAD Services Standard
NASA Technical Reports Server (NTRS)
Claus, Russell W.
2002-01-01
A Government-industry team led by the NASA Glenn Research Center has developed a computer interface standard for accessing data from computer-aided design (CAD) systems. The Object Management Group, an international computer standards organization, has adopted this CAD services standard. The new standard allows software (e.g., computer-aided engineering (CAE) and computer-aided manufacturing software to access multiple CAD systems through one programming interface. The interface is built on top of a distributed computing system called the Common Object Request Broker Architecture (CORBA). CORBA allows the CAD services software to operate in a distributed, heterogeneous computing environment.
Modi, Riddhi A; Mugavero, Michael J; Amico, Rivet K; Keruly, Jeanne; Quinlivan, Evelyn Byrd; Crane, Heidi M; Guzman, Alfredo; Zinski, Anne; Montue, Solange; Roytburd, Katya; Church, Anna; Willig, James H
2017-06-16
Meticulous tracking of study data must begin early in the study recruitment phase and must account for regulatory compliance, minimize missing data, and provide high information integrity and/or reduction of errors. In behavioral intervention trials, participants typically complete several study procedures at different time points. Among HIV-infected patients, behavioral interventions can favorably affect health outcomes. In order to empower newly diagnosed HIV positive individuals to learn skills to enhance retention in HIV care, we developed the behavioral health intervention Integrating ENGagement and Adherence Goals upon Entry (iENGAGE) funded by the National Institute of Allergy and Infectious Diseases (NIAID), where we deployed an in-clinic behavioral health intervention in 4 urban HIV outpatient clinics in the United States. To scale our intervention strategy homogenously across sites, we developed software that would function as a behavioral sciences research platform. This manuscript aimed to: (1) describe the design and implementation of a Web-based software application to facilitate deployment of a multisite behavioral science intervention; and (2) report on results of a survey to capture end-user perspectives of the impact of this platform on the conduct of a behavioral intervention trial. In order to support the implementation of the NIAID-funded trial iENGAGE, we developed software to deploy a 4-site behavioral intervention for new clinic patients with HIV/AIDS. We integrated the study coordinator into the informatics team to participate in the software development process. Here, we report the key software features and the results of the 25-item survey to evaluate user perspectives on research and intervention activities specific to the iENGAGE trial (N=13). The key features addressed are study enrollment, participant randomization, real-time data collection, facilitation of longitudinal workflow, reporting, and reusability. We found 100% user agreement (13/13) that participation in the database design and/or testing phase made it easier to understand user roles and responsibilities and recommended participation of research teams in developing databases for future studies. Users acknowledged ease of use, color flags, longitudinal work flow, and data storage in one location as the most useful features of the software platform and issues related to saving participant forms, security restrictions, and worklist layout as least useful features. The successful development of the iENGAGE behavioral science research platform validated an approach of early and continuous involvement of the study team in design development. In addition, we recommend post-hoc collection of data from users as this led to important insights on how to enhance future software and inform standard clinical practices. Clinicaltrials.gov NCT01900236; (https://clinicaltrials.gov/ct2/show/NCT01900236 (Archived by WebCite at http://www.webcitation.org/6qAa8ld7v). ©Riddhi A Modi, Michael J Mugavero, Rivet K Amico, Jeanne Keruly, Evelyn Byrd Quinlivan, Heidi M Crane, Alfredo Guzman, Anne Zinski, Solange Montue, Katya Roytburd, Anna Church, James H Willig. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 16.06.2017.
The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO
NASA Astrophysics Data System (ADS)
Pilone, D.; Cechini, M.
2010-12-01
NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles
Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions
NASA Technical Reports Server (NTRS)
Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)
2000-01-01
With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.
The use of hypermedia to increase the productivity of software development teams
NASA Technical Reports Server (NTRS)
Coles, L. Stephen
1991-01-01
Rapid progress in low-cost commercial PC-class multimedia workstation technology will potentially have a dramatic impact on the productivity of distributed work groups of 50-100 software developers. Hypermedia/multimedia involves the seamless integration in a graphical user interface (GUI) of a wide variety of data structures, including high-resolution graphics, maps, images, voice, and full-motion video. Hypermedia will normally require the manipulation of large dynamic files for which relational data base technology and SQL servers are essential. Basic machine architecture, special-purpose video boards, video equipment, optical memory, software needed for animation, network technology, and the anticipated increase in productivity that will result for the introduction of hypermedia technology are covered. It is suggested that the cost of the hardware and software to support an individual multimedia workstation will be on the order of $10,000.
NASA Technical Reports Server (NTRS)
Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.
1999-01-01
Flight software is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are typically dealing almost entirely with the capabilities of onboard software. This software, even more than critical ground/flight communications systems, is expected to perform perfectly during all phases of spacecraft life. Due to the fact that it can be reprogrammed on-orbit to accommodate degradations or failures in flight hardware, new insights into spacecraft characteristics, new control options which permit enhanced science options, etc., the on- orbit flight software maintenance team is usually significantly responsible for the long term success of a science mission. Failure of flight software to perform as needed can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to maintaining spacecraft software--namely using the original developers, using the mission operations personnel, or assembling a center of excellence for multi-spacecraft software maintenance. Not planning properly for flight software maintenance can lead to unnecessarily high on-orbit costs and/or unacceptably long delays, or errors, in patch installations. A common approach for flight software maintenance is to access the original development staff. The argument for utilizing the development staff is that the people who developed the software will be the best people to modify the software on-orbit. However, it can quickly becomes a challenge to obtain the services of these key people. They may no longer be available to the organization. They may have a more urgent job to perform, quite likely on another project under different project management. If they havn't worked on the software for a long time, they may need precious time for refamiliarization to the software, testbeds and tools. Further, a lack of insight into issues related to flight software in its on-orbit environment, may find the developer unprepared for the challenges. The second approach is to train a member of the flight operations team to maintain the spacecraft software. This can prove to be a costly and inflexible solution. The person assigned to this duty may not have enough work to do during a problem free period and may have too much to do when a problem arises. If the person is a talented software engineer, he/she may not enjoy the limited software opportunities available in this position; and may eventually leave for newer technology computer science opportunities. Training replacement flight software personnel can be a difficult and lengthy process. The third approach is to assemble a center of excellence for on-orbit spacecraft software maintenance. Personnel in this specialty center can be managed to support flight software of multiple missions at once. The variety of challenges among a set of on-orbit missions, can result in a dedicated, talented staff which is fully trained and available to support each mission's needs. Such staff are not software developers but are rather spacecraft software systems engineers. The cost to any one mission is extremely low because the software staff works and charges, minimally on missions with no current operations issues; and their professional insight into on-orbit software troubleshooting and maintenance methods ensures low risk, effective and minimal-cost solutions to on-orbit issues.
Big Software for Big Data: Scaling Up Photometry for LSST (Abstract)
NASA Astrophysics Data System (ADS)
Rawls, M.
2017-06-01
(Abstract only) The Large Synoptic Survey Telescope (LSST) will capture mosaics of the sky every few nights, each containing more data than your computer's hard drive can store. As a result, the software to process these images is as critical to the science as the telescope and the camera. I discuss the algorithms and software being developed by the LSST Data Management team to handle such a large volume of data. All of our work is open source and available to the community. Once LSST comes online, our software will produce catalogs of objects and a stream of alerts. These will bring exciting new opportunities for follow-up observations and collaborations with LSST scientists.
Considering Subcontractors in Distributed Scrum Teams
NASA Astrophysics Data System (ADS)
Rudzki, Jakub; Hammouda, Imed; Mikkola, Tuomas; Mustonen, Karri; Systä, Tarja
In this chapter we present our experiences with working with subcontractors in distributed Scrum teams. The context of our experiences is a medium size software service provider company. We present the way the subcontractors are selected and how Scrum practices can be used in real-life projects. We discuss team arrangements and tools used in distributed development teams highlighting aspects that are important when working with subcontractors. We also present an illustrative example where different phases of a project working with subcontractors are described. The example also provides practical tips on work in such projects. Finally, we present a summary of our data that was collected from Scrum and non-Scrum projects implemented over a few years. This chapter should provide a practical point of view on working with subcontractors in Scrum teams for those who are considering such cooperation.
Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-02-01
New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, Donald
The KCNSC Automated RAIL (Rolling Action Item List) system provides an electronic platform to manage and escalate rolling action items within an business and manufacturing environment at Honeywell. The software enables a tiered approach to issue management where issues are escalated up a management chain based on team input and compared to business metrics. The software manages action items at different levels of the organization and allows all users to discuss action items concurrently. In addition, the software drives accountability through timely emails and proper visibility during team meetings.
Big Software for SmallSats: Adapting CFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS. Large parts of cFS are now open source, which has spurred adoption outside of NASA. This paper reports on the experiences of two teams using cFS for current CubeSat missions. The performance overheads of cFS are quantified, and the reusability of code between missions is discussed. The analysis shows that cFS is well suited to use on CubeSats and demonstrates the portability and modularity of cFS code.
The Package-Based Development Process in the Flight Dynamics Division
NASA Technical Reports Server (NTRS)
Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil
1997-01-01
The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.
Cleanroom Software Engineering Reference Model. Version 1.0.
1996-11-01
teams. It also serves as a baseline for continued evolution of Cleanroom practice. The scope of the CRM is software management , specification...addition to project staff, participants include management , peer organization representatives, and customer representatives as appropriate for...2 Review the status of the process with management , the project team, peer groups, and the customer . These verification activities include
Analysis of DSN software anomalies
NASA Technical Reports Server (NTRS)
Galorath, D. D.; Hecht, H.; Hecht, M.; Reifer, D. J.
1981-01-01
A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies.
The GenABEL Project for statistical genomics.
Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.
Open University Environmental Education and Training.
ERIC Educational Resources Information Center
Blackmore, Christine
1996-01-01
Describes the approach to environmental education courses at Open University. Includes broad course content, team teaching approach, and philosophy of reorienting education towards sustainable development. Course material for open learning includes self-contained study packs as well as course texts, video, audio, and computer software. Nonformal…
NASA Technical Reports Server (NTRS)
Soderstrom, Tomas J.; Krall, Laura A.; Hope, Sharon A.; Zupke, Brian S.
1994-01-01
A Telos study of 40 recent subsystem deliveries into the DSN at JPL found software interface testing to be the single most expensive and error-prone activity, and the study team suggested creating an automated software interface test tool. The resulting Software Interface Verifier (SIV), which was funded by NASA/JPL and created by Telos, employed 92 percent software reuse to quickly create an initial version which incorporated early user feedback. SIV is now successfully used by developers for interface prototyping and unit testing, by test engineers for formal testing, and by end users for non-intrusive data flow tests in the operational environment. Metrics, including cost, are included. Lessons learned include the need for early user training. SIV is ported to many platforms and can be successfully used or tailored by other NASA groups.
Exploring the Media Mix during IT-Offshore Project
NASA Astrophysics Data System (ADS)
Wende, Erik; Schwabe, Gerhard; Philip, Tom
Offshore outsourced IT projects continue to gain relevance in the globalized world scenario. The temporal, geographical and cultural distances involved during the development of software between distributed team members result in communication challenges. As software development involves the coding of knowledge, the management of knowledge and its transfer remain critical for the success of the project. For effective knowledge transfer between geographically dispersed teams the ongoing selection of communication medium or the media channel mix becomes highly significant. Although there is an abundance of theory dealing with knowledge transfer and media channel selection during offshore outsourcing projects, the specific role of cultural differences in the media mix is often overlooked. As a first step to rectify this, this paper presents an explorative outsourcing case study with emphasis on the chosen media channels and the problems that arose from differences in culture. The case study is analyzed in light of several theoretical models. Finally the paper presents the idea of extending the Media Synchonicity theory with cultural factors.
Open Technology Development: Roadmap Plan
2006-04-01
65 RECOMMENDATION 1: APPROVE AND FUND AN OTD STRIKE TEAM................. 67 Senior Leadership...negotiated, rather than an innate property of the product. Software’s replicability also means it can be incorporated into other software systems without...to leverage an open code development model, DoD would provide the market incentives to increase the agility and competitiveness of the industrial
New Tool Released for Engine-Airframe Blade-Out Structural Simulations
NASA Technical Reports Server (NTRS)
Lawrence, Charles
2004-01-01
Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code would be distributed by a commercial software vendor, it would be more readily available to engine and airframe manufacturers, as well as to nonaircraft companies that did not previously have access to this capability.
AWIPS II Application Development, a SPoRT Perspective
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.
2014-01-01
The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander
2016-04-01
Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and using geographic information systems - (GIS). 4. Using the output of the first three tasks, compilation of the DRC prototype, its validation, and testing the DRC feasibility for analyses of the recent regional environmental changes over Northern Eurasia and North America. Results of the first stage of the Project implementation are presented. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement № 14.613.21.0037.
Requirements Engineering in Building Climate Science Software
ERIC Educational Resources Information Center
Batcheller, Archer L.
2011-01-01
Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…
Architecture-Based Unit Testing of the Flight Software Product Line
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; McComas, David; Bartholomew, Maureen; Slegel, Steve; Medina, Barbara
2010-01-01
This paper presents an analysis of the unit testing approach developed and used by the Core Flight Software (CFS) product line team at the NASA GSFC. The goal of the analysis is to understand, review, and reconunend strategies for improving the existing unit testing infrastructure as well as to capture lessons learned and best practices that can be used by other product line teams for their unit testing. The CFS unit testing framework is designed and implemented as a set of variation points, and thus testing support is built into the product line architecture. The analysis found that the CFS unit testing approach has many practical and good solutions that are worth considering when deciding how to design the testing architecture for a product line, which are documented in this paper along with some suggested innprovennents.
Exploring virtual mental practice in maintenance task training
Bauerle, Tim; Brnich, Michael J.; Navoyski, Jason
2016-01-01
Purpose – This paper aims to contribute to a general understanding of mental practice by investigating the utility of and participant reaction to a virtual reality maintenance training among underground coal mine first responders. Design/methodology/approach – Researchers at the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research (OMSHR) developed software to provide opportunities for mine rescue team members to learn to inspect, assemble and test their closed-circuit breathing apparatus and to practice those skills. In total, 31 mine rescue team members utilized OMSHR's BG 4 Benching Trainer software and provided feedback to the development team. After training, participants completed a brief post-training questionnaire, which included demographics, perceived training climate and general training evaluation items. Findings – The results overall indicate a generally positive reaction to and high perceived utility of the BG 4 benching software. In addition, the perceived training climate appears to have an effect on the perceived utility of the mental practice virtual reality game, with benchmen from mines with more positive training climates reporting greater perceived efficacy in the training's ability to prepare trainees for real emergencies. Originality/value – This paper helps to broaden current applications of mental practice and is one of the few empirical investigations into a non-rehabilitation virtual reality extension of mental practice. This paper also contributes to the growing literature advocating for greater usage of accurate and well-informed mental practice techniques, tools and methodologies, especially for occupational populations with limitations on exposure to hands-on training. PMID:27594801
NASA's Swarm Missions: The Challenge of Building Autonomous Software
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hinchey, Mike; Rash, James; Rouff, Christopher
2004-01-01
The days of watching a massive manned cylinder thrust spectacularly off a platform into space might rapidly become ancient history when the National Aeronautics and Space Administration (NASA) introduces its new millenium mission class. Motivated by the need to gather more data than is possible with a single spacecraft, scientists have developed a new class of missions based on the efficiency and cooperative nature of a hive culture. The missions, aptly dubbed nanoswarm will be little more than mechanized colonies cooperating in their exploration of the solar system. Each swarm mission can have hundreds or even thousands of cooperating intelligent spacecraft that work in teams. The spacecraft must operate independently for long periods both in teams and individually, as well as have autonomic properties - self-healing, -configuring, -optimizing, and -protecting- to survive the harsh space environment. One swarm mission under concept development for 2020 to 2030 is the Autonomous Nano Technology Swarm (ANTS), in which a thousand picospacecraft, each weighing less than three pounds, will work cooperatively to explore the asteroid belt. Some spacecraft will form teams to catalog asteroid properties, such as mass, density, morphology, and chemical composition, using their respective miniature scientific instruments. Others will communicate with the data gatherers and send updates to mission elements on Earth. For software and systems development, this is uncharted territory that calls for revolutionary techniques.
Domain specific software architectures: Command and control
NASA Technical Reports Server (NTRS)
Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave
1992-01-01
GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.
2018-04-17
Students from Montgomery College in Rockville in Maryland, follow the progress of their Swarmie robots during the Swarmathon competition at the Kennedy Space Center Visitor Complex. Students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
2018-04-18
In the Swarmathon competition at the Kennedy Space Center Visitor Complex, students were asked to develop computer code for the small robots, programming them to look for "resources" in the form of AprilTag cubes, similar to barcodes. To add to the challenge, obstacles in the form of simulated rocks were placed in the completion arena. Teams developed search algorithms for the Swarmies to operate autonomously, communicating and interacting as a collective swarm similar to ants foraging for food. In the spaceport's third annual Swarmathon, 23 teams represented 24 minority serving universities and community colleges were invited to develop software code to operate these innovative robots known as "Swarmies" to help find resources when astronauts explore distant locations, such as the Moon or Mars.
Data Management for a Climate Data Record in an Evolving Technical Landscape
NASA Astrophysics Data System (ADS)
Moore, K. D.; Walter, J.; Gleason, J. L.
2017-12-01
For nearly twenty years, NASA Langley Research Center's Clouds and the Earth's Radiant Energy System (CERES) Science Team has been producing a suite of data products that forms a persistent climate data record of the Earth's radiant energy budget. Many of the team's physical scientists and key research contributors have been with the team since the launch of the first CERES instrument in 1997. This institutional knowledge is irreplaceable and its longevity and continuity are among the reasons that the team has been so productive. Such legacy involvement, however, can also be a limiting factor. Some CERES scientists-cum-coders might possess skills that were state-of-the-field when they were emerging scientists but may now be outdated with respect to developments in software development best practices and supporting technologies. Both programming languages and processing frameworks have evolved significantly in the past twenty years, and updating one of these factors warrants consideration of updating the other. With the imminent launch of a final CERES instrument and the good health of those in flight, the CERES data record stands to continue far into the future. The CERES Science Team is, therefore, undergoing a re-architecture of its codebase to maintain compatibility with newer data processing platforms and technologies and to leverage modern software development best practices. This necessitates training our staff and consequently presents several challenges, including: Development continues immediately on the next "edition" of research algorithms upon release of the previous edition. How can code be rewritten at the same time that the science algorithms are being updated and integrated? With limited time to devote to training, how can we update the staff's existing skillset without slowing progress or introducing new errors? The CERES Science Team is large and complex, much like the current state of its codebase. How can we identify, in a breadth-wise manner, areas for code improvement across multiple research groups that maintain code with varying semantics but common concepts? In this work, we discuss the successes and pitfalls of this major re-architecture effort and share how we will sustain improvement into the future.
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
DOT National Transportation Integrated Search
2017-04-15
In this 3-year project, the research team developed the Hydrologic Disaster Forecast and Response (HDFR) system, a set of integrated software tools for end users that streamlines hydrologic prediction workflows involving automated retrieval of hetero...
Using Animated Language Software with Children Diagnosed with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Mulholland, Rita; Pete, Ann Marie; Popeson, Joanne
2008-01-01
We examined the impact of using an animated software program (Team Up With Timo) on the expressive and receptive language abilities of five children ages 5-9 in a self-contained Learning and Language Disabilities class. We chose to use Team Up With Timo (Animated Speech Corporation) because it allows the teacher to personalize the animation for…
Activities of the healthcare team for women who smoke during pregnancy and the puerperium1
Teixeira, Carolina de Castilhos; Lucena, Amália de Fátima; Echer, Isabel Cristina
2014-01-01
OBJECTIVE: to identify activities developed by the healthcare team for pregnant and postpartum women who smoke. METHOD: cross-sectional study with a sample of 135 healthcare team members who assist pregnant and postpartum women in a university hospital located in southern Brazil. The data was collected using questionnaires and analyzed using the Statistical Package for Social Sciences software. RESULTS: 76 (56.3%) staff members reported that they always addressed smoking cessation; however, the approach occurred in only two periods of the hospitalization and/or prenatal consultations, not including family members. In regard to the effectiveness of their actions, the health team assessed it as fair or poor, and mentioned the need for updating knowledge regarding this issue. CONCLUSIONS: the health team did not perform the approach as recommended by the tobacco control guidelines, requiring training to offer a qualified and efficient intervention. PMID:25296146
Best practices for team-based assistive technology design courses.
Goldberg, Mary R; Pearlman, Jonathan L
2013-09-01
Team-based design courses focused on products for people with disabilities have become relatively common, in part because of training grants such as the NSF Research to Aid Persons with Disabilities course grants. An output from these courses is an annual description of courses and projects but has yet to be complied into a "best practices guide," though it could be helpful for instructors. To meet this need, we conducted a study to generate best practices for assistive technology product development courses and how to use these courses to teach students the fundamentals of innovation. A full list of recommendations is comprised in the manuscript and include identifying a client through a reliable clinical partner; allowing for transparency between the instructors, the client, and the team(s); establishing multi-disciplinary teams; using a process-oriented vs. solution-oriented product development model; using a project management software to facilitate and archive communication and outputs; facilitating client interaction through frequent communication; seeking to develop professional role confidence to inspire students' commitment to engineering and (where applicable) rehabilitation field; publishing student designs on repositories; incorporating both formal and informal education opportunities related to design; and encouraging students to submit their designs to local or national entrepreneurship competitions.
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, R. W.; Bowman, Randy R.; Bonacuse, Peter; Martin, Richard E.; Locci, I. E.; Kelley, M.
2012-01-01
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspection
Temporal motifs reveal collaboration patterns in online task-oriented networks
NASA Astrophysics Data System (ADS)
Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir
2015-05-01
Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.
Temporal motifs reveal collaboration patterns in online task-oriented networks.
Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir
2015-05-01
Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.
DiaFit: The Development of a Smart App for Patients with Type 2 Diabetes and Obesity.
Modave, François; Bian, Jiang; Rosenberg, Eric; Mendoza, Tonatiuh; Liang, Zhan; Bhosale, Ravi; Maeztu, Carlos; Rodriguez, Camila; Cardel, Michelle I
2016-01-01
Optimal management of chronic diseases, such as type 2 diabetes (T2D) and obesity, requires patient-provider communication and proactive self-management from the patient. Mobile apps could be an effective strategy for improving patient-provider communication and provide resources for self-management to patients themselves. The objective of this paper is to describe the development of a mobile tool for patients with T2D and obesity that utilizes an integrative approach to facilitate patient-centered app development, with patient and physician interfaces. Our implementation strategy focused on the building of a multidisciplinary team to create a user-friendly and evidence-based app, to be used by patients in a home setting or at the point-of-care. We present the iterative design, development, and testing of DiaFit, an app designed to improve the self-management of T2D and obesity, using an adapted Agile approach to software implementation. The production team consisted of experts in mobile health, nutrition sciences, and obesity; software engineers; and clinicians. Additionally, the team included citizen scientists and clinicians who acted as the de facto software clients for DiaFit and therefore interacted with the production team throughout the entire app creation, from design to testing. DiaFit (version 1.0) is an open-source, inclusive iOS app that incorporates nutrition data, physical activity data, and medication and glucose values, as well as patient-reported outcomes. DiaFit supports the uploading of data from sensory devices via Bluetooth for physical activity (iOS step counts, FitBit, Apple watch) and glucose monitoring (iHealth glucose meter). The app provides summary statistics and graphics for step counts, dietary information, and glucose values that can be used by patients and their providers to make informed health decisions. The DiaFit iOS app was developed in Swift (version 2.2) with a Web back-end deployed on the Health Insurance Portability and Accountability Act compliant-ready Amazon Web Services cloud computing platform. DiaFit is publicly available on GitHub to the diabetes community at large, under the GNU General Public License agreement. Given the proliferation of health-related apps available to health consumers, it is essential to ensure that apps are evidence-based and user-oriented, with specific health conditions in mind. To this end, we have used a software development approach focusing on community and clinical engagement to create DiaFit, an app that assists patients with T2D and obesity to better manage their health through active communication with their providers and proactive self-management of their diseases.
DiaFit: The Development of a Smart App for Patients with Type 2 Diabetes and Obesity
Modave, François; Bian, Jiang; Rosenberg, Eric; Mendoza, Tonatiuh; Liang, Zhan; Bhosale, Ravi; Maeztu, Carlos; Rodriguez, Camila; Cardel, Michelle I
2018-01-01
Background Optimal management of chronic diseases, such as type 2 diabetes (T2D) and obesity, requires patient-provider communication and proactive self-management from the patient. Mobile apps could be an effective strategy for improving patient-provider communication and provide resources for self-management to patients themselves. Objective The objective of this paper is to describe the development of a mobile tool for patients with T2D and obesity that utilizes an integrative approach to facilitate patient-centered app development, with patient and physician interfaces. Our implementation strategy focused on the building of a multidisciplinary team to create a user-friendly and evidence-based app, to be used by patients in a home setting or at the point-of-care. Methods We present the iterative design, development, and testing of DiaFit, an app designed to improve the self-management of T2D and obesity, using an adapted Agile approach to software implementation. The production team consisted of experts in mobile health, nutrition sciences, and obesity; software engineers; and clinicians. Additionally, the team included citizen scientists and clinicians who acted as the de facto software clients for DiaFit and therefore interacted with the production team throughout the entire app creation, from design to testing. Results DiaFit (version 1.0) is an open-source, inclusive iOS app that incorporates nutrition data, physical activity data, and medication and glucose values, as well as patient-reported outcomes. DiaFit supports the uploading of data from sensory devices via Bluetooth for physical activity (iOS step counts, FitBit, Apple watch) and glucose monitoring (iHealth glucose meter). The app provides summary statistics and graphics for step counts, dietary information, and glucose values that can be used by patients and their providers to make informed health decisions. The DiaFit iOS app was developed in Swift (version 2.2) with a Web back-end deployed on the Health Insurance Portability and Accountability Act compliant-ready Amazon Web Services cloud computing platform. DiaFit is publicly available on GitHub to the diabetes community at large, under the GNU General Public License agreement. Conclusions Given the proliferation of health-related apps available to health consumers, it is essential to ensure that apps are evidence-based and user-oriented, with specific health conditions in mind. To this end, we have used a software development approach focusing on community and clinical engagement to create DiaFit, an app that assists patients with T2D and obesity to better manage their health through active communication with their providers and proactive self-management of their diseases. PMID:29388609
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Intelligent Software for System Design and Documentation
NASA Technical Reports Server (NTRS)
2002-01-01
In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.
Fostering soft skills in project-oriented learning within an agile atmosphere
NASA Astrophysics Data System (ADS)
Chassidim, Hadas; Almog, Dani; Mark, Shlomo
2018-07-01
The project-oriented and Agile approaches have motivated a new generation of software engineers. Within the academic curriculum, the issue of whether students are being sufficiently prepared for the future has been raised. The objective of this work is to present the project-oriented environment as an influential factor that software engineering profession requires, using the second year course 'Software Development and Management in Agile Approach' as a case-study. This course combines academic topics, self-learned and soft skills implementation, the call for creativity, and the recognition of updated technologies and dynamic circumstances. The results of a survey that evaluated the perceived value of the course showed that the highest contribution of our environment was in the effectiveness of the team-work and the overall development process of the project.
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
Command and Control Software Development Memory Management
NASA Technical Reports Server (NTRS)
Joseph, Austin Pope
2017-01-01
This internship was initially meant to cover the implementation of unit test automation for a NASA ground control project. As is often the case with large development projects, the scope and breadth of the internship changed. Instead, the internship focused on finding and correcting memory leaks and errors as reported by a COTS software product meant to track such issues. Memory leaks come in many different flavors and some of them are more benign than others. On the extreme end a program might be dynamically allocating memory and not correctly deallocating it when it is no longer in use. This is called a direct memory leak and in the worst case can use all the available memory and crash the program. If the leaks are small they may simply slow the program down which, in a safety critical system (a system for which a failure or design error can cause a risk to human life), is still unacceptable. The ground control system is managed in smaller sub-teams, referred to as CSCIs. The CSCI that this internship focused on is responsible for monitoring the health and status of the system. This team's software had several methods/modules that were leaking significant amounts of memory. Since most of the code in this system is safety-critical, correcting memory leaks is a necessity.
ERIC Educational Resources Information Center
Burd, Elizabeth L.; Hatch, Andrew; Ashurst, Colin; Jessop, Alan
2009-01-01
This article describes an approach whereby patterns are used to describe management issues and solutions to be used during the project management of team-based software development. The work describes how web 2.0 technologies have been employed to support the use and development of such patterns. To evaluate the success of patterns and the…
Automation of Cassini Support Imaging Uplink Command Development
NASA Technical Reports Server (NTRS)
Ly-Hollins, Lisa; Breneman, Herbert H.; Brooks, Robert
2010-01-01
"Support imaging" is imagery requested by other Cassini science teams to aid in the interpretation of their data. The generation of the spacecraft command sequences for these images is performed by the Cassini Instrument Operations Team. The process initially established for doing this was very labor-intensive, tedious and prone to human error. Team management recognized this process as one that could easily benefit from automation. Team members were tasked to document the existing manual process, develop a plan and strategy to automate the process, implement the plan and strategy, test and validate the new automated process, and deliver the new software tools and documentation to Flight Operations for use during the Cassini extended mission. In addition to the goals of higher efficiency and lower risk in the processing of support imaging requests, an effort was made to maximize adaptability of the process to accommodate uplink procedure changes and the potential addition of new capabilities outside the scope of the initial effort.
General Mission Analysis Tool (GMAT) Acceptance Test Plan [Draft
NASA Technical Reports Server (NTRS)
Dove, Edwin; Hughes, Steve
2007-01-01
The information presented in this Acceptance Test Plan document shows the current status of the General Mission Analysis Tool (GMAT). GMAT is a software system developed by NASA Goddard Space Flight Center (GSFC) in collaboration with the private sector. The GMAT development team continuously performs acceptance tests in order to verify that the software continues to operate properly after updates are made. The GMAT Development team consists of NASA/GSFC Code 583 software developers, NASA/GSFC Code 595 analysts, and contractors of varying professions. GMAT was developed to provide a development approach that maintains involvement from the private sector and academia, encourages collaborative funding from multiple government agencies and the private sector, and promotes the transfer of technology from government funded research to the private sector. GMAT contains many capabilities, such as integrated formation flying modeling and MATLAB compatibility. The propagation capabilities in GMAT allow for fully coupled dynamics modeling of multiple spacecraft, in any flight regime. Other capabilities in GMAT inclucle: user definable coordinate systems, 3-D graphics in any coordinate system GMAT can calculate, 2-D plots, branch commands, solvers, optimizers, GMAT functions, planetary ephemeris sources including DE405, DE200, SLP and analytic models, script events, impulsive and finite maneuver models, and many more. GMAT runs on Windows, Mac, and Linux platforms. Both the Graphical User Interface (GUI) and the GMAT engine were built and tested on all of the mentioned platforms. GMAT was designed for intuitive use from both the GUI and with an importable script language similar to that of MATLAB.
Interactive Video: A Cross Curriculum Computer Project.
ERIC Educational Resources Information Center
Grimm, Floyd M., III; And Others
Responding to the rapid development and often prohibitive costs of new classroom instruction technology, a group of interested faculty at Harford Community College (HCC), in Maryland, formed three Interactive Video (IV) Teams to explore the possibilities of using existing computer hardware and software at the college for interactive video…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Announcement of Requirements and Registration for ``Using... Challenge'' is a challenge aimed at encouraging multidisciplinary teams of software developers... Human Services. The statutory authority for this challenge competition is Section 105 of the America...
SDDL- SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
NASA Technical Reports Server (NTRS)
Kleine, H.
1994-01-01
Effective, efficient communication is an essential element of the software development process. The Software Design and Documentation Language (SDDL) provides an effective communication medium to support the design and documentation of complex software applications. SDDL supports communication between all the members of a software design team and provides for the production of informative documentation on the design effort. Even when an entire development task is performed by a single individual, it is important to explicitly express and document communication between the various aspects of the design effort including concept development, program specification, program development, and program maintenance. SDDL ensures that accurate documentation will be available throughout the entire software life cycle. SDDL offers an extremely valuable capability for the design and documentation of complex programming efforts ranging from scientific and engineering applications to data management and business sytems. Throughout the development of a software design, the SDDL generated Software Design Document always represents the definitive word on the current status of the ongoing, dynamic design development process. The document is easily updated and readily accessible in a familiar, informative form to all members of the development team. This makes the Software Design Document an effective instrument for reconciling misunderstandings and disagreements in the development of design specifications, engineering support concepts, and the software design itself. Using the SDDL generated document to analyze the design makes it possible to eliminate many errors that might not be detected until coding and testing is attempted. As a project management aid, the Software Design Document is useful for monitoring progress and for recording task responsibilities. SDDL is a combination of language, processor, and methodology. The SDDL syntax consists of keywords to invoke design structures and a collection of directives which control processor actions. The designer has complete control over the choice of keywords, commanding the capabilities of the processor in a way which is best suited to communicating the intent of the design. The SDDL processor translates the designer's creative thinking into an effective document for communication. The processor performs as many automatic functions as possible, thereby freeing the designer's energy for the creative effort. Document formatting includes graphical highlighting of structure logic, accentuation of structure escapes and module invocations, logic error detection, and special handling of title pages and text segments. The SDDL generated document contains software design summary information including module invocation hierarchy, module cross reference, and cross reference tables of user selected words or phrases appearing in the document. The basic forms of the methodology are module and block structures and the module invocation statement. A design is stated in terms of modules that represent problem abstractions which are complete and independent enough to be treated as separate problem entities. Blocks are lower-level structures used to build the modules. Both kinds of structures may have an initiator part, a terminator part, an escape segment, or a substructure. The SDDL processor is written in PASCAL for batch execution on a DEC VAX series computer under VMS. SDDL was developed in 1981 and last updated in 1984.
Majewski, Matthäus; Combs, Stephanie E; Trott, Klaus-Rüdiger; Abend, Michael; Port, Matthias
2018-07-01
In 2015, the Bundeswehr Institute of Radiobiology organized a North Atlantic Treaty Organization exercise to examine the significance of clinical signs and symptoms for the prediction of late-occurring acute radiation syndrome. Cases were generated using either the Medical Treatment Protocols for Radiation Accident Victims (METREPOL, n = 167) system or using real-case descriptions extracted from a database system for evaluation and archiving of radiation accidents based on case histories (SEARCH, n = 24). The cases ranged from unexposed [response category 0 (RC 0, n = 89)] to mild (RC 1, n = 45), moderate (RC 2, n = 19), severe (RC 3, n = 20), and lethal (RC 4, n = 18) acute radiation syndrome. During the previous exercise, expert teams successfully predicted hematological acute radiation syndrome severity, determined whether hospitalization was required, and gave treatment recommendations, taking advantage of different software tools developed by the North Atlantic Treaty Organization teams. The authors provided the same data set to radiobiology students who were introduced to the medical management of acute effects after radiation exposure and the software tools during a class lasting 15 h. Corresponding to the previous results, difficulties in the discrimination between RC 0/RC 1 and RC 3/RC 4, as well as a systematic underestimation of RC 1 and RC 2, were observed. Nevertheless, after merging reported response categories into clinically relevant groups (RC 0-1, RC 2-3, and RC 3-4), it was found that the majority of cases (95.2% ± 2.2 standard deviations) were correctly identified and that 94.7% (±2.6 standard deviations) developing acute radiation syndrome and z96.4% (±1.6 standard deviations) requiring hospitalization were identified correctly. Two out of three student teams also provided a dose estimate. These results are comparable to the best-performing team of the 2015 North Atlantic Treaty Organization exercise (response category: 92.5%; acute radiation syndrome: 95.8%; hospitalization: 96.3%).
Reconnaissance and Autonomy for Small Robots (RASR) team: MAGIC 2010 challenge
NASA Astrophysics Data System (ADS)
Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Corley, Katrina
2012-06-01
The Reconnaissance and Autonomy for Small Robots (RASR) team developed a system for the coordination of groups of unmanned ground vehicles (UGVs) that can execute a variety of military relevant missions in dynamic urban environments. Historically, UGV operations have been primarily performed via tele-operation, requiring at least one dedicated operator per robot, and requiring substantial real-time bandwidth to accomplish those missions. Our team goal was to develop a system that can provide long-term value to the war-fighter, utilizing MAGIC-2010 as a stepping stone. To that end, we self-imposed a set of constraints that would force us to develop technology that could readily be used by the military in the near term: • Use a relevant (deployed) platform • Use low-cost, reliable sensors • Develop an expandable and modular control system with innovative software algorithms to minimize the computing footprint required • Minimize required communications bandwidth and handle communication losses • Minimize additional power requirements to maximize battery life and mission duration
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Conversion from Tree to Graph Representation of Requirements
NASA Technical Reports Server (NTRS)
Mayank, Vimal; Everett, David Frank; Shmunis, Natalya; Austin, Mark
2009-01-01
A procedure and software to implement the procedure have been devised to enable conversion from a tree representation to a graph representation of the requirements governing the development and design of an engineering system. The need for this procedure and software and for other requirements-management tools arises as follows: In systems-engineering circles, it is well known that requirements- management capability improves the likelihood of success in the team-based development of complex systems involving multiple technological disciplines. It is especially desirable to be able to visualize (in order to identify and manage) requirements early in the system- design process, when errors can be corrected most easily and inexpensively.
Extreme Ultraviolet Imaging Telescope (EIT)
NASA Technical Reports Server (NTRS)
Lemen, J. R.; Freeland, S. L.
1997-01-01
Efforts concentrated on development and implementation of the SolarSoft (SSW) data analysis system. From an EIT analysis perspective, this system was designed to facilitate efficient reuse and conversion of software developed for Yohkoh/SXT and to take advantage of a large existing body of software developed by the SDAC, Yohkoh, and SOHO instrument teams. Another strong motivation for this system was to provide an EIT analysis environment which permits coordinated analysis of EIT data in conjunction with data from important supporting instruments, including Yohkoh/SXT and the other SOHO coronal instruments; CDS, SUMER, and LASCO. In addition, the SSW system will support coordinated EIT/TRACE analysis (by design) when TRACE data is available; TRACE launch is currently planned for March 1998. Working with Jeff Newmark, the Chianti software package (K.P. Dere et al) and UV /EUV data base was fully integrated into the SSW system to facilitate EIT temperature and emission analysis.
RINGMesh: A programming library for developing mesh-based geomodeling applications
NASA Astrophysics Data System (ADS)
Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume
2017-07-01
RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.
Adaptive awareness for personal and small group decision making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perano, Kenneth J.; Tucker, Steve; Pancerella, Carmen M.
2003-12-01
Many situations call for the use of sensors monitoring physiological and environmental data. In order to use the large amounts of sensor data to affect decision making, we are coupling heterogeneous sensors with small, light-weight processors, other powerful computers, wireless communications, and embedded intelligent software. The result is an adaptive awareness and warning tool, which provides both situation awareness and personal awareness to individuals and teams. Central to this tool is a sensor-independent architecture, which combines both software agents and a reusable core software framework that manages the available hardware resources and provides services to the agents. Agents can recognizemore » cues from the data, warn humans about situations, and act as decision-making aids. Within the agents, self-organizing maps (SOMs) are used to process physiological data in order to provide personal awareness. We have employed a novel clustering algorithm to train the SOM to discern individual body states and activities. This awareness tool has broad applicability to emergency teams, military squads, military medics, individual exercise and fitness monitoring, health monitoring for sick and elderly persons, and environmental monitoring in public places. This report discusses our hardware decisions, software framework, and a pilot awareness tool, which has been developed at Sandia National Laboratories.« less
From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process
NASA Technical Reports Server (NTRS)
Mishkin, Andrew H.; Laubach, Sharon
2006-01-01
To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, the pace of this process was never intended to be continued indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5-day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.
Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator
NASA Technical Reports Server (NTRS)
Bolen, Kenny; Greenlaw, Ronald
2010-01-01
A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.
Terra Harvest Open Source Environment (THOSE): a universal unattended ground sensor controller
NASA Astrophysics Data System (ADS)
Gold, Joshua; Klawon, Kevin; Humeniuk, David; Landoll, Darren
2011-06-01
Under the Terra Harvest Program, the Defense Intelligence Agency (DIA) has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future Unattended Ground Sensor System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n-play contributions that include various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute (UDRI), is developing the Terra Harvest Open Source Environment (THOSE), a Java based system running on an embedded Linux Operating System (OS). The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor evaluation platform that is both energyefficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the implementation strategy for some of the key software components. Preliminary integration/test results and the Team's approach for transitioning the THOSE design and source code to the Government are also presented.
NASA Astrophysics Data System (ADS)
Martin, Adrian
As the applications of mobile robotics evolve it has become increasingly less practical for researchers to design custom hardware and control systems for each problem. This research presents a new approach to control system design that looks beyond end-of-lifecycle performance and considers control system structure, flexibility, and extensibility. Toward these ends the Control ad libitum philosophy is proposed, stating that to make significant progress in the real-world application of mobile robot teams the control system must be structured such that teams can be formed in real-time from diverse components. The Control ad libitum philosophy was applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical framework built with provably correct distributed algorithms. A control system for exploration and mapping, search and deploy, and foraging was developed to evaluate the architecture in three sets of hardware-in-the-loop experiments. First, the basic functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form the control system, b) dynamically form the robot team, c) dynamically form the processing network, and d) handle heterogeneous teams. Secondly, the real-time performance of the distributed algorithms was tested, and proved effective for the moderate sized systems tested. Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in resource starved scenarios, while reducing exploration time significantly. The JC-SLAM strategies are also suitable for integration into many existing particle filter SLAM approaches, complementing their unique optimizations. Thirdly, the control system was subjected to concurrent software and hardware failures in a series of increasingly complex experiments. Even with unrealistically high rates of failure the control system was able to successfully complete its tasks. The HAA implementation designed following the Control ad libitum philosophy proved to be capable of dynamic team formation and extremely robust against both hardware and software failure; and, due to the modularity of the system there is significant potential for reuse of assets and future extensibility. One future goal is to make the source code publically available and establish a forum for the development and exchange of new agents.
Development of a smart type motor operated valve for nuclear power plants
NASA Astrophysics Data System (ADS)
Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo
2005-12-01
In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.
Big Software for SmallSats: Adapting cFS to CubeSat Missions
NASA Technical Reports Server (NTRS)
Cudmore, Alan P.; Crum, Gary Alex; Sheikh, Salman; Marshall, James
2015-01-01
Expanding capabilities and mission objectives for SmallSats and CubeSats is driving the need for reliable, reusable, and robust flight software. While missions are becoming more complicated and the scientific goals more ambitious, the level of acceptable risk has decreased. Design challenges are further compounded by budget and schedule constraints that have not kept pace. NASA's Core Flight Software System (cFS) is an open source solution which enables teams to build flagship satellite level flight software within a CubeSat schedule and budget. NASA originally developed cFS to reduce mission and schedule risk for flagship satellite missions by increasing code reuse and reliability. The Lunar Reconnaissance Orbiter, which launched in 2009, was the first of a growing list of Class B rated missions to use cFS.
Distributed Visualization Project
NASA Technical Reports Server (NTRS)
Craig, Douglas; Conroy, Michael; Kickbusch, Tracey; Mazone, Rebecca
2016-01-01
Distributed Visualization allows anyone, anywhere to see any simulation at any time. Development focuses on algorithms, software, data formats, data systems and processes to enable sharing simulation-based information across temporal and spatial boundaries without requiring stakeholders to possess highly-specialized and very expensive display systems. It also introduces abstraction between the native and shared data, which allows teams to share results without giving away proprietary or sensitive data. The initial implementation of this capability is the Distributed Observer Network (DON) version 3.1. DON 3.1 is available for public release in the NASA Software Store (https://software.nasa.gov/software/KSC-13775) and works with version 3.0 of the Model Process Control specification (an XML Simulation Data Representation and Communication Language) to display complex graphical information and associated Meta-Data.
Impact of Requirements Quality on Project Success or Failure
NASA Astrophysics Data System (ADS)
Tamai, Tetsuo; Kamata, Mayumi Itakura
We are interested in the relationship between the quality of the requirements specifications for software projects and the subsequent outcome of the projects. To examine this relationship, we investigated 32 projects started and completed between 2003 and 2005 by the software development division of a large company in Tokyo. The company has collected reliable data on requirements specification quality, as evaluated by software quality assurance teams, and overall project performance data relating to cost and time overruns. The data for requirements specification quality were first converted into a multiple-dimensional space, with each dimension corresponding to an item of the recommended structure for software requirements specifications (SRS) defined in IEEE Std. 830-1998. We applied various statistical analysis methods to the SRS quality data and project outcomes.
[Stressor and stress reduction strategies for computer software engineers].
Asakura, Takashi
2002-07-01
First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.
Taking advantage of ground data systems attributes to achieve quality results in testing software
NASA Technical Reports Server (NTRS)
Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.
1994-01-01
During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.
Reconnaissance and Autonomy for Small Robots (RASR)
2012-06-29
The Reconnaissance and Autonomy for Small Robots (RASR) team developed a system for the coordination of groups of unmanned ground vehicles (UGVs...development of a system that used 1) a relevant deployable platform; 2) a minimum set of relatively inexpensive navigation and LADAR sensors; 3) an...expandable and modular control system with innovative software algorithms to minimize computing footprint; and that minimized 4) required communications
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS
NASA Technical Reports Server (NTRS)
Yokum, Steve
2015-01-01
Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).
Rupcic, Sonia; Tamrat, Tigest; Kachnowski, Stan
2012-11-01
This study reviews the state of diabetes information technology (IT) initiatives and presents a set of recommendations for improvement based on interviews with commercial IT innovators. Semistructured interviews were conducted with 10 technology developers, representing 12 of the most successful IT companies in the world. Average interview time was approximately 45 min. Interviews were audio-recorded, transcribed, and entered into ATLAS.ti for qualitative data analysis. Themes were identified through a process of selective and open coding by three researchers. We identified two practices, common among successful IT companies, that have allowed them to avoid or surmount the challenges that confront healthcare professionals involved in diabetes IT development: (1) employing a diverse research team of software developers and engineers, statisticians, consumers, and business people and (2) conducting rigorous research and analytics on technology use and user preferences. Because of the nature of their respective fields, healthcare professionals and commercial innovators face different constraints. With these in mind we present three recommendations, informed by practices shared by successful commercial developers, for those involved in developing diabetes IT programming: (1) include software engineers on the implementation team throughout the intervention, (2) conduct more extensive baseline testing of users and monitor the usage data derived from the technology itself, and (3) pursue Institutional Review Board-exempt research.
Decentralized formation flying control in a multiple-team hierarchy.
Mueller, Joseph B; Thomas, Stephanie J
2005-12-01
In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in Matlab, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
Strengthening Interprofessional Requirements Engineering Through Action Sheets: A Pilot Study.
Kunz, Aline; Pohlmann, Sabrina; Heinze, Oliver; Brandner, Antje; Reiß, Christina; Kamradt, Martina; Szecsenyi, Joachim; Ose, Dominik
2016-10-18
The importance of information and communication technology for healthcare is steadily growing. Newly developed tools are addressing different user groups: physicians, other health care professionals, social workers, patients, and family members. Since often many different actors with different expertise and perspectives are involved in the development process it can be a challenge to integrate the user-reported requirements of those heterogeneous user groups. Nevertheless, the understanding and consideration of user requirements is the prerequisite of building a feasible technical solution. In the course of the presented project it proved to be difficult to gain clear action steps and priorities for the development process out of the primary requirements compilation. Even if a regular exchange between involved teams took place there was a lack of a common language. The objective of this paper is to show how the already existing requirements catalog was subdivided into specific, prioritized, and coherent working packages and the cooperation of multiple interprofessional teams within one development project was reorganized at the same time. In the case presented, the manner of cooperation was reorganized and a new instrument called an Action Sheet was implemented. This paper introduces the newly developed methodology which was meant to smooth the development of a user-centered software product and to restructure interprofessional cooperation. There were 10 focus groups in which views of patients with colorectal cancer, physicians, and other health care professionals were collected in order to create a requirements catalog for developing a personal electronic health record. Data were audio- and videotaped, transcribed verbatim, and thematically analyzed. Afterwards, the requirements catalog was reorganized in the form of Action Sheets which supported the interprofessional cooperation referring to the development process of a personal electronic health record for the Rhine-Neckar region. In order to improve the interprofessional cooperation the idea arose to align the requirements arising from the implementation project with the method of software development applied by the technical development team. This was realized by restructuring the original requirements set in a standardized way and under continuous adjustment between both teams. As a result not only the way of displaying the user demands but also of interprofessional cooperation was steered in a new direction. User demands must be taken into account from the very beginning of the development process, but it is not always obvious how to bring them together with IT knowhow and knowledge of the contextual factors of the health care system. Action Sheets seem to be an effective tool for making the software development process more tangible and convertible for all connected disciplines. Furthermore, the working method turned out to support interprofessional ideas exchange.
Strengthening Interprofessional Requirements Engineering Through Action Sheets: A Pilot Study
Pohlmann, Sabrina; Heinze, Oliver; Brandner, Antje; Reiß, Christina; Kamradt, Martina; Szecsenyi, Joachim; Ose, Dominik
2016-01-01
Background The importance of information and communication technology for healthcare is steadily growing. Newly developed tools are addressing different user groups: physicians, other health care professionals, social workers, patients, and family members. Since often many different actors with different expertise and perspectives are involved in the development process it can be a challenge to integrate the user-reported requirements of those heterogeneous user groups. Nevertheless, the understanding and consideration of user requirements is the prerequisite of building a feasible technical solution. In the course of the presented project it proved to be difficult to gain clear action steps and priorities for the development process out of the primary requirements compilation. Even if a regular exchange between involved teams took place there was a lack of a common language. Objective The objective of this paper is to show how the already existing requirements catalog was subdivided into specific, prioritized, and coherent working packages and the cooperation of multiple interprofessional teams within one development project was reorganized at the same time. In the case presented, the manner of cooperation was reorganized and a new instrument called an Action Sheet was implemented. This paper introduces the newly developed methodology which was meant to smooth the development of a user-centered software product and to restructure interprofessional cooperation. Methods There were 10 focus groups in which views of patients with colorectal cancer, physicians, and other health care professionals were collected in order to create a requirements catalog for developing a personal electronic health record. Data were audio- and videotaped, transcribed verbatim, and thematically analyzed. Afterwards, the requirements catalog was reorganized in the form of Action Sheets which supported the interprofessional cooperation referring to the development process of a personal electronic health record for the Rhine-Neckar region. Results In order to improve the interprofessional cooperation the idea arose to align the requirements arising from the implementation project with the method of software development applied by the technical development team. This was realized by restructuring the original requirements set in a standardized way and under continuous adjustment between both teams. As a result not only the way of displaying the user demands but also of interprofessional cooperation was steered in a new direction. Conclusions User demands must be taken into account from the very beginning of the development process, but it is not always obvious how to bring them together with IT knowhow and knowledge of the contextual factors of the health care system. Action Sheets seem to be an effective tool for making the software development process more tangible and convertible for all connected disciplines. Furthermore, the working method turned out to support interprofessional ideas exchange. PMID:27756716
NASA Technical Reports Server (NTRS)
Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip
1998-01-01
The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.
Improved Grade Outcomes with an E-Mailed "Grade Nudge"
ERIC Educational Resources Information Center
Smith, Ben O.; White, Dustin R.; Kuzyk, Patricia C.; Tierney, James E.
2018-01-01
Information provided at the moment a person makes a decision can influence behavior in predictable ways. The United Kingdom's Behavioural Insights Team have used this idea to help improve the insulation of lofts, collect taxes, and even reduce litter. The authors of this article developed software that appends a personalized message to each…
The Power of Portals: Personalizing the Web To Build Community.
ERIC Educational Resources Information Center
Page, Dan
2001-01-01
Describes how the director of information systems for the computing and communications department and a team of software developers embarked on the task of creating and refining portal technology for a broad community of users with various relationships to the University of Washington. Discusses focus on individual needs; authentication, the…
Pregnancy and You. Courseware Evaluation for Vocational and Technical Education.
ERIC Educational Resources Information Center
Sarle, Ruth; And Others
This courseware evaluation rates the "Pregnancy and You" program, developed by Intellectual Software and sold by Career Aids, Inc. The courseware was rated by a team of home economists participating in a network designed to identify and evaluate courseware and disseminate reviews for vocational and technical teachers, media staff, and…
Scrum: Enhancing Student Team Organization and Collaboration
ERIC Educational Resources Information Center
Opt, Susan; Sims, Christy-Dale L.
2015-01-01
To teach collaboration and overcome students' aversion to teamwork, Pope-Ruark (2012) recommends the Scrum approach, which she has used to manage major client-based course projects in writing and publishing courses. The Scrum approach emerged out of the software development industry in the 1990s as a framework for improving team…
A Community of Practice Approach to Learning Programming
ERIC Educational Resources Information Center
Chen, Gwo-Dong; Li, Liang-Yi; Wang, Chin-Yea
2012-01-01
In programming courses, teaching students who have varied levels of knowledge and skills the requisite competencies to perform in real-world software development teams is indeed difficult. To address this problem, this paper proposes a community of practice (CoP) approach and provides some guidelines to simulate a real-world CoP in a blended…
Project-Method Fit: Exploring Factors That Influence Agile Method Use
ERIC Educational Resources Information Center
Young, Diana K.
2013-01-01
While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…
Surface Operations Simulator and Scheduler (SOSS) Presentation
NASA Technical Reports Server (NTRS)
Zhu, Zhifan
2016-01-01
NASA - KAIA (Korea Agency for Infrastructure Technology Advancement) - KARI (Korea Aerospace Research Institute) collaboration surface air traffic management research has been ongoing since May 2015. In the first year collaboration, NASA's SOSS software has been transferred to KAIA and KARI teams to provide fast time simulation capability. Incheon International Airport model has been developed for SOSS.
1994-03-01
22202-4302. and to the Office of Managmnt and Budget, Paperwork Reduction Project (0704-0188) Wahington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2...Project Officer ........................ 49 d. Program Management ..................... 50 2. User/Systems Development Team Relationship ...... 52 D...and 60’s, when programming and systems development was in its infancy, virtually all software was custom -made. The programmer designed, coded
GeoLab: A Geological Workstation for Future Missions
NASA Technical Reports Server (NTRS)
Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi
2014-01-01
The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.
The ALMA software architecture
NASA Astrophysics Data System (ADS)
Schwarz, Joseph; Farris, Allen; Sommer, Heiko
2004-09-01
The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.
Computing Properties of Hadrons, Nuclei and Nuclear Matter from Quantum Chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin J.
This project was part of a coordinated software development effort which the nuclear physics lattice QCD community pursues in order to ensure that lattice calculations can make optimal use of present, and forthcoming leadership-class and dedicated hardware, including those of the national laboratories, and prepares for the exploitation of future computational resources in the exascale era. The UW team improved and extended software libraries used in lattice QCD calculations related to multi-nucleon systems, enhanced production running codes related to load balancing multi-nucleon production on large-scale computing platforms, and developed SQLite (addressable database) interfaces to efficiently archive and analyze multi-nucleon datamore » and developed a Mathematica interface for the SQLite databases.« less
A Bibliography of the Personal Software Process (PSP) and the Team Software Process (TSP)
2009-10-01
Postmortem.‖ Proceedings of the TSP Symposium (September 2007). http://www.sei.cmu.edu/tspsymposium/ Rickets , Chris; Lindeman, Robert; & Hodgins, Brad... Rickets , Chris A. ―A TSP Software Maintenance Life Cycle.‖ CrossTalk (March 2005). Rozanc, I. & Mahnic, V. ―Teaching Software Quality with Emphasis on PSP
Continuous integration for concurrent MOOSE framework and application development on GitHub
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; ...
2015-11-20
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
Continuous integration for concurrent MOOSE framework and application development on GitHub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
Fischer, Ute; McDonnell, Lori; Orasanu, Judith
2007-05-01
Approaches to mitigating the likelihood of psychosocial problems during space missions emphasize preflight measures such as team training and team composition. Additionally, it may be necessary to monitor team interactions during missions for signs of interpersonal stress. The present research was conducted to identify features in team members' communications indicative of team functioning. Team interactions were studied in the context of six computer-simulated search and rescue missions. There were 12 teams of 4 U.S. men who participated; however, the present analyses contrast the top two teams with the two least successful teams. Communications between team members were analyzed using linguistic analysis software and a coding scheme developed to characterize task-related and social dimensions of team interactions. Coding reliability was established by having two raters independently code three transcripts. Between-rater agreement ranged from 78.1 to 97.9%. Team performance was significantly associated with team members' task-related communications, specifically with the extent to which task-critical information was shared. Successful and unsuccessful teams also showed different interactive patterns, in particular concerning the frequencies of elaborations and no-responses. Moreover, task success was negatively correlated with variability in team members' word count, and positively correlated with the number of positive emotion words and the frequency of assenting relative to dissenting responses. Analyses isolated certain task-related and social features of team communication related to team functioning. Team success was associated with the extent to which team members shared task-critical information, equally participated and built on each other's contributions, showed agreement, and positive affect.
LeaRN: A Collaborative Learning-Research Network for a WLCG Tier-3 Centre
NASA Astrophysics Data System (ADS)
Pérez Calle, Elio
2011-12-01
The Department of Modern Physics of the University of Science and Technology of China is hosting a Tier-3 centre for the ATLAS experiment. A interdisciplinary team of researchers, engineers and students are devoted to the task of receiving, storing and analysing the scientific data produced by the LHC. In order to achieve the highest performance and to develop a knowledge base shared by all members of the team, the research activities and their coordination are being supported by an array of computing systems. These systems have been designed to foster communication, collaboration and coordination among the members of the team, both face-to-face and remotely, and both in synchronous and asynchronous ways. The result is a collaborative learning-research network whose main objectives are awareness (to get shared knowledge about other's activities and therefore obtain synergies), articulation (to allow a project to be divided, work units to be assigned and then reintegrated) and adaptation (to adapt information technologies to the needs of the group). The main technologies involved are Communication Tools such as web publishing, revision control and wikis, Conferencing Tools such as forums, instant messaging and video conferencing and Coordination Tools, such as time management, project management and social networks. The software toolkit has been deployed by the members of the team and it has been based on free and open source software.
NASA Astrophysics Data System (ADS)
Freeland, S.; Hurlburt, N.
2005-12-01
The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.
Technology evaluation, assessment, modeling, and simulation: the TEAMS capability
NASA Astrophysics Data System (ADS)
Holland, Orgal T.; Stiegler, Robert L.
1998-08-01
The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.
Efficient, Multi-Scale Designs Take Flight
NASA Technical Reports Server (NTRS)
2003-01-01
Engineers can solve aerospace design problems faster and more efficiently with a versatile software product that performs automated structural analysis and sizing optimization. Collier Research Corporation's HyperSizer Structural Sizing Software is a design, analysis, and documentation tool that increases productivity and standardization for a design team. Based on established aerospace structural methods for strength, stability, and stiffness, HyperSizer can be used all the way from the conceptual design to in service support. The software originated from NASA s efforts to automate its capability to perform aircraft strength analyses, structural sizing, and weight prediction and reduction. With a strategy to combine finite element analysis with an automated design procedure, NASA s Langley Research Center led the development of a software code known as ST-SIZE from 1988 to 1995. Collier Research employees were principal developers of the code along with Langley researchers. The code evolved into one that could analyze the strength and stability of stiffened panels constructed of any material, including light-weight, fiber-reinforced composites.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and detection and responses that can be tested in VMET and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM. The plan for VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
Empirical studies of software design: Implications for SSEs
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.
Critical Software for Human Spaceflight
NASA Technical Reports Server (NTRS)
Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael
2017-01-01
The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.
ALFA: The new ALICE-FAIR software framework
NASA Astrophysics Data System (ADS)
Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.
2015-12-01
The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.
NASA Technical Reports Server (NTRS)
Avila, Edwin M. Martinez; Muniz, Ricardo; Szafran, Jamie; Dalton, Adam
2011-01-01
Lines of code (LOC) analysis is one of the methods used to measure programmer productivity and estimate schedules of programming projects. The Launch Control System (LCS) had previously used this method to estimate the amount of work and to plan development efforts. The disadvantage of using LOC as a measure of effort is that one can only measure 30% to 35% of the total effort of software projects involves coding [8]. In the application, instead of using the LOC we are using function point for a better estimation of hours in each software to develop. Because of these disadvantages, Jamie Szafran of the System Software Branch of Control And Data Systems (NE-C3) at Kennedy Space Canter developed a web application called Function Point Analysis (FPA) Depot. The objective of this web application is that the LCS software architecture team can use the data to more accurately estimate the effort required to implement customer requirements. This paper describes the evolution of the domain model used for function point analysis as project managers continually strive to generate more accurate estimates.
Assessment team report on flight-critical systems research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)
1989-01-01
The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.
Quality of Project Management Education and Training Programmes
NASA Astrophysics Data System (ADS)
Bodea, Constanta-Nicoleta; Dascalu, Maria; Coman, Melania
The paper refers to the factors which influence the quality of training and education on project management. A survey was made and the main results are presented. 81 % of the responses came from China. The rest were professionals of different EU nationalities. The percentage of Project Managers who answered the questions is rather low - 8%. In the "Others" category, we have software developers, financial managers and professors, who are involved in both training on project management, but also as team members or team managers in projects, thus ensuring a balanced overview of both theory and practical issues.
NASA Astrophysics Data System (ADS)
Brewer, Denise
The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have brought profound changes to the way the ATI community interacts. The purpose of the study was to identify the areas of resistance to change in the ATI community and the corresponding factors in change management requirements that minimize product development delays and lead to a successful and timely shift from legacy to open web-based systems in upgrading ATI operations. The research questions centered on product development team processes as well as the members' perceived need for acceptance of change. A qualitative case study approach rooted in complexity theory was employed using a single case of an intercultural product development team dispersed globally. Qualitative data gathered from questionnaires were organized using Nvivo software, which coded the words and themes. Once coded, themes emerged identifying the areas of resistance within the product development team. Results of follow-up interviews with team members suggests that intercultural relationship building prior to and during project execution; focus on common team goals; and, development of relationships to enhance interpersonal respect, understanding and overall communication help overcome resistance to change. Positive social change in the form of intercultural group effectiveness evidenced in increased team functioning during major project transitions is likely to result when global managers devote time to cultural understanding.
NASA Astrophysics Data System (ADS)
Isnur Haryudo, Subuh; Imam Agung, Achmad; Firmansyah, Rifqi
2018-04-01
The purpose of this research is to develop learning media of control technique using Matrix Laboratory software with industry requirement approach. Learning media serves as a tool for creating a better and effective teaching and learning situation because it can accelerate the learning process in order to enhance the quality of learning. Control Techniques using Matrix Laboratory software can enlarge the interest and attention of students, with real experience and can grow independent attitude. This research design refers to the use of research and development (R & D) methods that have been modified by multi-disciplinary team-based researchers. This research used Computer based learning method consisting of computer and Matrix Laboratory software which was integrated with props. Matrix Laboratory has the ability to visualize the theory and analysis of the Control System which is an integration of computing, visualization and programming which is easy to use. The result of this instructional media development is to use mathematical equations using Matrix Laboratory software on control system application with DC motor plant and PID (Proportional-Integral-Derivative). Considering that manufacturing in the field of Distributed Control systems (DCSs), Programmable Controllers (PLCs), and Microcontrollers (MCUs) use PID systems in production processes are widely used in industry.
NASA Astrophysics Data System (ADS)
Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.
2016-04-01
The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.
Support of Herschel Key Programme Teams at the NASA Herschel Science Center
NASA Astrophysics Data System (ADS)
Shupe, David L.; Appleton, P. N.; Ardila, D.; Bhattacharya, B.; Mei, Y.; Morris, P.; Rector, J.; NHSC Team
2010-01-01
The first science data from the Herschel Space Observatory were distributed to Key Programme teams in September 2009. This poster describes a number of resources that have been developed by the NASA Herschel Science Center (NHSC) to support the first users of the observatory. The NHSC webpages and Helpdesk serve as the starting point for information and queries from the US community. Details about the use of the Herschel Common Science Software can be looked up in the Helpdesk Knowledgebase. The capability of real-time remote support through desktop sharing has been implemented. The NHSC continues to host workshops on data analysis and observation planning. Key Programme teams have been provided Wiki sites upon request for their team's private use and for sharing information with other teams. A secure data storage area is in place for troubleshooting purposes and for use by visitors. The NHSC draws upon close working relationships with Instrument Control Centers and the Herschel Science Center in Madrid in order to have the necessary expertise on hand to assist Herschel observers, including both Key Programme teams and respondents to upcoming open time proposal calls.
HapHop-Physio: a computer game to support cognitive therapies in children.
Rico-Olarte, Carolina; López, Diego M; Narváez, Santiago; Farinango, Charic D; Pharow, Peter S
2017-01-01
Care and support of children with physical or mental disabilities are accompanied with serious concerns for parents, families, healthcare institutions, schools, and their communities. Recent studies and technological innovations have demonstrated the feasibility of providing therapy and rehabilitation services to children supported by computer games. The aim of this paper is to present HapHop-Physio, an innovative computer game that combines exercise with fun and learning, developed to support cognitive therapies in children. Conventional software engineering methods such as the Scrum methodology, a functionality test and a related usability test, were part of the comprehensive methodology adapted to develop HapHop-Physio. The game supports visual and auditory attention therapies, as well as visual and auditory memory activities. The game was developed by a multidisciplinary team, which was based on the Hopscotch ® platform provided by Fraunhofer Institute for Digital Media Technology IDMT Institute in Germany, and designed in collaboration with a rehabilitation clinic in Colombia. HapHop-Physio was tested and evaluated to probe its functionality and user satisfaction. The results show the development of an easy-to-use and funny game by a multidisciplinary team using state-of-the-art videogame technologies and software methodologies. Children testing the game concluded that they would like to play again while undergoing rehabilitation therapies.
Aviation Data Integration System
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao; Windrem, May; Patel, Hemil; Keller, Richard
2003-01-01
During the analysis of flight data and safety reports done in ASAP and FOQA programs, airline personnel are not able to access relevant aviation data for a variety of reasons. We have developed the Aviation Data Integration System (ADIS), a software system that provides integrated heterogeneous data to support safety analysis. Types of data available in ADIS include weather, D-ATIS, RVR, radar data, and Jeppesen charts, and flight data. We developed three versions of ADIS to support airlines. The first version has been developed to support ASAP teams. A second version supports FOQA teams, and it integrates aviation data with flight data while keeping identification information inaccessible. Finally, we developed a prototype that demonstrates the integration of aviation data into flight data analysis programs. The initial feedback from airlines is that ADIS is very useful in FOQA and ASAP analysis.
Using OpenEHR in SICTI an electronic health record system for critical medicine
NASA Astrophysics Data System (ADS)
Filgueira, R.; Odriazola, A.; Simini, F.
2007-11-01
SICTI is a software tool for registering health records in critical medicine environments. Version 1.0 has been in use since 2003. The Biomedical Engineering Group (Núcleo de Ingeniería Biomédica), with support from the Technological Development Programme (Programa de Desarrollo Tecnológico), decided to develop a new version, to provide an aid for more critical medicine processes, based on a framework which would make the application domain change oriented. The team analyzed three alternatives: to develop an original product based on new research, to base the development on OpenEHR framework, or to use HL7 RIM as the reference model for SICTI. The team opted for OpenEHR. This work describes the use of OpenEHR, its strong and weak points, and states future work perspectives.
Shaping Software Engineering Curricula Using Open Source Communities: A Case Study
ERIC Educational Resources Information Center
Bowring, James; Burke, Quinn
2016-01-01
This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…
Cultural and Technological Issues and Solutions for Geodynamics Software Citation
NASA Astrophysics Data System (ADS)
Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.
2014-12-01
Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.
An Analysis of Category Management of Service Contracts
2017-12-01
management teams a way to make informed , data-driven decisions. Data-driven decisions derived from clustering not only align with Category...savings. Furthermore, this methodology provides a data-driven visualization to inform sound business decisions on potential Category Management ...Category Management initiatives. The Maptitude software will allow future research to collect data and develop visualizations to inform Category
CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 3, May/June 2010
2010-06-01
optimization and ROI on MBTI training programs. Psychological Type The MBTI assessment is based on the work of Carl Jung, a Swiss psychiatrist who developed...artifacts is analogous to having an untrained team preparing and then selling raw, frozen burgers on a bun, with or without the cheese . In order to
Single-Case Design and Evaluation in R: An Introduction and Tutorial for School Psychologists
ERIC Educational Resources Information Center
McGill, Ryan J.
2017-01-01
For the appraisal of single-case intervention data, school psychologists have been encouraged to focus most, if not all, of their interpretive weight on the visual inspection of graphed data. However, existing software programs provide practitioners with limited features for systematic visual inspection. R (R Development Core Team, 2014) is a…
Post-Flight Data Analysis Tool
NASA Technical Reports Server (NTRS)
George, Marina
2018-01-01
A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F
2011-08-01
This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usabilitymore » and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.« less
Omics Metadata Management Software v. 1 (OMMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and to perform bioinformatics analyses and information management tasks via a simple and intuitive web-based interface. Several use cases with short-read sequence datasets are provided to showcase the full functionality of the OMMS, from metadata curation tasks, to bioinformatics analyses and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for web-based deployment supporting geographically dispersed research teams. Our software was developed with open-source bundles, is flexible, extensible and easily installedmore » and run by operators with general system administration and scripting language literacy.« less
Implementation of Audio Computer-Assisted Interviewing Software in HIV/AIDS Research
Pluhar, Erika; Yeager, Katherine A.; Corkran, Carol; McCarty, Frances; Holstad, Marcia McDonnell; Denzmore-Nwagbara, Pamela; Fielder, Bridget; DiIorio, Colleen
2007-01-01
Computer assisted interviewing (CAI) has begun to play a more prominent role in HIV/AIDS prevention research. Despite the increased popularity of CAI, particularly audio computer assisted self-interviewing (ACASI), some research teams are still reluctant to implement ACASI technology due to lack of familiarity with the practical issues related to using these software packages. The purpose of this paper is to describe the implementation of one particular ACASI software package, the Questionnaire Development System™ (QDS™), in several nursing and HIV/AIDS prevention research settings. We present acceptability and satisfaction data from two large-scale public health studies in which we have used QDS with diverse populations. We also address issues related to developing and programming a questionnaire, discuss practical strategies related to planning for and implementing ACASI in the field, including selecting equipment, training staff, and collecting and transferring data, and summarize advantages and disadvantages of computer assisted research methods. PMID:17662924
Bega - Android-Based Beergame Simulation Software for Interactive Training and Innovation
NASA Astrophysics Data System (ADS)
Lestyánszka Škůrková, Katarína; Szander, Norina
2013-12-01
The supply chain management challenges and inventory holding problems can easily be demonstrated by the widely known BeerGame simulation. In the Szabó-Szoba R&D Laboratory, we developed an android-based software application for tablets and smart phones for the purpose of having an adaptable, entertaining and effective program which can provide a real life experience to the participants about the nature of the bullwhip effect. Having an appropriate and comprehensive performance measurement system with the critical parameters and KPIs is inevitable for finding the right solutions - We used four perspectives of the Balanced Scorecard method. The innovative force of our research is based on the trainings: the discussion on outcomes and the team learning. The purpose of the current development is to build a new feature in the software: an artificial client can substitute one or more players in the supply chain, which makes decisions by using genetic algorithms.
Project Management Software for Distributed Industrial Companies
NASA Astrophysics Data System (ADS)
Dobrojević, M.; Medjo, B.; Rakin, M.; Sedmak, A.
This paper gives an overview of the development of a new software solution for project management, intended mainly to use in industrial environment. The main concern of the proposed solution is application in everyday engineering practice in various, mainly distributed industrial companies. Having this in mind, special care has been devoted to development of appropriate tools for tracking, storing and analysis of the information about the project, and in-time delivering to the right team members or other responsible persons. The proposed solution is Internet-based and uses LAMP/WAMP (Linux or Windows - Apache - MySQL - PHP) platform, because of its stability, versatility, open source technology and simple maintenance. Modular structure of the software makes it easy for customization according to client specific needs, with a very short implementation period. Its main advantages are simple usage, quick implementation, easy system maintenance, short training and only basic computer skills needed for operators.
SPHEREx: Science Opportunities for the Astronomical Community
NASA Astrophysics Data System (ADS)
Cooray, Asantha; SPHEREx Science Team
2018-01-01
SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software tools and facilitate easy access on a timely schedule to allow a large number of scientific applications and for target selection for JWST observations.
SPHEREx: Science Opportunities for the Astronomical Community
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; SPHEREx Science Team
2016-01-01
SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A study in July 2015, will perform an all-sky near-infrared spectral survey between 0.75 - 4.8 microns, reaching 19th mag (5sigma) in narrow R=40 filters. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.5 billion galaxies with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for all WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including several hundred bright QSOs seen during the epoch of reionization. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx could also produce all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will discuss the data release schedule and some example science studies the broader astronomical community will beable to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software tools and facilitate easy access on a timely schedule to allow a large number of scientific applications and for target selection for JWST observations.
Effort Gains in Occupational Teams - The Effects of Social Competition and Social Indispensability.
Hertel, Guido; Nohe, Christoph; Wessolowski, Katrin; Meltz, Oliver; Pape, Justina C; Fink, Jonas; Hüffmeier, Joachim
2018-01-01
Laboratory research has demonstrated social competition and social indispensability as potential triggers of effort gains in teams as compared to working alone. However, it is unclear whether such effects are also relevant for existing occupational teams, collaborating for longer time intervals and achieving meaningful outcomes. We assumed that social indispensability effects are prevalent and stable in occupational teams, whereas social competition effects should mainly be effective in the beginning of teamwork and fade out over time. Hypotheses were confirmed in two studies using within-subjects designs with employees recruited via an online panel (Study 1, N = 137) and in software development companies (Study 2, N = 70). By means of the Event Reconstruction Method, participants re-experienced specific events from past working days (three events working alone, three teamwork events), and rated their effort separately for these events. In both studies, multilevel analyses revealed significant effort gains in teams when event-specific social indispensability was high. These effects were mediated by positive mood and perceived task meaningfulness, and additionally qualified by employees' preference for teamwork. In contrast, motivating effects due to event-specific social competition were only observed for teams with short as compared to long team tenure in Study 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancuso, C.A.
The INEL Database of BNCT Information and Treatment (TIDBIT) has been under development for several years. Late in 1993, a new software development team took over the project and did and assessment of the current implementation status, and determined that the user interface was unsatisfactory for the expected users and that the data structures were out of step with the current state of reality. The team evaluated several tools that would improve the user interface to make the system easier to use. Uniface turned out to be the product of choice. During 1994, TIDBIT got its name, underwent a completemore » change of appearance, had a major overhaul to the data structures that support the application, and system documentation was begun. A prototype of the system was demonstrated in September 1994.« less
ERIC Educational Resources Information Center
Houck, Christiana L.
2013-01-01
This interpretative phenomenological study used semi-structured interviews of 10 participants to gain a deeper understanding of the experience for virtual team members using collaborative technology. The participants were knowledge workers from global software companies working on cross-functional project teams at a distance. There were no…
Integration and Testing of LCS Software
NASA Technical Reports Server (NTRS)
Wang, John
2014-01-01
Kennedy Space Center is in the midst of developing a command and control system for the launch of the next generation manned space vehicle. The Space Launch System (SLS) will launch using the new Spaceport Command and Control System (SCCS). As a member of the Software Integration and Test (SWIT) Team, command scripts, and bash scripts were written to assist in integration and testing of the Launch Control System (LCS), which is a component of SCCS. The short term and midterm tasks are for the most part completed. The long term tasks if time permits will require a presentation and demonstration.
X-29A flight control system performance during flight test
NASA Technical Reports Server (NTRS)
Chin, J.; Chacon, V.; Gera, J.
1987-01-01
An account is given of flight control system performance results for the X-29A forward-swept wing 'Advanced Technology Demonstrator' fighter aircraft, with attention to its software and hardware components' achievement of the requisite levels of system stability and desirable aircraft handling qualities. The Automatic Camber Control Logic is found to be well integrated with the stability loop of the aircraft. A number of flight test support software programs developed by NASA facilitated monitoring of the X-29A's stability in real time, and allowed the test team to clear the envelope with confidence.
Custom software development for use in a clinical laboratory
Sinard, John H.; Gershkovich, Peter
2012-01-01
In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care. PMID:23372985
Custom software development for use in a clinical laboratory.
Sinard, John H; Gershkovich, Peter
2012-01-01
In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care.
The Legacy of Space Shuttle Flight Software
NASA Technical Reports Server (NTRS)
Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.
2011-01-01
The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
Forcing Interoperability: An Intentionally Fractured Approach
NASA Astrophysics Data System (ADS)
Gallaher, D. W.; Brodzik, M.; Scambos, T.; Stroeve, J.
2008-12-01
The NSIDC is attempting to rebuild a significant portion of its public-facing cyberinfrastructure to better meet the needs expressed by the cryospheric community. The project initially addresses a specific science need - understanding Greenland's contribution to global sea level rise through comparison and analysis of variables such as temperature, albedo, melt, ice velocity and surface elevation. This project will ultimately be expanded to cover most of NSIDC's cryospheric data. Like many organizations, we need to provide users with data discovery interfaces, collaboration tools and mapping services. Complicating this effort is the need to reduce the volume of raw data delivered to the user. Data growth, especially with time-series data, will overwhelm our software, processors and network like never before. We need to provide the users the ability to perform first level analysis directly on our site. In order to accomplish this, the users should be free to modify the behavior of these tools as well as incorporate their own tools and analysis to meet their needs. Rather than building one monolithic project to build this system, we have chosen to build three semi-independent systems. One team is building a data discovery and web based distribution system, the second is building an advanced analysis and workflow system and the third is building a customized web mapping service. These systems will use the same underlying data structures and services but will employ different technologies and teams to build their objectives, schedules and user interfaces. Obviously, we are adding complexity and risk to the overall project however this may be the best method to achieve interoperability because the development teams will be required to build off each others work. The teams will be forced to design with other users in mind as opposed to building interoperability as an afterthought, which a tendency in monolithic systems. All three teams will take advantage of preexisting software and standards whenever possible. We present this topic to stimulate discussion within the development, operational and research communities on how best to proceed.
Yaniv, Ziv; Lowekamp, Bradley C; Johnson, Hans J; Beare, Richard
2018-06-01
Modern scientific endeavors increasingly require team collaborations to construct and interpret complex computational workflows. This work describes an image-analysis environment that supports the use of computational tools that facilitate reproducible research and support scientists with varying levels of software development skills. The Jupyter notebook web application is the basis of an environment that enables flexible, well-documented, and reproducible workflows via literate programming. Image-analysis software development is made accessible to scientists with varying levels of programming experience via the use of the SimpleITK toolkit, a simplified interface to the Insight Segmentation and Registration Toolkit. Additional features of the development environment include user friendly data sharing using online data repositories and a testing framework that facilitates code maintenance. SimpleITK provides a large number of examples illustrating educational and research-oriented image analysis workflows for free download from GitHub under an Apache 2.0 license: github.com/InsightSoftwareConsortium/SimpleITK-Notebooks .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, Eric J; Messer, II, Otis E
2017-01-02
The Bellerophon software system supports CHIMERA, a production-level HPC application that simulates the evolution of core-collapse supernovae. Bellerophon enables CHIMERA's geographically dispersed team of collaborators to perform job monitoring and real-time data analysis from multiple supercomputing resources, including platforms at OLCF, NERSC, and NICS. Its multi-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a cross-platform desktop application.
Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report
NASA Technical Reports Server (NTRS)
Ossenfort, John
2008-01-01
As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and development through health management and maintenance. TEAMS-Designer is the model-building and testability analysis software in that suite.
DOT National Transportation Integrated Search
2013-04-01
The Rural Road Upgrade Inventory and Cost Estimation Software is designed by the AUTC : research team to help the Fairbanks North Star Borough (FNSB) estimate the cost of upgrading : rural roads located in the Borough's Service Areas. The Software pe...
Proven and Robust Ground Support Systems - GSFC Success and Lessons Learned
NASA Technical Reports Server (NTRS)
Pfarr, Barbara; Donohue, John; Lui, Ben; Greer, Greg; Green, Tom
2008-01-01
Over the past fifteen years, Goddard Space Flight Center has developed several successful science missions in-house: the Wilkinson Microwave Anisotropy Probe (WMAP), the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), the Earth Observing 1 (EO-1) [1], and the Space Technology 5 (ST-5)[2] missions, several Small Explorers, and several balloon missions. Currently in development are the Solar Dynamics Observatory (SDO) [3] and the Lunar Reconnaissance Orbiter (LRO)[4]. What is not well known is that these missions have been supported during spacecraft and/or instrument integration and test, flight software development, and mission operations by two in house satellite Telemetry and Command (T & C) Systems, the Integrated Test and Operations System (ITOS) and the Advanced Spacecraft Integration and System Test (ASIST). The advantages of an in-house satellite Telemetry and Command system are primarily in the flexibility of management and maintenance - the developers are considered a part of the mission team, get involved early in the development process of the spacecraft and mission operations-control center, and provide on-site, on-call support that goes beyond Help Desk and simple software fixes. On the other hand, care must be taken to ensure that the system remains generic enough for cost effective re-use from one mission to the next. The software is designed such that many features are user-configurable. Where user-configurable options were impractical, features were designed so as to be easy for the development team to modify. Adding support for a new ground message header, for example, is a one-day effort because of the software framework on which that code rests. This paper will discuss the many features of the Goddard satellite Telemetry and Command systems that have contributed to the success of the missions listed above. These features include flexible user interfaces, distributed parallel commanding and telemetry decommutation, a procedure language, the interfaces and tools needed for a high degree of automation, and instantly accessible archives of spacecraft telemetry. It will discuss some of the problems overcome during development, including secure commanding over networks or the Internet, constellation support for the three satellites that comprise the ST-5 mission, and geographically distributed telemetry end users.
A proposed research program in information processing
NASA Technical Reports Server (NTRS)
Schorr, Herbert
1992-01-01
The goal of the Formalized Software Development (FSD) project was to demonstrate improvements productivity of software development and maintenance through the use of a new software lifecycle paradigm. The paradigm calls for the mechanical, but human-guided, derivation of software implementations from formal specifications of the desired software behavior. It relies on altering a system's specification and rederiving its implementation as the standard technology for software maintenance. A system definition for this paradigm is composed of a behavioral specification together with a body of annotations that control the derivation of executable code from the specification. Annotations generally achieve the selection of certain data representations and/or algorithms that are consistent with, but not mandated by, the behavioral specification. In doing this, they may yield systems which exhibit only certain behaviors among multiple alternatives permitted by the behavioral specification. The FSD project proposed to construct a testbed in which to explore the realization of this new paradigm. The testbed was to provide operational support environment for software design, implementation, and maintenance. The testbed was proposed to provide highly automated support for individual programmers ('programming in the small'), but not to address the additional needs of programming teams ('programming in the large'). The testbed proposed to focus on supporting rapid construction and evolution of useful prototypes of software systems, as opposed to focusing on the problems of achieving production quality performance of systems.
Projection of Maximum Software Maintenance Manning Levels.
1982-06-01
mainte- nance team development and for outyear support resource estimation, and to provide an analysis of applications of the model in areas other...by General Research Corporation of Santa Barbara, Ca., indicated that the Planning and Resource Management Information System (PARRIS) at the Air Force...determined that when the optimal input effort is applied, steps in the development would be achieved at a rate proportional to V(t). Thus the work-rate could
James Webb Space Telescope: Supporting Multiple Ground System Transitions in One Year
NASA Technical Reports Server (NTRS)
Detter, Ryan; Fatig, Curtis; Steck, Jane
2004-01-01
Ideas, requirements, and concepts developed during the very early phases of the mission design often conflict with the reality of a situation once the prime contractors are awarded. This happened for the James Webb Space Telescope (JWST) as well. The high level requirement of a common real-time ground system for both the Integration and Test (I&T), as well as the Operation phase of the mission is meant to reduce the cost and time needed later in the mission development for re-certification of databases, command and control systems, scripts, display pages, etc. In the case of JWST, the early Phase A flight software development needed a real-time ground system and database prior to the spacecraft prime contractor being selected. To compound the situation, the very low level requirements for the real-time ground system were not well defined. These two situations caused the initial real-time ground system to be switched out for a system that was previously used by the Bight software development team. To meet the high-!evel requirement, a third ground system was selected based on the prime spacecraft contractor needs and JWST Project decisions. The JWST ground system team has responded to each of these changes successfully. The lessons learned from each transition have not only made each transition smoother, but have also resolved issues earlier in the mission development than what would normally occur.
The KSC Simulation Team practices for contingencies in Firing Room 1
NASA Technical Reports Server (NTRS)
1998-01-01
In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
Decentralized Formation Flying Control in a Multiple-Team Hierarchy
NASA Technical Reports Server (NTRS)
Mueller, Joseph .; Thomas, Stephanie J.
2005-01-01
This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
NASA Technical Reports Server (NTRS)
1990-01-01
In 1981 Wayne Erickson founded Microrim, Inc, a company originally focused on marketing a microcomputer version of RIM (Relational Information Manager). Dennis Comfort joined the firm and is now vice president, development. The team developed an advanced spinoff from the NASA system they had originally created, a microcomputer database management system known as R:BASE 4000. Microrim added many enhancements and developed a series of R:BASE products for various environments. R:BASE is now the second largest selling line of microcomputer database management software in the world.
Arrott, M.; Alexander, Corrine; Graybeal, J.; Mueller, C.; Signell, R.; de La Beaujardière, J.; Taylor, A.; Wilkin, J.; Powell, B.; Orcutt, J.
2011-01-01
The NOAA-led U.S. Integrated Ocean Observing System (IOOS) and the National Science Foundation's Ocean Observatories Initiative (OOI) have been collaborating since 2007 on advanced tools and technologies that ensure open access to ocean observations and models. Initial collaboration focused on serving ocean data via cloud computing-a key component of the OOI cyberinfrastructure (CI) architecture. As the OOI transitioned from planning to execution in the Fall of 2009, an OOI/IOOS team developed a customer-based "use case" to align more closely with the emerging objectives of OOI-CI team's first software release scheduled for Summer 2011 and provide a quantitative capacity for stress-testing these tools and protocols. A requirements process was initiated with coastal modelers, focusing on improved workflows to deliver ocean observation data. Accomplishments to date include the documentation and assessment of scientific workflows for two "early adopter" modeling teams from IOOS Regional partners (Rutgers-the State University of New Jersey and University of Hawaii's School of Ocean and Earth Science and Technology) to enable full understanding of data sources and needs; generation of all-inclusive lists of the data sets required and those obtainable through IOOS; a more complete understanding of areas where IOOS can expand data access capabilities to better serve the needs of the modeling community; and development of "data set agents" (software) to facilitate data acquisition from numerous data providers and conversions of the data format to the OOI-CI canonical form. ?? 2011 MTS.
Scientific Data Analysis and Software Support: Geodynamics
NASA Technical Reports Server (NTRS)
Klosko, Steven; Sanchez, B. (Technical Monitor)
2000-01-01
The support on this contract centers on development of data analysis strategies, geodynamic models, and software codes to study four-dimensional geodynamic and oceanographic processes, as well as studies and mission support for near-Earth and interplanetary satellite missions. SRE had a subcontract to maintain the optical laboratory for the LTP, where instruments such as MOLA and GLAS are developed. NVI performed work on a Raytheon laser altimetry task through a subcontract, providing data analysis and final data production for distribution to users. HBG had a subcontract for specialized digital topography analysis and map generation. Over the course of this contract, Raytheon ITSS staff have supported over 60 individual tasks. Some tasks have remained in place during this entire interval whereas others have been completed and were of shorter duration. Over the course of events, task numbers were changed to reflect changes in the character of the work or new funding sources. The description presented below will detail the technical accomplishments that have been achieved according to their science and technology areas. What will be shown is a brief overview of the progress that has been made in each of these investigative and software development areas. Raytheon ITSS staff members have received many awards for their work on this contract, including GSFC Group Achievement Awards for TOPEX Precision Orbit Determination and the Joint Gravity Model One Team. NASA JPL gave the TOPEX/POSEIDON team a medal commemorating the completion of the primary mission and a Certificate of Appreciation. Raytheon ITSS has also received a Certificate of Appreciation from GSFC for its extensive support of the Shuttle Laser Altimeter Experiment.
Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Oostdyk, Rebecca
2010-01-01
The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project
First year of ALMA site software deployment: where everything comes together
NASA Astrophysics Data System (ADS)
González, Víctor; Mora, Matias; Araya, Rodrigo; Arredondo, Diego; Bartsch, Marcelo; Burgos, Pablo; Ibsen, Jorge; Reveco, Johnny; Sáez, Norman; Schemrl, Anton; Sepulveda, Jorge; Shen, Tzu-Chiang; Soto, Rubén; Troncoso, Nicolás; Zambrano, Mauricio; Barriga, Nicolás; Glendenning, Brian; Raffi, Gianni; Kern, Jeff
2010-07-01
Starting 2009, the ALMA project initiated one of its most exciting phases within construction: the first antenna from one of the vendors was delivered to the Assembly, Integration and Verification team. With this milestone and the closure of the ALMA Test Facility in New Mexico, the JAO Computing Group in Chile found itself in the front line of the project's software deployment and integration effort. Among the group's main responsibilities are the deployment, configuration and support of the observation systems, in addition to infrastructure administration, all of which needs to be done in close coordination with the development groups in Europe, North America and Japan. Software support has been the primary interaction key with the current users (mainly scientists, operators and hardware engineers), as the software is normally the most visible part of the system. During this first year of work with the production hardware, three consecutive software releases have been deployed and commissioned. Also, the first three antennas have been moved to the Array Operations Site, at 5.000 meters elevation, and the complete end-to-end system has been successfully tested. This paper shares the experience of this 15-people group as part of the construction team at the ALMA site, and working together with Computing IPT, on the achievements and problems overcomed during this period. It explores the excellent results of teamwork, and also some of the troubles that such a complex and geographically distributed project can run into. Finally, it approaches the challenges still to come, with the transition to the ALMA operations plan.
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.
2010-01-01
The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
ERIC Educational Resources Information Center
Pieterse, Vreda; Thompson, Lisa
2010-01-01
The acquisition of effective teamwork skills is crucial in all disciplines. Using an interpretive approach, this study investigates collaboration and co-operation in teams of software engineering students. Teams whose members were both homogeneous and heterogeneous in terms of their members' academic abilities, skills and goals were identified and…
Evaluation of a Mobile Platform for Proof-of-Concept Autonomous Site Selection and Preparation
NASA Astrophysics Data System (ADS)
Gammell, Jonathan
A mobile robotic platform for Autonomous Site Selection and Preparation (ASSP) was developed for an analogue deployment to Mauna Kea, Hawai`i. A team of rovers performed an autonomous Ground Penetrating Radar (GPR) survey and constructed a level landing pad. They used interchangeable payloads that allowed the GPR and blade to be easily exchanged. Autonomy was accomplished by integrating the individual hardware devices with software based on the ArgoSoft framework previously developed at UTIAS. The rovers were controlled by an on-board netbook. The successes and failures of the devices and software modules are evaluated within. Recommendations are presented to address problems discovered during the deployment and to guide future research on the platform.
The Effect of Social Network Diagrams on a Virtual Network of Practice: A Korean Case
ERIC Educational Resources Information Center
Jo, Il-Hyun
2009-01-01
This study investigates the effect of the presentation of social network diagrams on virtual team members' interaction behavior via e-mail. E-mail transaction data from 22 software developers in a Korean IT company was analyzed and depicted as diagrams by social network analysis (SNA), and presented to the members as an intervention. Results…
An Autonomous Flight Safety System
2008-11-01
are taken. AFSS can take vehicle navigation data from redundant onboard sensors and make flight termination decisions using software-based rules...implemented on redundant flight processors. By basing these decisions on actual Instantaneous Impact Predictions and by providing for an arbitrary...number of mission rules, it is the contention of the AFSS development team that the decision making process used by Missile Flight Control Officers
The SOFIA Mission Control System Software
NASA Astrophysics Data System (ADS)
Heiligman, G. M.; Brock, D. R.; Culp, S. D.; Decker, P. H.; Estrada, J. C.; Graybeal, J. B.; Nichols, D. M.; Paluzzi, P. R.; Sharer, P. J.; Pampell, R. J.; Papke, B. L.; Salovich, R. D.; Schlappe, S. B.; Spriestersbach, K. K.; Webb, G. L.
1999-05-01
The Stratospheric Observatory for Infrared Astronomy (SOFIA) will be delivered with a computerized mission control system (MCS). The MCS communicates with the aircraft's flight management system and coordinates the operations of the telescope assembly, mission-specific subsystems, and the science instruments. The software for the MCS must be reliable and flexible. It must be easily usable by many teams of observers with widely differing needs, and it must support non-intrusive access for education and public outreach. The technology must be appropriate for SOFIA's 20-year lifetime. The MCS software development process is an object-oriented, use case driven approach. The process is iterative: delivery will be phased over four "builds"; each build will be the result of many iterations; and each iteration will include analysis, design, implementation, and test activities. The team is geographically distributed, coordinating its work via Web pages, teleconferences, T.120 remote collaboration, and CVS (for Internet-enabled configuration management). The MCS software architectural design is derived in part from other observatories' experience. Some important features of the MCS are: * distributed computing over several UNIX and VxWorks computers * fast throughput of time-critical data * use of third-party components, such as the Adaptive Communications Environment (ACE) and the Common Object Request Broker Architecture (CORBA) * extensive configurability via stored, editable configuration files * use of several computer languages so developers have "the right tool for the job". C++, Java, scripting languages, Interactive Data Language (from Research Systems, Int'l.), XML, and HTML will all be used in the final deliverables. This paper reports on work in progress, with the final product scheduled for delivery in 2001. This work was performed for Universities Space Research Association for NASA under contract NAS2-97001.
NASA Astrophysics Data System (ADS)
Comendant, T.; Strittholt, J. R.; Ward, B. C.; Bachelet, D. M.; Grossman, D.; Stevenson-Molnar, N.; Henifin, K.; Lundin, M.; Marvin, T. S.; Peterman, W. L.; Corrigan, G. N.; O'Connor, K.
2013-12-01
A multi-disciplinary team of scientists, software engineers, and outreach staff at the Conservation Biology Institute launched an open-access, web-based spatial data platform called Data Basin (www.databasin.org) in 2010. Primarily built to support research and environmental resource planning, Data Basin provides the capability for individuals and organizations to explore, create, interpret, and collaborate around their priority topics and geographies. We used a stakeholder analysis to assess the needs of data consumers/produces and help prioritize primary and secondary audiences. Data Basin's simple and user-friendly interface makes mapping and geo-processing tools more accessible to less technical audiences. Input from users is considered in system planning, testing, and implementation. The team continually develops using an agile software development approach, which allows new features, improvements, and bug fixes to be deployed to the live system on a frequent basis. The data import process is handled through administrative approval and Data Basin requires spatial data (biological, physical, and socio-economic) to be well-documented. Outreach and training is used to convey the scope and appropriate use of the scientific information and available resources.
The need for scientific software engineering in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Luty, Brock; Rose, Peter W.
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
The need for scientific software engineering in the pharmaceutical industry.
Luty, Brock; Rose, Peter W
2017-03-01
Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.
Software Engineering for Scientific Computer Simulations
NASA Astrophysics Data System (ADS)
Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.
2004-11-01
Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kris A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
NASA Technical Reports Server (NTRS)
Muniz, R.; Hochstadt, J.; Boelke J.; Dalton, A.
2011-01-01
The Content Documents are created and managed under the System Software group with. Launch Control System (LCS) project. The System Software product group is lead by NASA Engineering Control and Data Systems branch (NEC3) at Kennedy Space Center. The team is working on creating Operating System Images (OSI) for different platforms (i.e. AIX, Linux, Solaris and Windows). Before the OSI can be created, the team must create a Content Document which provides the information of a workstation or server, with the list of all the software that is to be installed on it and also the set where the hardware belongs. This can be for example in the LDS, the ADS or the FR-l. The objective of this project is to create a User Interface Web application that can manage the information of the Content Documents, with all the correct validations and filters for administrator purposes. For this project we used one of the most excellent tools in agile development applications called Ruby on Rails. This tool helps pragmatic programmers develop Web applications with Rails framework and Ruby programming language. It is very amazing to see how a student can learn about OOP features with the Ruby language, manage the user interface with HTML and CSS, create associations and queries with gems, manage databases and run a server with MYSQL, run shell commands with command prompt and create Web frameworks with Rails. All of this in a real world project and in just fifteen weeks!
Simulations in nursing practice: toward authentic leadership.
Shapira-Lishchinsky, Orly
2014-01-01
Aim This study explores nurses' ethical decision-making in team simulations in order to identify the benefits of these simulations for authentic leadership. Background While previous studies have indicated that team simulations may improve ethics in the workplace by reducing the number of errors, those studies focused mainly on clinical aspects and not on nurses' ethical experiences or on the benefits of authentic leadership. Methods Fifty nurses from 10 health institutions in central Israel participated in the study. Data about nurses' ethical experiences were collected from 10 teams. Qualitative data analysis based on Grounded Theory was applied, using the atlas.ti 5.0 software package. Findings Simulation findings suggest four main benefits that reflect the underlying components of authentic leadership: self-awareness, relational transparency, balanced information processing and internalized moral perspective. Conclusions Team-based simulation as a training tool may lead to authentic leadership among nurses. Implications for nursing management Nursing management should incorporate team simulations into nursing practice to help resolve power conflicts and to develop authentic leadership in nursing. Consequently, errors will decrease, patients' safety will increase and optimal treatment will be provided. © 2012 John Wiley & Sons Ltd.
What Not To Do: Anti-patterns for Developing Scientific Workflow Software Components
NASA Astrophysics Data System (ADS)
Futrelle, J.; Maffei, A. R.; Sosik, H. M.; Gallager, S. M.; York, A.
2013-12-01
Scientific workflows promise to enable efficient scaling-up of researcher code to handle large datasets and workloads, as well as documentation of scientific processing via standardized provenance records, etc. Workflow systems and related frameworks for coordinating the execution of otherwise separate components are limited, however, in their ability to overcome software engineering design problems commonly encountered in pre-existing components, such as scripts developed externally by scientists in their laboratories. In practice, this often means that components must be rewritten or replaced in a time-consuming, expensive process. In the course of an extensive workflow development project involving large-scale oceanographic image processing, we have begun to identify and codify 'anti-patterns'--problematic design characteristics of software--that make components fit poorly into complex automated workflows. We have gone on to develop and document low-effort solutions and best practices that efficiently address the anti-patterns we have identified. The issues, solutions, and best practices can be used to evaluate and improve existing code, as well as guiding the development of new components. For example, we have identified a common anti-pattern we call 'batch-itis' in which a script fails and then cannot perform more work, even if that work is not precluded by the failure. The solution we have identified--removing unnecessary looping over independent units of work--is often easier to code than the anti-pattern, as it eliminates the need for complex control flow logic in the component. Other anti-patterns we have identified are similarly easy to identify and often easy to fix. We have drawn upon experience working with three science teams at Woods Hole Oceanographic Institution, each of which has designed novel imaging instruments and associated image analysis code. By developing use cases and prototypes within these teams, we have undertaken formal evaluations of software components developed by programmers with widely varying levels of expertise, and have been able to discover and characterize a number of anti-patterns. Our evaluation methodology and testbed have also enabled us to assess the efficacy of strategies to address these anti-patterns according to scientifically relevant metrics, such as ability of algorithms to perform faster than the rate of data acquisition and the accuracy of workflow component output relative to ground truth. The set of anti-patterns and solutions we have identified augments of the body of more well-known software engineering anti-patterns by addressing additional concerns that obtain when a software component has to function as part of a workflow assembled out of independently-developed codebases. Our experience shows that identifying and resolving these anti-patterns reduces development time and improves performance without reducing component reusability.
Large scale database scrubbing using object oriented software components.
Herting, R L; Barnes, M R
1998-01-01
Now that case managers, quality improvement teams, and researchers use medical databases extensively, the ability to share and disseminate such databases while maintaining patient confidentiality is paramount. A process called scrubbing addresses this problem by removing personally identifying information while keeping the integrity of the medical information intact. Scrubbing entire databases, containing multiple tables, requires that the implicit relationships between data elements in different tables of the database be maintained. To address this issue we developed DBScrub, a Java program that interfaces with any JDBC compliant database and scrubs the database while maintaining the implicit relationships within it. DBScrub uses a small number of highly configurable object-oriented software components to carry out the scrubbing. We describe the structure of these software components and how they maintain the implicit relationships within the database.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. During an End-to-End (ETE) Mission Management Team (MMT) launch simulation at KSC, Mike Rein, division chief of Media Services, and Lisa Malone, director of External Relations and Business Development at KSC, work the consoles. In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. The ETE MMT simulation included L-2 and L-1 day Prelaunch MMT meetings, an external tanking/weather briefing, and a launch countdown. The ETE transitioned to the Johnson Space Center for the flight portion of the simulation, with the STS-114 crew in a simulator at JSC. Such simulations are common before a launch to keep the Shuttle launch team sharp and ready for liftoff.
Remote Internet access to advanced analytical facilities: a new approach with Web-based services.
Sherry, N; Qin, J; Fuller, M Suominen; Xie, Y; Mola, O; Bauer, M; McIntyre, N S; Maxwell, D; Liu, D; Matias, E; Armstrong, C
2012-09-04
Over the past decade, the increasing availability of the World Wide Web has held out the possibility that the efficiency of scientific measurements could be enhanced in cases where experiments were being conducted at distant facilities. Examples of early successes have included X-ray diffraction (XRD) experimental measurements of protein crystal structures at synchrotrons and access to scanning electron microscopy (SEM) and NMR facilities by users from institutions that do not possess such advanced capabilities. Experimental control, visual contact, and receipt of results has used some form of X forwarding and/or VNC (virtual network computing) software that transfers the screen image of a server at the experimental site to that of the users' home site. A more recent development is a web services platform called Science Studio that provides teams of scientists with secure links to experiments at one or more advanced research facilities. The software provides a widely distributed team with a set of controls and screens to operate, observe, and record essential parts of the experiment. As well, Science Studio provides high speed network access to computing resources to process the large data sets that are often involved in complex experiments. The simple web browser and the rapid transfer of experimental data to a processing site allow efficient use of the facility and assist decision making during the acquisition of the experimental results. The software provides users with a comprehensive overview and record of all parts of the experimental process. A prototype network is described involving X-ray beamlines at two different synchrotrons and an SEM facility. An online parallel processing facility has been developed that analyzes the data in near-real time using stream processing. Science Studio and can be expanded to include many other analytical applications, providing teams of users with rapid access to processed results along with the means for detailed discussion of their significance.
STRUCTURAL SCALE LIFE PREDICTION OF AERO STRUCTURES EXPERIENCING COMBINED EXTREME ENVIRONMENTS
2017-07-01
representation is converted into a tetrahedral FE mesh using the software DREAM .3D. Due to a special voxel-identification scheme the FE mesh includes...research team met with DREAM .3D developers at AFRL (Drs. Mike Groeber and Sean Donegan) to discuss possible solutions. Together, the group proposed the...development of a DREAM .3D extension that can leverage the topological data structure within DREAM .3D instead of relying on an image-based
Seven ways to make a hypertext project fail
NASA Technical Reports Server (NTRS)
Glushko, Robert J.
1990-01-01
Hypertext is an exciting concept, but designing and developing hypertext applications of practical scale is hard. To make a project feasible and successful 'hypertext engineers' must overcome the following problems: (1) developing realistic expectations in the face of hypertext hype; (2) assembling a multidisciplinary project team; (3) establishing and following design guidelines; (4) dealing with installed base constraints; (5) obtaining usable source files; (6) finding appropriate software technology and methods; and (7) overcoming legal uncertainties about intellectual property concerns.
NASA Technical Reports Server (NTRS)
Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas
2000-01-01
An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.
HapHop-Physio: a computer game to support cognitive therapies in children
Rico-Olarte, Carolina; López, Diego M; Narváez, Santiago; Farinango, Charic D; Pharow, Peter S
2017-01-01
Background Care and support of children with physical or mental disabilities are accompanied with serious concerns for parents, families, healthcare institutions, schools, and their communities. Recent studies and technological innovations have demonstrated the feasibility of providing therapy and rehabilitation services to children supported by computer games. Objective The aim of this paper is to present HapHop-Physio, an innovative computer game that combines exercise with fun and learning, developed to support cognitive therapies in children. Methods Conventional software engineering methods such as the Scrum methodology, a functionality test and a related usability test, were part of the comprehensive methodology adapted to develop HapHop-Physio. Results The game supports visual and auditory attention therapies, as well as visual and auditory memory activities. The game was developed by a multidisciplinary team, which was based on the Hopscotch® platform provided by Fraunhofer Institute for Digital Media Technology IDMT Institute in Germany, and designed in collaboration with a rehabilitation clinic in Colombia. HapHop-Physio was tested and evaluated to probe its functionality and user satisfaction. Conclusion The results show the development of an easy-to-use and funny game by a multidisciplinary team using state-of-the-art videogame technologies and software methodologies. Children testing the game concluded that they would like to play again while undergoing rehabilitation therapies. PMID:28740440
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM) early in the development lifecycle for the SLS program, NASA formed the M&FM team as part of the Integrated Systems Health Management and Automation Branch under the Spacecraft Vehicle Systems Department at the Marshall Space Flight Center (MSFC). To support the development of the FM algorithms, the VMET developed by the M&FM team provides the ability to integrate the algorithms, perform test cases, and integrate vendor-supplied physics-based launch vehicle (LV) subsystem models. Additionally, the team has developed processes for implementing and validating the M&FM algorithms for concept validation and risk reduction. The flexibility of the VMET capabilities enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS, GNC, and others. One of the principal functions of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software test and validation processes. In any software development process there is inherent risk in the interpretation and implementation of concepts from requirements and test cases into flight software compounded with potential human errors throughout the development and regression testing lifecycle. Risk reduction is addressed by the M&FM group but in particular by the Analysis Team working with other organizations such as S&MA, Structures and Environments, GNC, Orion, Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission (LOM) and Loss of Crew (LOC) probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses to be tested in VMET to ensure reliable failure detection, and confirm responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - the ARINC 6535-partitioned Operating System, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by FSW. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure their effectiveness and performance in the exterior FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
Mitigating Motion Base Safety Issues: The NASA LaRC CMF Implementation
NASA Technical Reports Server (NTRS)
Bryant, Richard B., Jr.; Grupton, Lawrence E.; Martinez, Debbie; Carrelli, David J.
2005-01-01
The NASA Langley Research Center (LaRC), Cockpit Motion Facility (CMF) motion base design has taken advantage of inherent hydraulic characteristics to implement safety features using hardware solutions only. Motion system safety has always been a concern and its implementation is addressed differently by each organization. Some approaches rely heavily on software safety features. Software which performs safety functions is subject to more scrutiny making its approval, modification, and development time consuming and expensive. The NASA LaRC's CMF motion system is used for research and, as such, requires that the software be updated or modified frequently. The CMF's customers need the ability to update the simulation software frequently without the associated cost incurred with safety critical software. This paper describes the CMF engineering team's approach to achieving motion base safety by designing and implementing all safety features in hardware, resulting in applications software (including motion cueing and actuator dynamic control) being completely independent of the safety devices. This allows the CMF safety systems to remain intact and unaffected by frequent research system modifications.
STAR Algorithm Integration Team - Facilitating operational algorithm development
NASA Astrophysics Data System (ADS)
Mikles, V. J.
2015-12-01
The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.
Test/score/report: Simulation techniques for automating the test process
NASA Technical Reports Server (NTRS)
Hageman, Barbara H.; Sigman, Clayton B.; Koslosky, John T.
1994-01-01
A Test/Score/Report capability is currently being developed for the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) system which will automate testing of the Goddard Space Flight Center (GSFC) Payload Operations Control Center (POCC) and Mission Operations Center (MOC) software in three areas: telemetry decommutation, spacecraft command processing, and spacecraft memory load and dump processing. Automated computer control of the acceptance test process is one of the primary goals of a test team. With the proper simulation tools and user interface, the task of acceptance testing, regression testing, and repeatability of specific test procedures of a ground data system can be a simpler task. Ideally, the goal for complete automation would be to plug the operational deliverable into the simulator, press the start button, execute the test procedure, accumulate and analyze the data, score the results, and report the results to the test team along with a go/no recommendation to the test team. In practice, this may not be possible because of inadequate test tools, pressures of schedules, limited resources, etc. Most tests are accomplished using a certain degree of automation and test procedures that are labor intensive. This paper discusses some simulation techniques that can improve the automation of the test process. The TASS system tests the POCC/MOC software and provides a score based on the test results. The TASS system displays statistics on the success of the POCC/MOC system processing in each of the three areas as well as event messages pertaining to the Test/Score/Report processing. The TASS system also provides formatted reports documenting each step performed during the tests and the results of each step. A prototype of the Test/Score/Report capability is available and currently being used to test some POCC/MOC software deliveries. When this capability is fully operational it should greatly reduce the time necessary to test a POCC/MOC software delivery, as well as improve the quality of the test process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Scholtz, Jean; Whiting, Mark A.
The VAST Challenge has been a popular venue for academic and industry participants for over ten years. Many participants comment that the majority of their time in preparing VAST Challenge entries is discovering elements in their software environments that need to be redesigned in order to solve the given task. Fortunately, there is no need to wait until the VAST Challenge is announced to test out software systems. The Visual Analytics Benchmark Repository contains all past VAST Challenge tasks, data, solutions and submissions. This paper details the various types of evaluations that may be conducted using the Repository information. Inmore » this paper we describe how developers can do informal evaluations of various aspects of their visual analytics environments using VAST Challenge information. Aspects that can be evaluated include the appropriateness of the software for various tasks, the various data types and formats that can be accommodated, the effectiveness and efficiency of the process supported by the software, and the intuitiveness of the visualizations and interactions. Researchers can compare their visualizations and interactions to those submitted to determine novelty. In addition, the paper provides pointers to various guidelines that software teams can use to evaluate the usability of their software. While these evaluations are not a replacement for formal evaluation methods, this information can be extremely useful during the development of visual analytics environments.« less
1998-08-20
In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.
Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There aremore » two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.« less
Effort Gains in Occupational Teams – The Effects of Social Competition and Social Indispensability
Hertel, Guido; Nohe, Christoph; Wessolowski, Katrin; Meltz, Oliver; Pape, Justina C.; Fink, Jonas; Hüffmeier, Joachim
2018-01-01
Laboratory research has demonstrated social competition and social indispensability as potential triggers of effort gains in teams as compared to working alone. However, it is unclear whether such effects are also relevant for existing occupational teams, collaborating for longer time intervals and achieving meaningful outcomes. We assumed that social indispensability effects are prevalent and stable in occupational teams, whereas social competition effects should mainly be effective in the beginning of teamwork and fade out over time. Hypotheses were confirmed in two studies using within-subjects designs with employees recruited via an online panel (Study 1, N = 137) and in software development companies (Study 2, N = 70). By means of the Event Reconstruction Method, participants re-experienced specific events from past working days (three events working alone, three teamwork events), and rated their effort separately for these events. In both studies, multilevel analyses revealed significant effort gains in teams when event-specific social indispensability was high. These effects were mediated by positive mood and perceived task meaningfulness, and additionally qualified by employees’ preference for teamwork. In contrast, motivating effects due to event-specific social competition were only observed for teams with short as compared to long team tenure in Study 2. PMID:29872412
The center for causal discovery of biomedical knowledge from big data
Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-01-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794
NASA Technical Reports Server (NTRS)
Ferguson, Roscoe C.
2011-01-01
As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.
Terra Harvest software architecture
NASA Astrophysics Data System (ADS)
Humeniuk, Dave; Klawon, Kevin
2012-06-01
Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.
Team Expo: A State-of-the-Art JSC Advanced Design Team
NASA Technical Reports Server (NTRS)
Tripathi, Abhishek
2001-01-01
In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.
Artificial Intelligence: The Bumpy Path Through Defense Acquisition
2017-12-01
products through Amazon’s suite of services , or can be trained using the Alexa application to interact and control other smart products in your house...software, and capitalizing on the opportunities for customization and consultation. NVIDIA’s approach to AI hardware, offers opportunities for garage...have teamed up to provide licensing, training , and development services for a product called Unreal Engine 4, aimed at government and military
Evaluation of a Game-Based Simulation During Distributed Exercises
2010-09-01
the management team guiding development of the software. The questionnaires have not been used enough to collect data sufficient for factor...capable of internationally distributed exercises without excessive time lags or technical problems, given that commercial games seem to manage while...established by RDECOM-STTC military liaison and managers . Engineering constraints combined to limit the number of participants and the possible roles that
Which factors affect software projects maintenance cost more?
Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nafiseh
2013-03-01
The software industry has had significant progress in recent years. The entire life of software includes two phases: production and maintenance. Software maintenance cost is increasingly growing and estimates showed that about 90% of software life cost is related to its maintenance phase. Extraction and considering the factors affecting the software maintenance cost help to estimate the cost and reduce it by controlling the factors. In this study, the factors affecting software maintenance cost were determined then were ranked based on their priority and after that effective ways to reduce the maintenance costs were presented. This paper is a research study. 15 software related to health care centers information systems in Isfahan University of Medical Sciences and hospitals function were studied in the years 2010 to 2011. Among Medical software maintenance team members, 40 were selected as sample. After interviews with experts in this field, factors affecting maintenance cost were determined. In order to prioritize the factors derived by AHP, at first, measurement criteria (factors found) were appointed by members of the maintenance team and eventually were prioritized with the help of EC software. Based on the results of this study, 32 factors were obtained which were classified in six groups. "Project" was ranked the most effective feature in maintenance cost with the highest priority. By taking into account some major elements like careful feasibility of IT projects, full documentation and accompany the designers in the maintenance phase good results can be achieved to reduce maintenance costs and increase longevity of the software.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
The Emirates Mars Mission Science Data Center
NASA Astrophysics Data System (ADS)
Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris
2017-04-01
The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.
The Emirates Mars Mission Science Data Center
NASA Astrophysics Data System (ADS)
Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.
2017-12-01
The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.
ERIC Educational Resources Information Center
Stamm, Meelis; Stamm, Raini; Koskel, Sade
2008-01-01
Study aim: Assessment of feasibility of using own computer software "Game" at competitions. Material and methods: The data were collected during Estonian championships in 2006 for male volleyball teams of the 13-15-years age group (n = 8). In all games, the performance of both teams was recorded in parallel with two computers. A total of…
The Transition to a Many-core World
NASA Astrophysics Data System (ADS)
Mattson, T. G.
2012-12-01
The need to increase performance within a fixed energy budget has pushed the computer industry to many core processors. This is grounded in the physics of computing and is not a trend that will just go away. It is hard to overestimate the profound impact of many-core processors on software developers. Virtually every facet of the software development process will need to change to adapt to these new processors. In this talk, we will look at many-core hardware and consider its evolution from a perspective grounded in the CPU. We will show that the number of cores will inevitably increase, but in addition, a quest to maximize performance per watt will push these cores to be heterogeneous. We will show that the inevitable result of these changes is a computing landscape where the distinction between the CPU and the GPU is blurred. We will then consider the much more pressing problem of software in a many core world. Writing software for heterogeneous many core processors is well beyond the ability of current programmers. One solution is to support a software development process where programmer teams are split into two distinct groups: a large group of domain-expert productivity programmers and much smaller team of computer-scientist efficiency programmers. The productivity programmers work in terms of high level frameworks to express the concurrency in their problems while avoiding any details for how that concurrency is exploited. The second group, the efficiency programmers, map applications expressed in terms of these frameworks onto the target many-core system. In other words, we can solve the many-core software problem by creating a software infrastructure that only requires a small subset of programmers to become master parallel programmers. This is different from the discredited dream of automatic parallelism. Note that productivity programmers still need to define the architecture of their software in a way that exposes the concurrency inherent in their problem. We submit that domain-expert programmers understand "what is concurrent". The parallel programming problem emerges from the complexity of "how that concurrency is utilized" on real hardware. The research described in this talk was carried out in collaboration with the ParLab at UC Berkeley. We use a design pattern language to define the high level frameworks exposed to domain-expert, productivity programmers. We then use tools from the SEJITS project (Selective embedded Just In time Specializers) to build the software transformation tool chains thst turn these framework-oriented designs into highly efficient code. The final ingredient is a software platform to serve as a target for these tools. One such platform is the OpenCL industry standard for programming heterogeneous systems. We will briefly describe OpenCL and show how it provides a vendor-neutral software target for current and future many core systems; both CPU-based, GPU-based, and heterogeneous combinations of the two.
NASA Technical Reports Server (NTRS)
Shull, Forrest; Feldmann, Raimund; Haingaertner, Ralf; Regardie, Myrna; Seaman, Carolyn
2007-01-01
It is often the case in software projects that when schedule and budget resources are limited, the Verification and Validation (V&V) activities suffer. Fewer V&V activities can be afforded and moreover, short-term challenges can result in V&V activities being scaled back or dropped altogether. As a result, too often the default solution is to save activities for improving software quality until too late in the life-cycle, relying on late-term code inspections followed by thorough testing activities to reduce defect counts to acceptable levels. As many project managers realize, however, this is a resource-intensive way of achieving the required quality for software. The Full Life-cycle Defect Management Assessment Initiative, funded by NASA s Office of Safety and Mission Assurance under the Software Assurance Research Program, aims to address these problems by: Improving the effectiveness of early life-cycle V&V activities to make their benefits more attractive to team leads. Specifically, we focus on software inspection, a proven method that can be applied to any software work product, long before executable code has been developed; Better communicating this effectiveness to software development teams, along with suggestions for parameters to improve in the future to increase effectiveness; Analyzing the impact of early life-cycle V&V on the effectiveness and cost required for late life-cycle V&V activities, such as testing, in order to make the tradeoffs more apparent. This white paper reports on an initial milestone in this work, the development of a preliminary model of inspection effectiveness across multiple NASA Centers. This model contributes toward reaching our project goals by: Allowing an examination of inspection parameters, across different types of projects and different work products, for an analysis of factors that impact defect detection effectiveness. Allowing a comparison of this NASA-specific model to existing recommendations in the literature regarding how to plan effective inspections. Forming a baseline model which can be extended to incorporate factors describing: the numbers and types of defects that are missed by inspections; how such defects flow downstream through software development phases; how effectively they can be caught by testing activities in the late stages of development. The model has been implemented in a prototype web-enabled decision-support tool which allows developers to enter their inspection data and receive feedback based on a comparison against the model. The tool also allows users to access reusable materials (such as checklists) from projects included in the baseline. Both the tool itself and the model underlying it will continue to be extended throughout the remainder of this initiative. As results of analyzing inspection effectiveness for defect containment are determined, they can be shared via the tool and also via updates to existing training courses on metrics and software inspections. Moreover, the tool will help satisfy key CMMI requirements for the NASA Centers, as it will enable NASA to take a global view across peer review results for various types of projects to identify systemic problems. This analysis can result in continuous improvements to the approach to verification.
1998-08-19
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.
1998-08-20
KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29
Standardized Sky Partitioning for the Next Generation Astronomy and Space Science Archives
NASA Technical Reports Server (NTRS)
Lal, Nand (Technical Monitor); McLean, Brian
2004-01-01
The Johns Hopkins University and Space Telescope Science Institute are working together on this project to develop a library of standard software for data archives that will benefit the wider astronomical community. The ultimate goal was to develop and distribute a software library aimed at providing a common system for partitioning and indexing the sky in manageable sized regions and provide complex queries on the objects stored in this system. Whilst ongoing maintenance work will continue the primary goal has been completed. Most of the next generation sky surveys in the different wavelengths like 2MASS, GALEX, SDSS, GSC-II, DPOSS and FIRST have agreed on this common set of utilities. In this final report, we summarize work on the work elements assigned to the STScI project team.
Joint Sandia/NIOSH exercise on aerosol contamination using the BROOM tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, James L., Jr.; .); Melton, Brad
In February of 2005, a joint exercise involving Sandia National Laboratories (SNL) and the National Institute for Occupational Safety and Health (NIOSH) was conducted in Albuquerque, NM. The SNL participants included the team developing the Building Restoration Operations and Optimization Model (BROOM), a software product developed to expedite sampling and data management activities applicable to facility restoration following a biological contamination event. Integrated data-collection, data-management, and visualization software improve the efficiency of cleanup, minimize facility downtime, and provide a transparent basis for reopening. The exercise was held at an SNL facility, the Coronado Club, a now-closed social club for Sandiamore » employees located on Kirtland Air Force Base. Both NIOSH and SNL had specific objectives for the exercise, and all objectives were met.« less
Implementation of audio computer-assisted interviewing software in HIV/AIDS research.
Pluhar, Erika; McDonnell Holstad, Marcia; Yeager, Katherine A; Denzmore-Nwagbara, Pamela; Corkran, Carol; Fielder, Bridget; McCarty, Frances; Diiorio, Colleen
2007-01-01
Computer-assisted interviewing (CAI) has begun to play a more prominent role in HIV/AIDS prevention research. Despite the increased popularity of CAI, particularly audio computer-assisted self-interviewing (ACASI), some research teams are still reluctant to implement ACASI technology because of lack of familiarity with the practical issues related to using these software packages. The purpose of this report is to describe the implementation of one particular ACASI software package, the Questionnaire Development System (QDS; Nova Research Company, Bethesda, MD), in several nursing and HIV/AIDS prevention research settings. The authors present acceptability and satisfaction data from two large-scale public health studies in which they have used QDS with diverse populations. They also address issues related to developing and programming a questionnaire; discuss practical strategies related to planning for and implementing ACASI in the field, including selecting equipment, training staff, and collecting and transferring data; and summarize advantages and disadvantages of computer-assisted research methods.
A Browser-Based Multi-User Working Environment for Physicists
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.
2014-06-01
Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISPA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable clientserver system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, JavaScript and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISPA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students.
Spaceport Command and Control System Automated Verification Software Development
NASA Technical Reports Server (NTRS)
Backus, Michael W.
2017-01-01
For as long as we have walked the Earth, humans have always been explorers. We have visited our nearest celestial body and sent Voyager 1 beyond our solar system1 out into interstellar space. Now it is finally time for us to step beyond our home and onto another planet. The Spaceport Command and Control System (SCCS) is being developed along with the Space Launch System (SLS) to take us on a journey further than ever attempted. Within SCCS are separate subsystems and system level software, each of which have to be tested and verified. Testing is a long and tedious process, so automating it will be much more efficient and also helps to remove the possibility of human error from mission operations. I was part of a team of interns and full-time engineers who automated tests for the requirements on SCCS, and with that was able to help verify that the software systems are performing as expected.
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
Electronic health records and support for primary care teamwork.
O'Malley, Ann S; Draper, Kevin; Gourevitch, Rebecca; Cross, Dori A; Scholle, Sarah Hudson
2015-03-01
Consensus that enhanced teamwork is necessary for efficient and effective primary care delivery is growing. We sought to identify how electronic health records (EHRs) facilitate and pose challenges to primary care teams as well as how practices are overcoming these challenges. Practices in this qualitative study were selected from those recognized as patient-centered medical homes via the National Committee for Quality Assurance 2011 tool, which included a section on practice teamwork. We interviewed 63 respondents, ranging from physicians to front-desk staff, from 27 primary care practices ranging in size, type, geography, and population size. EHRs were found to facilitate communication and task delegation in primary care teams through instant messaging, task management software, and the ability to create evidence-based templates for symptom-specific data collection from patients by medical assistants and nurses (which can offload work from physicians). Areas where respondents felt that electronic medical record EHR functionalities were weakest and posed challenges to teamwork included the lack of integrated care manager software and care plans in EHRs, poor practice registry functionality and interoperability, and inadequate ease of tracking patient data in the EHR over time. Practices developed solutions for some of the challenges they faced when attempting to use EHRs to support teamwork but wanted more permanent vendor and policy solutions for other challenges. EHR vendors in the United States need to work alongside practicing primary care teams to create more clinically useful EHRs that support dynamic care plans, integrated care management software, more functional and interoperable practice registries, and greater ease of data tracking over time. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Farinango, Charic D; Benavides, Juan S; Cerón, Jesús D; López, Diego M; Álvarez, Rosa E
2018-01-01
Previous studies have demonstrated the effectiveness of information and communication technologies to support healthy lifestyle interventions. In particular, personal health record systems (PHR-Ss) empower self-care, essential to support lifestyle changes. Approaches such as the user-centered design (UCD), which is already a standard within the software industry (ISO 9241-210:2010), provide specifications and guidelines to guarantee user acceptance and quality of eHealth systems. However, no single PHR-S for metabolic syndrome (MS) developed following the recommendations of the ISO 9241-210:2010 specification has been found in the literature. The aim of this study was to describe the development of a PHR-S for the management of MS according to the principles and recommendations of the ISO 9241-210 standard. The proposed PHR-S was developed using a formal software development process which, in addition to the traditional activities of any software process, included the principles and recommendations of the ISO 9241-210 standard. To gather user information, a survey sample of 1,187 individuals, eight interviews, and a focus group with seven people were performed. Throughout five iterations, three prototypes were built. Potential users of each system evaluated each prototype. The quality attributes of efficiency, effectiveness, and user satisfaction were assessed using metrics defined in the ISO/IEC 25022 standard. The following results were obtained: 1) a technology profile from 1,187 individuals at risk for MS from the city of Popayan, Colombia, identifying that 75.2% of the people use the Internet and 51% had a smartphone; 2) a PHR-S to manage MS developed (the PHR-S has the following five main functionalities: record the five MS risk factors, share these measures with health care professionals, and three educational modules on nutrition, stress management, and a physical activity); and 3) usability tests on each prototype obtaining the following results: 100% effectiveness, 100% efficiency, and 84.2 points in the system usability scale. The software development methodology used was based on the ISO 9241-210 standard, which allowed the development team to maintain a focus on user's needs and requirements throughout the project, which resulted in an increased satisfaction and acceptance of the system. Additionally, the establishment of a multidisciplinary team allowed the application of considerations not only from the disciplines of software engineering and health sciences but also from other disciplines such as graphical design and media communication. Finally, usability testing allowed the observation of flaws in the designs, which helped to improve the solution.
NASA Astrophysics Data System (ADS)
Engel, P.; Schweimler, B.
2016-04-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
The EMIR experience in the use of software control simulators to speed up the time to telescope
NASA Astrophysics Data System (ADS)
Lopez Ramos, Pablo; López-Ruiz, J. C.; Moreno Arce, Heidy; Rosich, Josefina; Perez Menor, José Maria
2012-09-01
One of the main problems facing development teams working on instrument control systems consists on the need to access mechanisms which are not available until well into the integration phase. The need to work with real hardware creates additional problems like, among others: certain faults cannot be tested due to the possibility of hardware damage, taking the system to the limit may shorten its operational lifespan and the full system may not be available during some periods due to maintenance and/or testing of individual components. These problems can be treated with the use of simulators and by applying software/hardware standards. Since information on the construction and performance of electro-mechanical systems is available at relatively early stages of the project, simulators are developed in advance (before the existence of the mechanism) or, if conventions and standards have been correctly followed, a previously developed simulator might be used. This article describes our experience in building software simulators and the main advantages we have identified, which are: the control software can be developed even in the absence of real hardware, critical tests can be prepared using the simulated systems, test system behavior for hardware failure situations that represent a risk of the real system, and the speed up of in house integration of the entire instrument. The use of simulators allows us to reduce development, testing and integration time.
Center for Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadin, Damevski
A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less
NASA Software Engineering Benchmarking Study
NASA Technical Reports Server (NTRS)
Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.
2013-01-01
To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths was its software assurance practices, which seemed to rate well in comparison to the other organizational groups and also seemed to include a larger scope of activities. An unexpected benefit of the software benchmarking study was the identification of many opportunities for collaboration in areas including metrics, training, sharing of CMMI experiences and resources such as instructors and CMMI Lead Appraisers, and even sharing of assets such as documented processes. A further unexpected benefit of the study was the feedback on NASA practices that was received from some of the organizations interviewed. From that feedback, other potential areas where NASA could improve were highlighted, such as accuracy of software cost estimation and budgetary practices. The detailed report contains discussion of the practices noted in each of the topic areas, as well as a summary of observations and recommendations from each of the topic areas. The resulting 24 recommendations from the topic areas were then consolidated to eliminate duplication and culled into a set of 14 suggested actionable recommendations. This final set of actionable recommendations, listed below, are items that can be implemented to improve NASA's software engineering practices and to help address many of the items that were listed in the NASA top software engineering issues. 1. Develop and implement standard contract language for software procurements. 2. Advance accurate and trusted software cost estimates for both procured and in-house software and improve the capture of actual cost data to facilitate further improvements. 3. Establish a consistent set of objectives and expectations, specifically types of metrics at the Agency level, so key trends and models can be identified and used to continuously improve software processes and each software development effort. 4. Maintain the CMMI Maturity Level requirement for critical NASA projects and use CMMI to measure organizations developing software for NASA. 5.onsolidate, collect and, if needed, develop common processes principles and other assets across the Agency in order to provide more consistency in software development and acquisition practices and to reduce the overall cost of maintaining or increasing current NASA CMMI maturity levels. 6. Provide additional support for small projects that includes: (a) guidance for appropriate tailoring of requirements for small projects, (b) availability of suitable tools, including support tool set-up and training, and (c) training for small project personnel, assurance personnel and technical authorities on the acceptable options for tailoring requirements and performing assurance on small projects. 7. Develop software training classes for the more experienced software engineers using on-line training, videos, or small separate modules of training that can be accommodated as needed throughout a project. 8. Create guidelines to structure non-classroom training opportunities such as mentoring, peer reviews, lessons learned sessions, and on-the-job training. 9. Develop a set of predictive software defect data and a process for assessing software testing metric data against it. 10. Assess Agency-wide licenses for commonly used software tools. 11. Fill the knowledge gap in common software engineering practices for new hires and co-ops.12. Work through the Science, Technology, Engineering and Mathematics (STEM) program with universities in strengthening education in the use of common software engineering practices and standards. 13. Follow up this benchmark study with a deeper look into what both internal and external organizations perceive as the scope of software assurance, the value they expect to obtain from it, and the shortcomings they experience in the current practice. 14. Continue interactions with external software engineering environment through collaborations, knowledge sharing, and benchmarking.
NASA Astrophysics Data System (ADS)
Barlow, P. M.; Filali-Meknassi, Y.; Sanford, W. E.; Winston, R. B.; Kuniansky, E.; Dawson, C.
2015-12-01
UNESCO's HOPE Initiative—the Hydro Free and (or) Open-source Platform of Experts—was launched in June 2013 as part of UNESCO's International Hydrological Programme. The Initiative arose in response to a recognized need to make free and (or) open-source water-resources software more widely accessible to Africa's water sector. A kit of software is being developed to provide African water authorities, teachers, university lecturers, and researchers with a set of programs that can be enhanced and (or) applied to the development of efficient and sustainable management strategies for Africa's water resources. The Initiative brings together experts from the many fields of water resources to identify software that might be included in the kit, to oversee an objective process for selecting software for the kit, and to engage in training and other modes of capacity building to enhance dissemination of the software. To date, teams of experts from the fields of wastewater treatment, groundwater hydrology, surface-water hydrology, and data management have been formed to identify relevant software from their respective fields. An initial version of the HOPE Software Kit was released in late August 2014 and consists of the STOAT model for wastewater treatment developed by the Water Research Center (United Kingdom) and the MODFLOW-2005 model for groundwater-flow simulation developed by the U.S. Geological Survey. The Kit is available on the UNESCO HOPE website (http://www.hope-initiative.net/).Training in the theory and use of MODFLOW-2005 is planned in southern Africa in conjunction with UNESCO's study of the Kalahari-Karoo/Stampriet Transboundary Aquifer, which extends over an area that includes parts of Botswana, Namibia, and South Africa, and in support of the European Commission's Horizon 2020 FREEWAT project (FREE and open source software tools for WATer resource management; see the UNESCO HOPE website).
Validation and verification of a virtual environment for training naval submarine officers
NASA Astrophysics Data System (ADS)
Zeltzer, David L.; Pioch, Nicholas J.
1996-04-01
A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.
NASA Technical Reports Server (NTRS)
Chavers, Greg
2015-01-01
Since 2006 NASA has been formulating robotic missions to the lunar surface through programs and projects like the Robotic Lunar Exploration Program, Lunar Precursor Robotic Program, and International Lunar Network. All of these were led by NASA Marshall Space Flight Center (MSFC). Due to funding shortfalls, the lunar missions associated with these efforts, the designs, were not completed. From 2010 to 2013, the Robotic Lunar Lander Development Activity was funded by the Science Mission Directorate (SMD) to develop technologies that would enable and enhance robotic lunar surface missions at lower costs. In 2013, a requirements-driven, low-cost robotic lunar lander concept was developed for the Resource Prospector Mission. Beginning in 2014, The Advanced Exploration Systems funded the lander team and established the MSFC, Johnson Space Center, Applied Physics Laboratory, and the Jet Propulsion Laboratory team with MSFC leading the project. The lander concept to place a 300-kg rover on the lunar surface has been described in the New Technology Report Case Number MFS-33238-1. A low-cost lander concept for placing a robotic payload on the lunar surface is shown in figures 1 and 2. The NASA lander team has developed several lander concepts using common hardware and software to allow the lander to be configured for a specific mission need. In addition, the team began to transition lander expertise to United States (U.S.) industry to encourage the commercialization of space, specifically the lunar surface. The Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative was started and the NASA lander team listed above is partnering with three competitively selected U.S. companies (Astrobotic, Masten Space Systems, and Moon Express) to develop, test, and operate their lunar landers.
The Exoplanet Characterization ToolKit (ExoCTK)
NASA Astrophysics Data System (ADS)
Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia
2018-01-01
The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.
Upgrading Custom Simulink Library Components for Use in Newer Versions of Matlab
NASA Technical Reports Server (NTRS)
Stewart, Camiren L.
2014-01-01
The Spaceport Command and Control System (SCCS) at Kennedy Space Center (KSC) is a control system for monitoring and launching manned launch vehicles. Simulations of ground support equipment (GSE) and the launch vehicle systems are required throughout the life cycle of SCCS to test software, hardware, and procedures to train the launch team. The simulations of the GSE at the launch site in conjunction with off-line processing locations are developed using Simulink, a piece of Commercial Off-The-Shelf (COTS) software. The simulations that are built are then converted into code and ran in a simulation engine called Trick, a Government off-the-shelf (GOTS) piece of software developed by NASA. In the world of hardware and software, it is not uncommon to see the products that are utilized be upgraded and patched or eventually fade away into an obsolete status. In the case of SCCS simulation software, Matlab, a MathWorks product, has released a number of stable versions of Simulink since the deployment of the software on the Development Work Stations in the Linux environment (DWLs). The upgraded versions of Simulink has introduced a number of new tools and resources that, if utilized fully and correctly, will save time and resources during the overall development of the GSE simulation and its correlating documentation. Unfortunately, simply importing the already built simulations into the new Matlab environment will not suffice as it will produce results that may not be expected as they were in the version that is currently being utilized. Thus, an upgrade execution plan was developed and executed to fully upgrade the simulation environment to one of the latest versions of Matlab.
AAS Publishing News: Astronomical Software Citation Workshop
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: http://astronomy-software-index.github.io/2015-workshop/ The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to julie.steffen@aas.org.
CASIS Fact Sheet: Hardware and Facilities
NASA Technical Reports Server (NTRS)
Solomon, Michael R.; Romero, Vergel
2016-01-01
Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise
2006-09-01
The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.
A Layered Solution for Supercomputing Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grider, Gary
To solve the supercomputing challenge of memory keeping up with processing speed, a team at Los Alamos National Laboratory developed two innovative memory management and storage technologies. Burst buffers peel off data onto flash memory to support the checkpoint/restart paradigm of large simulations. MarFS adds a thin software layer enabling a new tier for campaign storage—based on inexpensive, failure-prone disk drives—between disk drives and tape archives.
2005-05-01
Standish Group 1995a; 1995b). In general , the risk of failure for large software projects is significantly greater than for small projects (Humphrey...learning, geographical dispersion, and team experience. Various weighting schemes can be developed and applied to these parameters for various...Fadtool DbCAS/ WebCAS ObligationsFunding data COPS MDMS Committments Obligations Committments PADDS Obligations EDA Contracts CAPS Contracts Document
Just-in-Time Technology to Encourage Incremental, Dietary Behavior Change
Intille, Stephen S.; Kukla, Charles; Farzanfar, Ramesh; Bakr, Waseem
2003-01-01
Our multi-disciplinary team is developing mobile computing software that uses “just-in-time” presentation of information to motivate behavior change. Using a participatory design process, preliminary interviews have helped us to establish 10 design goals. We have employed some to create a prototype of a tool that encourages better dietary decision making through incremental, just-in-time motivation at the point of purchase. PMID:14728379
Launch Vehicle Operations Simulator
NASA Technical Reports Server (NTRS)
Blackledge, J. W.
1974-01-01
The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.
2004-09-08
KENNEDY SPACE CENTER, FLA. - The work to clean up and secure the roof of the Processing Control Center which sustained damage from Hurricane Frances is under way. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees secure the roof of the Processing Control Center which sustained damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39 adjacent to the Vehicle Assembly Building (background right), the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
2004-09-08
KENNEDY SPACE CENTER, FLA. - KSC employees begin the work to clean up and secure the roof of the Processing Control Center which sustained damage from Hurricane Frances. The storm's path over Florida took it through Cape Canaveral and KSC property during Labor Day weekend. Located in Launch Complex 39, the facility houses some of the staff and computers responsible for Launch Processing System (LPS) software development, launch team training, and LPS maintenance.
Pressure and Temperature Sensitive Paint Field System
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.
2004-01-01
This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Zhang, Jianshun; Pelken, Michael
Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less
Agile Software Teams: How They Engage with Systems Engineering on DoD Acquisition Programs
2014-07-01
under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded...issues that would preclude or limit the use of Agile methods within the DoD” [Broadus 2013]. As operational tempos increase and programs fight to...environment in which it operates . This makes software different from other disciplines that have toleranc- es, generally resulting in software engineering
Community-driven computational biology with Debian Linux.
Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles
2010-12-21
The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.
JPL Earth Science Center Visualization Multitouch Table
NASA Astrophysics Data System (ADS)
Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.
2014-12-01
JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with the U.S. Department of Energy (DOE) Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes, meaning that the application of renewable energy systems would result in annual net zero energy use inmore » the homes. The homes were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. For this project, CARB drew on its experience working with Rural Development Inc. on a series of affordable townhomes in northern Massachusetts. The team carefully planned the site to maximize solar access, daylighting, and efficient building forms. The basic strategy was to design a very efficient thermal enclosure while minimizing incremental cost increases compared with standard construction. Using BEopt modeling software, the team established the requirements of the enclosure and investigated multiple assembly options. They settled on double-wall construction with dense-pack cellulose fill. High performance vinyl windows (U-0.24, solar heat gain coefficient [SHGC]-0.22), a vented R-59 attic, and exceptional air sealing completed the package.« less
Desiderata for a Computer-Assisted Audit Tool for Clinical Data Source Verification Audits
Duda, Stephany N.; Wehbe, Firas H.; Gadd, Cynthia S.
2013-01-01
Clinical data auditing often requires validating the contents of clinical research databases against source documents available in health care settings. Currently available data audit software, however, does not provide features necessary to compare the contents of such databases to source data in paper medical records. This work enumerates the primary weaknesses of using paper forms for clinical data audits and identifies the shortcomings of existing data audit software, as informed by the experiences of an audit team evaluating data quality for an international research consortium. The authors propose a set of attributes to guide the development of a computer-assisted clinical data audit tool to simplify and standardize the audit process. PMID:20841814
Verifying Architectural Design Rules of the Flight Software Product Line
NASA Technical Reports Server (NTRS)
Ganesan, Dharmalingam; Lindvall, Mikael; Ackermann, Chris; McComas, David; Bartholomew, Maureen
2009-01-01
This paper presents experiences of verifying architectural design rules of the NASA Core Flight Software (CFS) product line implementation. The goal of the verification is to check whether the implementation is consistent with the CFS architectural rules derived from the developer's guide. The results indicate that consistency checking helps a) identifying architecturally significant deviations that were eluded during code reviews, b) clarifying the design rules to the team, and c) assessing the overall implementation quality. Furthermore, it helps connecting business goals to architectural principles, and to the implementation. This paper is the first step in the definition of a method for analyzing and evaluating product line implementations from an architecture-centric perspective.
Grid Stability Awareness System (GSAS) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuerborn, Scott; Ma, Jian; Black, Clifton
The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less
Operation Program for the Spatially Phase-Shifted Digital Speckle Pattern Interferometer - SPS-DSPI
NASA Technical Reports Server (NTRS)
Blake, Peter N.; Jones, Joycelyn T.; Hostetter, Carl F.; Greenfield, Perry; Miller, Todd
2010-01-01
SPS-DSPI software has been revised so that Goddard optical engineers can operate the instrument, instead of data programmers. The user interface has been improved to view the data collected by the SPS-DSPI, with a real-time mode and a play-back mode. The SPS-DSPI has been developed by NASA/GSFC to measure the temperature distortions of the primary-mirror backplane structure for the James Webb Space Telescope. It requires a team of computer specialists to run successfully, because, at the time of this reporting, it just finished the prototype stage. This software improvement will transition the instrument to become available for use by many programs that measure distortion