Sample records for software execution environment

  1. Research into software executives for space operations support

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.

    1990-01-01

    Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements.

  2. The Environment for Application Software Integration and Execution (EASIE) version 1.0. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Davis, John S.

    1989-01-01

    The Environment for Application Software Integration and Execution (EASIE) provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational database management system. Volume 1, Executive Overview, gives an overview of the functions provided by EASIE and describes their use. Three operational design systems based upon the EASIE software are briefly described.

  3. The use of emulator-based simulators for on-board software maintenance

    NASA Astrophysics Data System (ADS)

    Irvine, M. M.; Dartnell, A.

    2002-07-01

    Traditionally, onboard software maintenance activities within the space sector are performed using hardware-based facilities. These facilities are developed around the use of hardware emulation or breadboards containing target processors. Some sort of environment is provided around the hardware to support the maintenance actives. However, these environments are not easy to use to set-up the required test scenarios, particularly when the onboard software executes in a dynamic I/O environment, e.g. attitude control software, or data handling software. In addition, the hardware and/or environment may not support the test set-up required during investigations into software anomalies, e.g. raise spurious interrupt, fail memory, etc, and the overall "visibility" of the software executing may be limited. The Software Maintenance Simulator (SOMSIM) is a tool that can support the traditional maintenance facilities. The following list contains some of the main benefits that SOMSIM can provide: Low cost flexible extension to existing product - operational simulator containing software processor emulator; System-level high-fidelity test-bed in which software "executes"; Provides a high degree of control/configuration over the entire "system", including contingency conditions perhaps not possible with real hardware; High visibility and control over execution of emulated software. This paper describes the SOMSIM concept in more detail, and also describes the SOMSIM study being carried out for ESA/ESOC by VEGA IT GmbH.

  4. Mal-Xtract: Hidden Code Extraction using Memory Analysis

    NASA Astrophysics Data System (ADS)

    Lim, Charles; Syailendra Kotualubun, Yohanes; Suryadi; Ramli, Kalamullah

    2017-01-01

    Software packer has been used effectively to hide the original code inside a binary executable, making it more difficult for existing signature based anti malware software to detect malicious code inside the executable. A new method of written and rewritten memory section is introduced to to detect the exact end time of unpacking routine and extract original code from packed binary executable using Memory Analysis running in an software emulated environment. Our experiment results show that at least 97% of the original code from the various binary executable packed with different software packers could be extracted. The proposed method has also been successfully extracted hidden code from recent malware family samples.

  5. BioContainers: an open-source and community-driven framework for software standardization.

    PubMed

    da Veiga Leprevost, Felipe; Grüning, Björn A; Alves Aflitos, Saulo; Röst, Hannes L; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I; Perez-Riverol, Yasset

    2017-08-15

    BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). The software is freely available at github.com/BioContainers/. yperez@ebi.ac.uk. © The Author(s) 2017. Published by Oxford University Press.

  6. BioContainers: an open-source and community-driven framework for software standardization

    PubMed Central

    da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset

    2017-01-01

    Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341

  7. Simulation Testing of Embedded Flight Software

    NASA Technical Reports Server (NTRS)

    Shahabuddin, Mohammad; Reinholtz, William

    2004-01-01

    Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

  8. Hermes: Seamless delivery of containerized bioinformatics workflows in hybrid cloud (HTC) environments

    NASA Astrophysics Data System (ADS)

    Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.

    Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.

  9. A Digital Repository and Execution Platform for Interactive Scholarly Publications in Neuroscience.

    PubMed

    Hodge, Victoria; Jessop, Mark; Fletcher, Martyn; Weeks, Michael; Turner, Aaron; Jackson, Tom; Ingram, Colin; Smith, Leslie; Austin, Jim

    2016-01-01

    The CARMEN Virtual Laboratory (VL) is a cloud-based platform which allows neuroscientists to store, share, develop, execute, reproduce and publicise their work. This paper describes new functionality in the CARMEN VL: an interactive publications repository. This new facility allows users to link data and software to publications. This enables other users to examine data and software associated with the publication and execute the associated software within the VL using the same data as the authors used in the publication. The cloud-based architecture and SaaS (Software as a Service) framework allows vast data sets to be uploaded and analysed using software services. Thus, this new interactive publications facility allows others to build on research results through reuse. This aligns with recent developments by funding agencies, institutions, and publishers with a move to open access research. Open access provides reproducibility and verification of research resources and results. Publications and their associated data and software will be assured of long-term preservation and curation in the repository. Further, analysing research data and the evaluations described in publications frequently requires a number of execution stages many of which are iterative. The VL provides a scientific workflow environment to combine software services into a processing tree. These workflows can also be associated with publications and executed by users. The VL also provides a secure environment where users can decide the access rights for each resource to ensure copyright and privacy restrictions are met.

  10. CASPER Version 2.0

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Rabideau, Gregg; Tran, Daniel; Knight, Russell; Chouinard, Caroline; Estlin, Tara; Gaines, Daniel; Clement, Bradley; Barrett, Anthony

    2007-01-01

    CASPER is designed to perform automated planning of interdependent activities within a system subject to requirements, constraints, and limitations on resources. In contradistinction to the traditional concept of batch planning followed by execution, CASPER implements a concept of continuous planning and replanning in response to unanticipated changes (including failures), integrated with execution. Improvements over other, similar software that have been incorporated into CASPER version 2.0 include an enhanced executable interface to facilitate integration with a wide range of execution software systems and supporting software libraries; features to support execution while reasoning about urgency, importance, and impending deadlines; features that enable accommodation to a wide range of computing environments that include various central processing units and random- access-memory capacities; and improved generic time-server and time-control features.

  11. Malware detection and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Ken; Lloyd, Levi; Crussell, Jonathan

    Embodiments of the invention describe systems and methods for malicious software detection and analysis. A binary executable comprising obfuscated malware on a host device may be received, and incident data indicating a time when the binary executable was received and identifying processes operating on the host device may be recorded. The binary executable is analyzed via a scalable plurality of execution environments, including one or more non-virtual execution environments and one or more virtual execution environments, to generate runtime data and deobfuscation data attributable to the binary executable. At least some of the runtime data and deobfuscation data attributable tomore » the binary executable is stored in a shared database, while at least some of the incident data is stored in a private, non-shared database.« less

  12. Airland Battlefield Environment (ALBE) Tactical Decision Aid (TDA) Demonstration Program,

    DTIC Science & Technology

    1987-11-12

    Management System (DBMS) software, GKS graphics libraries, and user interface software. These components of the ATB system software architecture will be... knowlede base ano auqent the decision mak:n• process by providing infocr-mation useful in the formulation and execution of battlefield strategies...Topographic Laboratories as an Engineer. Ms. Capps is managing the software development of the AirLand Battlefield Environment (ALBE) geographic

  13. Using an architectural approach to integrate heterogeneous, distributed software components

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Purtilo, James M.

    1995-01-01

    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.

  14. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  15. AIDA: An Integrated Authoring Environment for Educational Software.

    ERIC Educational Resources Information Center

    Mendes, Antonio Jose; Mendes, Teresa

    1996-01-01

    Describes an integrated authoring environment, AIDA ("Ambiente Integrado de Desenvolvimento de Aplicacoes educacionais"), that was developed at the University of Coimbra (Portugal) for educational software. Highlights include the design module, a prototyping tool that allows for multimedia, simulations, and modularity; execution module;…

  16. The Rapid Integration and Test Environment: A Process for Achieving Software Test Acceptance

    DTIC Science & Technology

    2010-05-01

    Test Environment : A Process for Achieving Software Test Acceptance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...mlif`v= 365= k^s^i=mlpqdo^ar^qb=p`elli= The Rapid Integration and Test Environment : A Process for Achieving Software Test Acceptance Patrick V...was awarded the Bronze Star. Introduction The Rapid Integration and Test Environment (RITE) initiative, implemented by the Program Executive Office

  17. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  18. Intelligent sensor and controller framework for the power grid

    DOEpatents

    Akyol, Bora A.; Haack, Jereme Nathan; Craig, Jr., Philip Allen; Tews, Cody William; Kulkarni, Anand V.; Carpenter, Brandon J.; Maiden, Wendy M.; Ciraci, Selim

    2015-07-28

    Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with the software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.

  19. Intelligent sensor and controller framework for the power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Bora A.; Haack, Jereme Nathan; Craig, Jr., Philip Allen

    Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with themore » software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.« less

  20. An Execution Service for Grid Computing

    NASA Technical Reports Server (NTRS)

    Smith, Warren; Hu, Chaumin

    2004-01-01

    This paper describes the design and implementation of the IPG Execution Service that reliably executes complex jobs on a computational grid. Our Execution Service is part of the IPG service architecture whose goal is to support location-independent computing. In such an environment, once n user ports an npplicntion to one or more hardware/software platfrms, the user can describe this environment to the grid the grid can locate instances of this platfrm, configure the platfrm as required for the application, and then execute the application. Our Execution Service runs jobs that set up such environments for applications and executes them. These jobs consist of a set of tasks for executing applications and managing data. The tasks have user-defined starting conditions that allow users to specih complex dependencies including task to execute when tasks fail, afiequent occurrence in a large distributed system, or are cancelled. The execution task provided by our service also configures the application environment exactly as specified by the user and captures the exit code of the application, features that many grid execution services do not support due to dflculties interfacing to local scheduling systems.

  1. Identifying impact of software dependencies on replicability of biomedical workflows.

    PubMed

    Miksa, Tomasz; Rauber, Andreas; Mina, Eleni

    2016-12-01

    Complex data driven experiments form the basis of biomedical research. Recent findings warn that the context in which the software is run, that is the infrastructure and the third party dependencies, can have a crucial impact on the final results delivered by a computational experiment. This implies that in order to replicate the same result, not only the same data must be used, but also it must be run on an equivalent software stack. In this paper we present the VFramework that enables assessing replicability of workflows. It identifies whether any differences in software dependencies among two executions of the same workflow exist and whether they have impact on the produced results. We also conduct a case study in which we investigate the impact of software dependencies on replicability of Taverna workflows used in biomedical research of Huntington's disease. We re-execute analysed workflows in environments differing in operating system distribution and configuration. The results show that the VFramework can be used to identify the impact of software dependencies on the replicability of biomedical workflows. Furthermore, we observe that despite the fact that the workflows are executed in a controlled environment, they still depend on specific tools installed in the environment. The context model used by the VFramework improves the deficiencies of provenance traces and documents also such tools. Based on our findings we define guidelines for workflow owners that enable them to improve replicability of their workflows. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Choosing a software design method for real-time Ada applications: JSD process inversion as a means to tailor a design specification to the performance requirements and target machine

    NASA Technical Reports Server (NTRS)

    Withey, James V.

    1986-01-01

    The validity of real-time software is determined by its ability to execute on a computer within the time constraints of the physical system it is modeling. In many applications the time constraints are so critical that the details of process scheduling are elevated to the requirements analysis phase of the software development cycle. It is not uncommon to find specifications for a real-time cyclic executive program included to assumed in such requirements. It was found that prelininary designs structured around this implementation abscure the data flow of the real world system that is modeled and that it is consequently difficult and costly to maintain, update and reuse the resulting software. A cyclic executive is a software component that schedules and implicitly synchronizes the real-time software through periodic and repetitive subroutine calls. Therefore a design method is sought that allows the deferral of process scheduling to the later stages of design. The appropriate scheduling paradigm must be chosen given the performance constraints, the largest environment and the software's lifecycle. The concept of process inversion is explored with respect to the cyclic executive.

  3. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1987-01-01

    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management.

  4. Software environment for implementing engineering applications on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K. A.; Schiff, S.

    1990-01-01

    In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.

  5. FOX: A Fault-Oblivious Extreme-Scale Execution Environment Boston University Final Report Project Number: DE-SC0005365

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Jonathan

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focusedmore » on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.« less

  6. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking.

    PubMed

    Chanu, A; Aboussouan, E; Tamaz, S; Martel, S

    2006-01-01

    Software architecture for the navigation of a ferromagnetic untethered device in a 1D and 2D phantom environment is briefly described. Navigation is achieved using the real-time capabilities of a Siemens 1.5 T Avanto MRI system coupled with a dedicated software environment and a specially developed 3D tracking pulse sequence. Real-time control of the magnetic core is executed through the implementation of a simple PID controller. 1D and 2D experimental results are presented.

  7. Real time computer data system for the 40 x 80 ft wind tunnel facility at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Cambra, J. M.; Tolari, G. P.

    1974-01-01

    The wind tunnel realtime computer system is a distributed data gathering system that features a master computer subsystem, a high speed data gathering subsystem, a quick look dynamic analysis and vibration control subsystem, an analog recording back-up subsystem, a pulse code modulation (PCM) on-board subsystem, a communications subsystem, and a transducer excitation and calibration subsystem. The subsystems are married to the master computer through an executive software system and standard hardware and FORTRAN software interfaces. The executive software system has four basic software routines. These are the playback, setup, record, and monitor routines. The standard hardware interfaces along with the software interfaces provide the system with the capability of adapting to new environments.

  8. Executive Information Systems for Providing Next Generation Strategic Information: An Evaluation of EIS (Executive Information System) Software and Recommended Applicability within the FAA Computing Environment

    DTIC Science & Technology

    1989-01-01

    the FAA Computing Environment 7. Author(s) S. Performing Organization Report No. MT/O1-89. Al 9. Performing Organization Name and Address 10. Work Unit...him in advance by analysts and developers -- an electronic3 version of the Performance Indicators report. Ease of Use. pcEXPRESS has an automatic link...overcome within the required timeframe. I These advanced features of the EXPRESS system allow the fastest possible response to changing executive information

  9. Definition and testing of the hydrologic component of the pilot land data system

    NASA Technical Reports Server (NTRS)

    Ragan, Robert M.; Sircar, Jayanta K.

    1987-01-01

    The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.

  10. Artificial intelligence and the space station software support environment

    NASA Technical Reports Server (NTRS)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  11. Build and Execute Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Qiang

    At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less

  12. Calculation and use of an environment's characteristic software metric set

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.

    1985-01-01

    Since both cost/quality and production environments differ, this study presents an approach for customizing a characteristic set of software metrics to an environment. The approach is applied in the Software Engineering Laboratory (SEL), a NASA Goddard production environment, to 49 candidate process and product metrics of 652 modules from six (51,000 to 112,000 lines) projects. For this particular environment, the method yielded the characteristic metric set (source lines, fault correction effort per executable statement, design effort, code effort, number of I/O parameters, number of versions). The uses examined for a characteristic metric set include forecasting the effort for development, modification, and fault correction of modules based on historical data.

  13. Principles of Faithful Execution in the implementation of trusted objects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George

    2003-09-01

    We begin with the following definitions: Definition: A trusted volume is the computing machinery (including communication lines) within which data is assumed to be physically protected from an adversary. A trusted volume provides both integrity and privacy. Definition: Program integrity consists of the protection necessary to enable the detection of changes in the bits comprising a program as specified by the developer, for the entire time that the program is outside a trusted volume. For ease of discussion we consider program integrity to be the aggregation of two elements: instruction integrity (detection of changes in the bits within an instructionmore » or block of instructions), and sequence integrity (detection of changes in the locations of instructions within a program). Definition: Faithful Execution (FE) is a type of software protection that begins when the software leaves the control of the developer and ends within the trusted volume of a target processor. That is, FE provides program integrity, even while the program is in execution. (As we will show below, FE schemes are a function of trusted volume size.) FE is a necessary quality for computing. Without it we cannot trust computations. In the early days of computing FE came for free since the software never left a trusted volume. At that time the execution environment was the same as the development environment. In some circles that environment was referred to as a ''closed shop:'' all of the software that was used there was developed there. When an organization bought a large computer from a vendor the organization would run its own operating system on that computer, use only its own editors, only its own compilers, only its own debuggers, and so on. However, with the continuing maturity of computing technology, FE becomes increasingly difficult to achieve« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William Eugene

    These slides describe different strategies for installing Python software. Although I am a big fan of Python software development, robust strategies for software installation remains a challenge. This talk describes several different installation scenarios. The Good: the user has administrative privileges - Installing on Windows with an installer executable, Installing with Linux application utility, Installing a Python package from the PyPI repository, and Installing a Python package from source. The Bad: the user does not have administrative privileges - Using a virtual environment to isolate package installations, and Using an installer executable on Windows with a virtual environment. The Ugly:more » the user needs to install an extension package from source - Installing a Python extension package from source, and PyCoinInstall - Managing builds for Python extension packages. The last item referring to PyCoinInstall describes a utility being developed for the COIN-OR software, which is used within the operations research community. COIN-OR includes a variety of Python and C++ software packages, and this script uses a simple plug-in system to support the management of package builds and installation.« less

  15. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  16. Using Semantic Templates to Study Vulnerabilities Recorded in Large Software Repositories

    ERIC Educational Resources Information Center

    Wu, Yan

    2011-01-01

    Software vulnerabilities allow an attacker to reduce a system's Confidentiality, Availability, and Integrity by exposing information, executing malicious code, and undermine system functionalities that contribute to the overall system purpose and need. With new vulnerabilities discovered everyday in a variety of applications and user environments,…

  17. Implementing Simulation Design of Experiments and Remote Execution on a High Performance Computing Cluster

    DTIC Science & Technology

    2007-09-01

    example, an application developed in Sun’s Netbeans [2007] integrated development environment (IDE) uses Swing class object for graphical user... Netbeans Version 5.5.1 [Computer Software]. Santa Clara, CA: Sun Microsystems. Process Modeler Version 7.0 [Computer Software]. Santa Clara, Ca

  18. A theoretical basis for the analysis of redundant software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

  19. Image-Processing Software For A Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Mazer, Alan S.; Groom, Steven L.; Williams, Winifred I.

    1992-01-01

    Concurrent Image Processing Executive (CIPE) is software system intended to develop and use image-processing application programs on concurrent computing environment. Designed to shield programmer from complexities of concurrent-system architecture, it provides interactive image-processing environment for end user. CIPE utilizes architectural characteristics of particular concurrent system to maximize efficiency while preserving architectural independence from user and programmer. CIPE runs on Mark-IIIfp 8-node hypercube computer and associated SUN-4 host computer.

  20. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  1. The role of metrics and measurements in a software intensive total quality management environment

    NASA Technical Reports Server (NTRS)

    Daniels, Charles B.

    1992-01-01

    Paramax Space Systems began its mission as a member of the Rockwell Space Operations Company (RSOC) team which was the successful bidder on a massive operations consolidation contract for the Mission Operations Directorate (MOD) at JSC. The contract awarded to the team was the Space Transportation System Operations Contract (STSOC). Our initial challenge was to accept responsibility for a very large, highly complex and fragmented collection of software from eleven different contractors and transform it into a coherent, operational baseline. Concurrently, we had to integrate a diverse group of people from eleven different companies into a single, cohesive team. Paramax executives recognized the absolute necessity to develop a business culture based on the concept of employee involvement to execute and improve the complex process of our new environment. Our executives clearly understood that management needed to set the example and lead the way to quality improvement. The total quality management policy and the metrics used in this endeavor are presented.

  2. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  3. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  4. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  5. eXascale PRogramming Environment and System Software (XPRESS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Barbara; Gabriel, Edgar

    Exascale systems, with a thousand times the compute capacity of today’s leading edge petascale computers, are expected to emerge during the next decade. Their software systems will need to facilitate the exploitation of exceptional amounts of concurrency in applications, and ensure that jobs continue to run despite the occurrence of system failures and other kinds of hard and soft errors. Adapting computations at runtime to cope with changes in the execution environment, as well as to improve power and performance characteristics, is likely to become the norm. As a result, considerable innovation is required to develop system support to meetmore » the needs of future computing platforms. The XPRESS project aims to develop and prototype a revolutionary software system for extreme-­scale computing for both exascale and strong­scaled problems. The XPRESS collaborative research project will advance the state-­of-­the-­art in high performance computing and enable exascale computing for current and future DOE mission-­critical applications and supporting systems. The goals of the XPRESS research project are to: A. enable exascale performance capability for DOE applications, both current and future, B. develop and deliver a practical computing system software X-­stack, OpenX, for future practical DOE exascale computing systems, and C. provide programming methods and environments for effective means of expressing application and system software for portable exascale system execution.« less

  6. Environment Modeling Using Runtime Values for JPF-Android

    NASA Technical Reports Server (NTRS)

    van der Merwe, Heila; Tkachuk, Oksana; Nel, Seal; van der Merwe, Brink; Visser, Willem

    2015-01-01

    Software applications are developed to be executed in a specific environment. This environment includes external native libraries to add functionality to the application and drivers to fire the application execution. For testing and verification, the environment of an application is simplified abstracted using models or stubs. Empty stubs, returning default values, are simple to generate automatically, but they do not perform well when the application expects specific return values. Symbolic execution is used to find input parameters for drivers and return values for library stubs, but it struggles to detect the values of complex objects. In this work-in-progress paper, we explore an approach to generate drivers and stubs based on values collected during runtime instead of using default values. Entry-points and methods that need to be modeled are instrumented to log their parameters and return values. The instrumented applications are then executed using a driver and instrumented libraries. The values collected during runtime are used to generate driver and stub values on- the-fly that improve coverage during verification by enabling the execution of code that previously crashed or was missed. We are implementing this approach to improve the environment model of JPF-Android, our model checking and analysis tool for Android applications.

  7. Continuation of research into software for space operations support, volume 1

    NASA Technical Reports Server (NTRS)

    Collier, Mark D.; Killough, Ronnie; Martin, Nancy L.

    1990-01-01

    A prototype workstation executive called the Hardware Independent Software Development Environment (HISDE) was developed. Software technologies relevant to workstation executives were researched and evaluated and HISDE was used as a test bed for prototyping efforts. New X Windows software concepts and technology were introduced into workstation executives and related applications. The four research efforts performed included: (1) Research into the usability and efficiency of Motif (an X Windows based graphic user interface) which consisted of converting the existing Athena widget based HISDE user interface to Motif demonstrating the usability of Motif and providing insight into the level of effort required to translate an application from widget to another; (2) Prototype a real time data display widget which consisted of research methods for and prototyping the selected method of displaying textual values in an efficient manner; (3) X Windows performance evaluation which consisted of a series of performance measurements which demonstrated the ability of low level X Windows to display textural information; (4) Convert the Display Manager to X Window/Motif which is the application used by NASA for data display during operational mode.

  8. Software as a service approach to sensor simulation software deployment

    NASA Astrophysics Data System (ADS)

    Webster, Steven; Miller, Gordon; Mayott, Gregory

    2012-05-01

    Traditionally, military simulation has been problem domain specific. Executing an exercise currently requires multiple simulation software providers to specialize, deploy, and configure their respective implementations, integrate the collection of software to achieve a specific system behavior, and then execute for the purpose at hand. This approach leads to rigid system integrations which require simulation expertise for each deployment due to changes in location, hardware, and software. Our alternative is Software as a Service (SaaS) predicated on the virtualization of Night Vision Electronic Sensors (NVESD) sensor simulations as an exemplary case. Management middleware elements layer self provisioning, configuration, and integration services onto the virtualized sensors to present a system of services at run time. Given an Infrastructure as a Service (IaaS) environment, enabled and managed system of simulations yields a durable SaaS delivery without requiring user simulation expertise. Persistent SaaS simulations would provide on demand availability to connected users, decrease integration costs and timelines, and benefit the domain community from immediate deployment of lessons learned.

  9. Software For Computing Reliability Of Other Software

    NASA Technical Reports Server (NTRS)

    Nikora, Allen; Antczak, Thomas M.; Lyu, Michael

    1995-01-01

    Computer Aided Software Reliability Estimation (CASRE) computer program developed for use in measuring reliability of other software. Easier for non-specialists in reliability to use than many other currently available programs developed for same purpose. CASRE incorporates mathematical modeling capabilities of public-domain Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) computer program and runs in Windows software environment. Provides menu-driven command interface; enabling and disabling of menu options guides user through (1) selection of set of failure data, (2) execution of mathematical model, and (3) analysis of results from model. Written in C language.

  10. Workflow-Based Software Development Environment

    NASA Technical Reports Server (NTRS)

    Izygon, Michel E.

    2013-01-01

    The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment

  11. Web-Based Environment for Maintaining Legacy Software

    NASA Technical Reports Server (NTRS)

    Tigges, Michael; Thompson, Nelson; Orr, Mark; Fox, Richard

    2007-01-01

    Advanced Tool Integration Environment (ATIE) is the name of both a software system and a Web-based environment created by the system for maintaining an archive of legacy software and expertise involved in developing the legacy software. ATIE can also be used in modifying legacy software and developing new software. The information that can be encapsulated in ATIE includes experts documentation, input and output data of tests cases, source code, and compilation scripts. All of this information is available within a common environment and retained in a database for ease of access and recovery by use of powerful search engines. ATIE also accommodates the embedment of supporting software that users require for their work, and even enables access to supporting commercial-off-the-shelf (COTS) software within the flow of the experts work. The flow of work can be captured by saving the sequence of computer programs that the expert uses. A user gains access to ATIE via a Web browser. A modern Web-based graphical user interface promotes efficiency in the retrieval, execution, and modification of legacy code. Thus, ATIE saves time and money in the support of new and pre-existing programs.

  12. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  13. Digitally-bypassed transducers: interfacing digital mockups to real-time medical equipment.

    PubMed

    Sirowy, Scott; Givargis, Tony; Vahid, Frank

    2009-01-01

    Medical device software is sometimes initially developed by using a PC simulation environment that executes models of both the device and a physiological system, and then later by connecting the actual medical device to a physical mockup of the physiological system. An alternative is to connect the medical device to a digital mockup of the physiological system, such that the device believes it is interacting with a physiological system, but in fact all interaction is entirely digital. Developing medical device software by interfacing with a digital mockup enables development without costly or dangerous physical mockups, and enables execution that is faster or slower than real time. We introduce digitally-bypassed transducers, which involve a small amount of hardware and software additions, and which enable interfacing with digital mockups.

  14. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  15. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  16. Programming Language Software For Graphics Applications

    NASA Technical Reports Server (NTRS)

    Beckman, Brian C.

    1993-01-01

    New approach reduces repetitive development of features common to different applications. High-level programming language and interactive environment with access to graphical hardware and software created by adding graphical commands and other constructs to standardized, general-purpose programming language, "Scheme". Designed for use in developing other software incorporating interactive computer-graphics capabilities into application programs. Provides alternative to programming entire applications in C or FORTRAN, specifically ameliorating design and implementation of complex control and data structures typifying applications with interactive graphics. Enables experimental programming and rapid development of prototype software, and yields high-level programs serving as executable versions of software-design documentation.

  17. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  18. Development of the FITS tools package for multiple software environments

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; Blackburn, J. K.

    1992-01-01

    The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.

  19. Building Software Agents for Planning, Monitoring, and Optimizing Travel

    DTIC Science & Technology

    2004-01-01

    defined as plans in the Theseus Agent Execution language (Barish et al. 2002). In the Web environment, sources can be quite slow and the latencies of...executor is based on a dataflow paradigm, actions are executed as soon as the data becomes available. Second, Theseus performs the actions in a...while Thesues provides an expressive language for defining information gathering and monitoring plans. The Theseus language supports capabilities

  20. Self-assembling software generator

    DOEpatents

    Bouchard, Ann M [Albuquerque, NM; Osbourn, Gordon C [Albuquerque, NM

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  1. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  2. Executive control systems in the engineering design environment

    NASA Technical Reports Server (NTRS)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  3. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    PubMed Central

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  4. Secure encapsulation and publication of biological services in the cloud computing environment.

    PubMed

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  5. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1993-01-01

    Over the past several years, it has been the primary goal of this grant to design and implement software to be used in the conceptual design of aerospace vehicles. The work carried out under this grant was performed jointly with members of the Vehicle Analysis Branch (VAB) of NASA LaRC, Computer Sciences Corp., and Vigyan Corp. This has resulted in the development of several packages and design studies. Primary among these are the interactive geometric modeling tool, the Solid Modeling Aerospace Research Tool (smart), and the integration and execution tools provided by the Environment for Application Software Integration and Execution (EASIE). In addition, it is the purpose of the personnel of this grant to provide consultation in the areas of structural design, algorithm development, and software development and implementation, particularly in the areas of computer aided design, geometric surface representation, and parallel algorithms.

  6. Application driven interface generation for EASIE. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kao, Ya-Chen

    1992-01-01

    The Environment for Application Software Integration and Execution (EASIE) provides a user interface and a set of utility programs which support the rapid integration and execution of analysis programs about a central relational database. EASIE provides users with two basic modes of execution. One of them is a menu-driven execution mode, called Application-Driven Execution (ADE), which provides sufficient guidance to review data, select a menu action item, and execute an application program. The other mode of execution, called Complete Control Execution (CCE), provides an extended executive interface which allows in-depth control of the design process. Currently, the EASIE system is based on alphanumeric techniques only. It is the purpose of this project to extend the flexibility of the EASIE system in the ADE mode by implementing it in a window system. Secondly, a set of utilities will be developed to assist the experienced engineer in the generation of an ADE application.

  7. Upgrading Custom Simulink Library Components for Use in Newer Versions of Matlab

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    The Spaceport Command and Control System (SCCS) at Kennedy Space Center (KSC) is a control system for monitoring and launching manned launch vehicles. Simulations of ground support equipment (GSE) and the launch vehicle systems are required throughout the life cycle of SCCS to test software, hardware, and procedures to train the launch team. The simulations of the GSE at the launch site in conjunction with off-line processing locations are developed using Simulink, a piece of Commercial Off-The-Shelf (COTS) software. The simulations that are built are then converted into code and ran in a simulation engine called Trick, a Government off-the-shelf (GOTS) piece of software developed by NASA. In the world of hardware and software, it is not uncommon to see the products that are utilized be upgraded and patched or eventually fade away into an obsolete status. In the case of SCCS simulation software, Matlab, a MathWorks product, has released a number of stable versions of Simulink since the deployment of the software on the Development Work Stations in the Linux environment (DWLs). The upgraded versions of Simulink has introduced a number of new tools and resources that, if utilized fully and correctly, will save time and resources during the overall development of the GSE simulation and its correlating documentation. Unfortunately, simply importing the already built simulations into the new Matlab environment will not suffice as it will produce results that may not be expected as they were in the version that is currently being utilized. Thus, an upgrade execution plan was developed and executed to fully upgrade the simulation environment to one of the latest versions of Matlab.

  8. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  9. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  10. Resource utilization during software development

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  11. The Jet Propulsion Laboratory shared control architecture and implementation

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad

    1990-01-01

    A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.

  12. Enabling Flexible and Continuous Capability Invocation in Mobile Prosumer Environments

    PubMed Central

    Alcarria, Ramon; Robles, Tomas; Morales, Augusto; López-de-Ipiña, Diego; Aguilera, Unai

    2012-01-01

    Mobile prosumer environments require the communication with heterogeneous devices during the execution of mobile services. These environments integrate sensors, actuators and smart devices, whose availability continuously changes. The aim of this paper is to design a reference architecture for implementing a model for continuous service execution and access to capabilities, i.e., the functionalities provided by these devices. The defined architecture follows a set of software engineering patterns and includes some communication paradigms to cope with the heterogeneity of sensors, actuators, controllers and other devices in the environment. In addition, we stress the importance of the flexibility in capability invocation by allowing the communication middleware to select the access technology and change the communication paradigm when dealing with smart devices, and by describing and evaluating two algorithms for resource access management. PMID:23012526

  13. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  14. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  15. Executable assertions and flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    Executable assertions are used to test flight control software. The techniques used for testing flight software; however, are different from the techniques used to test other kinds of software. This is because of the redundant nature of flight software. An experimental setup for testing flight software using executable assertions is described. Techniques for writing and using executable assertions to test flight software are presented. The error detection capability of assertions is studied and many examples of assertions are given. The issues of placement and complexity of assertions and the language features to support efficient use of assertions are discussed.

  16. Workflows and Provenance: Toward Information Science Solutions for the Natural Sciences.

    PubMed

    Gryk, Michael R; Ludäscher, Bertram

    2017-01-01

    The era of big data and ubiquitous computation has brought with it concerns about ensuring reproducibility in this new research environment. It is easy to assume computational methods self-document by their very nature of being exact, deterministic processes. However, similar to laboratory experiments, ensuring reproducibility in the computational realm requires the documentation of both the protocols used (workflows) as well as a detailed description of the computational environment: algorithms, implementations, software environments as well as the data ingested and execution logs of the computation. These two aspects of computational reproducibility (workflows and execution details) are discussed in the context of biomolecular Nuclear Magnetic Resonance spectroscopy (bioNMR) as well as the PRIMAD model for computational reproducibility.

  17. The Methodology for Developing Mobile Agent Application for Ubiquitous Environment

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kazutaka; Yoshioka, Nobukazu; Honiden, Shinichi

    A methodology which enables a flexible and reusable development of mobile agent application to a mobility aware indoor environment is provided in this study. The methodology is named Workflow-awareness model based on a concept of a pair of mobile agents cooperating to perform a given task. A monolithic mobile agent application with numerous concerns in a mobility aware setting is divided into a master agent (MA) and a shadow agent (SA) according to a type of tasks. The MA executes a main application logic which includes monitoring a user's physical movement and coordinating various services. The SA performs additional tasks depending on environments to aid the MA in achieving efficient execution without losing application logic. "Workflow-awareness (WFA)" means that the SA knows the MA's execution state transition so that the SA can provide a proper task at a proper timing. A prototype implementation of the methodology is done with a practical use of AspectJ. AspectJ is used to automate WFA by weaving communication modules to both MA and SA. Usefulness of this methodology concerning its efficiency and software engineering aspects are analyzed. As for the effectiveness, the overhead of WFA is relatively small to the whole expenditure time. And from the view of the software engineering, WFA is possible to provide a mechanism to deploy one application in various situations.

  18. Automated Environment Generation for Software Model Checking

    NASA Technical Reports Server (NTRS)

    Tkachuk, Oksana; Dwyer, Matthew B.; Pasareanu, Corina S.

    2003-01-01

    A key problem in model checking open systems is environment modeling (i.e., representing the behavior of the execution context of the system under analysis). Software systems are fundamentally open since their behavior is dependent on patterns of invocation of system components and values defined outside the system but referenced within the system. Whether reasoning about the behavior of whole programs or about program components, an abstract model of the environment can be essential in enabling sufficiently precise yet tractable verification. In this paper, we describe an approach to generating environments of Java program fragments. This approach integrates formally specified assumptions about environment behavior with sound abstractions of environment implementations to form a model of the environment. The approach is implemented in the Bandera Environment Generator (BEG) which we describe along with our experience using BEG to reason about properties of several non-trivial concurrent Java programs.

  19. The Environment for Application Software Integration and Execution (EASIE), version 1.0. Volume 2: Program integration guide

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Randall, Donald P.; Stallcup, Scott S.; Rowell, Lawrence F.

    1988-01-01

    The Environment for Application Software Integration and Execution, EASIE, provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational data base management system. In volume 2, the use of a SYSTEM LIBRARY PROCESSOR is used to construct a DATA DICTIONARY describing all relations defined in the data base, and a TEMPLATE LIBRARY. A TEMPLATE is a description of all subsets of relations (including conditional selection criteria and sorting specifications) to be accessed as input or output for a given application. Together, these form the SYSTEM LIBRARY which is used to automatically produce the data base schema, FORTRAN subroutines to retrieve/store data from/to the data base, and instructions to a generic REVIEWER program providing review/modification of data for a given template. Automation of these functions eliminates much of the tedious, error prone work required by the usual approach to data base integration.

  20. Open source software to control Bioflo bioreactors.

    PubMed

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW.

  1. Open Source Software to Control Bioflo Bioreactors

    PubMed Central

    Burdge, David A.; Libourel, Igor G. L.

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  2. Autonomous mission management for UAVs using soar intelligent agents

    NASA Astrophysics Data System (ADS)

    Gunetti, Paolo; Thompson, Haydn; Dodd, Tony

    2013-05-01

    State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.

  3. Analyzing the test process using structural coverage

    NASA Technical Reports Server (NTRS)

    Ramsey, James; Basili, Victor R.

    1985-01-01

    A large, commercially developed FORTRAN program was modified to produce structural coverage metrics. The modified program was executed on a set of functionally generated acceptance tests and a large sample of operational usage cases. The resulting structural coverage metrics are combined with fault and error data to evaluate structural coverage. It was shown that in the software environment the functionally generated tests seem to be a good approximation of operational use. The relative proportions of the exercised statement subclasses change as the structural coverage of the program increases. A method was also proposed for evaluating if two sets of input data exercise a program in a similar manner. Evidence was provided that implies that in this environment, faults revealed in a procedure are independent of the number of times the procedure is executed and that it may be reasonable to use procedure coverage in software models that use statement coverage. Finally, the evidence suggests that it may be possible to use structural coverage to aid in the management of the acceptance test processed.

  4. Dakota Graphical User Interface v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus

    Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.

  5. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  6. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  7. Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  8. Software reengineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III

    1991-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.

  9. Orchid: a novel management, annotation and machine learning framework for analyzing cancer mutations.

    PubMed

    Cario, Clinton L; Witte, John S

    2018-03-15

    As whole-genome tumor sequence and biological annotation datasets grow in size, number and content, there is an increasing basic science and clinical need for efficient and accurate data management and analysis software. With the emergence of increasingly sophisticated data stores, execution environments and machine learning algorithms, there is also a need for the integration of functionality across frameworks. We present orchid, a python based software package for the management, annotation and machine learning of cancer mutations. Building on technologies of parallel workflow execution, in-memory database storage and machine learning analytics, orchid efficiently handles millions of mutations and hundreds of features in an easy-to-use manner. We describe the implementation of orchid and demonstrate its ability to distinguish tissue of origin in 12 tumor types based on 339 features using a random forest classifier. Orchid and our annotated tumor mutation database are freely available at https://github.com/wittelab/orchid. Software is implemented in python 2.7, and makes use of MySQL or MemSQL databases. Groovy 2.4.5 is optionally required for parallel workflow execution. JWitte@ucsf.edu. Supplementary data are available at Bioinformatics online.

  10. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  11. Multidisciplinary Optimization for Aerospace Using Genetic Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Hahn, Edward E.; Herrera, Claudia Y.

    2007-01-01

    In support of the ARMD guidelines NASA's Dryden Flight Research Center is developing a multidisciplinary design and optimization tool This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Optimization has made its way into many mainstream applications. For example NASTRAN(TradeMark) has its solution sequence 200 for Design Optimization, and MATLAB(TradeMark) has an Optimization Tool box. Other packages, such as ZAERO(TradeMark) aeroelastic panel code and the CFL3D(TradeMark) Navier-Stokes solver have no built in optimizer. The goal of the tool development is to generate a central executive capable of using disparate software packages ina cross platform network environment so as to quickly perform optimization and design tasks in a cohesive streamlined manner. A provided figure (Figure 1) shows a typical set of tools and their relation to the central executive. Optimization can take place within each individual too, or in a loop between the executive and the tool, or both.

  12. An ontology-based semantic configuration approach to constructing Data as a Service for enterprises

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi

    2016-03-01

    To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.

  13. Tool Integration and Environment Architectures

    DTIC Science & Technology

    1991-05-01

    include the Interactive Development Environment (IDE) Software Through Pictures (STP), Sabre-C and FrameMaker coalition, and the Verdix Ada Development...System (VADS) APSE, which includes the VADS compiler and choices of CADRE Teamwork or STP and FrameMaker or Interleaf. The key characteristic of...remote procedure execution to achieve a simulation of a homoge- neous repository (i.e., a simulation that the data in a FrameMaker document resides in one

  14. Verifying Diagnostic Software

    NASA Technical Reports Server (NTRS)

    Lindsey, Tony; Pecheur, Charles

    2004-01-01

    Livingstone PathFinder (LPF) is a simulation-based computer program for verifying autonomous diagnostic software. LPF is designed especially to be applied to NASA s Livingstone computer program, which implements a qualitative-model-based algorithm that diagnoses faults in a complex automated system (e.g., an exploratory robot, spacecraft, or aircraft). LPF forms a software test bed containing a Livingstone diagnosis engine, embedded in a simulated operating environment consisting of a simulator of the system to be diagnosed by Livingstone and a driver program that issues commands and faults according to a nondeterministic scenario provided by the user. LPF runs the test bed through all executions allowed by the scenario, checking for various selectable error conditions after each step. All components of the test bed are instrumented, so that execution can be single-stepped both backward and forward. The architecture of LPF is modular and includes generic interfaces to facilitate substitution of alternative versions of its different parts. Altogether, LPF provides a flexible, extensible framework for simulation-based analysis of diagnostic software; these characteristics also render it amenable to application to diagnostic programs other than Livingstone.

  15. Automatic programming for critical applications

    NASA Technical Reports Server (NTRS)

    Loganantharaj, Raj L.

    1988-01-01

    The important phases of a software life cycle include verification and maintenance. Usually, the execution performance is an expected requirement in a software development process. Unfortunately, the verification and the maintenance of programs are the time consuming and the frustrating aspects of software engineering. The verification cannot be waived for the programs used for critical applications such as, military, space, and nuclear plants. As a consequence, synthesis of programs from specifications, an alternative way of developing correct programs, is becoming popular. The definition, or what is understood by automatic programming, has been changed with our expectations. At present, the goal of automatic programming is the automation of programming process. Specifically, it means the application of artificial intelligence to software engineering in order to define techniques and create environments that help in the creation of high level programs. The automatic programming process may be divided into two phases: the problem acquisition phase and the program synthesis phase. In the problem acquisition phase, an informal specification of the problem is transformed into an unambiguous specification while in the program synthesis phase such a specification is further transformed into a concrete, executable program.

  16. A Virtual Laboratory for Digital Signal Processing

    ERIC Educational Resources Information Center

    Dow, Chyi-Ren; Li, Yi-Hsung; Bai, Jin-Yu

    2006-01-01

    This work designs and implements a virtual digital signal processing laboratory, VDSPL. VDSPL consists of four parts: mobile agent execution environments, mobile agents, DSP development software, and DSP experimental platforms. The network capability of VDSPL is created by using mobile agent and wrapper techniques without modifying the source code…

  17. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  18. System architecture for asynchronous multi-processor robotic control system

    NASA Technical Reports Server (NTRS)

    Steele, Robert D.; Long, Mark; Backes, Paul

    1993-01-01

    The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.

  19. SMART: Analyzing the Reuse Potential of Legacy Systems in Service- Oriented Architecture (SOA) Environments

    DTIC Science & Technology

    2009-04-09

    technical faculty for the Master in Software Engineering program at CMU. Grace holds a B.Sc. in Systems Engineering and an Executive MBA from Icesi...University in Cali, Colombia ; and a Master in Software Engineering from Carnegie Mellon University. 3 Version 1.7.3—SEI Webinar—April 2009 © 2009 Carnegie...Resources and Training SMART Report • http://www.sei.cmu.edu/publications/documents/08.reports/08tn008.html Public Courses • Migration of Legacy

  20. Using recurrence plot analysis for software execution interpretation and fault detection

    NASA Astrophysics Data System (ADS)

    Mosdorf, M.

    2015-09-01

    This paper shows a method targeted at software execution interpretation and fault detection using recurrence plot analysis. In in the proposed approach recurrence plot analysis is applied to software execution trace that contains executed assembly instructions. Results of this analysis are subject to further processing with PCA (Principal Component Analysis) method that simplifies number coefficients used for software execution classification. This method was used for the analysis of five algorithms: Bubble Sort, Quick Sort, Median Filter, FIR, SHA-1. Results show that some of the collected traces could be easily assigned to particular algorithms (logs from Bubble Sort and FIR algorithms) while others are more difficult to distinguish.

  1. MAX - An advanced parallel computer for space applications

    NASA Technical Reports Server (NTRS)

    Lewis, Blair F.; Bunker, Robert L.

    1991-01-01

    MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.

  2. Bridging the gap between PAT concepts and implementation: An integrated software platform for fermentation.

    PubMed

    Chopda, Viki R; Gomes, James; Rathore, Anurag S

    2016-01-01

    Bioreactor control significantly impacts both the amount and quality of the product being manufactured. The complexity of the control strategy that is implemented increases with reactor size, which may vary from thousands to tens of thousands of litres in commercial manufacturing. The Process Analytical Technology (PAT) initiative has highlighted the need for having robust monitoring tools and effective control schemes that are capable of taking real time information about the critical quality attributes (CQA) and the critical process parameters (CPP) and executing immediate response as soon as a deviation occurs. However, the limited flexibility that present commercial software packages offer creates a hurdle. Visual programming environments have gradually emerged as potential alternatives to the available text based languages. This paper showcases development of an integrated programme using a visual programming environment for a Sartorius BIOSTAT® B Plus 5L bioreactor through which various peripheral devices are interfaced. The proposed programme facilitates real-time access to data and allows for execution of control actions to follow the desired trajectory. Major benefits of such integrated software system include: (i) improved real time monitoring and control; (ii) reduced variability; (iii) improved performance; (iv) reduced operator-training time; (v) enhanced knowledge management; and (vi) easier PAT implementation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)

    2002-01-01

    NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.

  4. Rover Attitude and Pointing System Simulation Testbed

    NASA Technical Reports Server (NTRS)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  5. Exact and Approximate Probabilistic Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Luckow, Kasper; Pasareanu, Corina S.; Dwyer, Matthew B.; Filieri, Antonio; Visser, Willem

    2014-01-01

    Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also introduce approximate algorithms to search for good schedulers, speeding up established random sampling and reinforcement learning results through the quantification of path probabilities based on symbolic execution. We implemented the techniques in Symbolic PathFinder and evaluated them on nondeterministic Java programs. We show that our algorithms significantly improve upon a state-of- the-art statistical model checking algorithm, originally developed for Markov Decision Processes.

  6. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Brown, E. N.; Yoon, W. C.

    1983-01-01

    The use of advanced software engineering methods (e.g., from artificial intelligence) to aid aircraft crews in procedure selection and execution is investigated. Human problem solving in dynamic environments as effected by the human's level of knowledge of system operations is examined. Progress on the development of full scale simulation facilities is also discussed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao

    Sparx, a new environment for Cryo-EM image processing; Cryo-EM, Single particle reconstruction, principal component analysis; Hardware Req.: PC, MAC, Supercomputer, Mainframe, Multiplatform, Workstation. Software Req.: operating system is Unix; Compiler C++; type of files: source code, object library, executable modules, compilation instructions; sample problem input data. Location/transmission: http://sparx-em.org; User manual & paper: http://sparx-em.org;

  8. Mining dynamic noteworthy functions in software execution sequences.

    PubMed

    Zhang, Bing; Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong

    2017-01-01

    As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely.

  9. Sample Analysis at Mars Instrument Simulator

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.

  10. A Knowledge Management Approach to Support Software Process Improvement Implementation Initiatives

    NASA Astrophysics Data System (ADS)

    Montoni, Mariano Angel; Cerdeiral, Cristina; Zanetti, David; Cavalcanti da Rocha, Ana Regina

    The success of software process improvement (SPI) implementation initiatives depends fundamentally of the strategies adopted to support the execution of such initiatives. Therefore, it is essential to define adequate SPI implementation strategies aiming to facilitate the achievement of organizational business goals and to increase the benefits of process improvements. The objective of this work is to present an approach to support the execution of SPI implementation initiatives. We also describe a methodology applied to capture knowledge related to critical success factors that influence SPI initiatives. This knowledge was used to define effective SPI strategies aiming to increase the success of SPI initiatives coordinated by a specific SPI consultancy organization. This work also presents the functionalities of a set of tools integrated in a process-centered knowledge management environment, named CORE-KM, customized to support the presented approach.

  11. An overview of platforms for cloud based development.

    PubMed

    Fylaktopoulos, G; Goumas, G; Skolarikis, M; Sotiropoulos, A; Maglogiannis, I

    2016-01-01

    This paper provides an overview of the state of the art technologies for software development in cloud environments. The surveyed systems cover the whole spectrum of cloud-based development including integrated programming environments, code repositories, software modeling, composition and documentation tools, and application management and orchestration. In this work we evaluate the existing cloud development ecosystem based on a wide number of characteristics like applicability (e.g. programming and database technologies supported), productivity enhancement (e.g. editor capabilities, debugging tools), support for collaboration (e.g. repository functionality, version control) and post-development application hosting and we compare the surveyed systems. The conducted survey proves that software engineering in the cloud era has made its initial steps showing potential to provide concrete implementation and execution environments for cloud-based applications. However, a number of important challenges need to be addressed for this approach to be viable. These challenges are discussed in the article, while a conclusion is drawn that although several steps have been made, a compact and reliable solution does not yet exist.

  12. Space Station Information Systems

    NASA Technical Reports Server (NTRS)

    Pittman, Clarence W.

    1988-01-01

    The utility of the Space Station is improved, the ability to manage and integrate its development and operation enhanced, and the cost and risk of developing the software for it is minimized by three major information systems. The Space Station Information System (SSIS) provides for the transparent collection and dissemination of operational information to all users and operators. The Technical and Management Information System (TMIS) provides all the developers with timely and consistent program information and a project management 'window' to assess the project status. The Software Support Environment (SSE) provides automated tools and standards to be used by all software developers. Together, these three systems are vital to the successful execution of the program.

  13. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders

  14. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.

  15. Solving the Software Legacy Problem with RISA

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Gabriel, C.

    2012-09-01

    Nowadays hardware and system infrastructure evolve on time scales much shorter than the typical duration of space astronomy missions. Data processing software capabilities have to evolve to preserve the scientific return during the entire experiment life time. Software preservation is a key issue that has to be tackled before the end of the project to keep the data usable over many years. We present RISA (Remote Interface to Science Analysis) as a solution to decouple data processing software and infrastructure life-cycles, using JAVA applications and web-services wrappers to existing software. This architecture employs embedded SAS in virtual machines assuring a homogeneous job execution environment. We will also present the first studies to reactivate the data processing software of the EXOSAT mission, the first ESA X-ray astronomy mission launched in 1983, using the generic RISA approach.

  16. A streamlined software environment for situated skills

    NASA Technical Reports Server (NTRS)

    Yu, Sophia T.; Slack, Marc G.; Miller, David P.

    1994-01-01

    This paper documents a powerful set of software tools used for developing situated skills. These situated skills form the reactive level of a three-tiered intelligent agent architecture. The architecture is designed to allow these skills to be manipulated by a task level engine which is monitoring the current situation and selecting skills necessary for the current task. The idea is to coordinate the dynamic activations and deactivations of these situated skills in order to configure the reactive layer for the task at hand. The heart of the skills environment is a data flow mechanism which pipelines the currently active skills for execution. A front end graphical interface serves as a debugging facility during skill development and testing. We are able to integrate skills developed in different languages into the skills environment. The power of the skills environment lies in the amount of time it saves for the programmer to develop code for the reactive layer of a robot.

  17. Writing executable assertions to test flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  18. Development of a Dynamic Time Sharing Scheduled Environment Final Report CRADA No. TC-824-94E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jette, M.; Caliga, D.

    Massively parallel computers, such as the Cray T3D, have historically supported resource sharing solely with space sharing. In that method, multiple problems are solved by executing them on distinct processors. This project developed a dynamic time- and space-sharing scheduler to achieve greater interactivity and throughput than could be achieved with space-sharing alone. CRI and LLNL worked together on the design, testing, and review aspects of this project. There were separate software deliverables. CFU implemented a general purpose scheduling system as per the design specifications. LLNL ported the local gang scheduler software to the LLNL Cray T3D. In this approach, processorsmore » are allocated simultaneously to aU components of a parallel program (in a “gang”). Program execution is preempted as needed to provide for interactivity. Programs are also reIocated to different processors as needed to efficiently pack the computer’s torus of processors. In phase one, CRI developed an interface specification after discussions with LLNL for systemlevel software supporting a time- and space-sharing environment on the LLNL T3D. The two parties also discussed interface specifications for external control tools (such as scheduling policy tools, system administration tools) and applications programs. CRI assumed responsibility for the writing and implementation of all the necessary system software in this phase. In phase two, CRI implemented job-rolling on the Cray T3D, a mechanism for preempting a program, saving its state to disk, and later restoring its state to memory for continued execution. LLNL ported its gang scheduler to the LLNL T3D utilizing the CRI interface implemented in phases one and two. During phase three, the functionality and effectiveness of the LLNL gang scheduler was assessed to provide input to CRI time- and space-sharing, efforts. CRI will utilize this information in the development of general schedulers suitable for other sites and future architectures.« less

  19. Community-driven computational biology with Debian Linux.

    PubMed

    Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles

    2010-12-21

    The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.

  20. GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging.

    PubMed

    Gabr, Refaat E; Tefera, Getaneh B; Allen, William J; Pednekar, Amol S; Narayana, Ponnada A

    2017-03-01

    We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols. GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer. GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast. GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.

  1. The Scientific Filesystem.

    PubMed

    Sochat, Vanessa

    2018-05-01

    Here, we present the Scientific Filesystem (SCIF), an organizational format that supports exposure of executables and metadata for discoverability of scientific applications. The format includes a known filesystem structure, a definition for a set of environment variables describing it, and functions for generation of the variables and interaction with the libraries, metadata, and executables located within. SCIF makes it easy to expose metadata, multiple environments, installation steps, files, and entry points to render scientific applications consistent, modular, and discoverable. A SCIF can be installed on a traditional host or in a container technology such as Docker or Singularity. We start by reviewing the background and rationale for the SCIF, followed by an overview of the specification and the different levels of internal modules ("apps") that the organizational format affords. Finally, we demonstrate that SCIF is useful by implementing and discussing several use cases that improve user interaction and understanding of scientific applications. SCIF is released along with a client and integration in the Singularity 2.4 software to quickly install and interact with SCIF. When used inside of a reproducible container, a SCIF is a recipe for reproducibility and introspection of the functions and users that it serves. We use SCIF to evaluate container software, provide metrics, serve scientific workflows, and execute a primary function under different contexts. To encourage collaboration and sharing of applications, we developed tools along with an open source, version-controlled, tested, and programmatically accessible web infrastructure. SCIF and associated resources are available at https://sci-f.github.io. The ease of using SCIF, especially in the context of containers, offers promise for scientists' work to be self-documenting and programatically parseable for maximum reproducibility. SCIF opens up an abstraction from underlying programming languages and packaging logic to work with scientific applications, opening up new opportunities for scientific software development.

  2. Automatic Detection of Previously-Unseen Application States for Deployment Environment Testing and Analysis

    PubMed Central

    Murphy, Christian; Vaughan, Moses; Ilahi, Waseem; Kaiser, Gail

    2010-01-01

    For large, complex software systems, it is typically impossible in terms of time and cost to reliably test the application in all possible execution states and configurations before releasing it into production. One proposed way of addressing this problem has been to continue testing and analysis of the application in the field, after it has been deployed. A practical limitation of many such automated approaches is the potentially high performance overhead incurred by the necessary instrumentation. However, it may be possible to reduce this overhead by selecting test cases and performing analysis only in previously-unseen application states, thus reducing the number of redundant tests and analyses that are run. Solutions for fault detection, model checking, security testing, and fault localization in deployed software may all benefit from a technique that ignores application states that have already been tested or explored. In this paper, we present a solution that ensures that deployment environment tests are only executed in states that the application has not previously encountered. In addition to discussing our implementation, we present the results of an empirical study that demonstrates its effectiveness, and explain how the new approach can be generalized to assist other automated testing and analysis techniques intended for the deployment environment. PMID:21197140

  3. User's guide to programming fault injection and data acquisition in the SIFT environment

    NASA Technical Reports Server (NTRS)

    Elks, Carl R.; Green, David F.; Palumbo, Daniel L.

    1987-01-01

    Described are the features, command language, and functional design of the SIFT (Software Implemented Fault Tolerance) fault injection and data acquisition interface software. The document is also intended to assist and guide the SIFT user in defining, developing, and executing SIFT fault injection experiments and the subsequent collection and reduction of that fault injection data. It is also intended to be used in conjunction with the SIFT User's Guide (NASA Technical Memorandum 86289) for reference to SIFT system commands, procedures and functions, and overall guidance in SIFT system programming.

  4. Mining dynamic noteworthy functions in software execution sequences

    PubMed Central

    Huang, Guoyan; Wang, Yuqian; He, Haitao; Ren, Jiadong

    2017-01-01

    As the quality of crucial entities can directly affect that of software, their identification and protection become an important premise for effective software development, management, maintenance and testing, which thus contribute to improving the software quality and its attack-defending ability. Most analysis and evaluation on important entities like codes-based static structure analysis are on the destruction of the actual software running. In this paper, from the perspective of software execution process, we proposed an approach to mine dynamic noteworthy functions (DNFM)in software execution sequences. First, according to software decompiling and tracking stack changes, the execution traces composed of a series of function addresses were acquired. Then these traces were modeled as execution sequences and then simplified so as to get simplified sequences (SFS), followed by the extraction of patterns through pattern extraction (PE) algorithm from SFS. After that, evaluating indicators inner-importance and inter-importance were designed to measure the noteworthiness of functions in DNFM algorithm. Finally, these functions were sorted by their noteworthiness. Comparison and contrast were conducted on the experiment results from two traditional complex network-based node mining methods, namely PageRank and DegreeRank. The results show that the DNFM method can mine noteworthy functions in software effectively and precisely. PMID:28278276

  5. Compiling software for a hierarchical distributed processing system

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  6. Scalability and Validation of Big Data Bioinformatics Software.

    PubMed

    Yang, Andrian; Troup, Michael; Ho, Joshua W K

    2017-01-01

    This review examines two important aspects that are central to modern big data bioinformatics analysis - software scalability and validity. We argue that not only are the issues of scalability and validation common to all big data bioinformatics analyses, they can be tackled by conceptually related methodological approaches, namely divide-and-conquer (scalability) and multiple executions (validation). Scalability is defined as the ability for a program to scale based on workload. It has always been an important consideration when developing bioinformatics algorithms and programs. Nonetheless the surge of volume and variety of biological and biomedical data has posed new challenges. We discuss how modern cloud computing and big data programming frameworks such as MapReduce and Spark are being used to effectively implement divide-and-conquer in a distributed computing environment. Validation of software is another important issue in big data bioinformatics that is often ignored. Software validation is the process of determining whether the program under test fulfils the task for which it was designed. Determining the correctness of the computational output of big data bioinformatics software is especially difficult due to the large input space and complex algorithms involved. We discuss how state-of-the-art software testing techniques that are based on the idea of multiple executions, such as metamorphic testing, can be used to implement an effective bioinformatics quality assurance strategy. We hope this review will raise awareness of these critical issues in bioinformatics.

  7. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    PubMed

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  8. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    NASA Technical Reports Server (NTRS)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  9. Future Standardization of Space Telecommunications Radio System with Core Flight System

    NASA Technical Reports Server (NTRS)

    Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.

  10. Executive control systems in the engineering design environment. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hurst, P. W.

    1985-01-01

    An executive control system (ECS) is a software structure for unifying various applications codes into a comprehensive system. It provides a library of applications, a uniform access method through a cental user interface, and a data management facility. A survey of twenty-four executive control systems designed to unify various CAD/CAE applications for use in diverse engineering design environments within government and industry was conducted. The goals of this research were to establish system requirements to survey state-of-the-art architectural design approaches, and to provide an overview of the historical evolution of these systems. Foundations for design are presented and include environmental settings, system requirements, major architectural components, and a system classification scheme based on knowledge of the supported engineering domain(s). An overview of the design approaches used in developing the major architectural components of an ECS is presented with examples taken from the surveyed systems. Attention is drawn to four major areas of ECS development: interdisciplinary usage; standardization; knowledge utilization; and computer science technology transfer.

  11. CAD/CAM approach to improving industry productivity gathers momentum

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  12. Reproducible Earth observation analytics: challenges, ideas, and a study case on containerized land use change detection

    NASA Astrophysics Data System (ADS)

    Appel, Marius; Nüst, Daniel; Pebesma, Edzer

    2017-04-01

    Geoscientific analyses of Earth observation data typically involve a long path from data acquisition to scientific results and conclusions. Before starting the actual processing, scenes must be downloaded from the providers' platforms and the computing infrastructure needs to be prepared. The computing environment often requires specialized software, which in turn might have lots of dependencies. The software is often highly customized and provided without commercial support, which leads to rather ad-hoc systems and irreproducible results. To let other scientists reproduce the analyses, the full workspace including data, code, the computing environment, and documentation must be bundled and shared. Technologies such as virtualization or containerization allow for the creation of identical computing environments with relatively little effort. Challenges, however, arise when the volume of the data is too large, when computations are done in a cluster environment, or when complex software components such as databases are used. We discuss these challenges for the example of scalable Land use change detection on Landsat imagery. We present a reproducible implementation that runs R and the scalable data management and analytical system SciDB within a Docker container. Thanks to an explicit container recipe (the Dockerfile), this enables the all-in-one reproduction including the installation of software components, the ingestion of the data, and the execution of the analysis in a well-defined environment. We furthermore discuss possibilities how the implementation could be transferred to multi-container environments in order to support reproducibility on large cluster environments.

  13. Oak Ridge Institutional Cluster Autotune Test Drive Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jibonananda, Sanyal; New, Joshua Ryan

    2014-02-01

    The Oak Ridge Institutional Cluster (OIC) provides general purpose computational resources for the ORNL staff to run computation heavy jobs that are larger than desktop applications but do not quite require the scale and power of the Oak Ridge Leadership Computing Facility (OLCF). This report details the efforts made and conclusions derived in performing a short test drive of the cluster resources on Phase 5 of the OIC. EnergyPlus was used in the analysis as a candidate user program and the overall software environment was evaluated against anticipated challenges experienced with resources such as the shared memory-Nautilus (JICS) and Titanmore » (OLCF). The OIC performed within reason and was found to be acceptable in the context of running EnergyPlus simulations. The number of cores per node and the availability of scratch space per node allow non-traditional desktop focused applications to leverage parallel ensemble execution. Although only individual runs of EnergyPlus were executed, the software environment on the OIC appeared suitable to run ensemble simulations with some modifications to the Autotune workflow. From a standpoint of general usability, the system supports common Linux libraries, compilers, standard job scheduling software (Torque/Moab), and the OpenMPI library (the only MPI library) for MPI communications. The file system is a Panasas file system which literature indicates to be an efficient file system.« less

  14. Advanced software techniques for data management systems. Volume 1: Study of software aspects of the phase B space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1972-01-01

    An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.

  15. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  16. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  17. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  18. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  19. A Biosequence-based Approach to Software Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Peterson, Elena S.; Phillips, Aaron R.

    For many applications, it is desirable to have some process for recognizing when software binaries are closely related without relying on them to be identical or have identical segments. Some examples include monitoring utilization of high performance computing centers or service clouds, detecting freeware in licensed code, and enforcing application whitelists. But doing so in a dynamic environment is a nontrivial task because most approaches to software similarity require extensive and time-consuming analysis of a binary, or they fail to recognize executables that are similar but nonidentical. Presented herein is a novel biosequence-based method for quantifying similarity of executable binaries.more » Using this method, it is shown in an example application on large-scale multi-author codes that 1) the biosequence-based method has a statistical performance in recognizing and distinguishing between a collection of real-world high performance computing applications better than 90% of ideal; and 2) an example of using family tree analysis to tune identification for a code subfamily can achieve better than 99% of ideal performance.« less

  20. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    NASA Technical Reports Server (NTRS)

    Liebowitz, J.

    1985-01-01

    The development of an expert system prototype for determining software functional requirements for NASA Goddard's Command Management System (CMS) is described. The role of the CMS is to transform general requests into specific spacecraft commands with command execution conditions. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Subjects covered include: the problem environment of determining CMS software functional requirements; the expert system approach for handling CMS requirements development; validation and evaluation procedures for the expert system.

  1. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  2. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  3. Protection of Mobile Agents Execution Using a Modified Self-Validating Branch-Based Software Watermarking with External Sentinel

    NASA Astrophysics Data System (ADS)

    Tomàs-Buliart, Joan; Fernández, Marcel; Soriano, Miguel

    Critical infrastructures are usually controlled by software entities. To monitor the well-function of these entities, a solution based in the use of mobile agents is proposed. Some proposals to detect modifications of mobile agents, as digital signature of code, exist but they are oriented to protect software against modification or to verify that an agent have been executed correctly. The aim of our proposal is to guarantee that the software is being executed correctly by a non trusted host. The way proposed to achieve this objective is by the improvement of the Self-Validating Branch-Based Software Watermarking by Myles et al.. The proposed modification is the incorporation of an external element called sentinel which controls branch targets. This technique applied in mobile agents can guarantee the correct operation of an agent or, at least, can detect suspicious behaviours of a malicious host during the execution of the agent instead of detecting when the execution of the agent have finished.

  4. An Integrated Textbook, Video, and Software Environment for Novice and Expert Prolog Programmers. Technical Report No. 23.

    ERIC Educational Resources Information Center

    Eisenstadt, Marc; Brayshaw, Mike

    This paper describes a Prolog execution model which serves as the uniform basis of textbook material, video-based teaching material, and an advanced graphical user interface for Prolog programmers. The model, based upon an augmented AND/OR tree representation of Prolog programs, uses an enriched "status box" in place of the traditional…

  5. Ffuzz: Towards full system high coverage fuzz testing on binary executables

    PubMed Central

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool—Ffuzz—on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently. PMID:29791469

  6. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models.

    PubMed

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients.

  7. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models

    PubMed Central

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A.

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients. PMID:25374542

  8. Architecture for the Next Generation System Management Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallard, Jerome; Lebre, I Adrien; Morin, Christine

    2011-01-01

    To get more results or greater accuracy, computational scientists execute their applications on distributed computing platforms such as Clusters, Grids and Clouds. These platforms are different in terms of hardware and software resources as well as locality: some span across multiple sites and multiple administrative domains whereas others are limited to a single site/domain. As a consequence, in order to scale their applica- tions up the scientists have to manage technical details for each target platform. From our point of view, this complexity should be hidden from the scientists who, in most cases, would prefer to focus on their researchmore » rather than spending time dealing with platform configuration concerns. In this article, we advocate for a system management framework that aims to automatically setup the whole run-time environment according to the applications needs. The main difference with regards to usual approaches is that they generally only focus on the software layer whereas we address both the hardware and the software expecta- tions through a unique system. For each application, scientists describe their requirements through the definition of a Virtual Platform (VP) and a Virtual System Environment (VSE). Relying on the VP/VSE definitions, the framework is in charge of: (i) the configuration of the physical infrastructure to satisfy the VP requirements, (ii) the setup of the VP, and (iii) the customization of the execution environment (VSE) upon the former VP. We propose a new formalism that the system can rely upon to successfully perform each of these three steps without burdening the user with the specifics of the configuration for the physical resources, and system management tools. This formalism leverages Goldberg s theory for recursive virtual machines by introducing new concepts based on system virtualization (identity, partitioning, aggregation) and emulation (simple, abstraction). This enables the definition of complex VP/VSE configurations without making assumptions about the hardware and the software re- sources. For each requirement, the system executes the corresponding operation with the appropriate management tool. As a proof of concept, we implemented a first prototype that currently interacts with several system management tools (e.g., OSCAR, the Grid 5000 toolkit, and XtreemOS) and that can be easily extended to integrate new resource brokers or cloud systems such as Nimbus, OpenNebula or Eucalyptus for instance.« less

  9. Production Maintenance Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Gabler, David Skinner

    2005-11-01

    PMI is a XML framework for formulating tests of software and software environments which operate in a relatively push button manner, i.e., can be automated, and that provide results that are readily consumable/publishable via RSS. Insofar as possible the tests are carried out in manner congruent with real usage. PMI drives shell scripts via a perl program which is charge of timing, validating each test, and controlling the flow through sets of tests. Testing in PMI is built up hierarchically. A suite of tests may start by testing basic functionalities (file system is writable, compiler is found and functions, shellmore » environment behaves as expected, etc.) and work up to large more complicated activities (execution of parallel code, file transfers, etc.) At each step in this hierarchy a failure leads to generation of a text message or RSS that can be tagged as to who should be notified of the failure. There are two functionalities that PMI has been directed at. 1) regular and automated testing of multi user environments and 2) version-wise testing of new software releases prior to their deployment in a production mode.« less

  10. A Hardware-in-the-Loop Simulator for Software Development for a Mars Airplane

    NASA Technical Reports Server (NTRS)

    Slagowski, Stefan E.; Vican, Justin E.; Kenney, P. Sean

    2007-01-01

    Draper Laboratory recently developed a Hardware-In-The-Loop Simulator (HILSIM) to provide a simulation of the Aerial Regional-scale Environmental Survey (ARES) airplane executing a mission in the Martian environment. The HILSIM was used to support risk mitigation activities under the Planetary Airplane Risk Reduction (PARR) program. PARR supported NASA Langley Research Center's (LaRC) ARES proposal efforts for the Mars Scout 2011 opportunity. The HILSIM software was a successful integration of two simulation frameworks, Draper's CSIM and NASA LaRC's Langley Standard Real-Time Simulation in C++ (LaSRS++).

  11. Software attribute visualization for high integrity software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-03-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification.

  12. Software fault tolerance in computer operating systems

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  13. A theoretical basis for the analysis of multiversion software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques (known as fault-tolerant software) is an understanding of the impact of multiple joint occurrences of errors, referred to here as coincident errors. A theoretical basis for the study of redundant software is developed which: (1) provides a probabilistic framework for empirically evaluating the effectiveness of a general multiversion strategy when component versions are subject to coincident errors, and (2) permits an analytical study of the effects of these errors. An intensity function, called the intensity of coincident errors, has a central role in this analysis. This function describes the propensity of programmers to introduce design faults in such a way that software components fail together when executing in the application environment. A condition under which a multiversion system is a better strategy than relying on a single version is given.

  14. LISP as an Environment for Software Design: Powerful and Perspicuous

    PubMed Central

    Blum, Robert L.; Walker, Michael G.

    1986-01-01

    The LISP language provides a useful set of features for prototyping knowledge-intensive, clinical applications software that is not found In most other programing environments. Medical computer programs that need large medical knowledge bases, such as programs for diagnosis, therapeutic consultation, education, simulation, and peer review, are hard to design, evolve continually, and often require major revisions. They necessitate an efficient and flexible program development environment. The LISP language and programming environments bullt around it are well suited for program prototyping. The lingua franca of artifical intelligence researchers, LISP facllitates bullding complex systems because it is simple yet powerful. Because of its simplicity, LISP programs can read, execute, modify and even compose other LISP programs at run time. Hence, it has been easy for system developers to create programming tools that greatly speed the program development process, and that may be easily extended by users. This has resulted in the creation of many useful graphical interfaces, editors, and debuggers, which facllitate the development of knowledge-intensive medical applications.

  15. Community-driven computational biology with Debian Linux

    PubMed Central

    2010-01-01

    Background The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. Results The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Conclusions Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers. PMID:21210984

  16. Parallel Execution of Functional Mock-up Units in Buildings Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; New, Joshua Ryan

    2016-06-30

    A Functional Mock-up Interface (FMI) defines a standardized interface to be used in computer simulations to develop complex cyber-physical systems. FMI implementation by a software modeling tool enables the creation of a simulation model that can be interconnected, or the creation of a software library called a Functional Mock-up Unit (FMU). This report describes an FMU wrapper implementation that imports FMUs into a C++ environment and uses an Euler solver that executes FMUs in parallel using Open Multi-Processing (OpenMP). The purpose of this report is to elucidate the runtime performance of the solver when a multi-component system is imported asmore » a single FMU (for the whole system) or as multiple FMUs (for different groups of components as sub-systems). This performance comparison is conducted using two test cases: (1) a simple, multi-tank problem; and (2) a more realistic use case based on the Modelica Buildings Library. In both test cases, the performance gains are promising when each FMU consists of a large number of states and state events that are wrapped in a single FMU. Load balancing is demonstrated to be a critical factor in speeding up parallel execution of multiple FMUs.« less

  17. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  18. Executive Guide to Software Maintenance. Reports on Computer Science and Technology.

    ERIC Educational Resources Information Center

    Osborne, Wilma M.

    This guide is designed for federal executives and managers who have a responsibility for the planning and management of software projects and for federal staff members who are affected by, or involved in, making software changes, and who need to be aware of steps that can reduce both the difficulty and cost of software maintenance. Organized in a…

  19. DIaaS: Data-Intensive workflows as a service - Enabling easy composition and deployment of data-intensive workflows on Virtual Research Environments

    NASA Astrophysics Data System (ADS)

    Filgueira, R.; Ferreira da Silva, R.; Deelman, E.; Atkinson, M.

    2016-12-01

    We present the Data-Intensive workflows as a Service (DIaaS) model for enabling easy data-intensive workflow composition and deployment on clouds using containers. DIaaS model backbone is Asterism, an integrated solution for running data-intensive stream-based applications on heterogeneous systems, which combines the benefits of dispel4py with Pegasus workflow systems. The stream-based executions of an Asterism workflow are managed by dispel4py, while the data movement between different e-Infrastructures, and the coordination of the application execution are automatically managed by Pegasus. DIaaS combines Asterism framework with Docker containers to provide an integrated, complete, easy-to-use, portable approach to run data-intensive workflows on distributed platforms. Three containers integrate the DIaaS model: a Pegasus node, and an MPI and an Apache Storm clusters. Container images are described as Dockerfiles (available online at http://github.com/dispel4py/pegasus_dispel4py), linked to Docker Hub for providing continuous integration (automated image builds), and image storing and sharing. In this model, all required software (workflow systems and execution engines) for running scientific applications are packed into the containers, which significantly reduces the effort (and possible human errors) required by scientists or VRE administrators to build such systems. The most common use of DIaaS will be to act as a backend of VREs or Scientific Gateways to run data-intensive applications, deploying cloud resources upon request. We have demonstrated the feasibility of DIaaS using the data-intensive seismic ambient noise cross-correlation application (Figure 1). The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The application is submitted via Pegasus (Container1), and Phase1 and Phase2 are executed in the MPI (Container2) and Storm (Container3) clusters respectively. Although both phases could be executed within the same environment, this setup demonstrates the flexibility of DIaaS to run applications across e-Infrastructures. In summary, DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust manner reducing the engineering time and computational cost.

  20. DDDAS-based Resilient Cyberspace (DRCS)

    DTIC Science & Technology

    2016-08-03

    Resilient Middleware ( CRM ), Supervisor VMs (SVMs), and Master VMs (MVMs). In what follows, we briefly highlight the main functions to be provided by each...phases. 4.5.1.2 Cloud Resilient Middleware ( CRM ) The CRM provides the control and management services to deploy and configure the software and...To speedup the process of selecting the appropriate resilient algorithms and execution environments, the CRM repository contains a set of SBE

  1. Software platform virtualization in chemistry research and university teaching

    PubMed Central

    2009-01-01

    Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997

  2. Software platform virtualization in chemistry research and university teaching.

    PubMed

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  3. Symbolically Modeling Concurrent MCAPI Executions

    NASA Technical Reports Server (NTRS)

    Fischer, Topher; Mercer, Eric; Rungta, Neha

    2011-01-01

    Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques.

  4. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  5. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.

    PubMed

    Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld

    2016-08-01

    There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.

    PubMed

    Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis; Krampis, Konstantinos

    2017-08-01

    Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a "meta-script" that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. © The Authors 2017. Published by Oxford University Press.

  7. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines

    PubMed Central

    Kim, Baekdoo; Ali, Thahmina; Lijeron, Carlos; Afgan, Enis

    2017-01-01

    Abstract Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation, configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis. As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing, preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool. This is achieved using a “meta-script” that automatically starts the Bio-Docklets and controls the pipeline execution through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of pipeline instances for concurrent analysis of multiple datasets. PMID:28854616

  8. Electronic Engineering Notebook: A software environment for research execution, documentation and dissemination

    NASA Technical Reports Server (NTRS)

    Moerder, Dan

    1994-01-01

    The electronic engineering notebook (EEN) consists of a free form research notebook, implemented in a commercial package for distributed hypermedia, which includes utilities for graphics capture, formatting and display of LaTex constructs, and interfaces to the host operating system. The latter capability consists of an information computer-aided software engineering (CASE) tool and a means to associate executable scripts with source objects. The EEN runs on Sun and HP workstations. The EEN, in day-to-day use can be used in much the same manner as the sort of research notes most researchers keep during development of projects. Graphics can be pasted in, equations can be entered via LaTex, etc. In addition, the fact that the EEN is hypermedia permits easy management of 'context', e.g., derivations and data can contain easily formed links to other supporting derivations and data. The CASE tool also permits development and maintenance of source code directly in the notebook, with access to its derivations and data.

  9. ODIN-object-oriented development interface for NMR.

    PubMed

    Jochimsen, Thies H; von Mengershausen, Michael

    2004-09-01

    A cross-platform development environment for nuclear magnetic resonance (NMR) experiments is presented. It allows rapid prototyping of new pulse sequences and provides a common programming interface for different system types. With this object-oriented interface implemented in C++, the programmer is capable of writing applications to control an experiment that can be executed on different measurement devices, even from different manufacturers, without the need to modify the source code. Due to the clear design of the software, new pulse sequences can be created, tested, and executed within a short time. To post-process the acquired data, an interface to well-known numerical libraries is part of the framework. This allows a transparent integration of the data processing instructions into the measurement module. The software focuses mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments. To demonstrate the capabilities of the framework, results of the same experiment, carried out on two NMR imaging systems from different manufacturers are shown and compared with the results of a simulation.

  10. Design of an Ada expert system shell for the VHSIC avionic modular flight processor

    NASA Technical Reports Server (NTRS)

    Fanning, F. Jesse

    1992-01-01

    The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.

  11. The Scientific Filesystem

    PubMed Central

    Sochat, Vanessa

    2018-01-01

    Abstract Background Here, we present the Scientific Filesystem (SCIF), an organizational format that supports exposure of executables and metadata for discoverability of scientific applications. The format includes a known filesystem structure, a definition for a set of environment variables describing it, and functions for generation of the variables and interaction with the libraries, metadata, and executables located within. SCIF makes it easy to expose metadata, multiple environments, installation steps, files, and entry points to render scientific applications consistent, modular, and discoverable. A SCIF can be installed on a traditional host or in a container technology such as Docker or Singularity. We start by reviewing the background and rationale for the SCIF, followed by an overview of the specification and the different levels of internal modules (“apps”) that the organizational format affords. Finally, we demonstrate that SCIF is useful by implementing and discussing several use cases that improve user interaction and understanding of scientific applications. SCIF is released along with a client and integration in the Singularity 2.4 software to quickly install and interact with SCIF. When used inside of a reproducible container, a SCIF is a recipe for reproducibility and introspection of the functions and users that it serves. Results We use SCIF to evaluate container software, provide metrics, serve scientific workflows, and execute a primary function under different contexts. To encourage collaboration and sharing of applications, we developed tools along with an open source, version-controlled, tested, and programmatically accessible web infrastructure. SCIF and associated resources are available at https://sci-f.github.io. The ease of using SCIF, especially in the context of containers, offers promise for scientists’ work to be self-documenting and programatically parseable for maximum reproducibility. SCIF opens up an abstraction from underlying programming languages and packaging logic to work with scientific applications, opening up new opportunities for scientific software development. PMID:29718213

  12. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  13. Tolerant (parallel) Programming

    NASA Technical Reports Server (NTRS)

    DiNucci, David C.; Bailey, David H. (Technical Monitor)

    1997-01-01

    In order to be truly portable, a program must be tolerant of a wide range of development and execution environments, and a parallel program is just one which must be tolerant of a very wide range. This paper first defines the term "tolerant programming", then describes many layers of tools to accomplish it. The primary focus is on F-Nets, a formal model for expressing computation as a folded partial-ordering of operations, thereby providing an architecture-independent expression of tolerant parallel algorithms. For implementing F-Nets, Cooperative Data Sharing (CDS) is a subroutine package for implementing communication efficiently in a large number of environments (e.g. shared memory and message passing). Software Cabling (SC), a very-high-level graphical programming language for building large F-Nets, possesses many of the features normally expected from today's computer languages (e.g. data abstraction, array operations). Finally, L2(sup 3) is a CASE tool which facilitates the construction, compilation, execution, and debugging of SC programs.

  14. Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide

    NASA Technical Reports Server (NTRS)

    Williams, Winifred I.

    1990-01-01

    This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.

  15. Robot Task Commander with Extensible Programming Environment

    NASA Technical Reports Server (NTRS)

    Hart, Stephen W (Inventor); Wightman, Brian J (Inventor); Dinh, Duy Paul (Inventor); Yamokoski, John D. (Inventor); Gooding, Dustin R (Inventor)

    2014-01-01

    A system for developing distributed robot application-level software includes a robot having an associated control module which controls motion of the robot in response to a commanded task, and a robot task commander (RTC) in networked communication with the control module over a network transport layer (NTL). The RTC includes a script engine(s) and a GUI, with a processor and a centralized library of library blocks constructed from an interpretive computer programming code and having input and output connections. The GUI provides access to a Visual Programming Language (VPL) environment and a text editor. In executing a method, the VPL is opened, a task for the robot is built from the code library blocks, and data is assigned to input and output connections identifying input and output data for each block. A task sequence(s) is sent to the control module(s) over the NTL to command execution of the task.

  16. PERTS: A Prototyping Environment for Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.

    1991-01-01

    We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.

  17. The research and practice of spacecraft software engineering

    NASA Astrophysics Data System (ADS)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang

    2017-06-01

    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  18. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Hammer, J. M.; Morris, N. M.; Knaeuper, A. E.; Brown, E. N.; Lewis, C. M.; Yoon, W. C.

    1984-01-01

    Two project areas were pursued: the intelligent cockpit and human problem solving. The first area involves an investigation of the use of advanced software engineering methods to aid aircraft crews in procedure selection and execution. The second area is focused on human problem solving in dynamic environments, particulary in terms of identification of rule-based models land alternative approaches to training and aiding. Progress in each area is discussed.

  19. The implementation and use of Ada on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1984-01-01

    The use and implementation of Ada in distributed environments in which reliability is the primary concern is investigated. Emphasis is placed on the possibility that a distributed system may be programmed entirely in ADA so that the individual tasks of the system are unconcerned with which processors they are executing on, and that failures may occur in the software or underlying hardware. The primary activities are: (1) Continued development and testing of our fault-tolerant Ada testbed; (2) consideration of desirable language changes to allow Ada to provide useful semantics for failure; (3) analysis of the inadequacies of existing software fault tolerance strategies.

  20. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  1. A distributed version of the NASA Engine Performance Program

    NASA Technical Reports Server (NTRS)

    Cours, Jeffrey T.; Curlett, Brian P.

    1993-01-01

    Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in a distributed computer environment. Multiple workstations connected by a network increase the program's speed and, more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing many different architectures. It includes the capability to link with other computers, allowing them to process NEPP jobs in parallel. This paper discusses the design issues and granularity considerations that entered into programming Distributed NEPP and presents the results of timing runs.

  2. Decision Making and Cognitive Behavioral Flexibility in a OCD Sample: a Study in a Virtual Environment.

    PubMed

    la Paglia, Filippo; la Cascia, Caterina; Rizzo, Rosalinda; Riva, Giuseppe; la Barbera, Daniele

    2015-01-01

    Neuropsychological disorders are common in Obsessive-Compulsive Disorder (OCD) patients. Executive functions, verbal fluency and verbal memory, shifting attention from one aspect of stimuli to others, mental flexibility, engaging in executive planning and decision making, are the most involved cognitive domains. We focus on two aspects of neuropsychological function: decision making and cognitive behavioral flexibility, assessed through a virtual version of the Multiple Errand Test (V-MET), developed using the NeuroVR software. Thirty OCD patients were compared with thirty matched control subjects. The results showed the presence of difficulties in OCD patients with tasks where the goal is not clear, the information is incomplete or the parameters are ill-defined.

  3. A Fault Oblivious Extreme-Scale Execution Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKie, Jim

    The FOX project, funded under the ASCR X-stack I program, developed systems software and runtime libraries for a new approach to the data and work distribution for massively parallel, fault oblivious application execution. Our work was motivated by the premise that exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today’s machines. To deliver the capability of exascale hardware, the systems software must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massivemore » data analysis in a highly unreliable hardware environment with billions of threads of execution. Our OS research has prototyped new methods to provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems. Our OS work focused on adaptive, application tailored OS services optimized for multi → many core processors. We developed a new operating system NIX that supports role-based allocation of cores to processes which was released to open source. We contributed to the IBM FusedOS project, which promoted the concept of latency-optimized and throughput-optimized cores. We built a task queue library based on distributed, fault tolerant key-value store and identified scaling issues. A second fault tolerant task parallel library was developed, based on the Linda tuple space model, that used low level interconnect primitives for optimized communication. We designed fault tolerance mechanisms for task parallel computations employing work stealing for load balancing that scaled to the largest existing supercomputers. Finally, we implemented the Elastic Building Blocks runtime, a library to manage object-oriented distributed software components. To support the research, we won two INCITE awards for time on Intrepid (BG/P) and Mira (BG/Q). Much of our work has had impact in the OS and runtime community through the ASCR Exascale OS/R workshop and report, leading to the research agenda of the Exascale OS/R program. Our project was, however, also affected by attrition of multiple PIs. While the PIs continued to participate and offer guidance as time permitted, losing these key individuals was unfortunate both for the project and for the DOE HPC community.« less

  4. General-Purpose Front End for Real-Time Data Processing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.

  5. Gpufit: An open-source toolkit for GPU-accelerated curve fitting.

    PubMed

    Przybylski, Adrian; Thiel, Björn; Keller-Findeisen, Jan; Stock, Bernd; Bates, Mark

    2017-11-16

    We present a general purpose, open-source software library for estimation of non-linear parameters by the Levenberg-Marquardt algorithm. The software, Gpufit, runs on a Graphics Processing Unit (GPU) and executes computations in parallel, resulting in a significant gain in performance. We measured a speed increase of up to 42 times when comparing Gpufit with an identical CPU-based algorithm, with no loss of precision or accuracy. Gpufit is designed such that it is easily incorporated into existing applications or adapted for new ones. Multiple software interfaces, including to C, Python, and Matlab, ensure that Gpufit is accessible from most programming environments. The full source code is published as an open source software repository, making its function transparent to the user and facilitating future improvements and extensions. As a demonstration, we used Gpufit to accelerate an existing scientific image analysis package, yielding significantly improved processing times for super-resolution fluorescence microscopy datasets.

  6. Space station dynamics, attitude control and momentum management

    NASA Technical Reports Server (NTRS)

    Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

    1989-01-01

    The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

  7. Flight dynamics software in a distributed network environment

    NASA Technical Reports Server (NTRS)

    Jeletic, J.; Weidow, D.; Boland, D.

    1995-01-01

    As with all NASA facilities, the announcement of reduced budgets, reduced staffing, and the desire to implement smaller/quicker/cheaper missions has required the Agency's organizations to become more efficient in what they do. To accomplish these objectives, the FDD has initiated the development of the Flight Dynamics Distributed System (FDDS). The underlying philosophy of FDDS is to build an integrated system that breaks down the traditional barriers of attitude, mission planning, and navigation support software to provide a uniform approach to flight dynamics applications. Through the application of open systems concepts and state-of-the-art technologies, including object-oriented specification concepts, object-oriented software, and common user interface, communications, data management, and executive services, the FDD will reengineer most of its six million lines of code.

  8. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  9. WebStruct and VisualStruct: Web interfaces and visualization for Structure software implemented in a cluster environment.

    PubMed

    Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S

    2008-09-24

    Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.

  10. Designing software for operational decision support through coloured Petri nets

    NASA Astrophysics Data System (ADS)

    Maggi, F. M.; Westergaard, M.

    2017-05-01

    Operational support provides, during the execution of a business process, replies to questions such as 'how do I end the execution of the process in the cheapest way?' and 'is my execution compliant with some expected behaviour?' These questions may be asked several times during a single execution and, to answer them, dedicated software components (the so-called operational support providers) need to be invoked. Therefore, an infrastructure is needed to handle multiple providers, maintain data between queries about the same execution and discard information when it is no longer needed. In this paper, we use coloured Petri nets (CPNs) to model and analyse software implementing such an infrastructure. This analysis is needed to clarify the requirements before implementation and to guarantee that the resulting software is correct. To this aim, we present techniques to represent and analyse state spaces with 250 million states on a normal PC. We show how the specified requirements have been implemented as a plug-in of the process mining tool ProM and how the operational support in ProM can be used in combination with an existing operational support provider.

  11. Instrumentation, performance visualization, and debugging tools for multiprocessors

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.; Hontalas, Philip J.

    1991-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs.

  12. Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide

    USGS Publications Warehouse

    Bales, Jerad D.; Nardi, Mark R.

    2007-01-01

    In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.

  13. Using Docker Compose for the Simple Deployment of an Integrated Drug Target Screening Platform.

    PubMed

    List, Markus

    2017-06-10

    Docker virtualization allows for software tools to be executed in an isolated and controlled environment referred to as a container. In Docker containers, dependencies are provided exactly as intended by the developer and, consequently, they simplify the distribution of scientific software and foster reproducible research. The Docker paradigm is that each container encapsulates one particular software tool. However, to analyze complex biomedical data sets, it is often necessary to combine several software tools into elaborate workflows. To address this challenge, several Docker containers need to be instantiated and properly integrated, which complicates the software deployment process unnecessarily. Here, we demonstrate how an extension to Docker, Docker compose, can be used to mitigate these problems by providing a unified setup routine that deploys several tools in an integrated fashion. We demonstrate the power of this approach by example of a Docker compose setup for a drug target screening platform consisting of five integrated web applications and shared infrastructure, deployable in just two lines of codes.

  14. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.

    PubMed

    Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel

    2018-02-20

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.

  15. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints

    PubMed Central

    Navet, Nicolas; Havet, Lionel

    2018-01-01

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489

  16. Ada Programming Support Environment (APSE) Evaluation and Validation (E&V) Team

    DTIC Science & Technology

    1991-12-31

    standards. The purpose of the team was to assist the project in several ways. Raymond Szymanski of Wright Research Iand Development Center (WRDC, now...debuggers, program library systems, and compiler diagnostics. The test suite does not include explicit tests for the existence of language features . The...support software is a set of tools and procedures which assist in preparing and executing the test suite, in extracting data from the results of

  17. Shadow-Bitcoin: Scalable Simulation via Direct Execution of Multi-Threaded Applications

    DTIC Science & Technology

    2015-08-10

    Shadow- Bitcoin : Scalable Simulation via Direct Execution of Multi-threaded Applications Andrew Miller University of Maryland amiller@cs.umd.edu Rob...Shadow plug-in that directly executes the Bitcoin reference client software. To demonstrate the usefulness of this tool, we present novel denial-of...service attacks against the Bit- coin software that exploit low-level implementation ar- tifacts in the Bitcoin reference client; our determinis- tic

  18. Cognition and procedure representational requirements for predictive human performance models

    NASA Technical Reports Server (NTRS)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods including procedural backtracking with concurrent search, temporal reasoning, and constraint checking for partial ordering of procedures. Finally, the representation is being linked to models of human decision making processes that include heuristic, propositional and prescriptive judgement models that are sensitive to the procedural content in which the valuative functions are being performed.

  19. ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.

    1977-01-01

    Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.

  20. LANDSAT-D flight segment operations manual. Appendix B: OBC software operations

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1981-01-01

    The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadayappan, Ponnuswamy

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less

  2. Telerobot local-remote control architecture for space flight program applications

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John

    1993-01-01

    The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.

  3. Providing Assistive Technology Applications as a Service Through Cloud Computing.

    PubMed

    Mulfari, Davide; Celesti, Antonio; Villari, Massimo; Puliafito, Antonio

    2015-01-01

    Users with disabilities interact with Personal Computers (PCs) using Assistive Technology (AT) software solutions. Such applications run on a PC that a person with a disability commonly uses. However the configuration of AT applications is not trivial at all, especially whenever the user needs to work on a PC that does not allow him/her to rely on his / her AT tools (e.g., at work, at university, in an Internet point). In this paper, we discuss how cloud computing provides a valid technological solution to enhance such a scenario.With the emergence of cloud computing, many applications are executed on top of virtual machines (VMs). Virtualization allows us to achieve a software implementation of a real computer able to execute a standard operating system and any kind of application. In this paper we propose to build personalized VMs running AT programs and settings. By using the remote desktop technology, our solution enables users to control their customized virtual desktop environment by means of an HTML5-based web interface running on any computer equipped with a browser, whenever they are.

  4. EPICS as a MARTe Configuration Environment

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Barbalace, Antonio; Neto, André; Duarte, André S.; Alves, Diogo; Carvalho, Bernardo B.; Carvalho, Pedro J.; Sousa, Jorge; Fernandes, Horácio; Goncalves, Bruno; Sartori, Filippo; Manduchi, Gabriele

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) software provides an environment for the hard real-time execution of codes while leveraging a standardized algorithm development process. The Experimental Physics and Industrial Control System (EPICS) software allows the deployment and remote monitoring of networked control systems. Channel Access (CA) is the protocol that enables the communication between EPICS distributed components. It allows to set and monitor process variables across the network belonging to different systems. The COntrol and Data Acquisition and Communication (CODAC) system for the ITER Tokamak will be EPICS based and will be used to monitor and live configure the plant controllers. The reconfiguration capability in a hard real-time system requires strict latencies from the request to the actuation and it is a key element in the design of the distributed control algorithm. Presently, MARTe and its objects are configured using a well-defined structured language. After each configuration, all objects are destroyed and the system rebuilt, following the strong hard real-time rule that a real-time system in online mode must behave in a strictly deterministic fashion. This paper presents the design and considerations to use MARTe as a plant controller and enable it to be EPICS monitorable and configurable without disturbing the execution at any time, in particular during a plasma discharge. The solutions designed for this will be presented and discussed.

  5. Staghorn: An Automated Large-Scale Distributed System Analysis Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabert, Kasimir; Burns, Ian; Elliott, Steven

    2016-09-01

    Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less

  6. Statistical fingerprinting for malware detection and classification

    DOEpatents

    Prowell, Stacy J.; Rathgeb, Christopher T.

    2015-09-15

    A system detects malware in a computing architecture with an unknown pedigree. The system includes a first computing device having a known pedigree and operating free of malware. The first computing device executes a series of instrumented functions that, when executed, provide a statistical baseline that is representative of the time it takes the software application to run on a computing device having a known pedigree. A second computing device executes a second series of instrumented functions that, when executed, provides an actual time that is representative of the time the known software application runs on the second computing device. The system detects malware when there is a difference in execution times between the first and the second computing devices.

  7. Development and evaluation of a Fault-Tolerant Multiprocessor (FTMP) computer. Volume 2: FTMP software

    NASA Technical Reports Server (NTRS)

    Lala, J. H.; Smith, T. B., III

    1983-01-01

    The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.

  8. Using a Low Cost Flight Simulation Environment for Interdisciplinary Education

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; ALi, Syed F.

    2004-01-01

    A multi-disciplinary and inter-disciplinary education is increasingly being emphasized for engineering undergraduates. However, often the focus is on interaction between engineering disciplines. This paper discusses the experience at Tuskegee University in providing interdisciplinary research experiences for undergraduate students in both Aerospace Engineering and Psychology through the utilization of a low cost flight simulation environment. The environment, which is pc-based, runs a low-cost of-the-shelf software and is configured for multiple out-of-the-window views and a synthetic heads down display with joystick, rudder and throttle controls. While the environment is being utilized to investigate and evaluate various strategies for training novice pilots, students were involved to provide them with experience in conducting such interdisciplinary research. On the global inter-disciplinary level these experiences included developing experimental designs and research protocols, consideration of human participant ethical issues, and planning and executing the research studies. During the planning phase students were apprised of the limitations of the software in its basic form and the enhancements desired to investigate human factors issues. A number of enhancements to the flight environment were then undertaken, from creating Excel macros for determining the performance of the 'pilots', to interacting with the software to provide various audio/video cues based on the experimental protocol. These enhancements involved understanding the flight model and performance, stability & control issues. Throughout this process, discussions of data analysis included a focus from a human factors perspective as well as an engineering point of view.

  9. Engineering intelligent tutoring systems

    NASA Technical Reports Server (NTRS)

    Warren, Kimberly C.; Goodman, Bradley A.

    1993-01-01

    We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.

  10. The JPL telerobot operator control station. Part 2: Software

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Landell, B. Patrick; Oxenberg, Sheldon; Morimoto, Carl

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The software design of the operator control system is discussed.

  11. Enabling Co-Design of Multi-Layer Exascale Storage Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carothers, Christopher

    Growing demands for computing power in applications such as energy production, climate analysis, computational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems with 10 18 floating-point operations per second. These systems, to be designed and constructed over the next decade, will create unprecedented challenges in component counts, power consumption, resource limitations, and system complexity. Data storage and access are an increasingly important and complex component in extreme-scale computing systems, and significant design work is needed to develop successful storage hardware and software architectures at exascale. Co-design of these systems will be necessary to find the best possiblemore » design points for exascale systems. The goal of this work has been to enable the exploration and co-design of exascale storage systems by providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding environment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and software, and (3) executed in a timeframe that enables “what if'” exploration of design concepts. We developed models of the major hardware and software components in an exascale storage system, as well as the application I/O workloads that drive them. We used our simulation system to investigate critical questions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and software architectures. Additionally, we provided this system to interested vendors and researchers so that others can explore the design space. We validated the capabilities of our simulation environment by configuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and comparing simulation results for application I/O patterns to the results of executions of these I/O kernels on the actual system.« less

  12. Agile Methods for Open Source Safety-Critical Software

    PubMed Central

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  13. Agile Methods for Open Source Safety-Critical Software.

    PubMed

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.

  14. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1987-01-01

    Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed.

  15. Generalized Support Software: Domain Analysis and Implementation

    NASA Technical Reports Server (NTRS)

    Stark, Mike; Seidewitz, Ed

    1995-01-01

    For the past five years, the Flight Dynamics Division (FDD) at NASA's Goddard Space Flight Center has been carrying out a detailed domain analysis effort and is now beginning to implement Generalized Support Software (GSS) based on this analysis. GSS is part of the larger Flight Dynamics Distributed System (FDDS), and is designed to run under the FDDS User Interface / Executive (UIX). The FDD is transitioning from a mainframe based environment to systems running on engineering workstations. The GSS will be a library of highly reusable components that may be configured within the standard FDDS architecture to quickly produce low-cost satellite ground support systems. The estimates for the first release is that this library will contain approximately 200,000 lines of code. The main driver for developing generalized software is development cost and schedule improvement. The goal is to ultimately have at least 80 percent of all software required for a spacecraft mission (within the domain supported by the GSS) to be configured from the generalized components.

  16. FPGA-Based Efficient Hardware/Software Co-Design for Industrial Systems with Consideration of Output Selection

    NASA Astrophysics Data System (ADS)

    Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.

    2016-05-01

    This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.

  17. Methods For Self-Organizing Software

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2005-10-18

    A method for dynamically self-assembling and executing software is provided, containing machines that self-assemble execution sequences and data structures. In addition to ordered functions calls (found commonly in other software methods), mutual selective bonding between bonding sites of machines actuates one or more of the bonding machines. Two or more machines can be virtually isolated by a construct, called an encapsulant, containing a population of machines and potentially other encapsulants that can only bond with each other. A hierarchical software structure can be created using nested encapsulants. Multi-threading is implemented by populations of machines in different encapsulants that are interacting concurrently. Machines and encapsulants can move in and out of other encapsulants, thereby changing the functionality. Bonding between machines' sites can be deterministic or stochastic with bonding triggering a sequence of actions that can be implemented by each machine. A self-assembled execution sequence occurs as a sequence of stochastic binding between machines followed by their deterministic actuation. It is the sequence of bonding of machines that determines the execution sequence, so that the sequence of instructions need not be contiguous in memory.

  18. Integrated System for Autonomous Science

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth; hide

    2006-01-01

    The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.

  19. An expert system executive for automated assembly of large space truss structures

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1993-01-01

    Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.

  20. Updates to the NASA Space Telecommunications Radio System (STRS) Architecture

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.

    2008-01-01

    This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.

  1. AOFlagger: RFI Software

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.

    2010-10-01

    The RFI software presented here can automatically flag data and can be used to analyze the data in a measurement. The purpose of flagging is to mark samples that are affected by interfering sources such as radio stations, airplanes, electrical fences or other transmitting interferers. The tools in the package are meant for offline use. The software package contains a graphical interface ("rfigui") that can be used to visualize a measurement set and analyze mitigation techniques. It also contains a console flagger ("rficonsole") that can execute a script of mitigation functions without the overhead of a graphical environment. All tools were written in C++. The software has been tested extensively on low radio frequencies (150 MHz or lower) produced by the WSRT and LOFAR telescopes. LOFAR is the Low Frequency Array that is built in and around the Netherlands. Higher frequencies should work as well. Some of the methods implemented are the SumThreshold, the VarThreshold and the singular value decomposition (SVD) method. Included also are several surface fitting algorithms. The software is published under the GNU General Public License version 3.

  2. Research in Parallel Computing: 1987-1990

    DTIC Science & Technology

    1994-08-05

    emulation, we layered UNIX BSD 4.3 functionality above the kernel primitives, but packaged both as a monolithic unit running in privileged state. This...further, so that only a "pure kernel " or " microkernel " runs in privileged mode, while the other components of the environment execute as one or more client... kernel DTIC TAB 24 2.2.2 Nectar’s communication software Unannounced 0 25 2.2.3 A Nectar programming interface Justification 25 2.3 System evaluation 26

  3. Towards a Property-Based Testing Environment With Applications to Security-Critical Software

    DTIC Science & Technology

    1994-01-01

    4 is a slice of the MINIX [Tan87] login program with respect to the setuid system call. The original program contains 337 lines, the slice only 20...demonstrat- ing the e ectiveness of slicing in this case5. The mapping of the abstract concept of au- thentication to source code in the MINIX login...Slice of MINIX login with respect to setuid(). occurs. If no incorrect execution occurs, slices of the program are examined for their data ow coverage

  4. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  5. BioSmalltalk: a pure object system and library for bioinformatics.

    PubMed

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  6. The implementation and use of Ada on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.; Gregory, S. T.; Urquhart, J. I. A.

    1985-01-01

    The use and implementation of Ada in distributed environments in which reliability is the primary concern were investigated. In particular, the concept that a distributed system may be programmed entirely in Ada so that the individual tasks of the system are unconcerned with which processors they are executing on, and that failures may occur in the software or underlying hardware was examined. Progress is discussed for the following areas: continued development and testing of the fault-tolerant Ada testbed; development of suggested changes to Ada so that it might more easily cope with the failure of interest; and design of new approaches to fault-tolerant software in real-time systems, and integration of these ideas into Ada.

  7. Data reduction programs for a laser radar system

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.; Copeland, G. E.

    1984-01-01

    The listing and description of software routines which were used to analyze the analog data obtained from LIDAR - system are given. All routines are written in FORTRAN - IV on a HP - 1000/F minicomputer which serves as the heart of the data acquisition system for the LIDAR program. This particular system has 128 kilobytes of highspeed memory and is equipped with a Vector Instruction Set (VIS) firmware package, which is used in all the routines, to handle quick execution of different long loops. The system handles floating point arithmetic in hardware in order to enhance the speed of execution. This computer is a 2177 C/F series version of HP - 1000 RTE-IVB data acquisition computer system which is designed for real time data capture/analysis and disk/tape mass storage environment.

  8. Effectiveness comparison of partially executed t-way test suite based generated by existing strategies

    NASA Astrophysics Data System (ADS)

    Othman, Rozmie R.; Ahmad, Mohd Zamri Zahir; Ali, Mohd Shaiful Aziz Rashid; Zakaria, Hasneeza Liza; Rahman, Md. Mostafijur

    2015-05-01

    Consuming 40 to 50 percent of software development cost, software testing is one of the most resource consuming activities in software development lifecycle. To ensure an acceptable level of quality and reliability of a typical software product, it is desirable to test every possible combination of input data under various configurations. Due to combinatorial explosion problem, considering all exhaustive testing is practically impossible. Resource constraints, costing factors as well as strict time-to-market deadlines are amongst the main factors that inhibit such consideration. Earlier work suggests that sampling strategy (i.e. based on t-way parameter interaction or called as t-way testing) can be effective to reduce number of test cases without effecting the fault detection capability. However, for a very large system, even t-way strategy will produce a large test suite that need to be executed. In the end, only part of the planned test suite can be executed in order to meet the aforementioned constraints. Here, there is a need for test engineers to measure the effectiveness of partially executed test suite in order for them to assess the risk they have to take. Motivated by the abovementioned problem, this paper presents the effectiveness comparison of partially executed t-way test suite generated by existing strategies using tuples coverage method. Here, test engineers can predict the effectiveness of the testing process if only part of the original test cases is executed.

  9. Implications of Responsive Space on the Flight Software Architecture

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.

  10. Omics Metadata Management Software (OMMS).

    PubMed

    Perez-Arriaga, Martha O; Wilson, Susan; Williams, Kelly P; Schoeniger, Joseph; Waymire, Russel L; Powell, Amy Jo

    2015-01-01

    Next-generation sequencing projects have underappreciated information management tasks requiring detailed attention to specimen curation, nucleic acid sample preparation and sequence production methods required for downstream data processing, comparison, interpretation, sharing and reuse. The few existing metadata management tools for genome-based studies provide weak curatorial frameworks for experimentalists to store and manage idiosyncratic, project-specific information, typically offering no automation supporting unified naming and numbering conventions for sequencing production environments that routinely deal with hundreds, if not thousands of samples at a time. Moreover, existing tools are not readily interfaced with bioinformatics executables, (e.g., BLAST, Bowtie2, custom pipelines). Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and perform analyses and information management tasks via an intuitive web-based interface. Several use cases with short-read sequence datasets are provided to validate installation and integrated function, and suggest possible methodological road maps for prospective users. Provided examples highlight possible OMMS workflows for metadata curation, multistep analyses, and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for webbased deployment supporting geographically-dispersed projects. The OMMS was developed using an open-source software base, is flexible, extensible and easily installed and executed. The OMMS can be obtained at http://omms.sandia.gov. The OMMS can be obtained at http://omms.sandia.gov.

  11. Omics Metadata Management Software (OMMS)

    PubMed Central

    Perez-Arriaga, Martha O; Wilson, Susan; Williams, Kelly P; Schoeniger, Joseph; Waymire, Russel L; Powell, Amy Jo

    2015-01-01

    Next-generation sequencing projects have underappreciated information management tasks requiring detailed attention to specimen curation, nucleic acid sample preparation and sequence production methods required for downstream data processing, comparison, interpretation, sharing and reuse. The few existing metadata management tools for genome-based studies provide weak curatorial frameworks for experimentalists to store and manage idiosyncratic, project-specific information, typically offering no automation supporting unified naming and numbering conventions for sequencing production environments that routinely deal with hundreds, if not thousands of samples at a time. Moreover, existing tools are not readily interfaced with bioinformatics executables, (e.g., BLAST, Bowtie2, custom pipelines). Our application, the Omics Metadata Management Software (OMMS), answers both needs, empowering experimentalists to generate intuitive, consistent metadata, and perform analyses and information management tasks via an intuitive web-based interface. Several use cases with short-read sequence datasets are provided to validate installation and integrated function, and suggest possible methodological road maps for prospective users. Provided examples highlight possible OMMS workflows for metadata curation, multistep analyses, and results management and downloading. The OMMS can be implemented as a stand alone-package for individual laboratories, or can be configured for webbased deployment supporting geographically-dispersed projects. The OMMS was developed using an open-source software base, is flexible, extensible and easily installed and executed. The OMMS can be obtained at http://omms.sandia.gov. Availability The OMMS can be obtained at http://omms.sandia.gov PMID:26124554

  12. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  13. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  14. Perpetual Model Validation

    DTIC Science & Technology

    2017-03-01

    models of software execution, for example memory access patterns, to check for security intrusions. Additional research was performed to tackle the...considered using indirect models of software execution, for example memory access patterns, to check for security intrusions. Additional research ...deterioration for example , no longer corresponds to the model used during verification time. Finally, the research looked at ways to combine hybrid systems

  15. Multitasking scheduler works without OS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, D.M.

    1982-09-15

    Z80 control applications requiring parallel execution of multiple software tasks can use the executive routine described and listed in this article when multitasking is not available via an operating system (OS). Although the routine is not as capable or as transparent to software as the multitasking in a full-scale OS, it is simple to understand and use.

  16. Dynamic Load-Balancing for Distributed Heterogeneous Computing of Parallel CFD Problems

    NASA Technical Reports Server (NTRS)

    Ecer, A.; Chien, Y. P.; Boenisch, T.; Akay, H. U.

    2000-01-01

    The developed methodology is aimed at improving the efficiency of executing block-structured algorithms on parallel, distributed, heterogeneous computers. The basic approach of these algorithms is to divide the flow domain into many sub- domains called blocks, and solve the governing equations over these blocks. Dynamic load balancing problem is defined as the efficient distribution of the blocks among the available processors over a period of several hours of computations. In environments with computers of different architecture, operating systems, CPU speed, memory size, load, and network speed, balancing the loads and managing the communication between processors becomes crucial. Load balancing software tools for mutually dependent parallel processes have been created to efficiently utilize an advanced computation environment and algorithms. These tools are dynamic in nature because of the chances in the computer environment during execution time. More recently, these tools were extended to a second operating system: NT. In this paper, the problems associated with this application will be discussed. Also, the developed algorithms were combined with the load sharing capability of LSF to efficiently utilize workstation clusters for parallel computing. Finally, results will be presented on running a NASA based code ADPAC to demonstrate the developed tools for dynamic load balancing.

  17. Implementation of an open adoption research data management system for clinical studies.

    PubMed

    Müller, Jan; Heiss, Kirsten Ingmar; Oberhoffer, Renate

    2017-07-06

    Research institutions need to manage multiple studies with individual data sets, processing rules and different permissions. So far, there is no standard technology that provides an easy to use environment to create databases and user interfaces for clinical trials or research studies. Therefore various software solutions are being used-from custom software, explicitly designed for a specific study, to cost intensive commercial Clinical Trial Management Systems (CTMS) up to very basic approaches with self-designed Microsoft ® databases. The technology applied to conduct those studies varies tremendously from study to study, making it difficult to evaluate data across various studies (meta-analysis) and keeping a defined level of quality in database design, data processing, displaying and exporting. Furthermore, the systems being used to collect study data are often operated redundantly to systems used in patient care. As a consequence the data collection in studies is inefficient and data quality may suffer from unsynchronized datasets, non-normalized database scenarios and manually executed data transfers. With OpenCampus Research we implemented an open adoption software (OAS) solution on an open source basis, which provides a standard environment for state-of-the-art research database management at low cost.

  18. VIEW-Station software and its graphical user interface

    NASA Astrophysics Data System (ADS)

    Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki

    1992-04-01

    VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.

  19. Summary of Documentation for DYNA3D-ParaDyn's Software Quality Assurance Regression Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zywicz, Edward

    The Software Quality Assurance (SQA) regression test suite for DYNA3D (Zywicz and Lin, 2015) and ParaDyn (DeGroot, et al., 2015) currently contains approximately 600 problems divided into 21 suites, and is a required component of ParaDyn’s SQA plan (Ferencz and Oliver, 2013). The regression suite allows developers to ensure that software modifications do not unintentionally alter the code response. The entire regression suite is run prior to permanently incorporating any software modification or addition. When code modifications alter test problem results, the specific cause must be determined and fully understood before the software changes and revised test answers can bemore » incorporated. The regression suite is executed on LLNL platforms using a Python script and an associated data file. The user specifies the DYNA3D or ParaDyn executable, number of processors to use, test problems to run, and other options to the script. The data file details how each problem and its answer extraction scripts are executed. For each problem in the regression suite there exists an input deck, an eight-processor partition file, an answer file, and various extraction scripts. These scripts assemble a temporary answer file in a specific format from the simulation results. The temporary and stored answer files are compared to a specific level of numerical precision, and when differences are detected the test problem is flagged as failed. Presently, numerical results are stored and compared to 16 digits. At this accuracy level different processor types, compilers, number of partitions, etc. impact the results to various degrees. Thus, for consistency purposes the regression suite is run with ParaDyn using 8 processors on machines with a specific processor type (currently the Intel Xeon E5530 processor). For non-parallel regression problems, i.e., the two XFEM problems, DYNA3D is used instead. When environments or platforms change, executables using the current source code and the new resource are created and the regression suite is run. If differences in answers arise, the new answers are retained provided that the differences are inconsequential. This bootstrap approach allows the test suite answers to evolve in a controlled manner with a high level of confidence. Developers also run the entire regression suite with (serial) DYNA3D. While these results normally differ from the stored (parallel) answers, abnormal termination or wildly different values are strong indicators of potential issues.« less

  20. User modeling techniques for enhanced usability of OPSMODEL operations simulation software

    NASA Technical Reports Server (NTRS)

    Davis, William T.

    1991-01-01

    The PC based OPSMODEL operations software for modeling and simulation of space station crew activities supports engineering and cost analyses and operations planning. Using top-down modeling, the level of detail required in the data base can be limited to being commensurate with the results required of any particular analysis. To perform a simulation, a resource environment consisting of locations, crew definition, equipment, and consumables is first defined. Activities to be simulated are then defined as operations and scheduled as desired. These operations are defined within a 1000 level priority structure. The simulation on OPSMODEL, then, consists of the following: user defined, user scheduled operations executing within an environment of user defined resource and priority constraints. Techniques for prioritizing operations to realistically model a representative daily scenario of on-orbit space station crew activities are discussed. The large number of priority levels allows priorities to be assigned commensurate with the detail necessary for a given simulation. Several techniques for realistic modeling of day-to-day work carryover are also addressed.

  1. CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection

    PubMed Central

    Dai, Huning; Murphy, Christian; Kaiser, Gail

    2010-01-01

    Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations and inputs together with a certain runtime environment. One approach to detecting these vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, we present a new testing methodology called Configuration Fuzzing. Configuration Fuzzing is a technique whereby the configuration of the running application is mutated at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks “security invariants” that, if violated, indicate a vulnerability. We discuss the approach and introduce a prototype framework called ConFu (CONfiguration FUzzing testing framework) for implementation. We also present the results of case studies that demonstrate the approach’s feasibility and evaluate its performance. PMID:21037923

  2. Experiment in Onboard Synthetic Aperture Radar Data Processing

    NASA Technical Reports Server (NTRS)

    Holland, Matthew

    2011-01-01

    Single event upsets (SEUs) are a threat to any computing system running on hardware that has not been physically radiation hardened. In addition to mandating the use of performance-limited, hardened heritage equipment, prior techniques for dealing with the SEU problem often involved hardware-based error detection and correction (EDAC). With limited computing resources, software- based EDAC, or any more elaborate recovery methods, were often not feasible. Synthetic aperture radars (SARs), when operated in the space environment, are interesting due to their relevance to NASAs objectives, but problematic in the sense of producing prodigious amounts of raw data. Prior implementations of the SAR data processing algorithm have been too slow, too computationally intensive, and require too much application memory for onboard execution to be a realistic option when using the type of heritage processing technology described above. This standard C-language implementation of SAR data processing is distributed over many cores of a Tilera Multicore Processor, and employs novel Radiation Hardening by Software (RHBS) techniques designed to protect the component processes (one per core) and their shared application memory from the sort of SEUs expected in the space environment. The source code includes calls to Tilera APIs, and a specialized Tilera compiler is required to produce a Tilera executable. The compiled application reads input data describing the position and orientation of a radar platform, as well as its radar-burst data, over time and writes out processed data in a form that is useful for analysis of the radar observations.

  3. Automatic Integration Testbeds validation on Open Science Grid

    NASA Astrophysics Data System (ADS)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  4. Evolution of the phase 2 preparation and observation tools at ESO

    NASA Astrophysics Data System (ADS)

    Dorigo, D.; Amarand, B.; Bierwirth, T.; Jung, Y.; Santos, P.; Sogni, F.; Vera, I.

    2012-09-01

    Throughout the course of many years of observations at the VLT, the phase 2 software applications supporting the specification, execution and reporting of observations have been continuously improved and refined. Specifically the introduction of astronomical surveys propelled the creation of new tools to express more sophisticated, longer-term observing strategies often consisting of several hundreds of observations. During the execution phase, such survey programs compete with other service and visitor mode observations and a number of constraints have to be considered. In order to maximize telescope utilization and execute all programs in a fair way, new algorithms have been developed to prioritize observable OBs taking into account both current and future constraints (e.g. OB time constraints, technical telescope time) and suggest the next OB to be executed. As a side effect, a higher degree of observation automation enables operators to run telescopes mostly autonomously with little supervision by a support astronomer. We describe the new tools that have been deployed and the iterative and incremental software development process applied to develop them. We present our key software technologies used so far and discuss potential future evolution both in terms of features as well as software technologies.

  5. Mathematical models for space shuttle ground systems

    NASA Technical Reports Server (NTRS)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  6. Optimization of atmospheric transport models on HPC platforms

    NASA Astrophysics Data System (ADS)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  7. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    PubMed

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  8. Bringing Legacy Visualization Software to Modern Computing Devices via Application Streaming

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2014-05-01

    Planning software compatibility across forthcoming generations of computing platforms is a problem commonly encountered in software engineering and development. While this problem can affect any class of software, data analysis and visualization programs are particularly vulnerable. This is due in part to their inherent dependency on specialized hardware and computing environments. A number of strategies and tools have been designed to aid software engineers with this task. While generally embraced by developers at 'traditional' software companies, these methodologies are often dismissed by the scientific software community as unwieldy, inefficient and unnecessary. As a result, many important and storied scientific software packages can struggle to adapt to a new computing environment; for example, one in which much work is carried out on sub-laptop devices (such as tablets and smartphones). Rewriting these packages for a new platform often requires significant investment in terms of development time and developer expertise. In many cases, porting older software to modern devices is neither practical nor possible. As a result, replacement software must be developed from scratch, wasting resources better spent on other projects. Enabled largely by the rapid rise and adoption of cloud computing platforms, 'Application Streaming' technologies allow legacy visualization and analysis software to be operated wholly from a client device (be it laptop, tablet or smartphone) while retaining full functionality and interactivity. It mitigates much of the developer effort required by other more traditional methods while simultaneously reducing the time it takes to bring the software to a new platform. This work will provide an overview of Application Streaming and how it compares against other technologies which allow scientific visualization software to be executed from a remote computer. We will discuss the functionality and limitations of existing application streaming frameworks and how a developer might prepare their software for application streaming. We will also examine the secondary benefits realized by moving legacy software to the cloud. Finally, we will examine the process by which a legacy Java application, the Integrated Data Viewer (IDV), is to be adapted for tablet computing via Application Streaming.

  9. QMachine: commodity supercomputing in web browsers.

    PubMed

    Wilkinson, Sean R; Almeida, Jonas S

    2014-06-09

    Ongoing advancements in cloud computing provide novel opportunities in scientific computing, especially for distributed workflows. Modern web browsers can now be used as high-performance workstations for querying, processing, and visualizing genomics' "Big Data" from sources like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) without local software installation or configuration. The design of QMachine (QM) was driven by the opportunity to use this pervasive computing model in the context of the Web of Linked Data in Biomedicine. QM is an open-sourced, publicly available web service that acts as a messaging system for posting tasks and retrieving results over HTTP. The illustrative application described here distributes the analyses of 20 Streptococcus pneumoniae genomes for shared suffixes. Because all analytical and data retrieval tasks are executed by volunteer machines, few server resources are required. Any modern web browser can submit those tasks and/or volunteer to execute them without installing any extra plugins or programs. A client library provides high-level distribution templates including MapReduce. This stark departure from the current reliance on expensive server hardware running "download and install" software has already gathered substantial community interest, as QM received more than 2.2 million API calls from 87 countries in 12 months. QM was found adequate to deliver the sort of scalable bioinformatics solutions that computation- and data-intensive workflows require. Paradoxically, the sandboxed execution of code by web browsers was also found to enable them, as compute nodes, to address critical privacy concerns that characterize biomedical environments.

  10. Implementation of an object oriented track reconstruction model into multiple LHC experiments*

    NASA Astrophysics Data System (ADS)

    Gaines, Irwin; Gonzalez, Saul; Qian, Sijin

    2001-10-01

    An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.

  11. Toward a More Flexible Web-Based Framework for Multidisciplinary Design

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Salas, A. O.

    1999-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary design, is defined as a hardware-software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, monitoring, controlling, and displaying the design process. The objective of this research is to explore how Web technology can improve these areas of weakness and lead toward a more flexible framework. This article describes a Web-based system that optimizes and controls the execution sequence of design processes in addition to monitoring the project status and displaying the design results.

  12. Optimizing Mars Airplane Trajectory with the Application Navigation System

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Riley, Derek

    2004-01-01

    Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NAS Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a shortest path algorithm to determine the optimal trajectory. ANS employs the GridScape to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready task to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60% on 64 processors.

  13. Multiphysics Simulations: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, David; McInnes, Lois C.; Woodward, Carol

    2013-02-12

    We consider multiphysics applications from algorithmic and architectural perspectives, where ‘‘algorithmic’’ includes both mathematical analysis and computational complexity, and ‘‘architectural’’ includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not always practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose somemore » commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities.« less

  14. ControlShell: A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo

    1994-01-01

    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.

  15. A Core Plug and Play Architecture for Reusable Flight Software Systems

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Flight Software Branch, at Goddard Space Flight Center (GSFC), has been working on a run-time approach to facilitate a formal software reuse process. The reuse process is designed to enable rapid development and integration of high-quality software systems and to more accurately predict development costs and schedule. Previous reuse practices have been somewhat successful when the same teams are moved from project to project. But this typically requires taking the software system in an all-or-nothing approach where useful components cannot be easily extracted from the whole. As a result, the system is less flexible and scalable with limited applicability to new projects. This paper will focus on the rationale behind, and implementation of the run-time executive. This executive is the core for the component-based flight software commonality and reuse process adopted at Goddard.

  16. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  17. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  18. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  19. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2015-09-30

    libraries. Many levels of library interfaces—where some libraries are dynamically linked and some are provided in binary form only—significantly limit...software at build time. The opportunity: Our objective in this project is to substantially improve the performance, size, and robustness of binary ...executables by using static and dynamic binary program analysis techniques to perform whole-program optimization directly on compiled programs

  20. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  1. Research in computer science

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1984-01-01

    Several short summaries of the work performed during this reporting period are presented. Topics discussed in this document include: (1) resilient seeded errors via simple techniques; (2) knowledge representation for engineering design; (3) analysis of faults in a multiversion software experiment; (4) implementation of parallel programming environment; (5) symbolic execution of concurrent programs; (6) two computer graphics systems for visualization of pressure distribution and convective density particles; (7) design of a source code management system; (8) vectorizing incomplete conjugate gradient on the Cyber 203/205; (9) extensions of domain testing theory and; (10) performance analyzer for the pisces system.

  2. System For Research On Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Hayati, Samad; Tso, Kam S.; Hayward, Vincent

    1991-01-01

    Kali system of computer programs and equipment provides environment for research on distributed programming and distributed control of coordinated-multiple-arm robots. Suitable for telerobotics research involving sensing and execution of low level tasks. Software and configuration of hardware designed flexible so system modified easily to test various concepts in control and programming of robots, including multiple-arm control, redundant-arm control, shared control, traded control, force control, force/position hybrid control, design and integration of sensors, teleoperation, task-space description and control, methods of adaptive control, control of flexible arms, and human factors.

  3. Architecture for Business Intelligence in the Healthcare Sector

    NASA Astrophysics Data System (ADS)

    Lee, Sang Young

    2018-03-01

    Healthcare environment is growing to include not only the traditional information systems, but also a business intelligence platform. For executive leaders, consultants, and analysts, there is no longer a need to spend hours in design and develop of typical reports or charts, the entire solution can be completed through using Business Intelligence software. The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In this paper, In this paper we focus our discussion around intelligent techniques and methodologies which are recently used for business intelligence in healthcare.

  4. Structuring software anthropometric variables on CD Rom as a facilitator of the process of design of work situations.

    PubMed

    Zanuncio, Sharinna Venturim; Mafra, Simone Caldas Tavares; Antônio, Carlos Emílio Barbosa; Lisboa Filho, Jugurta; Guimarães, Elza Maria Vidigal; da Silva, Vania Eugênia; de Souza, Amaury Paulo; Minette, Luciano José

    2012-01-01

    The environment where everyday activities are developed, these should be appropriate and the individual who will execute them, for greater efficiency of their work and even if you feel safe, comfortable and satisfied when interacting with that space, expending less energy to this interaction. Given this context, this study aims to structure a software with the results obtained in the field, from anthropometric measure to subsidize the furniture industry in manufacturing of furniture, definition work situations, considering the different anthropometric measurements made between 2001 and 2010, using data from this sample of adults aged 18 to 65 years old and children between 6 and 11 years old. It was convenient to make the software with a site, only instead of staying on the Web has been recorded on CD Rom. Tests with the prototype allow navigation through the structure of the software. The data needed to implement the remaining modules were also raised. Issues related to system layout and usability of the interface also were not considered, because it is an initial prototype.

  5. Modeling survival of juvenile salmon during downriver migration in the Columbia River on a microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloquin, R.A.; McKenzie, D.H.

    1994-10-01

    A compartmental model has been implemented on a microcomputer as an aid in the analysis of alternative solutions to a problem. The model, entitled Smolt Survival Simulator, simulates the survival of juvenile salmon during their downstream migration and passage of hydroelectric dams in the Columbia River. The model is designed to function in a workshop environment where resource managers and fisheries biologists can study alternative measures that may potentially increase juvenile anadromous fish survival during downriver migration. The potential application of the model has placed several requirements on the implementing software. It must be available for use in workshop settings.more » The software must be easily to use with minimal computer knowledge. Scenarios must be created and executed quickly and efficiently. Results must be immediately available. Software design emphasis vas placed on the user interface because of these requirements. The discussion focuses on methods used in the development of the SSS software user interface. These methods should reduce user stress and alloy thorough and easy parameter modification.« less

  6. Delivering Savings with Open Architecture and Product Lines

    DTIC Science & Technology

    2011-04-30

    p.m. Chair: Christopher Deegan , Executive Director, Program Executive Office for Integrated Warfare Systems Delivering Savings with Open...Architectures Walt Scacchi and Thomas Alspaugh, Institute for Software Research Christopher Deegan —Executive Director, Program Executive Officer...Integrated Warfare Systems (PEO IWS). Mr. Deegan directs the development, acquisition, and fleet support of 150 combat weapon system programs managed by 350

  7. An interactive parallel programming environment applied in atmospheric science

    NASA Technical Reports Server (NTRS)

    vonLaszewski, G.

    1996-01-01

    This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.

  8. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L. (Inventor); Kintner, Jr., Paul M. (Inventor); Ledvina, Brent M. (Inventor); Powell, Steven P. (Inventor)

    2007-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  9. Real-time software receiver

    NASA Technical Reports Server (NTRS)

    Psiaki, Mark L. (Inventor); Ledvina, Brent M. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)

    2006-01-01

    A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.

  10. A proposed research program in information processing

    NASA Technical Reports Server (NTRS)

    Schorr, Herbert

    1992-01-01

    The goal of the Formalized Software Development (FSD) project was to demonstrate improvements productivity of software development and maintenance through the use of a new software lifecycle paradigm. The paradigm calls for the mechanical, but human-guided, derivation of software implementations from formal specifications of the desired software behavior. It relies on altering a system's specification and rederiving its implementation as the standard technology for software maintenance. A system definition for this paradigm is composed of a behavioral specification together with a body of annotations that control the derivation of executable code from the specification. Annotations generally achieve the selection of certain data representations and/or algorithms that are consistent with, but not mandated by, the behavioral specification. In doing this, they may yield systems which exhibit only certain behaviors among multiple alternatives permitted by the behavioral specification. The FSD project proposed to construct a testbed in which to explore the realization of this new paradigm. The testbed was to provide operational support environment for software design, implementation, and maintenance. The testbed was proposed to provide highly automated support for individual programmers ('programming in the small'), but not to address the additional needs of programming teams ('programming in the large'). The testbed proposed to focus on supporting rapid construction and evolution of useful prototypes of software systems, as opposed to focusing on the problems of achieving production quality performance of systems.

  11. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    PubMed

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Parallel plan execution with self-processing networks

    NASA Technical Reports Server (NTRS)

    Dautrechy, C. Lynne; Reggia, James A.

    1989-01-01

    A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems.

  13. Interfacing An Intelligent Decision-Maker To A Real-Time Control System

    NASA Astrophysics Data System (ADS)

    Evers, D. C.; Smith, D. M.; Staros, C. J.

    1984-06-01

    This paper discusses some of the practical aspects of implementing expert systems in a real-time environment. There is a conflict between the needs of a process control system and the computational load imposed by intelligent decision-making software. The computation required to manage a real-time control problem is primarily concerned with routine calculations which must be executed in real time. On most current hardware, non-trivial AI software should not be forced to operate under real-time constraints. In order for the system to work efficiently, the two processes must be separated by a well-defined interface. Although the precise nature of the task separation will vary with the application, the definition of the interface will need to follow certain fundamental principles in order to provide functional separation. This interface was successfully implemented in the expert scheduling software currently running the automated chemical processing facility at Lockheed-Georgia. Potential applications of this concept in the areas of airborne avionics and robotics will be discussed.

  14. Space Station Module Power Management and Distribution System (SSM/PMAD)

    NASA Technical Reports Server (NTRS)

    Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)

    1994-01-01

    This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.

  15. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

    PubMed Central

    Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur

    2010-01-01

    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408

  16. Implementation of the ATLAS trigger within the multi-threaded software framework AthenaMT

    NASA Astrophysics Data System (ADS)

    Wynne, Ben; ATLAS Collaboration

    2017-10-01

    We present an implementation of the ATLAS High Level Trigger, HLT, that provides parallel execution of trigger algorithms within the ATLAS multithreaded software framework, AthenaMT. This development will enable the ATLAS HLT to meet future challenges due to the evolution of computing hardware and upgrades of the Large Hadron Collider, LHC, and ATLAS Detector. During the LHC data-taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further, to up to 7.5 times the design value, in 2026 following LHC and ATLAS upgrades. This includes an upgrade of the ATLAS trigger architecture that will result in an increase in the HLT input rate by a factor of 4 to 10 compared to the current maximum rate of 100 kHz. The current ATLAS multiprocess framework, AthenaMP, manages a number of processes that each execute algorithms sequentially for different events. AthenaMT will provide a fully multi-threaded environment that will additionally enable concurrent execution of algorithms within an event. This has the potential to significantly reduce the memory footprint on future manycore devices. An additional benefit of the HLT implementation within AthenaMT is that it facilitates the integration of offline code into the HLT. The trigger must retain high rejection in the face of increasing numbers of pileup collisions. This will be achieved by greater use of offline algorithms that are designed to maximize the discrimination of signal from background. Therefore a unification of the HLT and offline reconstruction software environment is required. This has been achieved while at the same time retaining important HLT-specific optimisations that minimize the computation performed to reach a trigger decision. Such optimizations include early event rejection and reconstruction within restricted geometrical regions. We report on an HLT prototype in which the need for HLT-specific components has been reduced to a minimum. Promising results have been obtained with a prototype that includes the key elements of trigger functionality including regional reconstruction and early event rejection. We report on the first experience of migrating trigger selections to this new framework and present the next steps towards a full implementation of the ATLAS trigger.

  17. A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH

    PubMed Central

    Sadasivam, Rajani S.; Tanik, Murat M.

    2013-01-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436

  18. A meta-composite software development approach for translational research.

    PubMed

    Sadasivam, Rajani S; Tanik, Murat M

    2013-06-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.

  19. OpenROCS: a software tool to control robotic observatories

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere

    2012-09-01

    We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).

  20. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Tony; Sutherland, James C.

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  1. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE PAGES

    Saad, Tony; Sutherland, James C.

    2016-05-04

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  2. A Framework for Control and Observation in Distributed Environments

    NASA Technical Reports Server (NTRS)

    Smith, Warren

    2001-01-01

    As organizations begin to deploy large computational grids, it has become apparent that systems for observation and control of the resources, services, and applications that make up such grids are needed. Administrators must observe the operation of resources and services to ensure that they are operating correctly and they must control the resources and services to ensure that their operation meets the needs of users. Further, users need to observe the performance of their applications so that this performance can be improved and control how their applications execute in a dynamic grid environment. In this paper we describe our software framework for control and observation of resources, services, and applications that supports such uses and we provide examples of how our framework can be used.

  3. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619

  4. Software Development Offshoring Competitiveness: A Case Study of ASEAN Countries

    ERIC Educational Resources Information Center

    Bui, Minh Q.

    2011-01-01

    With the success of offshoring within the American software industry, corporate executives are moving their software developments overseas. The member countries of the Association of Southeast Asian Nations (ASEAN) have become a preferred destination. However, there is a lack of published studies on the region's software competitiveness in…

  5. Computer Software Configuration Item-Specific Flight Software Image Transfer Script Generator

    NASA Technical Reports Server (NTRS)

    Bolen, Kenny; Greenlaw, Ronald

    2010-01-01

    A K-shell UNIX script enables the International Space Station (ISS) Flight Control Team (FCT) operators in NASA s Mission Control Center (MCC) in Houston to transfer an entire or partial computer software configuration item (CSCI) from a flight software compact disk (CD) to the onboard Portable Computer System (PCS). The tool is designed to read the content stored on a flight software CD and generate individual CSCI transfer scripts that are capable of transferring the flight software content in a given subdirectory on the CD to the scratch directory on the PCS. The flight control team can then transfer the flight software from the PCS scratch directory to the Electronically Erasable Programmable Read Only Memory (EEPROM) of an ISS Multiplexer/ Demultiplexer (MDM) via the Indirect File Transfer capability. The individual CSCI scripts and the CSCI Specific Flight Software Image Transfer Script Generator (CFITSG), when executed a second time, will remove all components from their original execution. The tool will identify errors in the transfer process and create logs of the transferred software for the purposes of configuration management.

  6. Animated software training via the internet: lessons learned

    NASA Technical Reports Server (NTRS)

    Scott, C. J.

    2000-01-01

    The Mission Execution and Automation Section, Information Technologies and Software Systems Division at the Jet Propulsion Laboratory, recently delivered an animated software training module for the TMOD UPLINK Consolidation Task for operator training at the Deep Space Network.

  7. Master Software Requirements Specification

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2003-01-01

    A basic function of a computational grid such as the NASA Information Power Grid (IPG) is to allow users to execute applications on remote computer systems. The Globus Resource Allocation Manager (GRAM) provides this functionality in the IPG and many other grids at this time. While the functionality provided by GRAM clients is adequate, GRAM does not support useful features such as staging several sets of files, running more than one executable in a single job submission, and maintaining historical information about execution operations. This specification is intended to provide the environmental and software functional requirements for the IPG Job Manager V2.0 being developed by AMTI for NASA.

  8. Software Epistemology

    DTIC Science & Technology

    2016-03-01

    in-vitro decision to incubate a startup, Lexumo [7], which is developing a commercial Software as a Service ( SaaS ) vulnerability assessment...LTS Label Transition System MUSE Mining and Understanding Software Enclaves RTEMS Real-Time Executive for Multi-processor Systems SaaS Software ...as a Service SSA Static Single Assignment SWE Software Epistemology UD/DU Def-Use/Use-Def Chains (Dataflow Graph)

  9. Evolving from Planning and Scheduling to Real-Time Operations Support: Design Challenges

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ludowise, Melissa; McCurdy, Michael; Li, Jack

    2010-01-01

    Versions of Scheduling and Planning Interface for Exploration (SPIFe) have supported a variety of mission operations across NASA. This software tool has evolved and matured over several years, assisting planners who develop intricate schedules. While initially conceived for surface Mars missions, SPIFe has been deployed in other domains, where people rather than robotic explorers, execute plans. As a result, a diverse set of end-users has compelled growth in a new direction: supporting real-time operations. This paper describes the new needs and challenges that accompany this development. Among the key features that have been built for SPIFe are current time indicators integrated into the interface and timeline, as well as other plan attributes that enable execution of scheduled activities. Field tests include mission support for the Lunar CRater Observation and Sensing Satellite (LCROSS), NASA Extreme Environment Mission Operations (NEEMO) and Desert Research and Technology Studies (DRATS) campaigns.

  10. Parallel, Asynchronous Executive (PAX): System concepts, facilities, and architecture

    NASA Technical Reports Server (NTRS)

    Jones, W. H.

    1983-01-01

    The Parallel, Asynchronous Executive (PAX) is a software operating system simulation that allows many computers to work on a single problem at the same time. PAX is currently implemented on a UNIVAC 1100/42 computer system. Independent UNIVAC runstreams are used to simulate independent computers. Data are shared among independent UNIVAC runstreams through shared mass-storage files. PAX has achieved the following: (1) applied several computing processes simultaneously to a single, logically unified problem; (2) resolved most parallel processor conflicts by careful work assignment; (3) resolved by means of worker requests to PAX all conflicts not resolved by work assignment; (4) provided fault isolation and recovery mechanisms to meet the problems of an actual parallel, asynchronous processing machine. Additionally, one real-life problem has been constructed for the PAX environment. This is CASPER, a collection of aerodynamic and structural dynamic problem simulation routines. CASPER is not discussed in this report except to provide examples of parallel-processing techniques.

  11. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  12. Atmosphere Explorer control system software (version 2.0)

    NASA Technical Reports Server (NTRS)

    Mocarsky, W.; Villasenor, A.

    1973-01-01

    The Atmosphere Explorer Control System (AECS) was developed to provide automatic computer control of the Atmosphere Explorer spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The AECS was written for a 48K XEROX Data System Sigma 5 computer, and coexists in core with the XDS Real-time Batch Monitor (RBM) executive system. RBM is a flexible operating system designed for a real-time foreground/background environment, and hence is ideally suited for this application. Existing capabilities of RBM have been used as much as possible by AECS to minimize programming redundancy. The most important functions of the AECS are to send commands to the spacecraft and experiments, and to receive, process, and display telemetry data.

  13. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  14. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  15. Design, Development, and Automated Verification of an Integrity-Protected Hypervisor

    DTIC Science & Technology

    2012-07-16

    mechanism for implementing software virtualization. Since hypervisors execute at a very high privilege level, they must be secure. A fundamental security...using the CBMC model checker. CBMC verified XMHF?s implementation ? about 4700 lines of C code ? in about 80 seconds using less than 2GB of RAM. 15...Hypervisors are a popular mechanism for implementing software virtualization. Since hypervisors execute at a very high privilege level, they must be

  16. System Re-engineering Project Executive Summary

    DTIC Science & Technology

    1991-11-01

    Management Information System (STAMIS) application. This project involved reverse engineering, evaluation of structured design and object-oriented design, and re- implementation of the system in Ada. This executive summary presents the approach to re-engineering the system, the lessons learned while going through the process, and issues to be considered in future tasks of this nature.... Computer-Aided Software Engineering (CASE), Distributed Software, Ada, COBOL, Systems Analysis, Systems Design, Life Cycle Development, Functional Decomposition, Object-Oriented

  17. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    NASA Technical Reports Server (NTRS)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  18. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper.

    PubMed

    Luo, Gang

    2017-12-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic.

  19. Method for distributed object communications based on dynamically acquired and assembled software components

    NASA Technical Reports Server (NTRS)

    Sundermier, Amy (Inventor)

    2002-01-01

    A method for acquiring and assembling software components at execution time into a client program, where the components may be acquired from remote networked servers is disclosed. The acquired components are assembled according to knowledge represented within one or more acquired mediating components. A mediating component implements knowledge of an object model. A mediating component uses its implemented object model knowledge, acquired component class information and polymorphism to assemble components into an interacting program at execution time. The interactions or abstract relationships between components in the object model may be implemented by the mediating component as direct invocations or indirect events or software bus exchanges. The acquired components may establish communications with remote servers. The acquired components may also present a user interface representing data to be exchanged with the remote servers. The mediating components may be assembled into layers, allowing arbitrarily complex programs to be constructed at execution time.

  20. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution: A Position Paper

    PubMed Central

    Luo, Gang

    2017-01-01

    For user-friendliness, many software systems offer progress indicators for long-duration tasks. A typical progress indicator continuously estimates the remaining task execution time as well as the portion of the task that has been finished. Building a machine learning model often takes a long time, but no existing machine learning software supplies a non-trivial progress indicator. Similarly, running a data mining algorithm often takes a long time, but no existing data mining software provides a nontrivial progress indicator. In this article, we consider the problem of offering progress indicators for machine learning model building and data mining algorithm execution. We discuss the goals and challenges intrinsic to this problem. Then we describe an initial framework for implementing such progress indicators and two advanced, potential uses of them, with the goal of inspiring future research on this topic. PMID:29177022

  1. Track and mode controller (TMC): a software executive for a high-altitude pointing and tracking experiment

    NASA Astrophysics Data System (ADS)

    Michnovicz, Michael R.

    1997-06-01

    A real-time executive has been implemented to control a high altitude pointing and tracking experiment. The track and mode controller (TMC) implements a table driven design, in which the track mode logic for a tracking mission is defined within a state transition diagram (STD). THe STD is implemented as a state transition table in the TMC software. Status Events trigger the state transitions in the STD. Each state, as it is entered, causes a number of processes to be activated within the system. As these processes propagate through the system, the status of key processes are monitored by the TMC, allowing further transitions within the STD. This architecture is implemented in real-time, using the vxWorks operating system. VxWorks message queues allow communication of status events from the Event Monitor task to the STD task. Process commands are propagated to the rest of the system processors by means of the SCRAMNet shared memory network. The system mode logic contained in the STD will autonomously sequence in acquisition, tracking and pointing system through an entire engagement sequence, starting with target detection and ending with aimpoint maintenance. Simulation results and lab test results will be presented to verify the mode controller. In addition to implementing the system mode logic with the STD, the TMC can process prerecorded time sequences of commands required during startup operations. It can also process single commands from the system operator. In this paper, the author presents (1) an overview, in which he describes the TMC architecture, the relationship of an end-to-end simulation to the flight software and the laboratory testing environment, (2) implementation details, including information on the vxWorks message queues and the SCRAMNet shared memory network, (3) simulation results and lab test results which verify the mode controller, and (4) plans for the future, specifically as to how this executive will expedite transition to a fully functional system.

  2. Validation and verification of a virtual environment for training naval submarine officers

    NASA Astrophysics Data System (ADS)

    Zeltzer, David L.; Pioch, Nicholas J.

    1996-04-01

    A prototype virtual environment (VE) has been developed for training a submarine officer of the desk (OOD) to perform in-harbor navigation on a surfaced submarine. The OOD, stationed on the conning tower of the vessel, is responsible for monitoring the progress of the boat as it negotiates a marked channel, as well as verifying the navigational suggestions of the below- deck piloting team. The VE system allows an OOD trainee to view a particular harbor and associated waterway through a head-mounted display, receive spoken reports from a simulated piloting team, give spoken commands to the helmsman, and receive verbal confirmation of command execution from the helm. The task analysis of in-harbor navigation, and the derivation of application requirements are briefly described. This is followed by a discussion of the implementation of the prototype. This implementation underwent a series of validation and verification assessment activities, including operational validation, data validation, and software verification of individual software modules as well as the integrated system. Validation and verification procedures are discussed with respect to the OOD application in particular, and with respect to VE applications in general.

  3. Autonomous Aerobraking Development Software: Phase 2 Summary

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David

    2013-01-01

    NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.

  4. An Architecture-Centric Approach for Acquiring Software-Reliant Systems

    DTIC Science & Technology

    2011-04-30

    Architecture Acquisition Wednesday, May 11, 2011 11:15 a.m. – 12:45 p.m. Chair: Christopher Deegan , Executive Director, Program Executive Office for...Christopher Deegan —Executive Director, Program Executive Officer, Integrated Warfare Systems (PEO IWS). Mr. Deegan directs the development, acquisition, and... Deegan holds a Bachelor of Science degree in Industrial Engineering from Penn State University, University Park, Pennsylvania and a Master of

  5. Advances in the Acquisition of Secure Systems Based on Open Architectures

    DTIC Science & Technology

    2011-04-30

    2011 11:15 a.m. – 12:45 p.m. Chair: Christopher Deegan , Executive Director, Program Executive Office for Integrated Warfare Systems Delivering...Systems Based on Open Architectures Walt Scacchi and Thomas Alspaugh, Institute for Software Research Christopher Deegan —Executive Director, Program...Executive Officer, Integrated Warfare Systems (PEO IWS). Mr. Deegan directs the development, acquisition, and fleet support of 150 combat weapon system

  6. QMachine: commodity supercomputing in web browsers

    PubMed Central

    2014-01-01

    Background Ongoing advancements in cloud computing provide novel opportunities in scientific computing, especially for distributed workflows. Modern web browsers can now be used as high-performance workstations for querying, processing, and visualizing genomics’ “Big Data” from sources like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) without local software installation or configuration. The design of QMachine (QM) was driven by the opportunity to use this pervasive computing model in the context of the Web of Linked Data in Biomedicine. Results QM is an open-sourced, publicly available web service that acts as a messaging system for posting tasks and retrieving results over HTTP. The illustrative application described here distributes the analyses of 20 Streptococcus pneumoniae genomes for shared suffixes. Because all analytical and data retrieval tasks are executed by volunteer machines, few server resources are required. Any modern web browser can submit those tasks and/or volunteer to execute them without installing any extra plugins or programs. A client library provides high-level distribution templates including MapReduce. This stark departure from the current reliance on expensive server hardware running “download and install” software has already gathered substantial community interest, as QM received more than 2.2 million API calls from 87 countries in 12 months. Conclusions QM was found adequate to deliver the sort of scalable bioinformatics solutions that computation- and data-intensive workflows require. Paradoxically, the sandboxed execution of code by web browsers was also found to enable them, as compute nodes, to address critical privacy concerns that characterize biomedical environments. PMID:24913605

  7. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging.

    PubMed

    Fang, Yu-Hua Dean; Asthana, Pravesh; Salinas, Cristian; Huang, Hsuan-Ming; Muzic, Raymond F

    2010-01-01

    An integrated software package, Compartment Model Kinetic Analysis Tool (COMKAT), is presented in this report. COMKAT is an open-source software package with many functions for incorporating pharmacokinetic analysis in molecular imaging research and has both command-line and graphical user interfaces. With COMKAT, users may load and display images, draw regions of interest, load input functions, select kinetic models from a predefined list, or create a novel model and perform parameter estimation, all without having to write any computer code. For image analysis, COMKAT image tool supports multiple image file formats, including the Digital Imaging and Communications in Medicine (DICOM) standard. Image contrast, zoom, reslicing, display color table, and frame summation can be adjusted in COMKAT image tool. It also displays and automatically registers images from 2 modalities. Parametric imaging capability is provided and can be combined with the distributed computing support to enhance computation speeds. For users without MATLAB licenses, a compiled, executable version of COMKAT is available, although it currently has only a subset of the full COMKAT capability. Both the compiled and the noncompiled versions of COMKAT are free for academic research use. Extensive documentation, examples, and COMKAT itself are available on its wiki-based Web site, http://comkat.case.edu. Users are encouraged to contribute, sharing their experience, examples, and extensions of COMKAT. With integrated functionality specifically designed for imaging and kinetic modeling analysis, COMKAT can be used as a software environment for molecular imaging and pharmacokinetic analysis.

  8. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    NASA Technical Reports Server (NTRS)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For testing, plug-ins are implemented in COSMOS to control the NOS3 simulations, while the command and telemetry tools available in COSMOS are used to communicate with FSW. NOS3 is actively being used for FSW development and component testing of the Simulation-to-Flight 1 (STF-1) CubeSat. As NOS3 matures, hardware models have been added for common CubeSat components such as Novatel GPS receivers, ClydeSpace electrical power systems and batteries, ISISpace antenna systems, etc. In the future, NASA IVV plans to distribute NOS3 to other CubeSat developers and release the suite to the open-source community.

  9. Integrated Functional and Executional Modelling of Software Using Web-Based Databases

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Marietta, Roberta

    1998-01-01

    NASA's software subsystems undergo extensive modification and updates over the operational lifetimes. It is imperative that modified software should satisfy safety goals. This report discusses the difficulties encountered in doing so and discusses a solution based on integrated modelling of software, use of automatic information extraction tools, web technology and databases.

  10. The optimal community detection of software based on complex networks

    NASA Astrophysics Data System (ADS)

    Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong

    2016-02-01

    The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.

  11. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  12. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  13. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  14. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  15. Software engineering and the role of Ada: Executive seminar

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1987-01-01

    The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.

  16. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  17. Global Forest Products Model software design and implementation (GFPM version 2014 with BPMP)

    Treesearch

    Shushuai Zhu; James Turner; Joseph   Buongiorno

    2014-01-01

    An overview of the GFPM software structure is given in Section 1.1 in terms of the overall processing flows and the main components of the GFPM. Section 1.2 describes the role of batch files in controlling the execution of the GFPM programs, and details of the sequence of program execution corresponding to each of the “Main Menu” options of the GFPM. Next, each...

  18. Survey of Command Execution Systems for NASA Spacecraft and Robots

    NASA Technical Reports Server (NTRS)

    Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich

    2005-01-01

    NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.

  19. Space Telecommunications Radio Architecture (STRS)

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  20. Space Telecommunications Radio Architecture (STRS): Technical Overview

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  1. NASA's SDR Standard: Space Telecommunications Radio System

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Johnson, Sandra K.

    2007-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  2. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  3. Diagnostics in the Extendable Integrated Support Environment (EISE)

    NASA Technical Reports Server (NTRS)

    Brink, James R.; Storey, Paul

    1988-01-01

    Extendable Integrated Support Environment (EISE) is a real-time computer network consisting of commercially available hardware and software components to support systems level integration, modifications, and enhancement to weapons systems. The EISE approach offers substantial potential savings by eliminating unique support environments in favor of sharing common modules for the support of operational weapon systems. An expert system is being developed that will help support diagnosing faults in this network. This is a multi-level, multi-expert diagnostic system that uses experiential knowledge relating symptoms to faults and also reasons from structural and functional models of the underlying physical model when experiential reasoning is inadequate. The individual expert systems are orchestrated by a supervisory reasoning controller, a meta-level reasoner which plans the sequence of reasoning steps to solve the given specific problem. The overall system, termed the Diagnostic Executive, accesses systems level performance checks and error reports, and issues remote test procedures to formulate and confirm fault hypotheses.

  4. Using PVM to host CLIPS in distributed environments

    NASA Technical Reports Server (NTRS)

    Myers, Leonard; Pohl, Kym

    1994-01-01

    It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.

  5. Online System for Faster Multipoint Linkage Analysis via Parallel Execution on Thousands of Personal Computers

    PubMed Central

    Silberstein, M.; Tzemach, A.; Dovgolevsky, N.; Fishelson, M.; Schuster, A.; Geiger, D.

    2006-01-01

    Computation of LOD scores is a valuable tool for mapping disease-susceptibility genes in the study of Mendelian and complex diseases. However, computation of exact multipoint likelihoods of large inbred pedigrees with extensive missing data is often beyond the capabilities of a single computer. We present a distributed system called “SUPERLINK-ONLINE,” for the computation of multipoint LOD scores of large inbred pedigrees. It achieves high performance via the efficient parallelization of the algorithms in SUPERLINK, a state-of-the-art serial program for these tasks, and through the use of the idle cycles of thousands of personal computers. The main algorithmic challenge has been to efficiently split a large task for distributed execution in a highly dynamic, nondedicated running environment. Notably, the system is available online, which allows computationally intensive analyses to be performed with no need for either the installation of software or the maintenance of a complicated distributed environment. As the system was being developed, it was extensively tested by collaborating medical centers worldwide on a variety of real data sets, some of which are presented in this article. PMID:16685644

  6. Dynamic visualization techniques for high consequence software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-02-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification. The prototype tool is described along with the requirements constraint language after a brief literature review is presented. Examples of howmore » the tool can be used are also presented. In conclusion, the most significant advantage of this tool is to provide a first step in evaluating specification completeness, and to provide a more productive method for program comprehension and debugging. The expected payoff is increased software surety confidence, increased program comprehension, and reduced development and debugging time.« less

  7. Software designs of image processing tasks with incremental refinement of computation.

    PubMed

    Anastasia, Davide; Andreopoulos, Yiannis

    2010-08-01

    Software realizations of computationally-demanding image processing tasks (e.g., image transforms and convolution) do not currently provide graceful degradation when their clock-cycles budgets are reduced, e.g., when delay deadlines are imposed in a multitasking environment to meet throughput requirements. This is an important obstacle in the quest for full utilization of modern programmable platforms' capabilities since worst-case considerations must be in place for reasonable quality of results. In this paper, we propose (and make available online) platform-independent software designs performing bitplane-based computation combined with an incremental packing framework in order to realize block transforms, 2-D convolution and frame-by-frame block matching. The proposed framework realizes incremental computation: progressive processing of input-source increments improves the output quality monotonically. Comparisons with the equivalent nonincremental software realization of each algorithm reveal that, for the same precision of the result, the proposed approach can lead to comparable or faster execution, while it can be arbitrarily terminated and provide the result up to the computed precision. Application examples with region-of-interest based incremental computation, task scheduling per frame, and energy-distortion scalability verify that our proposal provides significant performance scalability with graceful degradation.

  8. Batching System for Superior Service

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Veridian's Portable Batch System (PBS) was the recipient of the 1997 NASA Space Act Award for outstanding software. A batch system is a set of processes for managing queues and jobs. Without a batch system, it is difficult to manage the workload of a computer system. By bundling the enterprise's computing resources, the PBS technology offers users a single coherent interface, resulting in efficient management of the batch services. Users choose which information to package into "containers" for system-wide use. PBS also provides detailed system usage data, a procedure not easily executed without this software. PBS operates on networked, multi-platform UNIX environments. Veridian's new version, PBS Pro,TM has additional features and enhancements, including support for additional operating systems. Veridian distributes the original version of PBS as Open Source software via the PBS website. Customers can register and download the software at no cost. PBS Pro is also available via the web and offers additional features such as increased stability, reliability, and fault tolerance.A company using PBS can expect a significant increase in the effective management of its computing resources. Tangible benefits include increased utilization of costly resources and enhanced understanding of computational requirements and user needs.

  9. The maturing of the quality improvement paradigm in the SEL

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1993-01-01

    The Software Engineering Laboratory uses a paradigm for improving the software process and product, called the quality improvement paradigm. This paradigm has evolved over the past 18 years, along with our software development processes and product. Since 1976, when we first began the SEL, we have learned a great deal about improving the software process and product, making a great many mistakes along the way. Quality improvement paradigm, as it is currently defined, can be broken up into six steps: characterize the current project and its environment with respect to the appropriate models and metrics; set the quantifiable goals for successful project performance and improvement; choose the appropriate process model and supporting methods and tools for this project; execute the processes, construct the products, and collect, validate, and analyze the data to provide real-time feedback for corrective action; analyze the data to evaluate the current practices, determine problems, record findings, and make recommendations for future project improvements; and package the experience gained in the form of updated and refined models and other forms of structured knowledge gained from this and prior projects and save it in an experience base to be reused on future projects.

  10. Framework for Integrating Science Data Processing Algorithms Into Process Control Systems

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris A.; Crichton, Daniel J.; Chang, Albert Y.; Foster, Brian M.; Freeborn, Dana J.; Woollard, David M.; Ramirez, Paul M.

    2011-01-01

    A software framework called PCS Task Wrapper is responsible for standardizing the setup, process initiation, execution, and file management tasks surrounding the execution of science data algorithms, which are referred to by NASA as Product Generation Executives (PGEs). PGEs codify a scientific algorithm, some step in the overall scientific process involved in a mission science workflow. The PCS Task Wrapper provides a stable operating environment to the underlying PGE during its execution lifecycle. If the PGE requires a file, or metadata regarding the file, the PCS Task Wrapper is responsible for delivering that information to the PGE in a manner that meets its requirements. If the PGE requires knowledge of upstream or downstream PGEs in a sequence of executions, that information is also made available. Finally, if information regarding disk space, or node information such as CPU availability, etc., is required, the PCS Task Wrapper provides this information to the underlying PGE. After this information is collected, the PGE is executed, and its output Product file and Metadata generation is managed via the PCS Task Wrapper framework. The innovation is responsible for marshalling output Products and Metadata back to a PCS File Management component for use in downstream data processing and pedigree. In support of this, the PCS Task Wrapper leverages the PCS Crawler Framework to ingest (during pipeline processing) the output Product files and Metadata produced by the PGE. The architectural components of the PCS Task Wrapper framework include PGE Task Instance, PGE Config File Builder, Config File Property Adder, Science PGE Config File Writer, and PCS Met file Writer. This innovative framework is really the unifying bridge between the execution of a step in the overall processing pipeline, and the available PCS component services as well as the information that they collectively manage.

  11. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.

  12. Fault tolerant software modules for SIFT

    NASA Technical Reports Server (NTRS)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  13. Code White: A Signed Code Protection Mechanism for Smartphones

    DTIC Science & Technology

    2010-09-01

    analogous to computer security is the use of antivirus (AV) software . 12 AV software is a brute force approach to security. The software ...these users, numerous malicious programs have also surfaced. And while smartphones have desktop-like capabilities to execute software , they do not...11 2.3.1 Antivirus and Mobile Phones ............................................................... 11 2.3.2

  14. Software dependability in the Tandem GUARDIAN system

    NASA Technical Reports Server (NTRS)

    Lee, Inhwan; Iyer, Ravishankar K.

    1995-01-01

    Based on extensive field failure data for Tandem's GUARDIAN operating system this paper discusses evaluation of the dependability of operational software. Software faults considered are major defects that result in processor failures and invoke backup processes to take over. The paper categorizes the underlying causes of software failures and evaluates the effectiveness of the process pair technique in tolerating software faults. A model to describe the impact of software faults on the reliability of an overall system is proposed. The model is used to evaluate the significance of key factors that determine software dependability and to identify areas for improvement. An analysis of the data shows that about 77% of processor failures that are initially considered due to software are confirmed as software problems. The analysis shows that the use of process pairs to provide checkpointing and restart (originally intended for tolerating hardware faults) allows the system to tolerate about 75% of reported software faults that result in processor failures. The loose coupling between processors, which results in the backup execution (the processor state and the sequence of events) being different from the original execution, is a major reason for the measured software fault tolerance. Over two-thirds (72%) of measured software failures are recurrences of previously reported faults. Modeling, based on the data, shows that, in addition to reducing the number of software faults, software dependability can be enhanced by reducing the recurrence rate.

  15. Exploiting virtual synchrony in distributed systems

    NASA Technical Reports Server (NTRS)

    Birman, Kenneth P.; Joseph, Thomas A.

    1987-01-01

    Applications of a virtually synchronous environment are described for distributed programming, which underlies a collection of distributed programming tools in the ISIS2 system. A virtually synchronous environment allows processes to be structured into process groups, and makes events like broadcasts to the group as an entity, group membership changes, and even migration of an activity from one place to another appear to occur instantaneously, in other words, synchronously. A major advantage to this approach is that many aspects of a distributed application can be treated independently without compromising correctness. Moreover, user code that is designed as if the system were synchronous can often be executed concurrently. It is argued that this approach to building distributed and fault tolerant software is more straightforward, more flexible, and more likely to yield correct solutions than alternative approaches.

  16. Separating essentials from incidentals: an execution architecture for real-time control systems

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel; Reinholtz, Kirk

    2004-01-01

    This paper describes an execution architecture that makes such systems far more analyzable and verifiable by aggressive separation of concerns. The architecture separates two key software concerns: transformations of global state, as defined in pure functions; and sequencing/timing of transformations, as performed by an engine that enforces four prime invariants. The important advantage of this architecture, besides facilitating verification, is that it encourages formal specification of systems in a vocabulary that brings systems engineering closer to software engineering.

  17. Method and apparatus for collaborative use of application program

    DOEpatents

    Dean, Craig D.

    1994-01-01

    Method and apparatus permitting the collaborative use of a computer application program simultaneously by multiple users at different stations. The method is useful with communication protocols having client/server control structures. The method of the invention requires only a sole executing copy of the application program and a sole executing copy of software comprising the invention. Users may collaboratively use a set of application programs by invoking for each desired application program one copy of software comprising the invention.

  18. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  19. Computing Services and Assured Computing

    DTIC Science & Technology

    2006-05-01

    fighters’ ability to execute the mission.” Computing Services 4 We run IT Systems that: provide medical care pay the warfighters manage maintenance...users • 1,400 applications • 18 facilities • 180 software vendors • 18,000+ copies of executive software products • Virtually every type of mainframe and... chocs electriques, de branchez les deux cordons d’al imentation avant de faire le depannage P R IM A R Y SD A S B 1 2 PowerHub 7000 RST U L 00- 00

  20. Enforcement of entailment constraints in distributed service-based business processes.

    PubMed

    Hummer, Waldemar; Gaubatz, Patrick; Strembeck, Mark; Zdun, Uwe; Dustdar, Schahram

    2013-11-01

    A distributed business process is executed in a distributed computing environment. The service-oriented architecture (SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. Entailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding constraints define that a subject who performed one task must also perform the corresponding bound task(s). We aim to provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-based business processes. Based on a generic metamodel, we define a domain-specific language (DSL) that maps the different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC) with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints. We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing literature. Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime. The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and clean of security enforcement code. Our approach decouples the concerns of (non-technical) domain experts from technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the Web services technology stack. Our prototype implementation shows the feasibility of the approach, and the evaluation points to future work and further performance optimizations.

  1. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  2. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  3. COMPOSE-HPC: A Transformational Approach to Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernholdt, David E; Allan, Benjamin A.; Armstrong, Robert C.

    2012-04-01

    The goal of the COMPOSE-HPC project is to 'democratize' tools for automatic transformation of program source code so that it becomes tractable for the developers of scientific applications to create and use their own transformations reliably and safely. This paper describes our approach to this challenge, the creation of the KNOT tool chain, which includes tools for the creation of annotation languages to control the transformations (PAUL), to perform the transformations (ROTE), and optimization and code generation (BRAID), which can be used individually and in combination. We also provide examples of current and future uses of the KNOT tools, whichmore » include transforming code to use different programming models and environments, providing tests that can be used to detect errors in software or its execution, as well as composition of software written in different programming languages, or with different threading patterns.« less

  4. Man-machine interfaces in LACIE/ERIPS

    NASA Technical Reports Server (NTRS)

    Duprey, B. B. (Principal Investigator)

    1979-01-01

    One of the most important aspects of the interactive portion of the LACIE/ERIPS software system is the way in which the analysis and decision-making capabilities of a human being are integrated with the speed and accuracy of a computer to produce a powerful analysis system. The three major man-machine interfaces in the system are (1) the use of menus for communications between the software and the interactive user; (2) the checkpoint/restart facility to recreate in one job the internal environment achieved in an earlier one; and (3) the error recovery capability which would normally cause job termination. This interactive system, which executes on an IBM 360/75 mainframe, was adapted for use in noninteractive (batch) mode. A case study is presented to show how the interfaces work in practice by defining some fields based on an image screen display, noting the field definitions, and obtaining a film product of the classification map.

  5. Timing characterization and analysis of the Linux-based, closed loop control computer for the Subaru Telescope laser guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Dinkins, Matthew; Colley, Stephen

    2008-07-01

    Hardware and software specialized for real time control reduce the timing jitter of executables when compared to off-the-shelf hardware and software. However, these specialized environments are costly in both money and development time. While conventional systems have a cost advantage, the jitter in these systems is much larger and potentially problematic. This study analyzes the timing characterstics of a standard Dell server running a fully featured Linux operating system to determine if such a system would be capable of meeting the timing requirements for closed loop operations. Investigations are preformed on the effectiveness of tools designed to make off-the-shelf system performance closer to specialized real time systems. The Gnu Compiler Collection (gcc) is compared to the Intel C Compiler (icc), compiler optimizations are investigated, and real-time extensions to Linux are evaluated.

  6. A Teleo-Reactive Node for Implementing Internet of Things Systems

    PubMed Central

    Álvarez, Bárbara; Fernández, Diego

    2018-01-01

    The Internet of Things (IoT) is one of today’s main disruptive technologies and, although massive research has been carried out in recent years, there are still some open issues such as the consideration of software engineering methods and tools. We propose the adoption of the Teleo-Reactive approach in order to facilitate the development of Internet of Things systems as a set of communicating Teleo-Reactive nodes. The software behavior of the nodes is specified in terms of goals, perceptions and actions over the environment, achieving higher abstraction than using general-purpose programming languages and therefore, enhancing the involvement of non-technical users in the specification process. Throughout this paper, we describe the elements of a Teleo-Reactive node and a systematic procedure for translating Teleo-Reactive specifications into executable code for Internet of Things devices. The case study of a robotic agent is used in order to validate the whole approach. PMID:29614772

  7. A Teleo-Reactive Node for Implementing Internet of Things Systems.

    PubMed

    Sánchez, Pedro; Álvarez, Bárbara; Antolinos, Elías; Fernández, Diego; Iborra, Andrés

    2018-04-01

    The Internet of Things (IoT) is one of today's main disruptive technologies and, although massive research has been carried out in recent years, there are still some open issues such as the consideration of software engineering methods and tools. We propose the adoption of the Teleo-Reactive approach in order to facilitate the development of Internet of Things systems as a set of communicating Teleo-Reactive nodes. The software behavior of the nodes is specified in terms of goals, perceptions and actions over the environment, achieving higher abstraction than using general-purpose programming languages and therefore, enhancing the involvement of non-technical users in the specification process. Throughout this paper, we describe the elements of a Teleo-Reactive node and a systematic procedure for translating Teleo-Reactive specifications into executable code for Internet of Things devices. The case study of a robotic agent is used in order to validate the whole approach.

  8. Software Defined Radio Standard Architecture and its Application to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Reinhart, Richard C.

    2006-01-01

    A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.

  9. Run Environment and Data Management for Earth System Models

    NASA Astrophysics Data System (ADS)

    Widmann, H.; Lautenschlager, M.; Fast, I.; Legutke, S.

    2009-04-01

    The Integrating Model and Data Infrastructure (IMDI) developed and maintained by the Model and Data Group (M&D) comprises the Standard Compile Environment (SCE) and the Standard Run Environment (SRE). The IMDI software has a modular design, which allows to combine and couple a suite of model components and as well to execute the tasks independently and on various platforms. Furthermore the modular structure enables the extension to new model combinations and new platforms. The SRE presented here enables the configuration and performance of earth system model experiments from model integration up to storage and visualization of data. We focus on recently implemented tasks such as synchronous data base filling, graphical monitoring and automatic generation of meta data in XML forms during run time. As well we address the capability to run experiments in heterogeneous IT environments with different computing systems for model integration, data processing and storage. These features are demonstrated for model configurations and on platforms used in current or upcoming projects, e.g. MILLENNIUM or IPCC AR5.

  10. Development of Integrated Modular Avionics Application Based on Simulink and XtratuM

    NASA Astrophysics Data System (ADS)

    Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons

    2013-08-01

    This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.

  11. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  12. LogScope

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  13. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  14. The simulation library of the Belle II software system

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Ritter, M.; Bilka, T.; Bobrov, A.; Casarosa, G.; Chilikin, K.; Ferber, T.; Godang, R.; Jaegle, I.; Kandra, J.; Kodys, P.; Kuhr, T.; Kvasnicka, P.; Nakayama, H.; Piilonen, L.; Pulvermacher, C.; Santelj, L.; Schwenker, B.; Sibidanov, A.; Soloviev, Y.; Starič, M.; Uglov, T.

    2017-10-01

    SuperKEKB, the next generation B factory, has been constructed in Japan as an upgrade of KEKB. This brand new e+ e- collider is expected to deliver a very large data set for the Belle II experiment, which will be 50 times larger than the previous Belle sample. Both the triggered physics event rate and the background event rate will be increased by at least 10 times than the previous ones, and will create a challenging data taking environment for the Belle II detector. The software system of the Belle II experiment is designed to execute this ambitious plan. A full detector simulation library, which is a part of the Belle II software system, is created based on Geant4 and has been tested thoroughly. Recently the library has been upgraded with Geant4 version 10.1. The library is behaving as expected and it is utilized actively in producing Monte Carlo data sets for various studies. In this paper, we will explain the structure of the simulation library and the various interfaces to other packages including geometry and beam background simulation.

  15. Evolution of Software-Only-Simulation at NASA IV and V

    NASA Technical Reports Server (NTRS)

    McCarty, Justin; Morris, Justin; Zemerick, Scott

    2014-01-01

    Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, D.; McInnes, L. C.; Woodward, C.

    This report is an outcome of the workshop Multiphysics Simulations: Challenges and Opportunities, sponsored by the Institute of Computing in Science (ICiS). Additional information about the workshop, including relevant reading and presentations on multiphysics issues in applications, algorithms, and software, is available via https://sites.google.com/site/icismultiphysics2011/. We consider multiphysics applications from algorithmic and architectural perspectives, where 'algorithmic' includes both mathematical analysis and computational complexity and 'architectural' includes both software and hardware environments. Many diverse multiphysics applications can be reduced, en route to their computational simulation, to a common algebraic coupling paradigm. Mathematical analysis of multiphysics coupling in this form is not alwaysmore » practical for realistic applications, but model problems representative of applications discussed herein can provide insight. A variety of software frameworks for multiphysics applications have been constructed and refined within disciplinary communities and executed on leading-edge computer systems. We examine several of these, expose some commonalities among them, and attempt to extrapolate best practices to future systems. From our study, we summarize challenges and forecast opportunities. We also initiate a modest suite of test problems encompassing features present in many applications.« less

  17. Software for Automation of Real-Time Agents, Version 2

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steve; Chouinard, Caroline; Engelhardt, Barbara; Wilklow, Colette; Mutz, Darren; Knight, Russell; Rabideau, Gregg; hide

    2005-01-01

    Version 2 of Closed Loop Execution and Recovery (CLEaR) has been developed. CLEaR is an artificial intelligence computer program for use in planning and execution of actions of autonomous agents, including, for example, Deep Space Network (DSN) antenna ground stations, robotic exploratory ground vehicles (rovers), robotic aircraft (UAVs), and robotic spacecraft. CLEaR automates the generation and execution of command sequences, monitoring the sequence execution, and modifying the command sequence in response to execution deviations and failures as well as new goals for the agent to achieve. The development of CLEaR has focused on the unification of planning and execution to increase the ability of the autonomous agent to perform under tight resource and time constraints coupled with uncertainty in how much of resources and time will be required to perform a task. This unification is realized by extending the traditional three-tier robotic control architecture by increasing the interaction between the software components that perform deliberation and reactive functions. The increase in interaction reduces the need to replan, enables earlier detection of the need to replan, and enables replanning to occur before an agent enters a state of failure.

  18. SCIL Executive Summaries.

    ERIC Educational Resources Information Center

    Samuels, Alan R.; And Others

    1987-01-01

    These five papers by speakers at the Small Computers in Libraries 1987 conference include: "Acquiring and Using Shareware in Building Small Scale Automated Information systems" (Samuels); "A Software Lending Collection" (Talab); "Providing Subject Access to Microcomputer Software" (Mitchell); "Interfacing Vendor…

  19. A Modular Repository-based Infrastructure for Simulation Model Storage and Execution Support in the Context of In Silico Oncology and In Silico Medicine.

    PubMed

    Christodoulou, Nikolaos A; Tousert, Nikolaos E; Georgiadi, Eleni Ch; Argyri, Katerina D; Misichroni, Fay D; Stamatakos, Georgios S

    2016-01-01

    The plethora of available disease prediction models and the ongoing process of their application into clinical practice - following their clinical validation - have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work. In addition, the end users should be provided with all the necessary interfaces for model execution and effortless result retrieval. We therefore propose a software infrastructure, based on a tool, model and data repository that handles the storage of models and pertinent execution-related data, along with functionalities for execution management, communication with third-party applications, user-friendly interfaces to access and use the infrastructure with minimal effort and basic security features.

  20. A Modular Repository-based Infrastructure for Simulation Model Storage and Execution Support in the Context of In Silico Oncology and In Silico Medicine

    PubMed Central

    Christodoulou, Nikolaos A.; Tousert, Nikolaos E.; Georgiadi, Eleni Ch.; Argyri, Katerina D.; Misichroni, Fay D.; Stamatakos, Georgios S.

    2016-01-01

    The plethora of available disease prediction models and the ongoing process of their application into clinical practice – following their clinical validation – have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work. In addition, the end users should be provided with all the necessary interfaces for model execution and effortless result retrieval. We therefore propose a software infrastructure, based on a tool, model and data repository that handles the storage of models and pertinent execution-related data, along with functionalities for execution management, communication with third-party applications, user-friendly interfaces to access and use the infrastructure with minimal effort and basic security features. PMID:27812280

  1. Investigating interoperability of the LSST data management software stack with Astropy

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Bosch, James; Owen, Russell; Parejko, John; Sick, Jonathan; Swinbank, John; de Val-Borro, Miguel; Dubois-Felsmann, Gregory; Lim, K.-T.; Lupton, Robert H.; Schellart, Pim; Krughoff, K. S.; Tollerud, Erik J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) will be an 8.4m optical survey telescope sited in Chile and capable of imaging the entire sky twice a week. The data rate of approximately 15TB per night and the requirements to both issue alerts on transient sources within 60 seconds of observing and create annual data releases means that automated data management systems and data processing pipelines are a key deliverable of the LSST construction project. The LSST data management software has been in development since 2004 and is based on a C++ core with a Python control layer. The software consists of nearly a quarter of a million lines of code covering the system from fundamental WCS and table libraries to pipeline environments and distributed process execution. The Astropy project began in 2011 as an attempt to bring together disparate open source Python projects and build a core standard infrastructure that can be used and built upon by the astronomy community. This project has been phenomenally successful in the years since it has begun and has grown to be the de facto standard for Python software in astronomy. Astropy brings with it considerable expectations from the community on how astronomy Python software should be developed and it is clear that by the time LSST is fully operational in the 2020s many of the prospective users of the LSST software stack will expect it to be fully interoperable with Astropy. In this paper we describe the overlap between the LSST science pipeline software and Astropy software and investigate areas where the LSST software provides new functionality. We also discuss the possibilities of re-engineering the LSST science pipeline software to build upon Astropy, including the option of contributing affliated packages.

  2. Theoretical and software considerations for general dynamic analysis using multilevel substructured models

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1985-01-01

    The dynamic analysis of complex structural systems using the finite element method and multilevel substructured models is presented. The fixed-interface method is selected for substructure reduction because of its efficiency, accuracy, and adaptability to restart and reanalysis. This method is extended to reduction of substructures which are themselves composed of reduced substructures. The implementation and performance of the method in a general purpose software system is emphasized. Solution algorithms consistent with the chosen data structures are presented. It is demonstrated that successful finite element software requires the use of software executives to supplement the algorithmic language. The complexity of the implementation of restart and reanalysis porcedures illustrates the need for executive systems to support the noncomputational aspects of the software. It is shown that significant computational efficiencies can be achieved through proper use of substructuring and reduction technbiques without sacrificing solution accuracy. The restart and reanalysis capabilities and the flexible procedures for multilevel substructured modeling gives economical yet accurate analyses of complex structural systems.

  3. Integrated Functional and Executional Modelling of Software Using Web-Based Databases

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Marietta, Roberta

    1998-01-01

    NASA's software subsystems undergo extensive modification and updates over the operational lifetimes. It is imperative that modified software should satisfy safety goals. This report discusses the difficulties encountered in doing so and discusses a solution based on integrated modelling of software, use of automatic information extraction tools, web technology and databases. To appear in an article of Journal of Database Management.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heroux, Michael; Lethin, Richard

    Programming models and environments play the essential roles in high performance computing of enabling the conception, design, implementation and execution of science and engineering application codes. Programmer productivity is strongly influenced by the effectiveness of our programming models and environments, as is software sustainability since our codes have lifespans measured in decades, so the advent of new computing architectures, increased concurrency, concerns for resilience, and the increasing demands for high-fidelity, multi-physics, multi-scale and data-intensive computations mean that we have new challenges to address as part of our fundamental R&D requirements. Fortunately, we also have new tools and environments that makemore » design, prototyping and delivery of new programming models easier than ever. The combination of new and challenging requirements and new, powerful toolsets enables significant synergies for the next generation of programming models and environments R&D. This report presents the topics discussed and results from the 2014 DOE Office of Science Advanced Scientific Computing Research (ASCR) Programming Models & Environments Summit, and subsequent discussions among the summit participants and contributors to topics in this report.« less

  5. Online Planning Algorithm

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  6. Managing large-scale workflow execution from resource provisioning to provenance tracking: The CyberShake example

    USGS Publications Warehouse

    Deelman, E.; Callaghan, S.; Field, E.; Francoeur, H.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T.H.; Kesselman, C.; Maechling, P.; Mehringer, J.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2006-01-01

    This paper discusses the process of building an environment where large-scale, complex, scientific analysis can be scheduled onto a heterogeneous collection of computational and storage resources. The example application is the Southern California Earthquake Center (SCEC) CyberShake project, an analysis designed to compute probabilistic seismic hazard curves for sites in the Los Angeles area. We explain which software tools were used to build to the system, describe their functionality and interactions. We show the results of running the CyberShake analysis that included over 250,000 jobs using resources available through SCEC and the TeraGrid. ?? 2006 IEEE.

  7. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  8. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  9. Telemanipulator design and optimization software

    NASA Astrophysics Data System (ADS)

    Cote, Jean; Pelletier, Michel

    1995-12-01

    For many years, industrial robots have been used to execute specific repetitive tasks. In those cases, the optimal configuration and location of the manipulator only has to be found once. The optimal configuration or position where often found empirically according to the tasks to be performed. In telemanipulation, the nature of the tasks to be executed is much wider and can be very demanding in terms of dexterity and workspace. The position/orientation of the robot's base could be required to move during the execution of a task. At present, the choice of the initial position of the teleoperator is usually found empirically which can be sufficient in the case of an easy or repetitive task. In the converse situation, the amount of time wasted to move the teleoperator support platform has to be taken into account during the execution of the task. Automatic optimization of the position/orientation of the platform or a better designed robot configuration could minimize these movements and save time. This paper will present two algorithms. The first algorithm is used to optimize the position and orientation of a given manipulator (or manipulators) with respect to the environment on which a task has to be executed. The second algorithm is used to optimize the position or the kinematic configuration of a robot. For this purpose, the tasks to be executed are digitized using a position/orientation measurement system and a compact representation based on special octrees. Given a digitized task, the optimal position or Denavit-Hartenberg configuration of the manipulator can be obtained numerically. Constraints on the robot design can also be taken into account. A graphical interface has been designed to facilitate the use of the two optimization algorithms.

  10. A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2014-01-01

    A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.

  11. Orion Burn Management, Nominal and Response to Failures

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan; Goodman, John L.; Barrett, Charles P.; Pohlkamp, Kara; Robinson, Shane

    2016-01-01

    An approach for managing Orion on-orbit burn execution is described for nominal and failure response scenarios. The burn management strategy for Orion takes into account per-burn variations in targeting, timing, and execution; crew and ground operator intervention and overrides; defined burn failure triggers and responses; and corresponding on-board software sequencing functionality. Burn-to- burn variations are managed through the identification of specific parameters that may be updated for each progressive burn. Failure triggers and automatic responses during the burn timeframe are defined to provide safety for the crew in the case of vehicle failures, along with override capabilities to ensure operational control of the vehicle. On-board sequencing software provides the timeline coordination for performing the required activities related to targeting, burn execution, and responding to burn failures.

  12. Family Environment and Parent-Child Relationships as Related to Executive Functioning in Children

    ERIC Educational Resources Information Center

    Schroeder, Valarie M.; Kelley, Michelle L.

    2010-01-01

    The present study examines the associations between family environment, parenting practices and executive functions in normally developing children. One hundred parents of children between the ages of 5 and 12 completed the Behavior Rating Inventory of Executive Functions from the Family Environment Scale and the Parent-Child Relationship…

  13. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments.

    PubMed

    Castaño-Díez, Daniel; Kudryashev, Mikhail; Arheit, Marcel; Stahlberg, Henning

    2012-05-01

    Dynamo is a new software package for subtomogram averaging of cryo Electron Tomography (cryo-ET) data with three main goals: first, Dynamo allows user-transparent adaptation to a variety of high-performance computing platforms such as GPUs or CPU clusters. Second, Dynamo implements user-friendliness through GUI interfaces and scripting resources. Third, Dynamo offers user-flexibility through a plugin API. Besides the alignment and averaging procedures, Dynamo includes native tools for visualization and analysis of results and data, as well as support for third party visualization software, such as Chimera UCSF or EMAN2. As a demonstration of these functionalities, we studied bacterial flagellar motors and showed automatically detected classes with absent and present C-rings. Subtomogram averaging is a common task in current cryo-ET pipelines, which requires extensive computational resources and follows a well-established workflow. However, due to the data diversity, many existing packages offer slight variations of the same algorithm to improve results. One of the main purposes behind Dynamo is to provide explicit tools to allow the user the insertion of custom designed procedures - or plugins - to replace or complement the native algorithms in the different steps of the processing pipeline for subtomogram averaging without the burden of handling parallelization. Custom scripts that implement new approaches devised by the user are integrated into the Dynamo data management system, so that they can be controlled by the GUI or the scripting capacities. Dynamo executables do not require licenses for third party commercial software. Sources, executables and documentation are freely distributed on http://www.dynamo-em.org. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. An integrated pipeline to create and experience compelling scenarios in virtual reality

    NASA Astrophysics Data System (ADS)

    Springer, Jan P.; Neumann, Carsten; Reiners, Dirk; Cruz-Neira, Carolina

    2011-03-01

    One of the main barriers to create and use compelling scenarios in virtual reality is the complexity and time-consuming efforts for modeling, element integration, and the software development to properly display and interact with the content in the available systems. Still today, most virtual reality applications are tedious to create and they are hard-wired to the specific display and interaction system available to the developers when creating the application. Furthermore, it is not possible to alter the content or the dynamics of the content once the application has been created. We present our research on designing a software pipeline that enables the creation of compelling scenarios with a fair degree of visual and interaction complexity in a semi-automated way. Specifically, we are targeting drivable urban scenarios, ranging from large cities to sparsely populated rural areas that incorporate both static components (e. g., houses, trees) and dynamic components (e. g., people, vehicles) as well as events, such as explosions or ambient noise. Our pipeline has four basic components. First, an environment designer, where users sketch the overall layout of the scenario, and an automated method constructs the 3D environment from the information in the sketch. Second, a scenario editor used for authoring the complete scenario, incorporate the dynamic elements and events, fine tune the automatically generated environment, define the execution conditions of the scenario, and set up any data gathering that may be necessary during the execution of the scenario. Third, a run-time environment for different virtual-reality systems provides users with the interactive experience as designed with the designer and the editor. And fourth, a bi-directional monitoring system that allows for capturing and modification of information from the virtual environment. One of the interesting capabilities of our pipeline is that scenarios can be built and modified on-the-fly as they are being presented in the virtual-reality systems. Users can quickly prototype the basic scene using the designer and the editor on a control workstation. More elements can then be introduced into the scene from both the editor and the virtual-reality display. In this manner, users are able to gradually increase the complexity of the scenario with immediate feedback. The main use of this pipeline is the rapid development of scenarios for human-factors studies. However, it is applicable in a much more general context.

  15. Executive system software design and expert system implementation

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1992-01-01

    The topics are presented in viewgraph form and include: software requirements; design layout of the automated assembly system; menu display for automated composite command; expert system features; complete robot arm state diagram and logic; and expert system benefits.

  16. Reproducible Bioconductor workflows using browser-based interactive notebooks and containers.

    PubMed

    Almugbel, Reem; Hung, Ling-Hong; Hu, Jiaming; Almutairy, Abeer; Ortogero, Nicole; Tamta, Yashaswi; Yeung, Ka Yee

    2018-01-01

    Bioinformatics publications typically include complex software workflows that are difficult to describe in a manuscript. We describe and demonstrate the use of interactive software notebooks to document and distribute bioinformatics research. We provide a user-friendly tool, BiocImageBuilder, that allows users to easily distribute their bioinformatics protocols through interactive notebooks uploaded to either a GitHub repository or a private server. We present four different interactive Jupyter notebooks using R and Bioconductor workflows to infer differential gene expression, analyze cross-platform datasets, process RNA-seq data and KinomeScan data. These interactive notebooks are available on GitHub. The analytical results can be viewed in a browser. Most importantly, the software contents can be executed and modified. This is accomplished using Binder, which runs the notebook inside software containers, thus avoiding the need to install any software and ensuring reproducibility. All the notebooks were produced using custom files generated by BiocImageBuilder. BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface. We demonstrate that interactive notebooks can be used to disseminate a wide range of bioinformatics analyses. The use of software containers to mirror the original software environment ensures reproducibility of results. Parameters and code can be dynamically modified, allowing for robust verification of published results and encouraging rapid adoption of new methods. Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive software notebooks will become as necessary for documenting software methods as traditional laboratory notebooks have been for documenting bench protocols, and as ubiquitous. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Feedback-Driven Dynamic Invariant Discovery

    NASA Technical Reports Server (NTRS)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  18. Applications of Logic Coverage Criteria and Logic Mutation to Software Testing

    ERIC Educational Resources Information Center

    Kaminski, Garrett K.

    2011-01-01

    Logic is an important component of software. Thus, software logic testing has enjoyed significant research over a period of decades, with renewed interest in the last several years. One approach to detecting logic faults is to create and execute tests that satisfy logic coverage criteria. Another approach to detecting faults is to perform mutation…

  19. Condor-COPASI: high-throughput computing for biochemical networks

    PubMed Central

    2012-01-01

    Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary expertise. Results We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel. Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is presented to the user in a number of formats, including tables and interactive graphical displays. Conclusions Condor-COPASI can effectively use a Condor high-throughput computing environment to provide significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with full instructions on deployment and usage. PMID:22834945

  20. Progressive retry for software error recovery in distributed systems

    NASA Technical Reports Server (NTRS)

    Wang, Yi-Min; Huang, Yennun; Fuchs, W. K.

    1993-01-01

    In this paper, we describe a method of execution retry for bypassing software errors based on checkpointing, rollback, message reordering and replaying. We demonstrate how rollback techniques, previously developed for transient hardware failure recovery, can also be used to recover from software faults by exploiting message reordering to bypass software errors. Our approach intentionally increases the degree of nondeterminism and the scope of rollback when a previous retry fails. Examples from our experience with telecommunications software systems illustrate the benefits of the scheme.

  1. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  2. FAST User Guide

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system administration.

  3. MATTS- A Step Towards Model Based Testing

    NASA Astrophysics Data System (ADS)

    Herpel, H.-J.; Willich, G.; Li, J.; Xie, J.; Johansen, B.; Kvinnesland, K.; Krueger, S.; Barrios, P.

    2016-08-01

    In this paper we describe a Model Based approach to testing of on-board software and compare it with traditional validation strategy currently applied to satellite software. The major problems that software engineering will face over at least the next two decades are increasing application complexity driven by the need for autonomy and serious application robustness. In other words, how do we actually get to declare success when trying to build applications one or two orders of magnitude more complex than today's applications. To solve the problems addressed above the software engineering process has to be improved at least for two aspects: 1) Software design and 2) Software testing. The software design process has to evolve towards model-based approaches with extensive use of code generators. Today, testing is an essential, but time and resource consuming activity in the software development process. Generating a short, but effective test suite usually requires a lot of manual work and expert knowledge. In a model-based process, among other subtasks, test construction and test execution can also be partially automated. The basic idea behind the presented study was to start from a formal model (e.g. State Machines), generate abstract test cases which are then converted to concrete executable test cases (input and expected output pairs). The generated concrete test cases were applied to an on-board software. Results were collected and evaluated wrt. applicability, cost-efficiency, effectiveness at fault finding, and scalability.

  4. ScreenMasker: An Open-source Gaze-contingent Screen Masking Environment.

    PubMed

    Orlov, Pavel A; Bednarik, Roman

    2016-09-01

    The moving-window paradigm, based on gazecontingent technic, traditionally used in a studies of the visual perceptual span. There is a strong demand for new environments that could be employed by non-technical researchers. We have developed an easy-to-use tool with a graphical user interface (GUI) allowing both execution and control of visual gaze-contingency studies. This work describes ScreenMasker, an environment that allows create gaze-contingent textured displays used together with stimuli presentation software. ScreenMasker has an architecture that meets the requirements of low-latency real-time eye-movement experiments. It also provides a variety of settings and functions. Effective rendering times and performance are ensured by means of GPU processing under CUDA technology. Performance tests show ScreenMasker's latency to be 67-74 ms on a typical office computer, and high-end 144-Hz screen latencies of about 25-28 ms. ScreenMasker is an open-source system distributed under the GNU Lesser General Public License and is available at https://github.com/PaulOrlov/ScreenMasker .

  5. The JPL telerobot operator control station. Part 1: Hardware

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Tower, John T.; Hunka, George W.; Vansant, Glenn J.

    1989-01-01

    The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed.

  6. Spaceborne computer executive routine functional design specification. Volume 1: Functional design of a flight computer executive program for the reusable shuttle

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.

  7. Architecture for Control of the K9 Rover

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  8. Supporting Executive Functions during Children's Preliteracy Learning with the Computer

    ERIC Educational Resources Information Center

    Van de Sande, E.; Segers, E.; Verhoeven, L.

    2016-01-01

    The present study examined how embedded activities to support executive functions helped children to benefit from a computer intervention that targeted preliteracy skills. Three intervention groups were compared on their preliteracy gains in a randomized controlled trial design: an experimental group that worked with software to stimulate early…

  9. Proceedings of the 5th Annual Users' Conference

    NASA Technical Reports Server (NTRS)

    Szczur, M. (Editor); Harris, E. (Editor)

    1985-01-01

    The Transportable Applications Executive (TAE) was conceived in 1979. It was proposed to be a general purpose software executive that could be applied in various systems. The success of this concept and of TAE was demonstrated. Topics included: TAE current status; TAE development; TAE applications; and UNIX emphasis.

  10. Safeguarding End-User Military Software

    DTIC Science & Technology

    2014-12-04

    product lines using composi- tional symbolic execution [17] Software product lines are families of products defined by feature commonality and vari...ability, with a well-managed asset base. Recent work in testing of software product lines has exploited similarities across development phases to reuse...feature dependence graph to extract the set of possible interaction trees in a product family. It composes these to incrementally and symbolically

  11. Using Digital Acoustic Recording Tags to Detect Marine Mammals on Navy Ranges and Study their Responses to Naval Sonar

    DTIC Science & Technology

    2011-02-01

    written in C and assembly languages. 2) executable code for the low-power wakeup controller in the tag. This software is responsible for the VHF...used in the tag software. The multi-rate processing in the new tag necessitated a more complex task- scheduling software architecture. The effort of

  12. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2013-01-03

    staffing for the project  Implementing the necessary infrastructure ( testing, performance evaluation, needed support software, bug and issue...in the SOW The result of the planning discussions is shown in the milestone table (section 6). In addition, we selected appropriate engineering

  13. 29 CFR 541.401 - Computer manufacture and repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEFINING AND DELIMITING THE EXEMPTIONS FOR EXECUTIVE, ADMINISTRATIVE, PROFESSIONAL, COMPUTER AND OUTSIDE..., the use of computers and computer software programs (e.g., engineers, drafters and others skilled in computer-aided design software), but who are not primarily engaged in computer systems analysis and...

  14. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.

    PubMed

    Gorgolewski, Krzysztof; Burns, Christopher D; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O; Waskom, Michael L; Ghosh, Satrajit S

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  15. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

    PubMed Central

    Gorgolewski, Krzysztof; Burns, Christopher D.; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O.; Waskom, Michael L.; Ghosh, Satrajit S.

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research. PMID:21897815

  16. The Processes Involved in Designing Software.

    DTIC Science & Technology

    1980-08-01

    repeats Itself at the next level, terminating with a plan whose individual steps can be executed to solve the Initial problem. Hayes-Roth and Hayes-Roth...that the original design problem is decomposed into a collection of well structured subproblems under the control of some type of executive process...given element to refine further, the schema is assumed to execute to completion, developing a solution model for that element and refining it into a

  17. Helicopter In-Flight Monitoring System Second Generation (HIMS II).

    DTIC Science & Technology

    1983-08-01

    acquisition cycle. B. Computer Chassis CPU (DEC LSI-II/2) -- Executes instructions contained in the memory. 32K memory (DEC MSVII-DD) --Contains program...when the operator executes command #2, 3, or 5 (display data). New cartridges can be inserted as required for truly unlimited, continuous data...is called bootstrapping. The software, which is stored on a tape cartridge, is loaded into memory by execution of a small program stored in read-only

  18. 40 CFR 68.155 - Executive summary.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Executive summary. 68.155 Section 68.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.155 Executive summary. The owner or...

  19. 40 CFR 68.155 - Executive summary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Executive summary. 68.155 Section 68.155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.155 Executive summary. The owner or...

  20. Maternal Executive Function, Harsh Parenting, and Child Conduct Problems

    PubMed Central

    Deater-Deckard, Kirby; Wang, Zhe; Chen, Nan; Bell, Martha Ann

    2012-01-01

    Background Maternal executive function and household regulation both are critical aspects of optimal childrearing, but their interplay is not understood. We tested the hypotheses that 1) the link between challenging child conduct problems and harsh parenting would be strongest for mothers with poorer executive function and weakest among those with better executive function, and 2) this mechanism would be further moderated by the degree of household chaos. Methods The socioeconomically diverse sample included 147 mothers of 3-to-7 year old children. Mothers completed questionnaires and a laboratory assessment of executive function. Results Consistent with hypotheses, harsh parenting was linked with child conduct problems only among mothers with poorer executive function. This effect was particularly strong in calm, predictable environments, but was not evident in chaotic environments. Conclusion Maternal executive function is critical to minimizing harsh parenting in the context of challenging child behavior, but this self-regulation process may not operate well in chaotic environments. PMID:22764829

  1. Montage Version 3.0

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Katz, Daniel; Prince, Thomas; Berriman, Graham; Good, John; Laity, Anastasia

    2006-01-01

    The final version (3.0) of the Montage software has been released. To recapitulate from previous NASA Tech Briefs articles about Montage: This software generates custom, science-grade mosaics of astronomical images on demand from input files that comply with the Flexible Image Transport System (FITS) standard and contain image data registered on projections that comply with the World Coordinate System (WCS) standards. This software can be executed on single-processor computers, multi-processor computers, and such networks of geographically dispersed computers as the National Science Foundation s TeraGrid or NASA s Information Power Grid. The primary advantage of running Montage in a grid environment is that computations can be done on a remote supercomputer for efficiency. Multiple computers at different sites can be used for different parts of a computation a significant advantage in cases of computations for large mosaics that demand more processor time than is available at any one site. Version 3.0 incorporates several improvements over prior versions. The most significant improvement is that this version is accessible to scientists located anywhere, through operational Web services that provide access to data from several large astronomical surveys and construct mosaics on either local workstations or remote computational grids as needed.

  2. The Perfect Neuroimaging-Genetics-Computation Storm: Collision of Petabytes of Data, Millions of Hardware Devices and Thousands of Software Tools

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Zamanyan, Alen; Torri, Federica; Macciardi, Fabio; Hobel, Sam; Moon, Seok Woo; Sung, Young Hee; Jiang, Zhiguo; Labus, Jennifer; Kurth, Florian; Ashe-McNalley, Cody; Mayer, Emeran; Vespa, Paul M.; Van Horn, John D.; Toga, Arthur W.

    2013-01-01

    The volume, diversity and velocity of biomedical data are exponentially increasing providing petabytes of new neuroimaging and genetics data every year. At the same time, tens-of-thousands of computational algorithms are developed and reported in the literature along with thousands of software tools and services. Users demand intuitive, quick and platform-agnostic access to data, software tools, and infrastructure from millions of hardware devices. This explosion of information, scientific techniques, computational models, and technological advances leads to enormous challenges in data analysis, evidence-based biomedical inference and reproducibility of findings. The Pipeline workflow environment provides a crowd-based distributed solution for consistent management of these heterogeneous resources. The Pipeline allows multiple (local) clients and (remote) servers to connect, exchange protocols, control the execution, monitor the states of different tools or hardware, and share complete protocols as portable XML workflows. In this paper, we demonstrate several advanced computational neuroimaging and genetics case-studies, and end-to-end pipeline solutions. These are implemented as graphical workflow protocols in the context of analyzing imaging (sMRI, fMRI, DTI), phenotypic (demographic, clinical), and genetic (SNP) data. PMID:23975276

  3. Global Precipitation Mission Visualization Tool

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  4. Integration of domain and resource-based reasoning for real-time control in dynamic environments

    NASA Technical Reports Server (NTRS)

    Morgan, Keith; Whitebread, Kenneth R.; Kendus, Michael; Cromarty, Andrew S.

    1993-01-01

    A real-time software controller that successfully integrates domain-based and resource-based control reasoning to perform task execution in a dynamically changing environment is described. The design of the controller is based on the concept of partitioning the process to be controlled into a set of tasks, each of which achieves some process goal. It is assumed that, in general, there are multiple ways (tasks) to achieve a goal. The controller dynamically determines current goals and their current criticality, choosing and scheduling tasks to achieve those goals in the time available. It incorporates rule-based goal reasoning, a TMS-based criticality propagation mechanism, and a real-time scheduler. The controller has been used to build a knowledge-based situation assessment system that formed a major component of a real-time, distributed, cooperative problem solving system built under DARPA contract. It is also being employed in other applications now in progress.

  5. C to VHDL compiler

    NASA Astrophysics Data System (ADS)

    Berdychowski, Piotr P.; Zabolotny, Wojciech M.

    2010-09-01

    The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.

  6. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  7. Applying Content Management to Automated Provenance Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchardt, Karen L.; Gibson, Tara D.; Stephan, Eric G.

    2008-04-10

    Workflows and data pipelines are becoming increasingly valuable in both computational and experimen-tal sciences. These automated systems are capable of generating significantly more data within the same amount of time than their manual counterparts. Automatically capturing and recording data prove-nance and annotation as part of these workflows is critical for data management, verification, and dis-semination. Our goal in addressing the provenance challenge was to develop and end-to-end system that demonstrates real-time capture, persistent content management, and ad-hoc searches of both provenance and metadata using open source software and standard protocols. We describe our prototype, which extends the Kepler workflow toolsmore » for the execution environment, the Scientific Annotation Middleware (SAM) content management software for data services, and an existing HTTP-based query protocol. Our implementation offers several unique capabilities, and through the use of standards, is able to pro-vide access to the provenance record to a variety of commonly available client tools.« less

  8. A recent Cleanroom success story: The Redwing project

    NASA Technical Reports Server (NTRS)

    Hausler, Philip A.

    1992-01-01

    Redwing is the largest completed Cleanroom software engineering project in IBM, both in terms of lines of code and project staffing. The product provides a decision-support facility that utilizes artificial intelligence (AI) technology for predicting and preventing complex operating problems in an MVS environment. The project used the Cleanroom process for development and realized a defect rate of 2.6 errors/KLOC, measured from first execution. This represents the total amount of errors that were found in testing and installation at three field test sites. Development productivity was 486 LOC/PM, which included all development labor expended in design specification through completion of incremental testing. In short, the Redwing team produced a complex systems software product with an extraordinarily low error rate, while maintaining high productivity. All of this was accomplished by a project team using Cleanroom for the first time. An 'introductory implementation' of Cleanroom was defined and used on Redwing. This paper describes the quality and productivity results, the Redwing project, and how Cleanroom was implemented.

  9. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  10. A versatile software package for inter-subject correlation based analyses of fMRI.

    PubMed

    Kauppi, Jukka-Pekka; Pajula, Juha; Tohka, Jussi

    2014-01-01

    In the inter-subject correlation (ISC) based analysis of the functional magnetic resonance imaging (fMRI) data, the extent of shared processing across subjects during the experiment is determined by calculating correlation coefficients between the fMRI time series of the subjects in the corresponding brain locations. This implies that ISC can be used to analyze fMRI data without explicitly modeling the stimulus and thus ISC is a potential method to analyze fMRI data acquired under complex naturalistic stimuli. Despite of the suitability of ISC based approach to analyze complex fMRI data, no generic software tools have been made available for this purpose, limiting a widespread use of ISC based analysis techniques among neuroimaging community. In this paper, we present a graphical user interface (GUI) based software package, ISC Toolbox, implemented in Matlab for computing various ISC based analyses. Many advanced computations such as comparison of ISCs between different stimuli, time window ISC, and inter-subject phase synchronization are supported by the toolbox. The analyses are coupled with re-sampling based statistical inference. The ISC based analyses are data and computation intensive and the ISC toolbox is equipped with mechanisms to execute the parallel computations in a cluster environment automatically and with an automatic detection of the cluster environment in use. Currently, SGE-based (Oracle Grid Engine, Son of a Grid Engine, or Open Grid Scheduler) and Slurm environments are supported. In this paper, we present a detailed account on the methods behind the ISC Toolbox, the implementation of the toolbox and demonstrate the possible use of the toolbox by summarizing selected example applications. We also report the computation time experiments both using a single desktop computer and two grid environments demonstrating that parallelization effectively reduces the computing time. The ISC Toolbox is available in https://code.google.com/p/isc-toolbox/

  11. A versatile software package for inter-subject correlation based analyses of fMRI

    PubMed Central

    Kauppi, Jukka-Pekka; Pajula, Juha; Tohka, Jussi

    2014-01-01

    In the inter-subject correlation (ISC) based analysis of the functional magnetic resonance imaging (fMRI) data, the extent of shared processing across subjects during the experiment is determined by calculating correlation coefficients between the fMRI time series of the subjects in the corresponding brain locations. This implies that ISC can be used to analyze fMRI data without explicitly modeling the stimulus and thus ISC is a potential method to analyze fMRI data acquired under complex naturalistic stimuli. Despite of the suitability of ISC based approach to analyze complex fMRI data, no generic software tools have been made available for this purpose, limiting a widespread use of ISC based analysis techniques among neuroimaging community. In this paper, we present a graphical user interface (GUI) based software package, ISC Toolbox, implemented in Matlab for computing various ISC based analyses. Many advanced computations such as comparison of ISCs between different stimuli, time window ISC, and inter-subject phase synchronization are supported by the toolbox. The analyses are coupled with re-sampling based statistical inference. The ISC based analyses are data and computation intensive and the ISC toolbox is equipped with mechanisms to execute the parallel computations in a cluster environment automatically and with an automatic detection of the cluster environment in use. Currently, SGE-based (Oracle Grid Engine, Son of a Grid Engine, or Open Grid Scheduler) and Slurm environments are supported. In this paper, we present a detailed account on the methods behind the ISC Toolbox, the implementation of the toolbox and demonstrate the possible use of the toolbox by summarizing selected example applications. We also report the computation time experiments both using a single desktop computer and two grid environments demonstrating that parallelization effectively reduces the computing time. The ISC Toolbox is available in https://code.google.com/p/isc-toolbox/ PMID:24550818

  12. Demonstration of the Low-Cost Virtual Collaborative Environment (VCE)

    NASA Technical Reports Server (NTRS)

    Bowers, David; Montes, Leticia; Ramos, Angel; Joyce, Brendan; Lumia, Ron

    1997-01-01

    This paper demonstrates the feasibility of a low-cost approach of remotely controlling equipment. Our demonstration system consists of a PC, the PUMA 560 robot with Barrett hand, and commercially available controller and teleconferencing software. The system provides a graphical user interface which allows a user to program equipment tasks and preview motions i.e., simulate the results. Once satisfied that the actions are both safe and accomplish the task, the remote user sends the data over the Internet to the local site for execution on the real equipment. A video link provides visual feedback to the remote sight. This technology lends itself readily to NASA's upcoming Mars expeditions by providing remote simulation and control of equipment.

  13. Advances in Discrete-Event Simulation for MSL Command Validation

    NASA Technical Reports Server (NTRS)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  14. Protecting clinical data on Web client computers: the PCASSO approach.

    PubMed Central

    Masys, D. R.; Baker, D. B.

    1998-01-01

    The ubiquity and ease of use of the Web have made it an increasingly popular medium for communication of health-related information. Web interfaces to commercially available clinical information systems are now available or under development by most major vendors. To the extent that such interfaces involve the use of unprotected operating systems, they are vulnerable to security limitations of Web client software environments. The Patient Centered Access to Secure Systems Online (PCASSO) project extends the protections for person-identifiable health data on Web client computers. PCASSO uses several approaches, including physical protection of authentication information, execution containment, graphical displays, and monitoring the client system for intrusions and co-existing programs that may compromise security. PMID:9929243

  15. Roadblocks to Change: Executive Behaviors Versus Executive Perceptions.

    ERIC Educational Resources Information Center

    Harris, Thomas E.

    A study analyzed the responses of chief executive officers (CEOs) and company presidents to a leadership test and an organizational environment test, to determine whether these individuals' managerial approaches coincided with their characterizations of their organizations' environments. Subjects, CEOs or presidents of 65 randomly selected…

  16. STOP-IT: Windows executable software for the stop-signal paradigm.

    PubMed

    Verbruggen, Frederick; Logan, Gordon D; Stevens, Michaël A

    2008-05-01

    The stop-signal paradigm is a useful tool for the investigation of response inhibition. In this paradigm, subjects are instructed to respond as fast as possible to a stimulus unless a stop signal is presented after a variable delay. However, programming the stop-signal task is typically considered to be difficult. To overcome this issue, we present software called STOP-IT, for running the stop-signal task, as well as an additional analyzing program called ANALYZE-IT. The main advantage of both programs is that they are a precompiled executable, and for basic use there is no need for additional programming. STOP-IT and ANALYZE-IT are completely based on free software, are distributed under the GNU General Public License, and are available at the personal Web sites of the first two authors or at expsy.ugent.be/tscope/stop.html.

  17. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  18. Intra-procedural Path-insensitve Grams (I-GRAMS) and Disassembly Based Features for Packer Tool Classification and Detection

    DTIC Science & Technology

    2012-06-14

    executable file is packed is a critical step in software security. This research uses machine learning methods to build the Polymorphic and Non-Polymorphic...Packer Detection (PNPD) system that detects whether an executable is packed by either ASPack, UPX, Metasploit’s polymorphic msfencode, or is packed in...detect packed executables used in experiments. Overall, it is discovered i-grams provide the best results with accuracies above 99.5%, average true

  19. Preliminary description of the area navigation software for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    The development of new software implementation of this software on a microcomputer (MOS 6502) to provide high quality navigation information is described. This software development provides Area/Route Navigation (RNAV) information from Time Differences (TDs) in raw form using an elliptical Earth model and a spherical model. The software is prepared for the microcomputer based Loran-C receiver. To compute navigation infomation, a (MOS 6502) microcomputer and a mathematical chip (AM 9511A) were combined with the Loran-C receiver. Final data reveals that this software does indeed provide accurate information with reasonable execution times.

  20. Dtest Testing Software

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Cameron, Jonathan M.; Myint, Steven

    2013-01-01

    This software runs a suite of arbitrary software tests spanning various software languages and types of tests (unit level, system level, or file comparison tests). The dtest utility can be set to automate periodic testing of large suites of software, as well as running individual tests. It supports distributing multiple tests over multiple CPU cores, if available. The dtest tool is a utility program (written in Python) that scans through a directory (and its subdirectories) and finds all directories that match a certain pattern and then executes any tests in that directory as described in simple configuration files.

  1. Development of a support software system for real-time HAL/S applications

    NASA Technical Reports Server (NTRS)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  2. Executive Decision Making: Using Microcomputers in Budget Planning.

    ERIC Educational Resources Information Center

    Hoffman, Roslyn; Robinson, Lucinda

    The successful integration of microcomputer support to help prepare for an anticipated budget crisis at the University of Illinois at Chicago is described. The IBM Personal Computer and VisiCalc software were key tools in the decision support system. When campus executives were instructed to cut budgets and reallocate funds to produce a…

  3. Concurrent Image Processing Executive (CIPE)

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1988-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented.

  4. Automated Derivation of Complex System Constraints from User Requirements

    NASA Technical Reports Server (NTRS)

    Muery, Kim; Foshee, Mark; Marsh, Angela

    2006-01-01

    International Space Station (ISS) payload developers submit their payload science requirements for the development of on-board execution timelines. The ISS systems required to execute the payload science operations must be represented as constraints for the execution timeline. Payload developers use a software application, User Requirements Collection (URC), to submit their requirements by selecting a simplified representation of ISS system constraints. To fully represent the complex ISS systems, the constraints require a level of detail that is beyond the insight of the payload developer. To provide the complex representation of the ISS system constraints, HOSC operations personnel, specifically the Payload Activity Requirements Coordinators (PARC), manually translate the payload developers simplified constraints into detailed ISS system constraints used for scheduling the payload activities in the Consolidated Planning System (CPS). This paper describes the implementation for a software application, User Requirements Integration (URI), developed to automate the manual ISS constraint translation process.

  5. CANES Contracting Strategies for Full Deployment

    DTIC Science & Technology

    2012-01-01

    9 CANES Program Functions in Full Deployment...contractors will design CANES, identifying specific hardware and developing the integration software necessary to consolidate existing C4I functions . At...would be responsible for execut- ing the purchased design and assembling the systems, ensuring that the integration software is functioning . An

  6. MatMRI and MatHIFU: software toolboxes for real-time monitoring and control of MR-guided HIFU

    PubMed Central

    2013-01-01

    Background The availability of open and versatile software tools is a key feature to facilitate pre-clinical research for magnetic resonance imaging (MRI) and magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) and expedite clinical translation of diagnostic and therapeutic medical applications. In the present study, two customizable software tools that were developed at the Thunder Bay Regional Research Institute are presented for use with both MRI and MR-HIFU. Both tools operate in a MATLAB®; environment. The first tool is named MatMRI and enables real-time, dynamic acquisition of MR images with a Philips MRI scanner. The second tool is named MatHIFU and enables the execution and dynamic modification of user-defined treatment protocols with the Philips Sonalleve MR-HIFU therapy system to perform ultrasound exposures in MR-HIFU therapy applications. Methods MatMRI requires four basic steps: initiate communication, subscribe to MRI data, query for new images, and unsubscribe. MatMRI can also pause/resume the imaging and perform real-time updates of the location and orientation of images. MatHIFU requires four basic steps: initiate communication, prepare treatment protocol, and execute treatment protocol. MatHIFU can monitor the state of execution and, if required, modify the protocol in real time. Results Four applications were developed to showcase the capabilities of MatMRI and MatHIFU to perform pre-clinical research. Firstly, MatMRI was integrated with an existing small animal MR-HIFU system (FUS Instruments, Toronto, Ontario, Canada) to provide real-time temperature measurements. Secondly, MatMRI was used to perform T2-based MR thermometry in the bone marrow. Thirdly, MatHIFU was used to automate acoustic hydrophone measurements on a per-element basis of the 256-element transducer of the Sonalleve system. Finally, MatMRI and MatHIFU were combined to produce and image a heating pattern that recreates the word ‘HIFU’ in a tissue-mimicking heating phantom. Conclusions MatMRI and MatHIFU leverage existing MRI and MR-HIFU clinical platforms to facilitate pre-clinical research. MatMRI substantially simplifies the real-time acquisition and processing of MR data. MatHIFU facilitates the testing and characterization of new therapy applications using the Philips Sonalleve clinical MR-HIFU system. Under coordination with Philips Healthcare, both MatMRI and MatHIFU are intended to be freely available as open-source software packages to other research groups. PMID:25512856

  7. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  8. Evaluation environment for digital and analog pathology: a platform for validation studies

    PubMed Central

    Gallas, Brandon D.; Gavrielides, Marios A.; Conway, Catherine M.; Ivansky, Adam; Keay, Tyler C.; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M.

    2014-01-01

    Abstract. We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to 30  mm2) to small ROIs (<50  μm2). We also made possible the evaluation of individual cells. We summarize eeDAP’s software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application. PMID:26158076

  9. Evaluation environment for digital and analog pathology: a platform for validation studies.

    PubMed

    Gallas, Brandon D; Gavrielides, Marios A; Conway, Catherine M; Ivansky, Adam; Keay, Tyler C; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M

    2014-10-01

    We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to [Formula: see text]) to small ROIs ([Formula: see text]). We also made possible the evaluation of individual cells. We summarize eeDAP's software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application.

  10. A framework for software fault tolerance in real-time systems

    NASA Technical Reports Server (NTRS)

    Anderson, T.; Knight, J. C.

    1983-01-01

    A classification scheme for errors and a technique for the provision of software fault tolerance in cyclic real-time systems is presented. The technique requires that the process structure of a system be represented by a synchronization graph which is used by an executive as a specification of the relative times at which they will communicate during execution. Communication between concurrent processes is severely limited and may only take place between processes engaged in an exchange. A history of error occurrences is maintained by an error handler. When an error is detected, the error handler classifies it using the error history information and then initiates appropriate recovery action.

  11. Simulator for concurrent processing data flow architectures

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.

    1992-01-01

    A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.

  12. The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2012-03-20

    The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less

  13. ControlShell - A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Ullman, Marc A.; Chen, Vincent W.

    1991-01-01

    ControlShell is designed to enable modular design and impplementation of real-time software. It is an object-oriented tool-set for real-time software system programming. It provides a series of execution and data interchange mechansims that form a framework for building real-time applications. These mechanisms allow a component-based approach to real-time software generation and mangement. By defining a set of interface specifications for intermodule interaction, ControlShell provides a common platform that is the basis for real-time code development and exchange.

  14. Estimation and enhancement of real-time software reliability through mutation analysis

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.

    1992-01-01

    A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.

  15. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  16. Cyber Strategic Inquiry: Enabling Change through a Strategic Simulation and Megacommunity Concept

    DTIC Science & Technology

    2009-02-01

    malicious software embedded in thumb drives and CDs that thwarted protections, such as antivirus software , on computers. In the scenario, these...Executives for National Security • The Carlyle Group • Cassat Corporation • Cisco Systems, Inc. • Cyveillance • General Dynamics • General Motors

  17. ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Raffi, Gianni

    2002-12-01

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe and North America. ALMA will consist of at least 64 12-meter antennas operating in the millimeter and sub-millimeter range. It will be located at an altitude of about 5000m in the Chilean Atacama desert. The primary challenge to the development of the software architecture is the fact that both its development and runtime environments will be distributed. Groups at different institutes will develop the key elements such as Proposal Preparation tools, Instrument operation, On-line calibration and reduction, and Archiving. The Proposal Preparation software will be used primarily at scientists' home institutions (or on their laptops), while Instrument Operations will execute on a set of networked computers at the ALMA Operations Support Facility. The ALMA Science Archive, itself to be replicated at several sites, will serve astronomers worldwide. Building upon the existing ALMA Common Software (ACS), the system architects will prepare a robust framework that will use XML-encoded entity objects to provide an effective solution to the persistence needs of this system, while remaining largely independent of any underlying DBMS technology. Independence of distributed subsystems will be facilitated by an XML- and CORBA-based pass-by-value mechanism for exchange of objects. Proof of concept (as well as a guide to subsystem developers) will come from a prototype whose details will be presented.

  18. The implementation and use of ADA on distributed systems with high reliability requirements

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1985-01-01

    The use and implementation of Ada in distributed environments in which reliability is the primary concern is investigated. Emphasis is placed on the possibility that a distributed system may be programmed entirely in Ada so that the individual tasks of the system are unconcerned with which processors they are executing on, and that failures may occur in the software or underlying hardware. A new linguistic construct, the colloquy, is introduced which solves the problems identified in an earlier proposal, the conversation. It was shown that the colloquy is at least as powerful as recovery blocks, but it is also as powerful as all the other language facilities proposed for other situations requiring backward error recovery: recovery blocks, deadlines, generalized exception handlers, traditional conversations, s-conversations, and exchanges. The major features that distinguish the colloquy are described. Sample programs that were written, but not executed, using the colloquy show that extensive backward error recovery can be included in these programs simply and elegantly. These ideas are being implemented in an experimental Ada test bed.

  19. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    NASA Astrophysics Data System (ADS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  20. Distributed simulation using a real-time shared memory network

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Mattern, Duane L.; Wong, Edmond; Musgrave, Jeffrey L.

    1993-01-01

    The Advanced Control Technology Branch of the NASA Lewis Research Center performs research in the area of advanced digital controls for aeronautic and space propulsion systems. This work requires the real-time implementation of both control software and complex dynamical models of the propulsion system. We are implementing these systems in a distributed, multi-vendor computer environment. Therefore, a need exists for real-time communication and synchronization between the distributed multi-vendor computers. A shared memory network is a potential solution which offers several advantages over other real-time communication approaches. A candidate shared memory network was tested for basic performance. The shared memory network was then used to implement a distributed simulation of a ramjet engine. The accuracy and execution time of the distributed simulation was measured and compared to the performance of the non-partitioned simulation. The ease of partitioning the simulation, the minimal time required to develop for communication between the processors and the resulting execution time all indicate that the shared memory network is a real-time communication technique worthy of serious consideration.

  1. A Framework for Analyzing and Testing the Performance of Software Services

    NASA Astrophysics Data System (ADS)

    Bertolino, Antonia; de Angelis, Guglielmo; di Marco, Antinisca; Inverardi, Paola; Sabetta, Antonino; Tivoli, Massimo

    Networks "Beyond the 3rd Generation" (B3G) are characterized by mobile and resource-limited devices that communicate through different kinds of network interfaces. Software services deployed in such networks shall adapt themselves according to possible execution contexts and requirement changes. At the same time, software services have to be competitive in terms of the Quality of Service (QoS) provided, or perceived by the end user.

  2. DSN system performance test software

    NASA Technical Reports Server (NTRS)

    Martin, M.

    1978-01-01

    The system performance test software is currently being modified to include additional capabilities and enhancements. Additional software programs are currently being developed for the Command Store and Forward System and the Automatic Total Recall System. The test executive is the main program. It controls the input and output of the individual test programs by routing data blocks and operator directives to those programs. It also processes data block dump requests from the operator.

  3. The Source to S2K Conversion System.

    DTIC Science & Technology

    1978-12-01

    mandgement system Provides. As for all software production, the cost of writing this program is high, particularily considering it may be executed only...research, and 3 findlly, implement the system using disciplined, structured software engineering principles. In order to properly document how these...complete read step is required (as done by the Michigan System and EXPRESS) or software support outside the conversion system (as in CODS) is required

  4. Executable Behavioral Modeling of System and Software Architecture Specifications to Inform Resourcing Decisions

    DTIC Science & Technology

    2016-09-01

    BEHAVIORAL MODELING OF SYSTEM- AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS by Monica F. Farah-Stapleton...AND SOFTWARE- ARCHITECTURE SPECIFICATIONS TO INFORM RESOURCING DECISIONS 5. FUNDING NUMBERS 6. AUTHOR(S) Monica F. Farah-Stapleton 7. PERFORMING...this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB number

  5. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices

    DTIC Science & Technology

    2016-02-22

    SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their

  6. SHI(EL)DS: A Novel Hardware-Based Security Backplane to Enhance Security with Minimal Impact to System Operation

    DTIC Science & Technology

    2008-03-01

    executables. The current roadblock to detecting Type I Malware consistantly is the practice of legitimate software , such as antivirus programs, using this... Software Security Systems . . 31 3.2.2 Advantages of Hardware . . . . . . . . . . . . . 32 3.2.3 Trustworthiness of Information . . . . . . . . . 33...Towards a Hardware Security Backplane . . . . . . . . . 42 IV. Review of State of the Art Computer Security Solutions . . . . . 46 4.1 Software

  7. Information Metacatalog for a Grid

    NASA Technical Reports Server (NTRS)

    Kolano, Paul

    2007-01-01

    SWIM is a Software Information Metacatalog that gathers detailed information about the software components and packages installed on a grid resource. Information is currently gathered for Executable and Linking Format (ELF) executables and shared libraries, Java classes, shell scripts, and Perl and Python modules. SWIM is built on top of the POUR framework, which is described in the preceding article. SWIM consists of a set of Perl modules for extracting software information from a system, an XML schema defining the format of data that can be added by users, and a POUR XML configuration file that describes how these elements are used to generate periodic, on-demand, and user-specified information. Periodic software information is derived mainly from the package managers used on each system. SWIM collects information from native package managers in FreeBSD, Solaris, and IRX as well as the RPM, Perl, and Python package managers on multiple platforms. Because not all software is available, or installed in package form, SWIM also crawls the set of relevant paths from the File System Hierarchy Standard that defines the standard file system structure used by all major UNIX distributions. Using these two techniques, the vast majority of software installed on a system can be located. SWIM computes the same information gathered by the periodic routines for specific files on specific hosts, and locates software on a system given only its name and type.

  8. SOFTCOST - DEEP SPACE NETWORK SOFTWARE COST MODEL

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1994-01-01

    The early-on estimation of required resources and a schedule for the development and maintenance of software is usually the least precise aspect of the software life cycle. However, it is desirable to make some sort of an orderly and rational attempt at estimation in order to plan and organize an implementation effort. The Software Cost Estimation Model program, SOFTCOST, was developed to provide a consistent automated resource and schedule model which is more formalized than the often used guesswork model based on experience, intuition, and luck. SOFTCOST was developed after the evaluation of a number of existing cost estimation programs indicated that there was a need for a cost estimation program with a wide range of application and adaptability to diverse kinds of software. SOFTCOST combines several software cost models found in the open literature into one comprehensive set of algorithms that compensate for nearly fifty implementation factors relative to size of the task, inherited baseline, organizational and system environment, and difficulty of the task. SOFTCOST produces mean and variance estimates of software size, implementation productivity, recommended staff level, probable duration, amount of computer resources required, and amount and cost of software documentation. Since the confidence level for a project using mean estimates is small, the user is given the opportunity to enter risk-biased values for effort, duration, and staffing, to achieve higher confidence levels. SOFTCOST then produces a PERT/CPM file with subtask efforts, durations, and precedences defined so as to produce the Work Breakdown Structure (WBS) and schedule having the asked-for overall effort and duration. The SOFTCOST program operates in an interactive environment prompting the user for all of the required input. The program builds the supporting PERT data base in a file for later report generation or revision. The PERT schedule and the WBS schedule may be printed and stored in a file for later use. The SOFTCOST program is written in Microsoft BASIC for interactive execution and has been implemented on an IBM PC-XT/AT operating MS-DOS 2.1 or higher with 256K bytes of memory. SOFTCOST was originally developed for the Zylog Z80 system running under CP/M in 1981. It was converted to run on the IBM PC XT/AT in 1986. SOFTCOST is a copyrighted work with all copyright vested in NASA.

  9. Distributed Software for Observations in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Gavryusev, V.; Baffa, C.; Giani, E.

    We have developed an integrated system that performs astronomical observations in Near Infrared bands operating two-dimensional instruments at the Italian National Infrared Facility's \\htmllink{ARNICA}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/arnica/arnica.html} and \\htmllink{LONGSP}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/longsp/longsp.html}. This software consists of several communicating processes, generally executed across a network, as well as on a single computer. The user interface is organized as widget-based X11 client. The interprocess communication is provided by sockets and uses TCP/IP. The processes denoted for control of hardware (telescope and other instruments) should be executed currently on a PC dedicated for this task under DESQview/X, while all other components (user interface, tools for the data analysis, etc.) can also work under UNIX\\@. The hardware independent part of software is based on the Athena Widget Set and is compiled by GNU C to provide maximum portability.

  10. XSECT: A computer code for generating fuselage cross sections - user's manual

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1982-01-01

    A computer code, XSECT, has been developed to generate fuselage cross sections from a given area distribution and wing definition. The cross sections are generated to match the wing definition while conforming to the area requirement. An iterative procedure is used to generate each cross section. Fuselage area balancing may be included in this procedure if desired. The code is intended as an aid for engineers who must first design a wing under certain aerodynamic constraints and then design a fuselage for the wing such that the contraints remain satisfied. This report contains the information necessary for accessing and executing the code, which is written in FORTRAN to execute on the Cyber 170 series computers (NOS operating system) and produces graphical output for a Tektronix 4014 CRT. The LRC graphics software is used in combination with the interface between this software and the PLOT 10 software.

  11. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.

  12. Lowering the Barrier to Reproducible Research by Publishing Provenance from Common Analytical Tools

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Slaughter, P.; Walker, L.; Jones, C. S.; Missier, P.; Ludäscher, B.; Cao, Y.; McPhillips, T.; Schildhauer, M.

    2015-12-01

    Scientific provenance describes the authenticity, origin, and processing history of research products and promotes scientific transparency by detailing the steps in computational workflows that produce derived products. These products include papers, findings, input data, software products to perform computations, and derived data and visualizations. The geosciences community values this type of information, and, at least theoretically, strives to base conclusions on computationally replicable findings. In practice, capturing detailed provenance is laborious and thus has been a low priority; beyond a lab notebook describing methods and results, few researchers capture and preserve detailed records of scientific provenance. We have built tools for capturing and publishing provenance that integrate into analytical environments that are in widespread use by geoscientists (R and Matlab). These tools lower the barrier to provenance generation by automating capture of critical information as researchers prepare data for analysis, develop, test, and execute models, and create visualizations. The 'recordr' library in R and the `matlab-dataone` library in Matlab provide shared functions to capture provenance with minimal changes to normal working procedures. Researchers can capture both scripted and interactive sessions, tag and manage these executions as they iterate over analyses, and then prune and publish provenance metadata and derived products to the DataONE federation of archival repositories. Provenance traces conform to the ProvONE model extension of W3C PROV, enabling interoperability across tools and languages. The capture system supports fine-grained versioning of science products and provenance traces. By assigning global identifiers such as DOIs, reseachers can cite the computational processes used to reach findings. And, finally, DataONE has built a web portal to search, browse, and clearly display provenance relationships between input data, the software used to execute analyses and models, and derived data and products that arise from these computations. This provenance is vital to interpretation and understanding of science, and provides an audit trail that researchers can use to understand and replicate computational workflows in the geosciences.

  13. Arcade: A Web-Java Based Framework for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.

  14. A parallel and sensitive software tool for methylation analysis on multicore platforms.

    PubMed

    Tárraga, Joaquín; Pérez, Mariano; Orduña, Juan M; Duato, José; Medina, Ignacio; Dopazo, Joaquín

    2015-10-01

    DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists of leveraging the speed of the Burrows-Wheeler Transform to map a large number of DNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, which is exclusively employed to deal with the most ambiguous and shortest reads. Experimental results on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or BSMAP, particularly for long bisulphite reads. Software in the form of C libraries and functions, together with instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es (password 'anonymous'). juan.orduna@uv.es or jdopazo@cipf.es. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Verification of Java Programs using Symbolic Execution and Invariant Generation

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina; Visser, Willem

    2004-01-01

    Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.

  16. Atmosphere Explorer control system software (version 1.0)

    NASA Technical Reports Server (NTRS)

    Villasenor, A.

    1972-01-01

    The basic design is described of the Atmosphere Explorer Control System (AECS) software used in the testing, integration, and flight contol of the AE spacecraft and experiments. The software performs several vital functions, such as issuing commands to the spacecraft and experiments, receiving and processing telemetry data, and allowing for extensive data processing by experiment analysis programs. The major processing sections are: executive control section, telemetry decommutation section, command generation section, and utility section.

  17. Scaffolding Executive Function Capabilities via Play-&-Learn Software for Preschoolers

    ERIC Educational Resources Information Center

    Axelsson, Anton; Andersson, Richard; Gulz, Agneta

    2016-01-01

    Educational software in the form of games or so called "computer assisted intervention" for young children has become increasingly common receiving a growing interest and support. Currently there are, for instance, more than 1,000 iPad apps tagged for preschool. Thus, it has become increasingly important to empirically investigate…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hang Bae

    A reliability testing was performed for the software of Shutdown(SDS) Computers for Wolsong Nuclear Power Plants Units 2, 3 and 4. profiles to the SDS Computers and compared the outputs with the predicted results generated by the oracle. Test softwares were written to execute the test automatically. Random test profiles were generated using analysis code. 11 refs., 1 fig.

  19. Injecting Errors for Testing Built-In Test Software

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James

    2010-01-01

    Two algorithms have been conceived to enable automated, thorough testing of Built-in test (BIT) software. The first algorithm applies to BIT routines that define pass/fail criteria based on values of data read from such hardware devices as memories, input ports, or registers. This algorithm simulates effects of errors in a device under test by (1) intercepting data from the device and (2) performing AND operations between the data and the data mask specific to the device. This operation yields values not expected by the BIT routine. This algorithm entails very small, permanent instrumentation of the software under test (SUT) for performing the AND operations. The second algorithm applies to BIT programs that provide services to users application programs via commands or callable interfaces and requires a capability for test-driver software to read and write the memory used in execution of the SUT. This algorithm identifies all SUT code execution addresses where errors are to be injected, then temporarily replaces the code at those addresses with small test code sequences to inject latent severe errors, then determines whether, as desired, the SUT detects the errors and recovers

  20. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  1. Generation of Simulated Tracking Data for LADEE Operational Readiness Testing

    NASA Technical Reports Server (NTRS)

    Woodburn, James; Policastri, Lisa; Owens, Brandon

    2015-01-01

    Operational Readiness Tests were an important part of the pre-launch preparation for the LADEE mission. The generation of simulated tracking data to stress the Flight Dynamics System and the Flight Dynamics Team was important for satisfying the testing goal of demonstrating that the software and the team were ready to fly the operational mission. The simulated tracking was generated in a manner to incorporate the effects of errors in the baseline dynamical model, errors in maneuver execution and phenomenology associated with various tracking system based components. The ability of the mission team to overcome these challenges in a realistic flight dynamics scenario indicated that the team and flight dynamics system were ready to fly the LADEE mission. Lunar Atmosphere and Dust Environment.

  2. MER : from landing to six wheels on Mars ... twice

    NASA Technical Reports Server (NTRS)

    Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris

    2005-01-01

    Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.

  3. Flexible manufacturing system handbook. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-02-01

    Flexible Manufacturing Systems (FMSs) represent a relatively new strategy to increase productivity. The technology is especially attractive for manufacturers who produce in the middle ranges of production volumes, neither mass production nor one of a kind. Today's unpredictable market environment demands low-cost solutions that provide quick product start-up, adaptability and responsiveness to changes in demand, and the capacity to easily resurrect out-of-production designs. In many instances, FMSs provide a direct hardware/software solution to this threefold management challenge. The adoption of FMS technology requires that one address many questions beforehand. This handbook provides a methodical approach to answering these questions. But it is not a cookbook; it cannot be. Each application of FMS technology is unique, therefore, the guidelines presented are fairly general.

  4. The Prodiguer Messaging Platform

    NASA Astrophysics Data System (ADS)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.

    2015-12-01

    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  5. Parallel processors and nonlinear structural dynamics algorithms and software

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted

    1990-01-01

    Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.

  6. A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less

  7. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and... danger to the environment or health and safety of employees or the public, the Contracting Officer may...

  8. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and... danger to the environment or health and safety of employees or the public, the Contracting Officer may...

  9. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and... danger to the environment or health and safety of employees or the public, the Contracting Officer may...

  10. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and... danger to the environment or health and safety of employees or the public, the Contracting Officer may...

  11. 48 CFR 970.5223-1 - Integration of environment, safety, and health into work planning and execution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Integration of environment... Integration of environment, safety, and health into work planning and execution. As prescribed in 970.2303-3(b), insert the following clause: Integration of Environment, Safety, and Health Into Work Planning and...

  12. Automated verification of flight software. User's manual

    NASA Technical Reports Server (NTRS)

    Saib, S. H.

    1982-01-01

    (Automated Verification of Flight Software), a collection of tools for analyzing source programs written in FORTRAN and AED is documented. The quality and the reliability of flight software are improved by: (1) indented listings of source programs, (2) static analysis to detect inconsistencies in the use of variables and parameters, (3) automated documentation, (4) instrumentation of source code, (5) retesting guidance, (6) analysis of assertions, (7) symbolic execution, (8) generation of verification conditions, and (9) simplification of verification conditions. Use of AVFS in the verification of flight software is described.

  13. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  14. A Conceptual Level Design for a Static Scheduler for Hard Real-Time Systems

    DTIC Science & Technology

    1988-03-01

    The design of hard real - time systems is gaining a great deal of attention in the software engineering field as more and more real-world processes are...for these hard real - time systems . PSDL, as an executable design language, is supported by an execution support system consisting of a static scheduler, dynamic scheduler, and translator.

  15. Web Program for Development of GUIs for Cluster Computers

    NASA Technical Reports Server (NTRS)

    Czikmantory, Akos; Cwik, Thomas; Klimeck, Gerhard; Hua, Hook; Oyafuso, Fabiano; Vinyard, Edward

    2003-01-01

    WIGLAF (a Web Interface Generator and Legacy Application Facade) is a computer program that provides a Web-based, distributed, graphical-user-interface (GUI) framework that can be adapted to any of a broad range of application programs, written in any programming language, that are executed remotely on any cluster computer system. WIGLAF enables the rapid development of a GUI for controlling and monitoring a specific application program running on the cluster and for transferring data to and from the application program. The only prerequisite for the execution of WIGLAF is a Web-browser program on a user's personal computer connected with the cluster via the Internet. WIGLAF has a client/server architecture: The server component is executed on the cluster system, where it controls the application program and serves data to the client component. The client component is an applet that runs in the Web browser. WIGLAF utilizes the Extensible Markup Language to hold all data associated with the application software, Java to enable platform-independent execution on the cluster system and the display of a GUI generator through the browser, and the Java Remote Method Invocation software package to provide simple, effective client/server networking.

  16. A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics

    NASA Technical Reports Server (NTRS)

    Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela

    2015-01-01

    Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information

  17. Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Gichamo, T.; Yildirim, A. A.; Liu, Y.

    2015-12-01

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

  18. JAVA PathFinder

    NASA Technical Reports Server (NTRS)

    Mehhtz, Peter

    2005-01-01

    JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.

  19. An evidence-based structure for transformative nurse executive practice: the model of the interrelationship of leadership, environments, and outcomes for nurse executives (MILE ONE).

    PubMed

    Adams, Jeffrey M; Erickson, Jeanette Ives; Jones, Dorothy A; Paulo, Lisa

    2009-01-01

    Identifying and measuring success within the chief nurse executive (CNE) population have proven complex and challenging for nurse executive educators, policy makers, practitioners, researchers, theory developers, and their constituents. The model of the interrelationship of leadership, environments, and outcomes for nurse executives (MILE ONE) was developed using the concept of consilience (jumping together of ideas) toward limiting the ambiguity surrounding CNE success. The MILE ONE is unique in that it links existing evidence and identifies the continuous and dependent interrelationship among 3 content areas: (1) CNE; (2) nurses' professional practice and work environments; and (3) patient and organizational outcomes. The MILE ONE was developed to operationalize nurse executive influence, define measurement of CNE success, and provide a framework to articulate for patient, workforce, and organizational outcome improvement efforts. This article describes the MILE ONE and highlights the evidence base structure used in its development.

  20. Applying the Model of the Interrelationship of Leadership Environments and Outcomes for Nurse Executives: a community hospital's exemplar in developing staff nurse engagement through documentation improvement initiatives.

    PubMed

    Adams, Jeffrey M; Denham, Debra; Neumeister, Irene Ramirez

    2010-01-01

    The Model of the Interrelationship of Leadership, Environments & Outcomes for Nurse Executives (MILE ONE) was developed on the basis of existing literature related to identifying strategies for simultaneous improvement of leadership, professional practice/work environments (PPWE), and outcomes. Through existing evidence, the MILE ONE identifies the continuous and dependent interrelationship of 3 distinct concept areas: (1) nurse executives influence PPWE, (2) PPWE influence patient and organizational outcomes, and (3) patient and organizational outcomes influence nurse executives. This article highlights the application of the MILE ONE framework to a community district hospital's clinical documentation performance improvement projects. Results suggest that the MILE ONE is a valid and useful framework yielding both anticipated and unexpected enhancements to leaders, environments, and outcomes.

  1. Knowledge assistant for robotic environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feddema, J.; Rivera, J.; Tucker, S.

    1996-08-01

    A prototype sensor fusion framework called the {open_quotes}Knowledge Assistant{close_quotes} has been developed and tested on a gantry robot at Sandia National Laboratories. This Knowledge Assistant guides the robot operator during the planning, execution, and post analysis stages of the characterization process. During the planning stage, the Knowledge Assistant suggests robot paths and speeds based on knowledge of sensors available and their physical characteristics. During execution, the Knowledge Assistant coordinates the collection of data through a data acquisition {open_quotes}specialist.{close_quotes} During execution and postanalysis, the Knowledge Assistant sends raw data to other {open_quotes}specialists,{close_quotes} which include statistical pattern recognition software, a neural network,more » and model-based search software. After the specialists return their results, the Knowledge Assistant consolidates the information and returns a report to the robot control system where the sensed objects and their attributes (e.g., estimated dimensions, weight, material composition, etc.) are displayed in the world model. This report highlights the major components of this system.« less

  2. JAva GUi for Applied Research (JAGUAR) v 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAGUAR is a Java software tool for automatically rendering a graphical user interface (GUI) from a structured input specification. It is designed as a plug-in to the Eclipse workbench to enable users to create, edit, and externally execute analysis application input decks and then view the results. JAGUAR serves as a GUI for Sandia's DAKOTA software toolkit for optimization and uncertainty quantification. It will include problem (input deck)set-up, option specification, analysis execution, and results visualization. Through the use of wizards, templates, and views, JAGUAR helps uses navigate the complexity of DAKOTA's complete input specification. JAGUAR is implemented in Java, leveragingmore » Eclipse extension points and Eclipse user interface. JAGUAR parses a DAKOTA NIDR input specification and presents the user with linked graphical and plain text representations of problem set-up and option specification for DAKOTA studies. After the data has been input by the user, JAGUAR generates one or more input files for DAKOTA, executes DAKOTA, and captures and interprets the results« less

  3. Integrated Hardware and Software for No-Loss Computing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    When an algorithm is distributed across multiple threads executing on many distinct processors, a loss of one of those threads or processors can potentially result in the total loss of all the incremental results up to that point. When implementation is massively hardware distributed, then the probability of a hardware failure during the course of a long execution is potentially high. Traditionally, this problem has been addressed by establishing checkpoints where the current state of some or part of the execution is saved. Then in the event of a failure, this state information can be used to recompute that point in the execution and resume the computation from that point. A serious problem arises when one distributes a problem across multiple threads and physical processors is that one increases the likelihood of the algorithm failing due to no fault of the scientist but as a result of hardware faults coupled with operating system problems. With good reason, scientists expect their computing tools to serve them and not the other way around. What is novel here is a unique combination of hardware and software that reformulates an application into monolithic structure that can be monitored in real-time and dynamically reconfigured in the event of a failure. This unique reformulation of hardware and software will provide advanced aeronautical technologies to meet the challenges of next-generation systems in aviation, for civilian and scientific purposes, in our atmosphere and in atmospheres of other worlds. In particular, with respect to NASA s manned flight to Mars, this technology addresses the critical requirements for improving safety and increasing reliability of manned spacecraft.

  4. Encapsulating model complexity and landscape-scale analyses of state-and-transition simulation models: an application of ecoinformatics and juniper encroachment in sagebrush steppe ecosystems

    USGS Publications Warehouse

    O'Donnell, Michael

    2015-01-01

    State-and-transition simulation modeling relies on knowledge of vegetation composition and structure (states) that describe community conditions, mechanistic feedbacks such as fire that can affect vegetation establishment, and ecological processes that drive community conditions as well as the transitions between these states. However, as the need for modeling larger and more complex landscapes increase, a more advanced awareness of computing resources becomes essential. The objectives of this study include identifying challenges of executing state-and-transition simulation models, identifying common bottlenecks of computing resources, developing a workflow and software that enable parallel processing of Monte Carlo simulations, and identifying the advantages and disadvantages of different computing resources. To address these objectives, this study used the ApexRMS® SyncroSim software and embarrassingly parallel tasks of Monte Carlo simulations on a single multicore computer and on distributed computing systems. The results demonstrated that state-and-transition simulation models scale best in distributed computing environments, such as high-throughput and high-performance computing, because these environments disseminate the workloads across many compute nodes, thereby supporting analysis of larger landscapes, higher spatial resolution vegetation products, and more complex models. Using a case study and five different computing environments, the top result (high-throughput computing versus serial computations) indicated an approximate 96.6% decrease of computing time. With a single, multicore compute node (bottom result), the computing time indicated an 81.8% decrease relative to using serial computations. These results provide insight into the tradeoffs of using different computing resources when research necessitates advanced integration of ecoinformatics incorporating large and complicated data inputs and models. - See more at: http://aimspress.com/aimses/ch/reader/view_abstract.aspx?file_no=Environ2015030&flag=1#sthash.p1XKDtF8.dpuf

  5. Cloudy Solar Software - Enhanced Capabilities for Finding, Pre-processing, and Visualizing Solar Data

    NASA Astrophysics Data System (ADS)

    Istvan Etesi, Laszlo; Tolbert, K.; Schwartz, R.; Zarro, D.; Dennis, B.; Csillaghy, A.

    2010-05-01

    In our project "Extending the Virtual Solar Observatory (VSO)” we have combined some of the features available in Solar Software (SSW) to produce an integrated environment for data analysis, supporting the complete workflow from data location, retrieval, preparation, and analysis to creating publication-quality figures. Our goal is an integrated analysis experience in IDL, easy-to-use but flexible enough to allow more sophisticated procedures such as multi-instrument analysis. To that end, we have made the transition from a locally oriented setting where all the analysis is done on the user's computer, to an extended analysis environment where IDL has access to services available on the Internet. We have implemented a form of Cloud Computing that uses the VSO search and a new data retrieval and pre-processing server (PrepServer) that provides remote execution of instrument-specific data preparation. We have incorporated the interfaces to the VSO search and the PrepServer into an IDL widget (SHOW_SYNOP) that provides user-friendly searching and downloading of raw solar data and optionally sends search results for pre-processing to the PrepServer prior to downloading the data. The raw and pre-processed data can be displayed with our plotting suite, PLOTMAN, which can handle different data types (light curves, images, and spectra) and perform basic data operations such as zooming, image overlays, solar rotation, etc. PLOTMAN is highly configurable and suited for visual data analysis and for creating publishable figures. PLOTMAN and SHOW_SYNOP work hand-in-hand for a convenient working environment. Our environment supports a growing number of solar instruments that currently includes RHESSI, SOHO/EIT, TRACE, SECCHI/EUVI, HINODE/XRT, and HINODE/EIS.

  6. Statistical modeling of software reliability

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1992-01-01

    This working paper discusses the statistical simulation part of a controlled software development experiment being conducted under the direction of the System Validation Methods Branch, Information Systems Division, NASA Langley Research Center. The experiment uses guidance and control software (GCS) aboard a fictitious planetary landing spacecraft: real-time control software operating on a transient mission. Software execution is simulated to study the statistical aspects of reliability and other failure characteristics of the software during development, testing, and random usage. Quantification of software reliability is a major goal. Various reliability concepts are discussed. Experiments are described for performing simulations and collecting appropriate simulated software performance and failure data. This data is then used to make statistical inferences about the quality of the software development and verification processes as well as inferences about the reliability of software versions and reliability growth under random testing and debugging.

  7. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  8. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    NASA Astrophysics Data System (ADS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  9. Implementation of relational data base management systems on micro-computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.L.

    1982-01-01

    This dissertation describes an implementation of a Relational Data Base Management System on a microcomputer. A specific floppy disk based hardward called TERAK is being used, and high level query interface which is similar to a subset of the SEQUEL language is provided. The system contains sub-systems such as I/O, file management, virtual memory management, query system, B-tree management, scanner, command interpreter, expression compiler, garbage collection, linked list manipulation, disk space management, etc. The software has been implemented to fulfill the following goals: (1) it is highly modularized. (2) The system is physically segmented into 16 logically independent, overlayable segments,more » in a way such that a minimal amount of memory is needed at execution time. (3) Virtual memory system is simulated that provides the system with seemingly unlimited memory space. (4) A language translator is applied to recognize user requests in the query language. The code generation of this translator generates compact code for the execution of UPDATE, DELETE, and QUERY commands. (5) A complete set of basic functions needed for on-line data base manipulations is provided through the use of a friendly query interface. (6) To eliminate the dependency on the environment (both software and hardware) as much as possible, so that it would be easy to transplant the system to other computers. (7) To simulate each relation as a sequential file. It is intended to be a highly efficient, single user system suited to be used by small or medium sized organizations for, say, administrative purposes. Experiments show that quite satisfying results have indeed been achieved.« less

  10. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    NASA Technical Reports Server (NTRS)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently under development and not yet sufficiently capable, the ANML model is translated into the New Domain Definition Language (NDDL) and sent to NASA's EUROPA planning system for plan generation. The adaptive controller executes the new plan, using augmented, hierarchical finite state machines to select and sequence actions based on the state of the ADAPT system. Real-time sensor data, commands, and plans are displayed in information-dense arrays of timelines and graphs that zoom and scroll in unison. A dynamic schematic display uses color to show the real-time fault state and utilization of the system components and resources. An execution manager coordinates the activities of the other subsystems. The subsystems are integrated using the Internet Communications Engine (ICE). an object-oriented toolkit for building distributed applications.

  11. Seamless online science workflow development and collaboration using IDL and the ENVI Services Engine

    NASA Astrophysics Data System (ADS)

    Harris, A. T.; Ramachandran, R.; Maskey, M.

    2013-12-01

    The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.

  12. Requirements Analysis for Large Ada Programs: Lessons Learned on CCPDS- R

    DTIC Science & Technology

    1989-12-01

    when the design had matured and This approach was not optimal from the formal the SRS role was to be the tester’s contract, implemen- testing and...on the software development CPU processing load. These constraints primar- process is the necessity to include sufficient testing ily affect algorithm...allocations and timing requirements are by-products of the software design process when multiple CSCls are a P R StrR eSOFTWARE ENGINEERING executed within

  13. Flight design system-1 system design. Volume 5: Data management and data base documentation support system. [for shuttle flight planning

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Application software intended to reduce the man-hours required per flight design cycle by producing major flight design documents with little or no manual typing is described. The documentation support software is divided into two separately executable processors. However, since both processors support the same overall functions, and most of the software contained in one is also contained in the other, both are collectively presented.

  14. Software techniques for a distributed real-time processing system. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Lesh, F.; Lecoq, P.

    1976-01-01

    The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.

  15. Florida specific NTCIP MIB development for actuated signal controller (ASC), closed-circuit television (CCTV), and center-to-center (C2C) communications with SunGuideSM software and ITS device test procedure development : executive summary.

    DOT National Transportation Integrated Search

    2009-06-01

    To provide hardware, software, network, systems research, and testing for multi-million : dollar traffic operations, Intelligent Transportation Systems (ITS), and statewide : communications investments, the Traffic Engineering and Operations Office h...

  16. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2017-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  17. Data Visualization: An Exploratory Study into the Software Tools Used by Businesses

    ERIC Educational Resources Information Center

    Diamond, Michael; Mattia, Angela

    2015-01-01

    Data visualization is a key component to business and data analytics, allowing analysts in businesses to create tools such as dashboards for business executives. Various software packages allow businesses to create these tools in order to manipulate data for making informed business decisions. The focus is to examine what skills employers are…

  18. Developing Software For Monitoring And Diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1993-01-01

    Expert-system software shell produces executable code. Report discusses beginning phase of research directed toward development of artificial intelligence for real-time monitoring of, and diagnosis of faults in, complicated systems of equipment. Motivated by need for onboard monitoring and diagnosis of electronic sensing and controlling systems of advanced aircraft. Also applicable to such equipment systems as refineries, factories, and powerplants.

  19. PyChimera: use UCSF Chimera modules in any Python 2.7 project.

    PubMed

    Rodríguez-Guerra Pedregal, Jaime; Maréchal, Jean-Didier

    2018-05-15

    UCSF Chimera is a powerful visualization tool remarkably present in the computational chemistry and structural biology communities. Built on a C++ core wrapped under a Python 2.7 environment, one could expect to easily import UCSF Chimera's arsenal of resources in custom scripts or software projects. Nonetheless, this is not readily possible if the script is not executed within UCSF Chimera due to the isolation of the platform. UCSF ChimeraX, successor to the original Chimera, partially solves the problem but yet major upgrades need to be undergone so that this updated version can offer all UCSF Chimera features. PyChimera has been developed to overcome these limitations and provide access to the UCSF Chimera codebase from any Python 2.7 interpreter, including interactive programming with tools like IPython and Jupyter Notebooks, making it easier to use with additional third-party software. PyChimera is LGPL-licensed and available at https://github.com/insilichem/pychimera. jaime.rodriguezguerra@uab.cat or jeandidier.marechal@uab.cat. Supplementary data are available at Bioinformatics online.

  20. [Statistical analysis using freely-available "EZR (Easy R)" software].

    PubMed

    Kanda, Yoshinobu

    2015-10-01

    Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.

Top