pyam: Python Implementation of YaM
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan
2012-01-01
pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.
Criteria for software modularization
NASA Technical Reports Server (NTRS)
Card, David N.; Page, Gerald T.; Mcgarry, Frank E.
1985-01-01
A central issue in programming practice involves determining the appropriate size and information content of a software module. This study attempted to determine the effectiveness of two widely used criteria for software modularization, strength and size, in reducing fault rate and development cost. Data from 453 FORTRAN modules developed by professional programmers were analyzed. The results indicated that module strength is a good criterion with respect to fault rate, whereas arbitrary module size limitations inhibit programmer productivity. This analysis is a first step toward defining empirically based standards for software modularization.
The Preliminary Results of GMSTech: A Software Development for Microseismic Characterization
NASA Astrophysics Data System (ADS)
Rohaman, Maman; Suhendi, Cahli; Verdhora Ry, Rexha; Sugiartono Prabowo, Billy; Widiyantoro, Sri; Nugraha, Andri Dian; Yudistira, Tedi; Mujihardi, Bambang
2017-04-01
The processing of microseismic data requires reliable software for imaging the condition of subsurface related to occurring microseismicity. In general, the currently available software is only specific for certain processing module and developed by the different developer. However, the software with integrated processing modules will give a better value because the users can use it easier and faster. We developed GMSTech (Ganesha Microseismic Technology), a C# language-based standing-alone software consisting several modules for processing of microseismic data. Its function is to solve a non-linear inverse problem and imaging the subsurface. C# library is supported by ILNumerics to reduce time consumption and give good visualization. In this preliminary result, we will present four developed modules: (1) hypocenter determination, (2) moment magnitude calculation, and (3) 3D seismic tomography. In the first module, we provide four methods for locating the microseismic events that can be chosen by a user independently: simulated annealing method, guided grid-search method, Geiger’s method, and joint hypocenter determination (JHD). The second module can be used for calculating moment magnitude using Brune method and to estimate the released energy of the event. At last, we also provided the module of 3-D seismic tomography for imaging the velocity structures based on delay time tomography. We demonstrated the software using both a synthetic data and a real data from a certain geothermal field in Indonesia. The results for all modules are reliable and remarkable, reviewed statistically by RMS error. We will keep examining the software using another set of data and developing further modules of processing.
A New Approach to Developing Interactive Software Modules Through Graduate Education
NASA Astrophysics Data System (ADS)
Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.
2014-06-01
Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive, educational, online software modules can be developed effectively by students as a curriculum component of an advanced science course. We discuss a set of 15 such modules developed by Harvard University graduate students to demonstrate various concepts related to astronomy and physics. Their successful development of these modules demonstrates that online software tools for education and outreach on specialized topics can be produced while simultaneously fulfilling project-based learning objectives. We describe a set of technologies suitable for module development and present in detail four examples of modules developed by the students. We offer recommendations for incorporating educational software development within a graduate curriculum and conclude by discussing the relevance of this novel approach to new online learning environments like edX.
NASA Astrophysics Data System (ADS)
Ye, Jinzuo; Chi, Chongwei; Zhang, Shuang; Ma, Xibo; Tian, Jie
2014-02-01
Sentinel lymph node (SLN) in vivo detection is vital in breast cancer surgery. A new near-infrared fluorescence-based surgical navigation system (SNS) imaging software, which has been developed by our research group, is presented for SLN detection surgery in this paper. The software is based on the fluorescence-based surgical navigation hardware system (SNHS) which has been developed in our lab, and is designed specifically for intraoperative imaging and postoperative data analysis. The surgical navigation imaging software consists of the following software modules, which mainly include the control module, the image grabbing module, the real-time display module, the data saving module and the image processing module. And some algorithms have been designed to achieve the performance of the software, for example, the image registration algorithm based on correlation matching. Some of the key features of the software include: setting the control parameters of the SNS; acquiring, display and storing the intraoperative imaging data in real-time automatically; analysis and processing of the saved image data. The developed software has been used to successfully detect the SLNs in 21 cases of breast cancer patients. In the near future, we plan to improve the software performance and it will be extensively used for clinical purpose.
Application Reuse Library for Software, Requirements, and Guidelines
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Thronesbery, Carroll
1994-01-01
Better designs are needed for expert systems and other operations automation software, for more reliable, usable and effective human support. A prototype computer-aided Application Reuse Library shows feasibility of supporting concurrent development and improvement of advanced software by users, analysts, software developers, and human-computer interaction experts. Such a library expedites development of quality software, by providing working, documented examples, which support understanding, modification and reuse of requirements as well as code. It explicitly documents and implicitly embodies design guidelines, standards and conventions. The Application Reuse Library provides application modules with Demo-and-Tester elements. Developers and users can evaluate applicability of a library module and test modifications, by running it interactively. Sub-modules provide application code and displays and controls. The library supports software modification and reuse, by providing alternative versions of application and display functionality. Information about human support and display requirements is provided, so that modifications will conform to guidelines. The library supports entry of new application modules from developers throughout an organization. Example library modules include a timer, some buttons and special fonts, and a real-time data interface program. The library prototype is implemented in the object-oriented G2 environment for developing real-time expert systems.
An empirical study of software design practices
NASA Technical Reports Server (NTRS)
Card, David N.; Church, Victor E.; Agresti, William W.
1986-01-01
Software engineers have developed a large body of software design theory and folklore, much of which was never validated. The results of an empirical study of software design practices in one specific environment are presented. The practices examined affect module size, module strength, data coupling, descendant span, unreferenced variables, and software reuse. Measures characteristic of these practices were extracted from 887 FORTRAN modules developed for five flight dynamics software projects monitored by the Software Engineering Laboratory (SEL). The relationship of these measures to cost and fault rate was analyzed using a contingency table procedure. The results show that some recommended design practices, despite their intuitive appeal, are ineffective in this environment, whereas others are very effective.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
ERIC Educational Resources Information Center
Ganesan, Nanda
2008-01-01
A survey of hardware and software technologies was conducted to identify suitable technologies for the development of instructional modules representing various instructional approaches. The approaches modeled were short PowerPoint presentations, chalk-and-talk type of lectures and software tutorials. The survey focused on identifying application…
Coordination in Large Scale Software Development
1990-01-01
toward achieving common and explicitly recognized goals" (Blau and Scott, 1962) and "the integration or linking together of different parts of an...require a strong degree of integration of its components. Much software is built of thousands of modules that must mesh with each other perfectly for the...coordination between subgroups producing software modules could lead to failure in integrating the modules themselves. Informal communication. Both
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization.
Jung, Sang-Kyu; McDonald, Karen
2011-08-16
Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net.
Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization
2011-01-01
Background Direct gene synthesis is becoming more popular owing to decreases in gene synthesis pricing. Compared with using natural genes, gene synthesis provides a good opportunity to optimize gene sequence for specific applications. In order to facilitate gene optimization, we have developed a stand-alone software called Visual Gene Developer. Results The software not only provides general functions for gene analysis and optimization along with an interactive user-friendly interface, but also includes unique features such as programming capability, dedicated mRNA secondary structure prediction, artificial neural network modeling, network & multi-threaded computing, and user-accessible programming modules. The software allows a user to analyze and optimize a sequence using main menu functions or specialized module windows. Alternatively, gene optimization can be initiated by designing a gene construct and configuring an optimization strategy. A user can choose several predefined or user-defined algorithms to design a complicated strategy. The software provides expandable functionality as platform software supporting module development using popular script languages such as VBScript and JScript in the software programming environment. Conclusion Visual Gene Developer is useful for both researchers who want to quickly analyze and optimize genes, and those who are interested in developing and testing new algorithms in bioinformatics. The software is available for free download at http://www.visualgenedeveloper.net. PMID:21846353
Collaborative Software Development Approach Used to Deliver the New Shuttle Telemetry Ground Station
NASA Technical Reports Server (NTRS)
Kirby, Randy L.; Mann, David; Prenger, Stephen G.; Craig, Wayne; Greenwood, Andrew; Morsics, Jonathan; Fricker, Charles H.; Quach, Son; Lechese, Paul
2003-01-01
United Space Alliance (USA) developed and used a new software development method to meet technical, schedule, and budget challenges faced during the development and delivery of the new Shuttle Telemetry Ground Station at Kennedy Space Center. This method, called Collaborative Software Development, enabled KSC to effectively leverage industrial software and build additional capabilities to meet shuttle system and operational requirements. Application of this method resulted in reduced time to market, reduced development cost, improved product quality, and improved programmer competence while developing technologies of benefit to a small company in California (AP Labs Inc.). Many modifications were made to the baseline software product (VMEwindow), which improved its quality and functionality. In addition, six new software capabilities were developed, which are the subject of this article and add useful functionality to the VMEwindow environment. These new software programs are written in C or VXWorks and are used in conjunction with other ground station software packages, such as VMEwindow, Matlab, Dataviews, and PVWave. The Space Shuttle Telemetry Ground Station receives frequency-modulation (FM) and pulse-code-modulated (PCM) signals from the shuttle and support equipment. The hardware architecture (see figure) includes Sun workstations connected to multiple PCM- and FM-processing VersaModule Eurocard (VME) chassis. A reflective memory network transports raw data from PCM Processors (PCMPs) to the programmable digital-to-analog (D/A) converters, strip chart recorders, and analysis and controller workstations.
Learning from examples - Generation and evaluation of decision trees for software resource analysis
NASA Technical Reports Server (NTRS)
Selby, Richard W.; Porter, Adam A.
1988-01-01
A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.
Improved CLARAty Functional-Layer/Decision-Layer Interface
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Gaines, Daniel; Johnston, Mark; Chouinard, Caroline; Nessnas, Issa; Shu, I-Hsiang
2008-01-01
Improved interface software for communication between the CLARAty Decision and Functional layers has been developed. [The Coupled Layer Architecture for Robotics Autonomy (CLARAty) was described in Coupled-Layer Robotics Architecture for Autonomy (NPO-21218), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48. To recapitulate: the CLARAty architecture was developed to improve the modularity of robotic software while tightening coupling between planning/execution and basic control subsystems. Whereas prior robotic software architectures typically contained three layers, the CLARAty contains two layers: a decision layer (DL) and a functional layer (FL).] Types of communication supported by the present software include sending commands from DL modules to FL modules and sending data updates from FL modules to DL modules. The present software supplants prior interface software that had little error-checking capability, supported data parameters in string form only, supported commanding at only one level of the FL, and supported only limited updates of the state of the robot. The present software offers strong error checking, and supports complex data structures and commanding at multiple levels of the FL, and relative to the prior software, offers a much wider spectrum of state-update capabilities.
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius
This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development,more » the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.« less
Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J
1997-01-01
Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
NASA Astrophysics Data System (ADS)
Yetman, G.; Downs, R. R.
2011-12-01
Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may also have the additional benefits of guaranteed up-time, bug fixes, and vendor-added enhancements. Deploying commercial software can be advantageous for obtaining system or software components offered by a vendor that meet in-house requirements. The vendor can be contracted to provide installation, support and maintenance services as needed. Combining these options offers a menu of choices, enabling selection of system components or software modules that meet the evolving requirements encountered throughout the scientific data lifecycle.
Design and development of data acquisition system based on WeChat hardware
NASA Astrophysics Data System (ADS)
Wang, Zhitao; Ding, Lei
2018-06-01
Data acquisition system based on WeChat hardware provides methods for popularization and practicality of data acquisition. The whole system is based on WeChat hardware platform, where the hardware part is developed on DA14580 development board and the software part is based on Alibaba Cloud. We designed service module, logic processing module, data processing module and database module. The communication between hardware and software uses AirSync Protocal. We tested this system by collecting temperature and humidity data, and the result shows that the system can aquisite the temperature and humidity in real time according to settings.
A General Water Resources Regulation Software System in China
NASA Astrophysics Data System (ADS)
LEI, X.
2017-12-01
To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.
Development and Evaluation of LEGUME ID: A ToolBook Multimedia Module.
ERIC Educational Resources Information Center
Hannaway, David B.; And Others
1992-01-01
Describes the development and advantages of LEGUME ID, a multimedia module for agricultural education. LEGUME ID is an example of how teachers, given the opportunity through accessible computer software programs, can create powerful teaching tools. Summarized is a student response to the use of this teacher-produced software program. (MCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Anuj; Castleton, Karl J.; Hoopes, Bonnie L.
2004-06-01
The study of the release and effects of chemicals in the environment and their associated risks to humans is central to public and private decision making. FRAMES 1.X, Framework for Risk Analysis in Multimedia Environmental Systems, is a systems modeling software platform, developed by PNNL, Pacific Northwest National Laboratory, that helps scientists study the release and effects of chemicals on a source to outcome basis, create environmental models for similar risk assessment and management problems. The unique aspect of FRAMES is to dynamically introduce software modules representing individual components of a risk assessment (e.g., source release of contaminants, fate andmore » transport in various environmental media, exposure, etc.) within a software framework, manipulate their attributes and run simulations to obtain results. This paper outlines the fundamental constituents of FRAMES 2.X, an enhanced version of FRAMES 1.X, that greatly improve the ability of the module developers to “plug” their self-developed software modules into the system. The basic design, the underlying principles and a discussion of the guidelines for module developers are presented.« less
SDDL- SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE
NASA Technical Reports Server (NTRS)
Kleine, H.
1994-01-01
Effective, efficient communication is an essential element of the software development process. The Software Design and Documentation Language (SDDL) provides an effective communication medium to support the design and documentation of complex software applications. SDDL supports communication between all the members of a software design team and provides for the production of informative documentation on the design effort. Even when an entire development task is performed by a single individual, it is important to explicitly express and document communication between the various aspects of the design effort including concept development, program specification, program development, and program maintenance. SDDL ensures that accurate documentation will be available throughout the entire software life cycle. SDDL offers an extremely valuable capability for the design and documentation of complex programming efforts ranging from scientific and engineering applications to data management and business sytems. Throughout the development of a software design, the SDDL generated Software Design Document always represents the definitive word on the current status of the ongoing, dynamic design development process. The document is easily updated and readily accessible in a familiar, informative form to all members of the development team. This makes the Software Design Document an effective instrument for reconciling misunderstandings and disagreements in the development of design specifications, engineering support concepts, and the software design itself. Using the SDDL generated document to analyze the design makes it possible to eliminate many errors that might not be detected until coding and testing is attempted. As a project management aid, the Software Design Document is useful for monitoring progress and for recording task responsibilities. SDDL is a combination of language, processor, and methodology. The SDDL syntax consists of keywords to invoke design structures and a collection of directives which control processor actions. The designer has complete control over the choice of keywords, commanding the capabilities of the processor in a way which is best suited to communicating the intent of the design. The SDDL processor translates the designer's creative thinking into an effective document for communication. The processor performs as many automatic functions as possible, thereby freeing the designer's energy for the creative effort. Document formatting includes graphical highlighting of structure logic, accentuation of structure escapes and module invocations, logic error detection, and special handling of title pages and text segments. The SDDL generated document contains software design summary information including module invocation hierarchy, module cross reference, and cross reference tables of user selected words or phrases appearing in the document. The basic forms of the methodology are module and block structures and the module invocation statement. A design is stated in terms of modules that represent problem abstractions which are complete and independent enough to be treated as separate problem entities. Blocks are lower-level structures used to build the modules. Both kinds of structures may have an initiator part, a terminator part, an escape segment, or a substructure. The SDDL processor is written in PASCAL for batch execution on a DEC VAX series computer under VMS. SDDL was developed in 1981 and last updated in 1984.
Development of Land Analysis System display modules
NASA Technical Reports Server (NTRS)
Gordon, Douglas; Hollaren, Douglas; Huewe, Laurie
1986-01-01
The Land Analysis System (LAS) display modules were developed to allow a user to interactively display, manipulate, and store image and image related data. To help accomplish this task, these modules utilize the Transportable Applications Executive and the Display Management System software to interact with the user and the display device. The basic characteristics of a display are outlined and some of the major modifications and additions made to the display management software are discussed. Finally, all available LAS display modules are listed along with a short description of each.
Microcomputer software for storm drain hydraulic gradeline computation.
DOT National Transportation Integrated Search
1987-01-01
A microcomputer software module was developed for the computation of hydraulic gradeline in storm sewer systems. The computer module has been attached to the program '"HYDRA", which is being adopted by the FHWA organized Pooled Fund Study. on Integra...
NASA Astrophysics Data System (ADS)
Huang, Hong-bin; Liu, Wei-ping; Chen, Shun-er; Zheng, Liming
2005-02-01
A new type of CATV network management system developed by universal MCU, which supports SNMP, is proposed in this paper. From the point of view in both hardware and software, the function and method of every modules inside the system, which include communications in the physical layer, protocol process, data process, and etc, are analyzed. In our design, the management system takes IP MAN as data transmission channel and every controlled object in the management structure has a SNMP agent. In the SNMP agent developed, there are four function modules, including physical layer communication module, protocol process module, internal data process module and MIB management module. In the paper, the structure and function of every module are designed and demonstrated while the related hardware circuit, software flow as well as the experimental results are tested. Furthermore, by introducing RTOS into the software programming, the universal MCU procedure can conducts such multi-thread management as fast Ethernet controller driving, TCP/IP process, serial port signal monitoring and so on, which greatly improves efficiency of CPU.
Software techniques for a distributed real-time processing system. [for spacecraft
NASA Technical Reports Server (NTRS)
Lesh, F.; Lecoq, P.
1976-01-01
The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.
NASA Technical Reports Server (NTRS)
1979-01-01
Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.
AIDA: An Integrated Authoring Environment for Educational Software.
ERIC Educational Resources Information Center
Mendes, Antonio Jose; Mendes, Teresa
1996-01-01
Describes an integrated authoring environment, AIDA ("Ambiente Integrado de Desenvolvimento de Aplicacoes educacionais"), that was developed at the University of Coimbra (Portugal) for educational software. Highlights include the design module, a prototyping tool that allows for multimedia, simulations, and modularity; execution module;…
NASA Technical Reports Server (NTRS)
Hops, J. M.; Sherif, J. S.
1994-01-01
A great deal of effort is now being devoted to the study, analysis, prediction, and minimization of software maintenance expected cost, long before software is delivered to users or customers. It has been estimated that, on the average, the effort spent on software maintenance is as costly as the effort spent on all other software costs. Software design methods should be the starting point to aid in alleviating the problems of software maintenance complexity and high costs. Two aspects of maintenance deserve attention: (1) protocols for locating and rectifying defects, and for ensuring that noe new defects are introduced in the development phase of the software process; and (2) protocols for modification, enhancement, and upgrading. This article focuses primarily on the second aspect, the development of protocols to help increase the quality and reduce the costs associated with modifications, enhancements, and upgrades of existing software. This study developed parsimonious models and a relative complexity metric for complexity measurement of software that were used to rank the modules in the system relative to one another. Some success was achieved in using the models and the relative metric to identify maintenance-prone modules.
Virtual Observatory and Colitec Software: Modules, Features, Methods
NASA Astrophysics Data System (ADS)
Pohorelov, A. V.; Khlamov, S. V.; Savanevych, V. E.; Briukhovetskyi, A. B.; Vlasenko, V. P.
In this article we described complex processing system created by the CoLiTec project. This system includes features, user-friendly tools for processing control, results reviewing, integration with online catalogs and a lot of different computational modules that are based on the developed methods. Some of them are described in the article.The main directions of the CoLiTec software development are the Virtual Observatory, software for automated asteroids and comets detection and software for brightness equalization.The CoLiTec software is widely used in a number of observatories in the CIS. It has been used in about 700 000 observations, during which 1560 asteroids, including 5 NEO, 21 Trojan asteroids of Jupiter, 1 Centaur and four comets were discovered.
HCI∧2 framework: a software framework for multimodal human-computer interaction systems.
Shen, Jie; Pantic, Maja
2013-12-01
This paper presents a novel software framework for the development and research in the area of multimodal human-computer interface (MHCI) systems. The proposed software framework, which is called the HCI∧2 Framework, is built upon publish/subscribe (P/S) architecture. It implements a shared-memory-based data transport protocol for message delivery and a TCP-based system management protocol. The latter ensures that the integrity of system structure is maintained at runtime. With the inclusion of bridging modules, the HCI∧2 Framework is interoperable with other software frameworks including Psyclone and ActiveMQ. In addition to the core communication middleware, we also present the integrated development environment (IDE) of the HCI∧2 Framework. It provides a complete graphical environment to support every step in a typical MHCI system development process, including module development, debugging, packaging, and management, as well as the whole system management and testing. The quantitative evaluation indicates that our framework outperforms other similar tools in terms of average message latency and maximum data throughput under a typical single PC scenario. To demonstrate HCI∧2 Framework's capabilities in integrating heterogeneous modules, we present several example modules working with a variety of hardware and software. We also present an example of a full system developed using the proposed HCI∧2 Framework, which is called the CamGame system and represents a computer game based on hand-held marker(s) and low-cost camera(s).
Development of a new software for analyzing 3-D fracture network
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon
2014-05-01
A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.
New software for 3D fracture network analysis and visualization
NASA Astrophysics Data System (ADS)
Song, J.; Noh, Y.; Choi, Y.; Um, J.; Hwang, S.
2013-12-01
This study presents new software to perform analysis and visualization of the fracture network system in 3D. The developed software modules for the analysis and visualization, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, have been developed using Microsoft Visual Basic.NET and Visualization TookKit (VTK) open-source library. Two case studies revealed that each module plays a role in construction of analysis domain, visualization of fracture geometry in 3D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software for analysis and visualization of the 3D fractured rock mass can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Jang, Yongwon; Noh, Hyung Wook; Lee, I B; Jung, Ji-Wook; Song, Yoonseon; Lee, Sooyeul; Kim, Seunghwan
2012-01-01
A patch type embedded cardiac function monitoring system was developed to detect arrhythmias such as PVC (Premature Ventricular Contraction), pause, ventricular fibrillation, and tachy/bradycardia. The overall system is composed of a main module including a dual processor and a Bluetooth telecommunication module. The dual microprocessor strategy minimizes power consumption and size, and guarantees the resources of embedded software programs. The developed software was verified with standard DB, and showed good performance.
Microterminal/Microfiche System for Computer-Based Instruction: Hardware and Software Development.
1980-10-01
Circuit Description and Schematic of Adaptor Module 57 Appendix C Circuit Description The schematics for circuitry used in the microfiche viewer and the...composed of four major components and associated interfaces. The major components are (a) mirroterminal. (Is) microfiche reader. (0) memory module , and (d...sensing of the position of the platen containing the microfiche so that frame locations can be verified by the microterminal software. The memory module is
Chen, Ming; Henry, Nathan; Almsaeed, Abdullah; Zhou, Xiao; Wegrzyn, Jill; Ficklin, Stephen
2017-01-01
Abstract Tripal is an open source software package for developing biological databases with a focus on genetic and genomic data. It consists of a set of core modules that deliver essential functions for loading and displaying data records and associated attributes including organisms, sequence features and genetic markers. Beyond the core modules, community members are encouraged to contribute extension modules to build on the Tripal core and to customize Tripal for individual community needs. To expand the utility of the Tripal software system, particularly for RNASeq data, we developed two new extension modules. Tripal Elasticsearch enables fast, scalable searching of the entire content of a Tripal site as well as the construction of customized advanced searches of specific data types. We demonstrate the use of this module for searching assembled transcripts by functional annotation. A second module, Tripal Analysis Expression, houses and displays records from gene expression assays such as RNA sequencing. This includes biological source materials (biomaterials), gene expression values and protocols used to generate the data. In the case of an RNASeq experiment, this would reflect the individual organisms and tissues used to produce sequencing libraries, the normalized gene expression values derived from the RNASeq data analysis and a description of the software or code used to generate the expression values. The module will load data from common flat file formats including standard NCBI Biosample XML. Data loading, display options and other configurations can be controlled by authorized users in the Drupal administrative backend. Both modules are open source, include usage documentation, and can be found in the Tripal organization’s GitHub repository. Database URL: Tripal Elasticsearch module: https://github.com/tripal/tripal_elasticsearch Tripal Analysis Expression module: https://github.com/tripal/tripal_analysis_expression PMID:29220446
NASA Technical Reports Server (NTRS)
Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.
2011-01-01
An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.
Capi text V.1--data analysis software for nailfold skin capillaroscopy.
Dobrev, Hristo P
2007-01-01
Nailfold skin capillaroscopy is a simple non-invasive method used to assess conditions of disturbed microcirculation such as Raynaud's phenomenon, acrocyanosis, perniones, connective tissue diseases, psoriasis, diabetes mellitus, neuropathy and vibration disease. To develop data analysis software aimed at assisting the documentation and analysis of a capillaroscopic investigation. SOFTWARE DESCRIPTION: The programme is based on a modular principle. The module "Nomenclatures" includes menus for the patients' data. The module "Examinations" includes menus for all general and specific aspects of the medical examination and capillaroscopic investigations. The modules "Settings" and "Information" include customization menus for the programme. The results of nailfold capillaroscopy can be printed in a short or expanded form. This software allows physicians to perform quick search by using various specified criteria and prepare analyses and reports. This software programme will facilitate any practitioner who performs nailfold skin capillaroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.; Flach, G.
This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data asmore » it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.« less
Development of fuel oil management system software: Phase 1, Tank management module. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, H.B.; Baker, J.P.; Allen, D.
1992-01-01
The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less
Development of fuel oil management system software: Phase 1, Tank management module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lange, H.B.; Baker, J.P.; Allen, D.
1992-01-01
The Fuel Oil Management System (FOMS) is a micro-computer based software system being developed to assist electric utilities that use residual fuel oils with oil purchase and end-use decisions. The Tank Management Module (TMM) is the first FOMS module to be produced. TMM enables the user to follow the mixing status of oils contained in a number of oil storage tanks. The software contains a computational model of residual fuel oil mixing which addresses mixing that occurs as one oil is added to another in a storage tank and also purposeful mixing of the tank by propellers, recirculation or convection.Themore » model also addresses the potential for sludge formation due to incompatibility of oils being mixed. Part 1 of the report presents a technical description of the mixing model and a description of its development. Steps followed in developing the mixing model included: (1) definition of ranges of oil properties and tank design factors used by utilities; (2) review and adaption of prior applicable work; (3) laboratory development; and (4) field verification. Also, a brief laboratory program was devoted to exploring the suitability of suggested methods for predicting viscosities, flash points and pour points of oil mixtures. Part 2 of the report presents a functional description of the TMM software and a description of its development. The software development program consisted of the following steps: (1) on-site interviews at utilities to prioritize needs and characterize user environments; (2) construction of the user interface; and (3) field testing the software.« less
Traffic-Light-Preemption Vehicle-Transponder Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically
Software Design Methods for Real-Time Systems
1989-12-01
This module describes the concepts and methods used in the software design of real time systems . It outlines the characteristics of real time systems , describes...the role of software design in real time system development, surveys and compares some software design methods for real - time systems , and
A workflow learning model to improve geovisual analytics utility
Roth, Robert E; MacEachren, Alan M; McCabe, Craig A
2011-01-01
Introduction This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. Objectives The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. Methodology The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. Results/Conclusions In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009. PMID:21983545
A workflow learning model to improve geovisual analytics utility.
Roth, Robert E; Maceachren, Alan M; McCabe, Craig A
2009-01-01
INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on the concept of scientific workflows. Second, we implemented an interface in the G-EX Portal Learn Module to demonstrate the workflow learning model. The workflow interface allows users to drag learning artifacts uploaded to the G-EX Portal onto a central whiteboard and then annotate the workflow using text and drawing tools. Once completed, users can visit the assembled workflow to get an idea of the kind, number, and scale of analysis steps, view individual learning artifacts associated with each node in the workflow, and ask questions about the overall workflow or individual learning artifacts through the associated forums. An example learning workflow in the domain of epidemiology is provided to demonstrate the effectiveness of the approach. RESULTS/CONCLUSIONS: In the context of geovisual analytics, GIScientists are not only responsible for developing software to facilitate visually-mediated reasoning about large and complex spatiotemporal information, but also for ensuring that this software works. The workflow learning model discussed in this paper and demonstrated in the G-EX Portal Learn Module is one approach to improving the utility of geovisual analytics software. While development of the G-EX Portal Learn Module is ongoing, we expect to release the G-EX Portal Learn Module by Summer 2009.
FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses
NASA Astrophysics Data System (ADS)
Noh, Y. H.; Um, J. G.; Choi, Y.
2014-12-01
A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.
Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.
2014-01-01
Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138
Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M
2014-01-01
(1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.
Practical Methods for Estimating Software Systems Fault Content and Location
NASA Technical Reports Server (NTRS)
Nikora, A.; Schneidewind, N.; Munson, J.
1999-01-01
Over the past several years, we have developed techniques to discriminate between fault-prone software modules and those that are not, to estimate a software system's residual fault content, to identify those portions of a software system having the highest estimated number of faults, and to estimate the effects of requirements changes on software quality.
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Daniels, James
2014-01-01
The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1989-01-01
MT's algorithm was developed as an aid in the design of space telecommunications systems when utilized with simultaneous range/command/telemetry operations. This algorithm provides selection of modulation indices for: (1) suppression of undesired signals to achieve desired link performance margins and/or to allow for a specified performance degradation in the data channel (command/telemetry) due to the presence of undesired signals (interferers); and (2) optimum power division between the carrier, the range, and the data channel. A software program using this algorithm was developed for use with MathCAD software. This software program, called the MT program, provides the computation of optimum modulation indices for all possible cases that are recommended by the Consultative Committee on Space Data System (CCSDS) (with emphasis on the squarewave, NASA/JPL ranging system).
SAGA: A project to automate the management of software production systems
NASA Technical Reports Server (NTRS)
Campbell, Roy H.; Beckman, Carol S.; Benzinger, Leonora; Beshers, George; Hammerslag, David; Kimball, John; Kirslis, Peter A.; Render, Hal; Richards, Paul; Terwilliger, Robert
1985-01-01
The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented.
An Embedded Reconfigurable Logic Module
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
NASA Technical Reports Server (NTRS)
Boulanger, Richard; Overland, David
2004-01-01
Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.
Providing structural modules with self-integrity monitoring software user's manual
NASA Technical Reports Server (NTRS)
1990-01-01
National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.
NASA Technical Reports Server (NTRS)
Gaffney, J. E., Jr.; Judge, R. W.
1981-01-01
A model of a software development process is described. The software development process is seen to consist of a sequence of activities, such as 'program design' and 'module development' (or coding). A manpower estimate is made by multiplying code size by the rates (man months per thousand lines of code) for each of the activities relevant to the particular case of interest and summing up the results. The effect of four objectively determinable factors (organization, software product type, computer type, and code type) on productivity values for each of nine principal software development activities was assessed. Four factors were identified which account for 39% of the observed productivity variation.
PuMA: the Porous Microstructure Analysis software
NASA Astrophysics Data System (ADS)
Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.
2018-01-01
The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.
DPOI: Distributed software system development platform for ocean information service
NASA Astrophysics Data System (ADS)
Guo, Zhongwen; Hu, Keyong; Jiang, Yongguo; Sun, Zhaosui
2015-02-01
Ocean information management is of great importance as it has been employed in many areas of ocean science and technology. However, the developments of Ocean Information Systems (OISs) often suffer from low efficiency because of repetitive work and continuous modifications caused by dynamic requirements. In this paper, the basic requirements of OISs are analyzed first, and then a novel platform DPOI is proposed to improve development efficiency and enhance software quality of OISs by providing off-the-shelf resources. In the platform, the OIS is decomposed hierarchically into a set of modules, which can be reused in different system developments. These modules include the acquisition middleware and data loader that collect data from instruments and files respectively, the database that stores data consistently, the components that support fast application generation, the web services that make the data from distributed sources syntactical by use of predefined schemas and the configuration toolkit that enables software customization. With the assistance of the development platform, the software development needs no programming and the development procedure is thus accelerated greatly. We have applied the development platform in practical developments and evaluated its efficiency in several development practices and different development approaches. The results show that DPOI significantly improves development efficiency and software quality.
[Study for lung sound acquisition module based on ARM and Linux].
Lu, Qiang; Li, Wenfeng; Zhang, Xixue; Li, Junmin; Liu, Longqing
2011-07-01
A acquisition module with ARM and Linux as a core was developed. This paper presents the hardware configuration and the software design. It is shown that the module can extract human lung sound reliably and effectively.
Overview of software development at the parabolic dish test site
NASA Technical Reports Server (NTRS)
Miyazono, C. K.
1985-01-01
The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.
Teleoperated Modular Robots for Lunar Operations
NASA Technical Reports Server (NTRS)
Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason
2004-01-01
Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.
[Nursing physical examination of the full-term neonate: self-instructional software].
Fernandes, Maria das Graças de Oliveira; Barbosa, Vera Lucia; Naganuma, Masuco
2006-01-01
The purpose of this research is to elaborate software about the physical examination of full-term newborns (TNB) for neonatal nursing teaching at undergraduate level. The software was developed according to the phases of planning, content development and evaluation. The construction of the modules was based on Gagné's modern learning theory and structured on the Keller Plan, in line with the systemic approach. The objectives were to elaborate and evaluate the contents of the self-instructional modules, to be used as a teaching strategy in the undergraduate course. After being structured, the material was reviewed and analyzed by 11 neonatal nursing experts, who rated the 42 exposed items as good or excellent.
Development of an Environment for Software Reliability Model Selection
1992-09-01
now is directed to other related problems such as tools for model selection, multiversion programming, and software fault tolerance modeling... multiversion programming, 7. Hlardware can be repaired by spare modules, which is not. the case for software, 2-6 N. Preventive maintenance is very important
DSISoft—a MATLAB VSP data processing package
NASA Astrophysics Data System (ADS)
Beaty, K. S.; Perron, G.; Kay, I.; Adam, E.
2002-05-01
DSISoft is a public domain vertical seismic profile processing software package developed at the Geological Survey of Canada. DSISoft runs under MATLAB version 5.0 and above and hence is portable between computer operating systems supported by MATLAB (i.e. Unix, Windows, Macintosh, Linux). The package includes processing modules for reading and writing various standard seismic data formats, performing data editing, sorting, filtering, and other basic processing modules. The processing sequence can be scripted allowing batch processing and easy documentation. A structured format has been developed to ensure future additions to the package are compatible with existing modules. Interactive modules have been created using MATLAB's graphical user interface builder for displaying seismic data, picking first break times, examining frequency spectra, doing f- k filtering, and plotting the trace header information. DSISoft modular design facilitates the incorporation of new processing algorithms as they are developed. This paper gives an overview of the scope of the software and serves as a guide for the addition of new modules.
Reading Computer Programs: Instructor’s Guide to Exercises
1990-08-01
activities that underlie effective writing, many of which are similar to those underlying software development . The module draws on related work in a number...Instructor’s Guide and Exercises Abstract: The ability to read and understand a computer program is a criti- cal skill for the software developer , yet this...skill is seldom developed in any systematic way in the education or training of software professionals. These materials discuss the importance of
[Computers in nursing: development of free software application with care and management].
dos Santos, Sérgio Ribeiro
2010-06-01
This study aimed at developing an information system in nursing with the implementation of nursing care and management of the service. The SisEnf--Information System in Nursing--is a free software module that comprises the care of nursing: history, clinical examination and care plan; the management module consists of: service shifts, personnel management, hospital indicators and other elements. The system was implemented at the Medical Clinic of the Lauro Wanderley University Hospital, at Universidade Federal da Paraiba. In view of the need to bring user and developer closer, in addition to the constant change of functional requirements during the interactive process, the method of unified process was used. The SisEnf was developed on a WEB platform and using free software. Hence, the work developed aimed at assisting in the working process of nursing, which will now have the opportunity to incorporate information technology in their work routine.
Art care: A multi-modality coronary 3D reconstruction and hemodynamic status assessment software.
Siogkas, Panagiotis K; Stefanou, Kostas A; Athanasiou, Lambros S; Papafaklis, Michail I; Michalis, Lampros K; Fotiadis, Dimitrios I
2018-01-01
Due to the incremental increase of clinical interest in the development of software that allows the 3-dimensional (3D) reconstruction and the functional assessment of the coronary vasculature, several software packages have been developed and are available today. Taking this into consideration, we have developed an innovative suite of software modules that perform 3D reconstruction of coronary arterial segments using different coronary imaging modalities such as IntraVascular UltraSound (IVUS) and invasive coronary angiography images (ICA), Optical Coherence Tomography (OCT) and ICA images, or plain ICA images and can safely and accurately assess the hemodynamic status of the artery of interest. The user can perform automated or manual segmentation of the IVUS or OCT images, visualize in 3D the reconstructed vessel and export it to formats, which are compatible with other Computer Aided Design (CAD) software systems. We employ finite elements to provide the capability to assess the hemodynamic functionality of the reconstructed vessels by calculating the virtual functional assessment index (vFAI), an index that corresponds and has been shown to correlate well to the actual fractional flow reserve (FFR) value. All the modules of the proposed system have been thoroughly validated. In brief, the 3D-QCA module, compared to a successful commercial software of the same genre, presented very good correlation using several validation metrics, with a Pearson's correlation coefficient (R) for the calculated volumes, vFAI, length and minimum lumen diameter of 0.99, 0.99, 0.99 and 0.88, respectively. Moreover, the automatic lumen detection modules for IVUS and OCT presented very high accuracy compared to the annotations by medical experts with the Pearson's correlation coefficient reaching the values of 0.94 and 0.99, respectively. In this study, we have presented a user-friendly software for the 3D reconstruction of coronary arterial segments and the accurate hemodynamic assessment of the severity of existing stenosis.
ERIC Educational Resources Information Center
Anderson, Tiffoni
This module provides information on development and use of a Material Safety Data Sheet (MSDS) software program that seeks to link literacy skills education, safety training, and human-centered design. Section 1 discusses the development of the software program that helps workers understand the MSDSs that accompany the chemicals with which they…
Software errors and complexity: An empirical investigation
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Perricone, Berry T.
1983-01-01
The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.
Software errors and complexity: An empirical investigation
NASA Technical Reports Server (NTRS)
Basili, V. R.; Perricone, B. T.
1982-01-01
The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.
ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Shao, Liang
2008-09-01
The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.
Pybus -- A Python Software Bus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrijsen, Wim T.L.P.
2004-10-14
A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the conceptmore » of a ''software bus'' can be realized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user.« less
NASA Astrophysics Data System (ADS)
Knypiński, Łukasz
2017-12-01
In this paper an algorithm for the optimization of excitation system of line-start permanent magnet synchronous motors will be presented. For the basis of this algorithm, software was developed in the Borland Delphi environment. The software consists of two independent modules: an optimization solver, and a module including the mathematical model of a synchronous motor with a self-start ability. The optimization module contains the bat algorithm procedure. The mathematical model of the motor has been developed in an Ansys Maxwell environment. In order to determine the functional parameters of the motor, additional scripts in Visual Basic language were developed. Selected results of the optimization calculation are presented and compared with results for the particle swarm optimization algorithm.
PSGMiner: A modular software for polysomnographic analysis.
Umut, İlhan
2016-06-01
Sleep disorders affect a great percentage of the population. The diagnosis of these disorders is usually made by polysomnography. This paper details the development of new software to carry out feature extraction in order to perform robust analysis and classification of sleep events using polysomnographic data. The software, called PSGMiner, is a tool, which visualizes, processes and classifies bioelectrical data. The purpose of this program is to provide researchers with a platform with which to test new hypotheses by creating tests to check for correlations that are not available in commercially available software. The software is freely available under the GPL3 License. PSGMiner is composed of a number of diverse modules such as feature extraction, annotation, and machine learning modules, all of which are accessible from the main module. Using the software, it is possible to extract features of polysomnography using digital signal processing and statistical methods and to perform different analyses. The features can be classified through the use of five classification algorithms. PSGMiner offers an architecture designed for integrating new methods. Automatic scoring, which is available in almost all commercial PSG software, is not inherently available in this program, though it can be implemented by two different methodologies (machine learning and algorithms). While similar software focuses on a certain signal or event composed of a small number of modules with no expansion possibility, the software introduced here can handle all polysomnographic signals and events. The software simplifies the processing of polysomnographic signals for researchers and physicians that are not experts in computer programming. It can find correlations between different events which could help predict an oncoming event such as sleep apnea. The software could also be used for educational purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Science yield modeling with the Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS)
NASA Astrophysics Data System (ADS)
Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Morgan, Rhonda
2016-08-01
We report on our ongoing development of EXOSIMS and mission simulation results for WFIRST. We present the interface control and the modular structure of the software, along with corresponding prototypes and class definitions for some of the software modules. More specifically, we focus on describing the main steps of our high-fidelity mission simulator EXOSIMS, i.e., the completeness, optical system and zodiacal light modules definition, the target list module filtering, and the creation of a planet population within our simulated universe module. For the latter, we introduce the integration of a recent mass-radius model from the FORECASTER software. We also provide custom modules dedicated to WFIRST using both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) for detection and characterization, respectively. In that context, we show and discuss the results of some preliminary WFIRST simulations, focusing on comparing different methods of integration time calculation, through ensembles (large numbers) of survey simulations.
Data and Analysis Center for Software.
1980-06-01
can make use of it in their day- to -day activities of developing, maintaining, and managing software. The biblio- graphic collection is composed of...which refer to development, design, or programming approaches whicn view a software system component, or module in terms of its required or intended... practices " are also included In this group. PROCEDURES (I keyword) Procedures is a term used ambiguously in the literature to refer to functions
Bonnal, Raoul J P; Aerts, Jan; Githinji, George; Goto, Naohisa; MacLean, Dan; Miller, Chase A; Mishima, Hiroyuki; Pagani, Massimiliano; Ramirez-Gonzalez, Ricardo; Smant, Geert; Strozzi, Francesco; Syme, Rob; Vos, Rutger; Wennblom, Trevor J; Woodcroft, Ben J; Katayama, Toshiaki; Prins, Pjotr
2012-04-01
Biogem provides a software development environment for the Ruby programming language, which encourages community-based software development for bioinformatics while lowering the barrier to entry and encouraging best practices. Biogem, with its targeted modular and decentralized approach, software generator, tools and tight web integration, is an improved general model for scaling up collaborative open source software development in bioinformatics. Biogem and modules are free and are OSS. Biogem runs on all systems that support recent versions of Ruby, including Linux, Mac OS X and Windows. Further information at http://www.biogems.info. A tutorial is available at http://www.biogems.info/howto.html bonnal@ingm.org.
adwTools Developed: New Bulk Alloy and Surface Analysis Software for the Alloy Design Workbench
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Morse, Jeffrey A.; Noebe, Ronald D.; Abel, Phillip B.
2004-01-01
A suite of atomistic modeling software, called the Alloy Design Workbench, has been developed by the Computational Materials Group at the NASA Glenn Research Center and the Ohio Aerospace Institute (OAI). The main goal of this software is to guide and augment experimental materials research and development efforts by creating powerful, yet intuitive, software that combines a graphical user interface with an operating code suitable for real-time atomistic simulations of multicomponent alloy systems. Targeted for experimentalists, the interface is straightforward and requires minimum knowledge of the underlying theory, allowing researchers to focus on the scientific aspects of the work. The centerpiece of the Alloy Design Workbench suite is the adwTools module, which concentrates on the atomistic analysis of surfaces and bulk alloys containing an arbitrary number of elements. An additional module, adwParams, handles ab initio input for the parameterization used in adwTools. Future modules planned for the suite include adwSeg, which will provide numerical predictions for segregation profiles to alloy surfaces and interfaces, and adwReport, which will serve as a window into the database, providing public access to the parameterization data and a repository where users can submit their own findings from the rest of the suite. The entire suite is designed to run on desktop-scale computers. The adwTools module incorporates a custom OAI/Glenn-developed Fortran code based on the BFS (Bozzolo- Ferrante-Smith) method for alloys, ref. 1). The heart of the suite, this code is used to calculate the energetics of different compositions and configurations of atoms.
Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U
2001-12-01
Clinicians' acceptance of clinical decision support depends on its workflow-oriented, context-sensitive accessibility and availability at the point of care, integrated into the Electronic Patient Record (EPR). Commercially available Hospital Information Systems (HIS) often focus on administrative tasks and mostly do not provide additional knowledge based functionality. Their traditionally monolithic and closed software architecture encumbers integration of and interaction with external software modules. Our aim was to develop methods and interfaces to integrate knowledge sources into two different commercial hospital information systems to provide the best decision support possible within the context of available patient data. An existing, proven standalone scoring system for acute abdominal pain was supplemented by a communication interface. In both HIS we defined data entry forms and developed individual and reusable mechanisms for data exchange with external software modules. We designed an additional knowledge support frontend which controls data exchange between HIS and the knowledge modules. Finally, we added guidelines and algorithms to the knowledge library. Despite some major drawbacks which resulted mainly from the HIS' closed software architectures we showed exemplary, how external knowledge support can be integrated almost seamlessly into different commercial HIS. This paper describes the prototypical design and current implementation and discusses our experiences.
Creating an automated tool for measuring software cohesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutton, J.M.; Zucconi, L.
1994-05-06
Program modules with high complexity tend to be more error prone and more difficult to understand. These factors increase maintenance and enhancement costs. Hence, a tool that can help programmers determine a key factor in module complexity should be very useful. Our goal is to create a software tool that will automatically give a quantitative measure of the cohesiveness of a given module, and hence give us an estimate of the {open_quotes}maintainability{close_quotes} of that module. The Tool will use a metric developed by Professors Linda M. Ott and James M. Bieman. The Ott/Bieman metric gives quantitative measures that indicate themore » degree of functional cohesion using abstract data slices.« less
Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory
2015-09-01
To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this platform represents an important, robust and objective tool to perform routine quality assurance of MR-guided therapeutic applications, where spatial accuracy is paramount. Copyright © 2015 Elsevier Inc. All rights reserved.
A distributed analysis and visualization system for model and observational data
NASA Technical Reports Server (NTRS)
Wilhelmson, Robert B.
1994-01-01
Software was developed with NASA support to aid in the analysis and display of the massive amounts of data generated from satellites, observational field programs, and from model simulations. This software was developed in the context of the PATHFINDER (Probing ATmospHeric Flows in an Interactive and Distributed EnviRonment) Project. The overall aim of this project is to create a flexible, modular, and distributed environment for data handling, modeling simulations, data analysis, and visualization of atmospheric and fluid flows. Software completed with NASA support includes GEMPAK analysis, data handling, and display modules for which collaborators at NASA had primary responsibility, and prototype software modules for three-dimensional interactive and distributed control and display as well as data handling, for which NSCA was responsible. Overall process control was handled through a scientific and visualization application builder from Silicon Graphics known as the Iris Explorer. In addition, the GEMPAK related work (GEMVIS) was also ported to the Advanced Visualization System (AVS) application builder. Many modules were developed to enhance those already available in Iris Explorer including HDF file support, improved visualization and display, simple lattice math, and the handling of metadata through development of a new grid datatype. Complete source and runtime binaries along with on-line documentation is available via the World Wide Web at: http://redrock.ncsa.uiuc.edu/ PATHFINDER/pathre12/top/top.html.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multicore, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to approx.50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multi-core, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to .50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Managing Complexity - Developing the Node Control Software For The International Space Station
NASA Technical Reports Server (NTRS)
Wood, Donald B.
2000-01-01
On December 4th, 1998 at 3:36 AM STS-88 (the space shuttle Endeavor) was launched with the "Node 1 Unity Module" in its payload bay. After working on the Space Station program for a very long time, that launch was one of the most beautiful sights I had ever seen! As the Shuttle proceeded to rendezvous with the Russian American module know as Zarya, I returned to Houston quickly to start monitoring the activation of the software I had spent the last 3 years working on. The FGB module (also known as "Zarya"), was grappled by the shuttle robotic arm, and connected to the Unity module. Crewmembers then hooked up the power and data connections between Zarya and Unity. On December 7th, 1998 at 9:49 PM CST the Node Control Software was activated. On December 15th, 1998, the Node-l/Zarya "cornerstone" of the International Space Station was left on-orbit. The Node Control Software (NCS) is the first software flown by NASA for the International Space Station (ISS). The ISS Program is considered the most complex international engineering effort ever undertaken. At last count some 18 countries are active partners in this global venture. NCS has performed all of its intended functions on orbit, over 200 miles above us. I'll be describing how we built the NCS software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.E.
1994-11-02
This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.
Advanced space system analysis software. Technical, user, and programmer guide
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Zimbelman, H. F.
1981-01-01
The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.
NASA Technical Reports Server (NTRS)
Lu, George C.
2003-01-01
The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall reduction in software life cycle cost. Due to the limited number of crew hours available on ISS for science research, operational efficiency is a critical customer concern. The current method of upgrading RIC software is a time consuming process; thus, an improved methodology for uploading RIC software is currently under evaluation.
An Integrated Simulation Module for Cyber-Physical Automation Systems †
Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario
2016-01-01
The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called “GILOO” (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new “Advanced Sky GUI” have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home mock-up where a networked control has been developed for the LED lighting system. PMID:27164109
An Integrated Simulation Module for Cyber-Physical Automation Systems.
Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario
2016-05-05
The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home mock-up where a networked control has been developed for the LED lighting system.
NASA Technical Reports Server (NTRS)
Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.
1992-01-01
Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.
Expert system development for commonality analysis in space programs
NASA Technical Reports Server (NTRS)
Yeager, Dorian P.
1987-01-01
This report is a combination of foundational mathematics and software design. A mathematical model of the Commonality Analysis problem was developed and some important properties discovered. The complexity of the problem is described herein and techniques, both deterministic and heuristic, for reducing that complexity are presented. Weaknesses are pointed out in the existing software (System Commonality Analysis Tool) and several improvements are recommended. It is recommended that: (1) an expert system for guiding the design of new databases be developed; (2) a distributed knowledge base be created and maintained for the purpose of encoding the commonality relationships between design items in commonality databases; (3) a software module be produced which automatically generates commonality alternative sets from commonality databases using the knowledge associated with those databases; and (4) a more complete commonality analysis module be written which is capable of generating any type of feasible solution.
The GMOD Drupal bioinformatic server framework.
Papanicolaou, Alexie; Heckel, David G
2010-12-15
Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
SIERRA Low Mach Module: Fuego User Manual Version 4.46.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
2017-09-01
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
SIERRA Low Mach Module: Fuego Theory Manual Version 4.44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
2017-04-01
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
SIERRA Low Mach Module: Fuego Theory Manual Version 4.46.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
Wang, Chunliang; Ritter, Felix; Smedby, Orjan
2010-07-01
To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
Designing, Developing and Implementing a Software Tool for Scenario Based Learning
ERIC Educational Resources Information Center
Norton, Geoff; Taylor, Mathew; Stewart, Terry; Blackburn, Greg; Jinks, Audrey; Razdar, Bahareh; Holmes, Paul; Marastoni, Enrique
2012-01-01
The pedagogical value of problem-based and inquiry-based learning activities has led to increased use of this approach in many courses. While scenarios or case studies were initially presented to learners as text-based material, the development of modern software technology provides the opportunity to deliver scenarios as e-learning modules,…
IAC level "O" program development
NASA Technical Reports Server (NTRS)
Vos, R. G.
1982-01-01
The current status of the IAC development activity is summarized. The listed prototype software and documentation was delivered, and details were planned for development of the level 1 operational system. The planned end product IAC is required to support LSST design analysis and performance evaluation, with emphasis on the coupling of required technical disciplines. The long term IAC effectively provides two distinct features: a specific set of analysis modules (thermal, structural, controls, antenna radiation performance and instrument optical performance) that will function together with the IAC supporting software in an integrated and user friendly manner; and a general framework whereby new analysis modules can readily be incorporated into IAC or be allowed to communicate with it.
NASA Technical Reports Server (NTRS)
Lowman, Douglas S.; Withers, B. Edward; Shagnea, Anita M.; Dent, Leslie A.; Hayhurst, Kelly J.
1990-01-01
A variety of instructions to be used in the development of implementations of software for the Guidance and Control Software (GCS) project is described. This document fulfills the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, 'Software Considerations in Airborne Systems and Equipment Certification' requirements for document No. 4, which specifies the information necessary for understanding and programming the host computer, and document No. 12, which specifies the software design and implementation standards that are applicable to the software development and testing process. Information on the following subjects is contained: activity recording, communication protocol, coding standards, change management, error handling, design standards, problem reporting, module testing logs, documentation formats, accuracy requirements, and programmer responsibilities.
Model-based software engineering for an optical navigation system for spacecraft
NASA Astrophysics Data System (ADS)
Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.
2017-09-01
The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F
2011-08-01
This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usabilitymore » and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.« less
Model-based software engineering for an optical navigation system for spacecraft
NASA Astrophysics Data System (ADS)
Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.
2018-06-01
The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
Critical Software for Human Spaceflight
NASA Technical Reports Server (NTRS)
Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael
2017-01-01
The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.
Continued Funding for Prime Development
2012-04-18
Portal The PrIMe Portal is based on the Drupal open-source software. During the past year we upgraded it to version 6. There are currently over 350...Primekinetics.org ( Drupal Data warehouse \\, WebDAV Access Layer - L qeirch Re~~ est Role validation/Authorization Authentication Module I ~ Module...PHP language with the help of CMF Drupal -6. The standard modules of the Drupal core set are developed by third parties and obtained from the
The Modular Modeling System (MMS): User's Manual
Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.
1996-01-01
The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.
SIRU utilization. Volume 2: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.; Whittredge, R.
1973-01-01
A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts
NASA Technical Reports Server (NTRS)
1973-01-01
A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.
Topal, Taner; Polat, Hüseyin; Güler, Inan
2008-10-01
In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.
NASA Astrophysics Data System (ADS)
Singh, H.; Donetsky, D.; Liu, J.; Attenkofer, K.; Cheng, B.; Trelewicz, J. R.; Lubomirsky, I.; Stavitski, E.; Frenkel, A. I.
2018-04-01
We report the development, testing, and demonstration of a setup for modulation excitation spectroscopy experiments at the Inner Shell Spectroscopy beamline of National Synchrotron Light Source - II. A computer algorithm and dedicated software were developed for asynchronous data processing and analysis. We demonstrate the reconstruction of X-ray absorption spectra for different time points within the modulation pulse using a model system. This setup and the software are intended for a broad range of functional materials which exhibit structural and/or electronic responses to the external stimulation, such as catalysts, energy and battery materials, and electromechanical devices.
Evaluation of the efficiency and reliability of software generated by code generators
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1994-01-01
There are numerous studies which show that CASE Tools greatly facilitate software development. As a result of these advantages, an increasing amount of software development is done with CASE Tools. As more software engineers become proficient with these tools, their experience and feedback lead to further development with the tools themselves. What has not been widely studied, however, is the reliability and efficiency of the actual code produced by the CASE Tools. This investigation considered these matters. Three segments of code generated by MATRIXx, one of many commercially available CASE Tools, were chosen for analysis: ETOFLIGHT, a portion of the Earth to Orbit Flight software, and ECLSS and PFMC, modules for Environmental Control and Life Support System and Pump Fan Motor Control, respectively.
SIRU development. Volume 3: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.
1973-01-01
The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.
Multimedia-modeling integration development environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelton, Mitchell A.; Hoopes, Bonnie L.
2002-09-02
There are many framework systems available; however, the purpose of the framework presented here is to capitalize on the successes of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) and Multi-media Multi-pathway Multi-receptor Risk Assessment (3MRA) methodology as applied to the Hazardous Waste Identification Rule (HWIR) while focusing on the development of software tools to simplify the module developer?s effort of integrating a module into the framework.
NASA Astrophysics Data System (ADS)
Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei
2017-08-01
Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.
Calculation and use of an environment's characteristic software metric set
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Selby, Richard W., Jr.
1985-01-01
Since both cost/quality and production environments differ, this study presents an approach for customizing a characteristic set of software metrics to an environment. The approach is applied in the Software Engineering Laboratory (SEL), a NASA Goddard production environment, to 49 candidate process and product metrics of 652 modules from six (51,000 to 112,000 lines) projects. For this particular environment, the method yielded the characteristic metric set (source lines, fault correction effort per executable statement, design effort, code effort, number of I/O parameters, number of versions). The uses examined for a characteristic metric set include forecasting the effort for development, modification, and fault correction of modules based on historical data.
Key Questions in Building Defect Prediction Models in Practice
NASA Astrophysics Data System (ADS)
Ramler, Rudolf; Wolfmaier, Klaus; Stauder, Erwin; Kossak, Felix; Natschläger, Thomas
The information about which modules of a future version of a software system are defect-prone is a valuable planning aid for quality managers and testers. Defect prediction promises to indicate these defect-prone modules. However, constructing effective defect prediction models in an industrial setting involves a number of key questions. In this paper we discuss ten key questions identified in context of establishing defect prediction in a large software development project. Seven consecutive versions of the software system have been used to construct and validate defect prediction models for system test planning. Furthermore, the paper presents initial empirical results from the studied project and, by this means, contributes answers to the identified questions.
Research and development of the laser tracker measurement system
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.
2013-01-01
The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3" which demonstrates that the preliminary prototype can realize fundamental measurement tasks.
The GMOD Drupal Bioinformatic Server Framework
Papanicolaou, Alexie; Heckel, David G.
2010-01-01
Motivation: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). Results: We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Conclusion: Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Availability and implementation: Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com Contact: alexie@butterflybase.org PMID:20971988
Software For Clear-Air Doppler-Radar Display
NASA Technical Reports Server (NTRS)
Johnston, Bruce W.
1990-01-01
System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2015-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.
Precise Documentation: The Key to Better Software
NASA Astrophysics Data System (ADS)
Parnas, David Lorge
The prime cause of the sorry “state of the art” in software development is our failure to produce good design documentation. Poor documentation is the cause of many errors and reduces efficiency in every phase of a software product's development and use. Most software developers believe that “documentation” refers to a collection of wordy, unstructured, introductory descriptions, thousands of pages that nobody wanted to write and nobody trusts. In contrast, Engineers in more traditional disciplines think of precise blueprints, circuit diagrams, and mathematical specifications of component properties. Software developers do not know how to produce precise documents for software. Software developments also think that documentation is something written after the software has been developed. In other fields of Engineering much of the documentation is written before and during the development. It represents forethought not afterthought. Among the benefits of better documentation would be: easier reuse of old designs, better communication about requirements, more useful design reviews, easier integration of separately written modules, more effective code inspection, more effective testing, and more efficient corrections and improvements. This paper explains how to produce and use precise software documentation and illustrate the methods with several examples.
Development of the updated system of city underground pipelines based on Visual Studio
NASA Astrophysics Data System (ADS)
Zhang, Jianxiong; Zhu, Yun; Li, Xiangdong
2009-10-01
Our city has owned the integrated pipeline network management system with ArcGIS Engine 9.1 as the bottom development platform and with Oracle9i as basic database for storaging data. In this system, ArcGIS SDE9.1 is applied as the spatial data engine, and the system was a synthetic management software developed with Visual Studio visualization procedures development tools. As the pipeline update function of the system has the phenomenon of slower update and even sometimes the data lost, to ensure the underground pipeline data can real-time be updated conveniently and frequently, and the actuality and integrity of the underground pipeline data, we have increased a new update module in the system developed and researched by ourselves. The module has the powerful data update function, and can realize the function of inputting and outputting and rapid update volume of data. The new developed module adopts Visual Studio visualization procedures development tools, and uses access as the basic database to storage data. We can edit the graphics in AutoCAD software, and realize the database update using link between the graphics and the system. Practice shows that the update module has good compatibility with the original system, reliable and high update efficient of the database.
NASA Astrophysics Data System (ADS)
Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun
2013-12-01
In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.
Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun
2013-12-01
In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.
Object-oriented approach for gas turbine engine simulation
NASA Technical Reports Server (NTRS)
Curlett, Brian P.; Felder, James L.
1995-01-01
An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.
NASA Astrophysics Data System (ADS)
Georgiev, Bozhidar; Georgieva, Adriana
2013-12-01
In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.
A Structured Model for Software Documentation.
ERIC Educational Resources Information Center
Swigger, Keith
The concept of "structured programming" was developed to facilitate software production, but it has not carried over to documentation design. Two concepts of structure are relevant to user documentation for computer programs. The first is based on programming techniques that emphasize decomposition of tasks into discrete modules, while the second…
Laser profilometer module based on a low-temperature cofired ceramic substrate
NASA Astrophysics Data System (ADS)
Heikkinen, Veli; Heikkinen, Mikko; Keranen, Kimmo; Mitikka, Risto S.; Putila, Veli-Pekka; Tukkiniemi, Kari
2005-09-01
We realized a laser profilometer module using low temperature cofired ceramics technology. The device consists of a vertical-cavity surface-emitting laser as the light source and a complementary metal oxide semiconductor image sensor as the detector. The laser transmitter produces a thin light stripe on the measurable object, and the receiver calculates the distance profile using triangulation. Because the design of optoelectronic modules, such as the laser profilometer, is usually carried out using specialized software, its electronic compatibility is very important. We developed a data transmission network using commercial optical, electrical, and mechanical design software, which enabled us to electronically transfer data between the designers. The module electronics were realized with multilayer ceramics technology that eases component assembly by providing precision alignment features in the substrate. The housing was manufactured from aluminum using electronic data transfer from the mechanical design software to the five-axis milling workstation. Target distance profiles were obtained from 100 points with an accuracy varying from 0.1 mm at a 5-cm distance to 2 cm at 1.5 m. The module has potential for distance measurement in portable devices where small size, light weight, and low power consumption are important.
Pilot study on the use of data mining to identify cochlear implant candidates.
Grisel, Jedidiah J; Schafer, Erin; Lam, Anne; Griffin, Terry
2018-05-01
The goal of this pilot study was to determine the clinical utility of data-mining software that screens for cochlear implant (CI) candidacy. The Auditory Implant Initiative developed a software module that screens for CI candidates via integration with a software system (Noah 4) that serves as a depository for hearing test data. To identify candidates, patient audiograms from one practice were exported into the screening module. Candidates were tracked to determine if any eventually underwent implantation. After loading 4836 audiograms from the Noah 4 system, the screening module identified 558 potential CI candidates. After reviewing the data for the potential candidates, 117 were targeted and invited to an educational event. Following the event, a total of six candidates were evaluated, and two were implanted. This objective approach to identifying candidates has the potential to address the gross underutilization of CIs by removing any bias or lack of knowledge regarding the management of severe to profound sensorineural hearing loss with CIs. The screening module was an effective tool for identifying potential CI candidates at one ENT practice. On a larger scale, the screening module has the potential to impact thousands of CI candidates worldwide.
Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko
2014-12-01
To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.
NASGRO 3.0: A Software for Analyzing Aging Aircraft
NASA Technical Reports Server (NTRS)
Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.
1999-01-01
Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and curve-fit fatigue-crack growth data. On-line help and documentation are provided for each of the modules. In addition to the popular PC windows version, a unix-based X-windows version of NASGRO is also available. A portable C++ class library called WxWindows was used to facilitate cross-platform availability of the software.
Lee, Young Han; Park, Eun Hae; Suh, Jin-Suck
2015-01-01
The objectives are: 1) to introduce a simple and efficient method for extracting region of interest (ROI) values from a Picture Archiving and Communication System (PACS) viewer using optical character recognition (OCR) software and a macro program, and 2) to evaluate the accuracy of this method with a PACS workstation. This module was designed to extract the ROI values on the images of the PACS, and created as a development tool by using open-source OCR software and an open-source macro program. The principal processes are as follows: (1) capture a region of the ROI values as a graphic file for OCR, (2) recognize the text from the captured image by OCR software, (3) perform error-correction, (4) extract the values including area, average, standard deviation, max, and min values from the text, (5) reformat the values into temporary strings with tabs, and (6) paste the temporary strings into the spreadsheet. This principal process was repeated for the number of ROIs. The accuracy of this module was evaluated on 1040 recognitions from 280 randomly selected ROIs of the magnetic resonance images. The input times of ROIs were compared between conventional manual method and this extraction module-assisted input method. The module for extracting ROI values operated successfully using the OCR and macro programs. The values of the area, average, standard deviation, maximum, and minimum could be recognized and error-corrected with AutoHotkey-coded module. The average input times using the conventional method and the proposed module-assisted method were 34.97 seconds and 7.87 seconds, respectively. A simple and efficient method for ROI value extraction was developed with open-source OCR and a macro program. Accurate inputs of various numbers from ROIs can be extracted with this module. The proposed module could be applied to the next generation of PACS or existing PACS that have not yet been upgraded. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
A knowledge based software engineering environment testbed
NASA Technical Reports Server (NTRS)
Gill, C.; Reedy, A.; Baker, L.
1985-01-01
The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
The SIERRA Low Mach Module: Fuego along with the SIERRA Participating Media Radiation Module: Syrinx, henceforth referred to as Fuego and Syrinx, respectively, are the key elements of the ASCI fire environment simulation project. The fire environment simulation project is directed at characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and absorption coefficient model portion of the simulation software. Syrinx represents the participating-media thermal radiation mechanics. This project is an integral part of the SIERRA multi-mechanics software development project. Fuego depends heavily upon the coremore » architecture developments provided by SIERRA for massively parallel computing, solution adaptivity, and mechanics coupling on unstructured grids.« less
System requirements specification for SMART structures mode
NASA Technical Reports Server (NTRS)
1992-01-01
Specified here are the functional and informational requirements for software modules which address the geometric and data modeling needs of the aerospace structural engineer. The modules are to be included as part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis Branch (VAB) at the NASA Langley Research Center (LaRC). The purpose is to precisely state what the SMART Structures modules will do, without consideration of how it will be done. Each requirement is numbered for reference in development and testing.
An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Erich; Scopatz, Anthony
2016-04-25
Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.
Open source pipeline for ESPaDOnS reduction and analysis
NASA Astrophysics Data System (ADS)
Martioli, Eder; Teeple, Doug; Manset, Nadine; Devost, Daniel; Withington, Kanoa; Venne, Andre; Tannock, Megan
2012-09-01
OPERA is a Canada-France-Hawaii Telescope (CFHT) open source collaborative software project currently under development for an ESPaDOnS echelle spectro-polarimetric image reduction pipeline. OPERA is designed to be fully automated, performing calibrations and reduction, producing one-dimensional intensity and polarimetric spectra. The calibrations are performed on two-dimensional images. Spectra are extracted using an optimal extraction algorithm. While primarily designed for CFHT ESPaDOnS data, the pipeline is being written to be extensible to other echelle spectrographs. A primary design goal is to make use of fast, modern object-oriented technologies. Processing is controlled by a harness, which manages a set of processing modules, that make use of a collection of native OPERA software libraries and standard external software libraries. The harness and modules are completely parametrized by site configuration and instrument parameters. The software is open- ended, permitting users of OPERA to extend the pipeline capabilities. All these features have been designed to provide a portable infrastructure that facilitates collaborative development, code re-usability and extensibility. OPERA is free software with support for both GNU/Linux and MacOSX platforms. The pipeline is hosted on SourceForge under the name "opera-pipeline".
A specialized plug-in software module for computer-aided quantitative measurement of medical images.
Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H
2003-12-01
This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.
NASA Technical Reports Server (NTRS)
Bekele, Gete
2002-01-01
This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.
Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory
NASA Astrophysics Data System (ADS)
Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.
2004-04-01
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.
Current state of the mass storage system reference model
NASA Technical Reports Server (NTRS)
Coyne, Robert
1993-01-01
IEEE SSSWG was chartered in May 1990 to abstract the hardware and software components of existing and emerging storage systems and to define the software interfaces between these components. The immediate goal is the decomposition of a storage system into interoperable functional modules which vendors can offer as separate commercial products. The ultimate goal is to develop interoperable standards which define the software interfaces, and in the distributed case, the associated protocols to each of the architectural modules in the model. The topics are presented in viewgraph form and include the following: IEEE SSSWG organization; IEEE SSSWG subcommittees & chairs; IEEE standards activity board; layered view of the reference model; layered access to storage services; IEEE SSSWG emphasis; and features for MSSRM version 5.
A Software Architecture for Adaptive Modular Sensing Systems
Lyle, Andrew C.; Naish, Michael D.
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614
A software architecture for adaptive modular sensing systems.
Lyle, Andrew C; Naish, Michael D
2010-01-01
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
Students, Micros, and Software: A New Approach in History Courses.
ERIC Educational Resources Information Center
Xidis, Kathleen
1988-01-01
Explains how IBM and Apple microcomputers are being used in U.S. history survey courses at Johnson County Community College (Kansas). Discusses development of the program and the use of software such as "U.S. Constitution Tutor" and "Microstudy." Describes the courses and the computer-assisted-instruction modules designed to go…
NASA Technical Reports Server (NTRS)
Lange, R. Connor
2012-01-01
Ever since Explorer-1, the United States' first Earth satellite, was developed and launched in 1958, JPL has developed many more spacecraft, including landers and orbiters. While these spacecraft vary greatly in their missions, capabilities,and destination, they all have something in common. All of the components of these spacecraft had to be comprehensively tested. While thorough testing is important to mitigate risk, it is also a very expensive and time consuming process. Thankfully,since virtually all of the software testing procedures for SMAP are computer controlled, these procedures can be automated. Most people testing SMAP flight software (FSW) would only need to write tests that exercise specific requirements and then check the filtered results to verify everything occurred as planned. This gives developers the ability to automatically launch tests on the testbed, distill the resulting logs into only the important information, generate validation documentation, and then deliver the documentation to management. With many of the steps in FSW testing automated, developers can use their limited time more effectively and can validate SMAP FSW modules quicker and test them more rigorously. As a result of the various benefits of automating much of the testing process, management is considering this automated tools use in future FSW validation efforts.
Object-oriented software design in semiautomatic building extraction
NASA Astrophysics Data System (ADS)
Guelch, Eberhard; Mueller, Hardo
1997-08-01
Developing a system for semiautomatic building acquisition is a complex process, that requires constant integration and updating of software modules and user interfaces. To facilitate these processes we apply an object-oriented design not only for the data but also for the software involved. We use the unified modeling language (UML) to describe the object-oriented modeling of the system in different levels of detail. We can distinguish between use cases from the users point of view, that represent a sequence of actions, yielding in an observable result and the use cases for the programmers, who can use the system as a class library to integrate the acquisition modules in their own software. The structure of the system is based on the model-view-controller (MVC) design pattern. An example from the integration of automated texture extraction for the visualization of results demonstrate the feasibility of this approach.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
System support software for the Space Ultrareliable Modular Computer (SUMC)
NASA Technical Reports Server (NTRS)
Hill, T. E.; Hintze, G. C.; Hodges, B. C.; Austin, F. A.; Buckles, B. P.; Curran, R. T.; Lackey, J. D.; Payne, R. E.
1974-01-01
The highly transportable programming system designed and implemented to support the development of software for the Space Ultrareliable Modular Computer (SUMC) is described. The SUMC system support software consists of program modules called processors. The initial set of processors consists of the supervisor, the general purpose assembler for SUMC instruction and microcode input, linkage editors, an instruction level simulator, a microcode grid print processor, and user oriented utility programs. A FORTRAN 4 compiler is undergoing development. The design facilitates the addition of new processors with a minimum effort and provides the user quasi host independence on the ground based operational software development computer. Additional capability is provided to accommodate variations in the SUMC architecture without consequent major modifications in the initial processors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongkai; Qu, Zilian; Zhao, Qian
In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to knowmore » the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.« less
Software framework for the upcoming MMT Observatory primary mirror re-aluminization
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Clark, Dusty; Porter, Dallan
2014-07-01
Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.
Teaching land-use planning in a flood prone area with an educational software
NASA Astrophysics Data System (ADS)
Metzger, R.; Jaboyedoff, M.
2009-04-01
Teaching of flood risk mapping and mitigation is a necessary task in geosciences studies. However, there is often a gap between the theoretical hydraulic notions broached during the courses and the possibility to make use of them in practice by the students during supervised computer lab exercises. This is mainly due because professional models/software have a steep learning curve and the lecturer spend most of his time to explain how to make such or such operation with the software. To overcome this shortcoming, an educational software was developed, which is made of three main modules: 1) A user-friendly graphical interface (GUI), allowing for handling geographical data and creating thematic maps (Geographical Information System (GIS) module); 2) A flood model (hydrological and inundation models) part allowing for freeing student as much as possible from the repetitive and tedious tasks related to modeling issues, while keeping reasonable computational time; 3) A land use planning module, which allow for specifying mitigation measures (dikes and levees building, flood retention, renaturation, …) and for evaluating their effects by re-running the flood model. The main goal of this educational software is to provide a smooth approach to the modeling issue, without loosing the focus on the main task which is flood risk reduction.
Translating expert system rules into Ada code with validation and verification
NASA Technical Reports Server (NTRS)
Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam
1991-01-01
The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.
A labview-based GUI for the measurement of otoacoustic emissions.
Wu, Ye; McNamara, D M; Ziarani, A K
2006-01-01
This paper presents the outcome of a software development project aimed at creating a stand-alone user-friendly signal processing algorithm for the estimation of distortion product otoacoustic emission (OAE) signals. OAE testing is one of the most commonly used methods of first screening of newborns' hearing. Most of the currently available commercial devices rely upon averaging long strings of data and subsequent discrete Fourier analysis to estimate low level OAE signals from within the background noise in the presence of the strong stimuli. The main shortcoming of the presently employed technology is the need for long measurement time and its low noise immunity. The result of the software development project presented here is a graphical user interface (GUI) module that implements a recently introduced adaptive technique of OAE signal estimation. This software module is easy to use and is freely disseminated on the Internet for the use of the hearing research community. This GUI module allows loading of the a priori recorded OAE signals into the workspace, and provides the user with interactive instructions for the OAE signal estimation. Moreover, the user can generate simulated OAE signals to objectively evaluate the performance capability of the implemented signal processing technique.
Real Time Metrology Using Heterodyne Interferometry
NASA Astrophysics Data System (ADS)
Evans, Joseph T..., Jr.
1983-11-01
The Air Force Weapons Laboratory (AFWL) located at Albuquerque, NM has developed a digital heterodyne interferometer capable of real-time, closed loop analysis and control of adaptive optics. The device uses independent phase modulation of two orthogonal polarizations of an argon ion laser to produce a temporally phase modulated interferogram of the test object in a Twyman-Green interferometer. Differential phase detection under the control of a Data General minicomputer helps reconstruct the phase front without noise effects from amplitude modulation in the optical train. The system consists of the interferometer optics, phase detection circuitry, and the minicomputer, allowing for complete software control of the process. The software has been unified into a powerful package that performs automatic data acquisition, OPD reconstruction, and Zernike analysis of the resulting wavefront. The minicomputer has the capability to control external devices so that closed loop analysis and control is possible. New software under development will provide a framework of data acquisition, display, and storage packages which can be integrated with analysis and control packages customized to the user's needs. Preliminary measurements with the system show that it is noise limited by laser beam phase quality and vibration of the optics. Active measures are necessary to reduce the impact of these noise sources.
The Human Genome Project: Information access, management, and regulation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, J.D.; Micikas, L.B.
The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.
Space Station Module Power Management and Distribution System (SSM/PMAD)
NASA Technical Reports Server (NTRS)
Miller, William (Compiler); Britt, Daniel (Compiler); Elges, Michael (Compiler); Myers, Chris (Compiler)
1994-01-01
This report provides an overview of the Space Station Module Power Management and Distribution (SSM/PMAD) testbed system and describes recent enhancements to that system. Four tasks made up the original contract: (1) common module power management and distribution system automation plan definition; (2) definition of hardware and software elements of automation; (3) design, implementation and delivery of the hardware and software making up the SSM/PMAD system; and (4) definition and development of the host breadboard computer environment. Additions and/or enhancements to the SSM/PMAD test bed that have occurred since July 1990 are reported. These include: (1) rehosting the MAESTRO scheduler; (2) reorganization of the automation software internals; (3) a more robust communications package; (4) the activity editor to the MAESTRO scheduler; (5) rehosting the LPLMS to execute under KNOMAD; implementation of intermediate levels of autonomy; (6) completion of the KNOMAD knowledge management facility; (7) significant improvement of the user interface; (8) soft and incipient fault handling design; (9) intermediate levels of autonomy, and (10) switch maintenance.
1981-12-08
o 14 A& B:2.1 Function Driver Module.. ..... .... 14’ ’: B:2.2 Shared Services Module . . . o o . 0 -15 M’ 5:3 Software Decision Module...2.1.13 Weapon Release Functions... ........24 C:2.l.14 Ground Test Functions .. ........... 24 C:2.2 Shared Services Module Decomposition. ........24 C...Driver (FD) Module supported by a Shared Services (SS) Module. B:2.1 FUNCTION DRIVER MODULE The Function Driver Module consists of a set of individual
SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Dolly, S; Cai, B
Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less
Sailors, R. Matthew
1997-01-01
The Arden Syntax specification for sharable computerized medical knowledge bases has not been widely utilized in the medical informatics community because of a lack of tools for developing Arden Syntax knowledge bases (Medical Logic Modules). The MLM Builder is a Microsoft Windows-hosted CASE (Computer Aided Software Engineering) tool designed to aid in the development and maintenance of Arden Syntax Medical Logic Modules (MLMs). The MLM Builder consists of the MLM Writer (an MLM generation tool), OSCAR (an anagram of Object-oriented ARden Syntax Compiler), a test database, and the MLManager (an MLM management information system). Working together, these components form a self-contained, unified development environment for the creation, testing, and maintenance of Arden Syntax Medical Logic Modules.
Earth-Science Data Co-Locating Tool
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Pan, Lei; Block, Gary L.
2012-01-01
This software is used to locate Earth-science satellite data and climate-model analysis outputs in space and time. This enables the direct comparison of any set of data with different spatial and temporal resolutions. It is written in three separate modules that are clearly separated for their functionality and interface with other modules. This enables a fast development of supporting any new data set. In this updated version of the tool, several new front ends are developed for new products. This software finds co-locatable data pairs for given sets of data products and creates new data products that share the same spatial and temporal coordinates. This facilitates the direct comparison between the two heterogeneous datasets and the comprehensive and synergistic use of the datasets.
SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M
1998-01-01
SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-10-29
This volume is the software description for the National Utility Regulatory Model (NUREG). This is the third of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual describes the software which has been developed for NUREG. This includes a listing of the source modules. All computer code has been written in FORTRAN.
The ESA's Space Trajectory Analysis software suite
NASA Astrophysics Data System (ADS)
Ortega, Guillermo
The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and relationship between objects in 2D and 3D formats, etc. Further, the article explains that the STA development is open source and it is based on the state of the art astrodynamics routines that are grouped into modules. The modules are programmed using the C++ language. The different STA modules are designed, developed, tested and verified by the different Universities. Software integration and overall validation is performed by ESA. Students are chosen to work in STA modules as part of their Master or PhD thesis programs. As part of their growing experience, the students learn how to write documentation for a space project using European Coorperation on Space Standardization (ECSS) standards, how to test and verify the software modules they write and, how to interact with ESA and each other in this process. Finally, the article concludes about the benefits of the STA initiative. The STA project allows a strong link among applied mathematics, space engineering, and informatics disciplines by reinforcing the academic community with requirements and needs coming from space agencies and industry real needs and missions.
NASA Astrophysics Data System (ADS)
Dricker, I. G.; Friberg, P.; Hellman, S.
2001-12-01
Under the contract with the CTBTO, Instrumental Software Technologies Inc., (ISTI) has designed and developed a Standard Station Interface (SSI) - a set of executable programs and application programming interface libraries for acquisition, authentication, archiving and telemetry of seismic and infrasound data for stations of the CTBTO nuclear monitoring network. SSI (written in C) is fully supported under both the Solaris and Linux operating systems and will be shipped with fully documented source code. SSI consists of several interconnected modules. The Digitizer Interface Module maintains a near-real-time data flow between multiple digitizers and the SSI. The Disk Buffer Module is responsible for local data archival. The Station Key Management Module is a low-level tool for data authentication and verification of incoming signatures. The Data Transmission Module supports packetized near-real-time data transmission from the primary CTBTO stations to the designated Data Center. The AutoDRM module allows transport of seismic and infrasound signed data via electronic mail (auxiliary station mode). The Command Interface Module is used to pass the remote commands to the digitizers and other modules of SSI. A station operator has access to the state-of-health information and waveforms via an the Operator Interface Module. Modular design of SSI will allow painless extension of the software system within and outside the boundaries of CTBTO station requirements. Currently an alpha version of SSI undergoes extensive tests in the lab and onsite.
The design of real time infrared image generation software based on Creator and Vega
NASA Astrophysics Data System (ADS)
Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu
2013-09-01
Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.
[Development of a software for 3D virtual phantom design].
Zou, Lian; Xie, Zhao; Wu, Qi
2014-02-01
In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.
Pedagogical Usability of the Geometer's Sketchpad (GSP) Digital Module in the Mathematics Teaching
ERIC Educational Resources Information Center
Nordin, Norazah; Zakaria, Effandi; Mohamed, Nik Rahimah Nik; Embi, Mohamed Amin
2010-01-01
Teacher played an important role in ascertaining effective teaching of mathematics. The objective of this paper was to investigate the pedagogical usability of a digital module prototype that integrated a dynamic geometry software, Geometer's Sketchpad (GSP) in mathematics teaching. The prototype was developed based on Reiser's and Dick's…
Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.
2016-07-01
Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.
Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach
NASA Astrophysics Data System (ADS)
Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios
A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.
NASA Technical Reports Server (NTRS)
Callender, E. D.; Clarkson, T. B.; Frasier, C. E.
1980-01-01
The software design and documentation language (SDDL) is a general purpose processor to support a lanugage for the description of any system, structure, concept, or procedure that may be presented from the viewpoint of a collection of hierarchical entities linked together by means of binary connections. The language comprises a set of rules of syntax, primitive construct classes (module, block, and module invocation), and language control directives. The result is a language with a fixed grammar, variable alphabet and punctuation, and an extendable vocabulary. The application of SDDL to the detailed software design of the Command Data Subsystem for the Galileo Spacecraft is discussed. A set of constructs was developed and applied. These constructs are evaluated and examples of their application are considered.
Investigation into the development of computer aided design software for space based sensors
NASA Technical Reports Server (NTRS)
Pender, C. W.; Clark, W. L.
1987-01-01
The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.
NASA Astrophysics Data System (ADS)
Delyana, H.; Rismen, S.; Handayani, S.
2018-04-01
This research is a development research using 4-D design model (define, design, develop, and disseminate). The results of the define stage are analyzed for the needs of the following; Syllabus analysis, textbook analysis, student characteristics analysis and literature analysis. The results of textbook analysis obtained the description that of the two textbooks that must be owned by students also still difficulty in understanding it, the form of presentation also has not facilitated students to be independent in learning to find the concept, textbooks are also not equipped with data processing referrals by using software R. The developed module is considered valid by the experts. Further field trials are conducted to determine the practicality and effectiveness. The trial was conducted to the students of Mathematics Education Study Program of STKIP PGRI which was taken randomly which has not taken Basic Statistics Course that is as many as 4 people. Practical aspects of attention are easy, time efficient, easy to interpret, and equivalence. The practical value in each aspect is 3.7; 3.79, 3.7 and 3.78. Based on the results of the test students considered that the module has been very practical use in learning. This means that the module developed can be used by students in Elementary Statistics learning.
Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture
Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.
2006-10-03
This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.
Study of fault tolerant software technology for dynamic systems
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Zacharias, G. L.
1985-01-01
The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.
Constellation Training Facility Support
NASA Technical Reports Server (NTRS)
Flores, Jose M.
2008-01-01
The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.
NASA Astrophysics Data System (ADS)
Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza
2018-04-01
Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.
Cuffney, Thomas F.
2003-01-01
The Invertebrate Data Analysis System (IDAS) software provides an accurate, consistent, and efficient mechanism for analyzing invertebrate data collected as part of the National Water-Quality Assessment Program and stored in the Biological Transactional Database (Bio-TDB). The IDAS software is a stand-alone program for personal computers that run Microsoft (MS) Windows?. It allows users to read data downloaded from Bio-TDB and stored either as MS Excel? or MS Access? files. The program consists of five modules. The Edit Data module allows the user to subset, combine, delete, and summarize community data. The Data Preparation module allows the user to select the type(s) of sample(s) to process, calculate densities, delete taxa based on laboratory processing notes, combine lifestages or keep them separate, select a lowest taxonomic level for analysis, delete rare taxa, and resolve taxonomic ambiguities. The Calculate Community Metrics module allows the user to calculate over 130 community metrics, including metrics based on organism tolerances and functional feeding groups. The Calculate Diversities and Similarities module allows the user to calculate nine diversity and eight similarity indices. The Data export module allows the user to export data to other software packages and produce tables of community data that can be imported into spreadsheet and word-processing programs. Though the IDAS program was developed to process invertebrate data downloaded from USGS databases, it will work with other data sets that are converted to the USGS (Bio-TDB) format. Consequently, the data manipulation, analysis, and export procedures provided by the IDAS program can be used by anyone involved in using benthic macroinvertebrates in applied or basic research.
A Deep Space Orbit Determination Software: Overview and Event Prediction Capability
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik
2017-06-01
This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.
Optical analysis of electro-optical systems by MTF calculus
NASA Astrophysics Data System (ADS)
Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari
2011-08-01
One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.
ISS Material Science Research Rack HWIL Interface Simulation
NASA Technical Reports Server (NTRS)
Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)
2002-01-01
In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.
Advanced Transport Operating System (ATOPS) utility library software description
NASA Technical Reports Server (NTRS)
Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.
1993-01-01
The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.
PRIOR-WK&E: Social Software for Policy Making in the Knowledge Society
NASA Astrophysics Data System (ADS)
Turón, Alberto; Aguarón, Juan; Escobar, María Teresa; Gallardo, Carolina; Moreno-Jiménez, José María; Salazar, José Luis
This paper presents a social software application denominated as PRIOR-WK&E. It has been developed by the Zaragoza Multicriteria Decision Making Group (GDMZ) with the aim of responding to the challenges of policy making in the Knowledge Society. Three specific modules have been added to PRIOR, the collaborative tool used by the research group (GDMZ) for considering the multicriteria selection of a discrete set of alternatives. The first module (W), that deals with multiactor decision making through the Web, and the second (K), that concerns the extraction and diffusion of knowledge related to the scientific resolution of the problem, were explained in [1]. The new application strengthens securitization and includes a third module (E) that evaluates the effectiveness of public administrations policy making.
Miller, Brian S; Calderan, Susannah; Gillespie, Douglas; Weatherup, Graham; Leaper, Russell; Collins, Kym; Double, Michael C
2016-03-01
Directional frequency analysis and recording (DIFAR) sonobuoys can allow real-time acoustic localization of baleen whales for underwater tracking and remote sensing, but limited availability of hardware and software has prevented wider usage. These software limitations were addressed by developing a module in the open-source software PAMGuard. A case study is presented demonstrating that this software provides greater efficiency and accessibility than previous methods for detecting, localizing, and tracking Antarctic blue whales in real time. Additionally, this software can easily be extended to track other low and mid frequency sounds including those from other cetaceans, pinnipeds, icebergs, shipping, and seismic airguns.
SEPAC flight software detailed design specifications, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.
NASA Technical Reports Server (NTRS)
Mahajan, Ajay
2007-01-01
An assembly that contains a sensor, sensor-signal-conditioning circuitry, a sensor-readout analog-to-digital converter (ADC), data-storage circuitry, and a microprocessor that runs special-purpose software and communicates with one or more external computer(s) has been developed as a prototype of "smart" sensor modules for monitoring the integrity and functionality (the "health") of engineering systems. Although these modules are now being designed specifically for use on rocket-engine test stands, it is anticipated that they could also readily be designed to be incorporated into health-monitoring subsystems of such diverse engineering systems as spacecraft, aircraft, land vehicles, bridges, buildings, power plants, oilrigs, and defense installations. The figure is a simplified block diagram of the "smart" sensor module. The analog sensor readout signal is processed by the ADC, the digital output of which is fed to the microprocessor. By means of a standard RS-232 cable, the microprocessor is connected to a local personal computer (PC), from which software is downloaded into a randomaccess memory in the microprocessor. The local PC is also used to debug the software. Once the software is running, the local PC is disconnected and the module is controlled by, and all output data from the module are collected by, a remote PC via an Ethernet bus. Several smart sensor modules like this one could be connected to the same Ethernet bus and controlled by the single remote PC. The software running in the microprocessor includes driver programs for operation of the sensor, programs that implement self-assessment algorithms, programs that implement protocols for communication with the external computer( s), and programs that implement evolutionary methodologies to enable the module to improve its performance over time. The design of the module and of the health-monitoring system of which it is a part reflects the understanding that the main purpose of a health-monitoring system is to detect damage and, therefore, the health-monitoring system must be able to function effectively in the presence of damage and should be capable of distinguishing between damage to itself and damage to the system being monitored. A major benefit afforded by the self-assessment algorithms is that in the output of the module, the sensor data indicative of the health of the engineering system being monitored are coupled with a confidence factor that quantifies the degree of reliability of the data. Hence, the output includes information on the health of the sensor module itself in addition to information on the health of the engineering system being monitored.
PINT, a New Pulsar Timing Software
NASA Astrophysics Data System (ADS)
Luo, Jing; Jenet, Fredrick A.; Ransom, Scott M.; Demorest, Paul; Van Haasteren, Rutger; Archibald, Anne
2015-01-01
We are presenting a new pulsar timing software PINT. The current pulsar timing group are heavily depending on Tempo/Tempo2, a package for analysis pulsar data. However, for a high accuracy pulsar timing related project, such as pulsar timing for gravitational waves, an alternative software is needed for the purpose of examing the results. We are developing a Tempo independent software with a different structure. Different modules is designed to be more isolated and easier to be expanded. Instead of C, we are using Python as our programming language for the advantage of flexibility and powerful docstring. Here, we are presenting the detailed design and the first result of the software.
Fault tolerant software modules for SIFT
NASA Technical Reports Server (NTRS)
Hecht, M.; Hecht, H.
1982-01-01
The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
ERIC Educational Resources Information Center
Ong, Chiek Pin; Tasir, Zaidatun
2015-01-01
The aim of the research is to study the information retention among trainee teachers using a self-instructional printed module based on Cognitive Load Theory for learning spreadsheet software. Effective pedagogical considerations integrating the theoretical concepts related to cognitive load are reflected in the design and development of the…
The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation
NASA Astrophysics Data System (ADS)
Silva, F.; Goulet, C. A.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.
2016-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100 Hz) ground motions for earthquakes at regional scales. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The BBP scientific software modules implement kinematic rupture generation, low- and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, several ground motion intensity measure calculations, and various ground motion goodness-of-fit tools. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground-motion seismograms, using multiple alternative ground motion simulation methods, and software utilities to generate tables, plots, and maps. The BBP has been developed over the last five years in a collaborative project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The SCEC BBP software released in 2016 can be compiled and run on recent Linux and Mac OS X systems with GNU compilers. It includes five simulation methods, seven simulation regions covering California, Japan, and Eastern North America, and the ability to compare simulation results against empirical ground motion models (aka GMPEs). The latest version includes updated ground motion simulation methods, a suite of new validation metrics and a simplified command line user interface.
Integrated design optimization research and development in an industrial environment
NASA Astrophysics Data System (ADS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-04-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
Integrated design optimization research and development in an industrial environment
NASA Technical Reports Server (NTRS)
Kumar, V.; German, Marjorie D.; Lee, S.-J.
1989-01-01
An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.
ScaMo: Realisation of an OO-functional DSL for cross platform mobile applications development
NASA Astrophysics Data System (ADS)
Macos, Dragan; Solymosi, Andreas
2013-10-01
The software market is dynamically changing: the Internet is going mobile, the software applications are shifting from the desktop hardware onto the mobile devices. The largest markets are the mobile applications for iOS, Android and Windows Phone and for the purpose the typical programming languages include Objective-C, Java and C ♯. The realization of the native applications implies the integration of the developed software into the environments of mentioned mobile operating systems to enable the access to different hardware components of the devices: GPS module, display, GSM module, etc. This paper deals with the definition and possible implementation of an environment for the automatic application generation for multiple mobile platforms. It is based on a DSL for mobile application development, which includes the programming language Scala and a DSL defined in Scala. As part of a multi-stage cross-compiling algorithm, this language is translated into the language of the affected mobile platform. The advantage of our method lies in the expressiveness of the defined language and the transparent source code translation between different languages, which implies, for example, the advantages of debugging and development of the generated code.
1988-08-20
34 William A. Link, Patuxent Wildlife Research Center "Increasing reliability of multiversion fault-tolerant software design by modulation," Junryo 3... Multiversion lault-Tolerant Software Design by Modularization Junryo Miyashita Department of Computer Science California state University at san Bernardino Fault...They shall beE refered to as " multiversion fault-tolerant software design". Onel problem of developing multi-versions of a program is the high cost
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
The Impact of Software Culture on the Management of Community Data
NASA Astrophysics Data System (ADS)
Collins, J. A.; Pulsifer, P. L.; Sheffield, E.; Lewis, S.; Oldenburg, J.
2013-12-01
The Exchange for Local Observations and Knowledge of the Arctic (ELOKA), a program hosted at the National Snow and Ice Data Center (NSIDC), supports the collection, curation, and distribution of Local and Traditional Knowledge (LTK) data, as well as some quantitative data products. Investigations involving LTK data often involve community participation, and therefore require flexible and robust user interfaces to support a reliable process of data collection and management. Often, investigators focused on LTK and community-based monitoring choose to use ELOKA's data services based on our ability to provide rapid proof-of-concepts and economical delivery of a usable product. To satisfy these two overarching criteria, ELOKA is experimenting with modifications to its software development culture both in terms of how the software applications are developed as well as the kind of software applications (or components) being developed. Over the past several years, NSIDC has shifted its software development culture from one of assigning individual scientific programmers to support particular principal investigators or projects, to an Agile Software Methodology implementation using Scrum practices. ELOKA has participated in this process by working with other product owners to schedule and prioritize development work which is then implemented by a team of application developers. Scrum, along with practices such as Test Driven Development (TDD) and paired programming, improves the quality of the software product delivered to the user community. To meet the need for rapid prototyping and to maximize product development and support with limited developer input, our software development efforts are now focused on creating a platform of application modules that can be quickly customized to suit the needs of a variety of LTK projects. This approach is in contrast to the strategy of delivering custom applications for individual projects. To date, we have integrated components of the Nunaliit Atlas framework (a Java/JavaScript client-server web-based application) with an existing Ruby on Rails application. This approach requires transitioning individual applications to expose a service layer, thus allowing interapplication communication via RESTful services. In this presentation we will report on our experiences using Agile Scrum practices, our efforts to move from custom solutions to a platform of customizable modules, and the impact of each on our ability to support researchers and Arctic residents in the domain of community-based observations and knowledge.
Espino, Jeremy U; Wagner, M; Szczepaniak, C; Tsui, F C; Su, H; Olszewski, R; Liu, Z; Chapman, W; Zeng, X; Ma, L; Lu, Z; Dara, J
2004-09-24
Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly. The objective of the Real-Time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate the deployment of computer-based outbreak and disease surveillance systems by writing software and catalyzing the formation of a community of users, developers, consultants, and scientists who support its use. The University of Pittsburgh seeded the Open Source Project by releasing the RODS software under the GNU General Public License. An infrastructure was created, consisting of a website, mailing lists for developers and users, designated software developers, and shared code-development tools. These resources are intended to encourage growth of the Open Source Project community. Progress is measured by assessing website usage, number of software downloads, number of inquiries, number of system deployments, and number of new features or modules added to the code base. During September--November 2003, users generated 5,370 page views of the project website, 59 software downloads, 20 inquiries, one new deployment, and addition of four features. Thus far, health departments and companies have been more interested in using the software as is than in customizing or developing new features. The RODS laboratory anticipates that after initial installation has been completed, health departments and companies will begin to customize the software and contribute their enhancements to the public code base.
Reconfigurable, Cognitive Software-Defined Radio
NASA Technical Reports Server (NTRS)
Bhat, Arvind
2015-01-01
Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.
NASA Technical Reports Server (NTRS)
1974-01-01
Shuttle simulation software modules in the environment, crew station, vehicle configuration and vehicle dynamics categories are discussed. For each software module covered, a description of the module functions and operational modes, its interfaces with other modules, its stored data, inputs, performance parameters and critical performance parameters is given. Reference data sources which provide standards of performance are identified for each module. Performance verification methods are also discussed briefly.
Validating module network learning algorithms using simulated data.
Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves
2007-05-03
In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network algorithms. We used SynTReN data to develop and test an alternative module network learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative strategy has several advantages with respect to existing methods.
Evaluation of the efficiency and fault density of software generated by code generators
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1993-01-01
Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.
Implications of Responsive Space on the Flight Software Architecture
NASA Technical Reports Server (NTRS)
Wilmot, Jonathan
2006-01-01
The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.
Packaging Software Assets for Reuse
NASA Astrophysics Data System (ADS)
Mattmann, C. A.; Marshall, J. J.; Downs, R. R.
2010-12-01
The reuse of existing software assets such as code, architecture, libraries, and modules in current software and systems development projects can provide many benefits, including reduced costs, in time and effort, and increased reliability. Many reusable assets are currently available in various online catalogs and repositories, usually broken down by disciplines such as programming language (Ibiblio for Maven/Java developers, PyPI for Python developers, CPAN for Perl developers, etc.). The way these assets are packaged for distribution can play a role in their reuse - an asset that is packaged simply and logically is typically easier to understand, install, and use, thereby increasing its reusability. A well-packaged asset has advantages in being more reusable and thus more likely to provide benefits through its reuse. This presentation will discuss various aspects of software asset packaging and how they can affect the reusability of the assets. The characteristics of well-packaged software will be described. A software packaging domain model will be introduced, and some existing packaging approaches examined. An example case study of a Reuse Enablement System (RES), currently being created by near-term Earth science decadal survey missions, will provide information about the use of the domain model. Awareness of these factors will help software developers package their reusable assets so that they can provide the most benefits for software reuse.
Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction
Venkatesan, R.
2016-01-01
Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets. PMID:27738649
Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.
Kumudha, P; Venkatesan, R
Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.
Development of a methodology for assessing the safety of embedded software systems
NASA Technical Reports Server (NTRS)
Garrett, C. J.; Guarro, S. B.; Apostolakis, G. E.
1993-01-01
A Dynamic Flowgraph Methodology (DFM) based on an integrated approach to modeling and analyzing the behavior of software-driven embedded systems for assessing and verifying reliability and safety is discussed. DFM is based on an extension of the Logic Flowgraph Methodology to incorporate state transition models. System models which express the logic of the system in terms of causal relationships between physical variables and temporal characteristics of software modules are analyzed to determine how a certain state can be reached. This is done by developing timed fault trees which take the form of logical combinations of static trees relating the system parameters at different point in time. The resulting information concerning the hardware and software states can be used to eliminate unsafe execution paths and identify testing criteria for safety critical software functions.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, Martin E.
1989-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
Flight software development for the isothermal dendritic growth experiment
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.; Winsa, Edward A.; Glicksman, M. E.
1990-01-01
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and unlink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process.
Developing online learning modules in a family medicine residency.
Skye, Eric P; Wimsatt, Leslie A; Master-Hunter, Tara A; Locke, Amy B
2011-03-01
Online modules offer an opportunity to overcome barriers to educational delivery. Such approaches can require significant investment dependent on the development model used. There is little in the literature on the formative assessment of design and development. Better understanding is needed to determine effective methods of training and supporting faculty authors. The purpose of this study was to examine the effectiveness of Web-based modules developed by a Department of Family Medicine in delivering instruction to resident learners and to examine perceptions of the design and development process. Participants included 49 resident learners and 28 faculty and staff members as the development team. Data collection involved use of Web-based surveys, participant observation focus groups, and pretesting/posttesting. Frequency distributions and mean comparisons were used to analyze quantitative data. Participant comments were thematically analyzed. Residents felt that modules met their educational goals and contributed to understanding of core content. Pretest/posttest data showed statistical improvement for a majority of modules. The use of Web authoring software for Web-based learning and scheduling time to work on the modules posed the greatest challenges to module authors. Formative assessment methods can provide important information to module developers and support staff to shape training, content development, and improve module ease of use, navigation, and content for resident learners.
Development of software for computing forming information using a component based approach
NASA Astrophysics Data System (ADS)
Ko, Kwang Hee; Park, Jiing Seo; Kim, Jung; Kim, Young Bum; Shin, Jong Gye
2009-12-01
In shipbuilding industry, the manufacturing technology> has advanced at an unprecedented pace for the last decade. As a result, many automatic systems for cutting, welding, etc. have been developed and employed in the manufacturing process and accordingly the productivity has been increased drastically. Despite such improvement in the manufacturing technology', however, development of an automatic system for fabricating a curved hull plate remains at the beginning stage since hardware and software for the automation of the curved hull fabrication process should be developed differently depending on the dimensions of plates, forming methods and manufacturing processes of each shipyard. To deal with this problem, it is necessary> to create a "plug-in ''framework, which can adopt various kinds of hardware and software to construct a full automatic fabrication system. In this paper, a frame-work for automatic fabrication of curved hull plates is proposed, which consists of four components and related software. In particular the software module for computing fabrication information is developed by using the ooCBD development methodology; which can interface with other hardware and software with minimum effort. Examples of the proposed framework applied to medium and large shipyards are presented.
Detailed requirements document for common software of shuttle program information management system
NASA Technical Reports Server (NTRS)
Everette, J. M.; Bradfield, L. D.; Horton, C. L.
1975-01-01
Common software was investigated as a method for minimizing development and maintenance cost of the shuttle program information management system (SPIMS) applications while reducing the time-frame of their development. Those requirements satisfying these criteria are presented along with the stand-alone modules which may be used directly by applications. The SPIMS applications operating on the CYBER 74 computer, are specialized information management systems which use System 2000 as a data base manager. Common software provides the features to support user interactions on a CRT terminal using form input and command response capabilities. These features are available as subroutines to the applications.
NASA Technical Reports Server (NTRS)
Hayden, W. L.; Robinson, L. H.
1972-01-01
Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.
1977-10-01
These modules make up a multi-task priority real - time operating system in which each of the functions of the Supervisor is performed by one or more tasks. The Initialization module performs the initialization of the Supervisor software and hardware including the Input Buffer, the FIFO, and the Track Correlator This module is used both at initial program load time and upon receipt of a SC Initialization Command.
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
Development of a mobile borehole investigation software using augmented reality
NASA Astrophysics Data System (ADS)
Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.
2015-12-01
Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.
FRAMES-2.0 Software System: Frames 2.0 Pest Integration (F2PEST)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castleton, Karl J.; Meyer, Philip D.
2009-06-17
The implementation of the FRAMES 2.0 F2PEST module is described, including requirements, design, and specifications of the software. This module integrates the PEST parameter estimation software within the FRAMES 2.0 environmental modeling framework. A test case is presented.
QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.
Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei
2014-01-01
Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.
Modular Chemical Descriptor Language (MCDL): Stereochemical modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.
2011-01-01
In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDLmore » processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.« less
Report from the MASER 9 Microgravity Rocket Flight in March 2002
NASA Astrophysics Data System (ADS)
Larsson, B.; Löth, K.; Lundin, M.
2002-01-01
The MASER 9 launch is planned for March 2002 and this rocket will carry 3 ESA financed experiment modules, performing in total 5 experiments. This paper will report on the flight results of this mission. The MASER 9 vehicle is propelled by a 2-stage solid fuel rocket motor, which give the 340 kg payload an apogee of about 250 Km and 6 minutes 10 seconds of microgravity. SSC and its sub-contractors will carry out the MASER 9 mission for the European Space Agency (ESA). The CIS-6 Experiment module is developed by Fokker Space and NLR. The Lymphosig, Thyrosig and the three Modular Space Bioreactor experiments are accommodated together in one module. Dr Cogoli, ETH, Zürich, Schweiz, will perform the Lymphocyte experiment. Prof. Ambesi from University of Udine in Italy will investigate Thyroid cells. Dr Cogoli, A.Bader, LEBAO, Hannover, Germany and Prof. Ambesi, will use the Modular Bioreactor for Medically Relevant Organ-like Structures in order to investigate Chondrocytes, Blood Vessel Tissue and Thyroid Cell Clusters. The ITEL experiment, of P. Colinet MRC, ULB, Belgium, is dedicated to investigate Interfacial Turbulence in Evaporating Liquids. The development of this module is a co-operation between SSC and Lambda-X, where Lambda-X is responsible for the development of the opto-mechanic core of the experiment and SSC is responsible for the overall module layout, the electronics, software and remaining mechanics. The Cyrène-2 experiment of Prof. Delhaye and Dr Lebaigue from CEA in Grenoble, is dedicated to investigate "Convective Boiling and Condensation of Ammonia in Microgravity". The development of this module is a co- operation where CNES Toulouse together with CEA Grenoble is responsible for the experiment unit and SSC is responsible for the overall module layout, the electronics, software and remaining mechanics. Included in the payload are also the Maser Service Module (MASM), a TV-link module and a recovery system. The Service Module features 2x5 Mbit/s telemetry, integrated Rate Control System and fibre-optic gyros. A newly developed Digital Video System will also be flight-tested for the first time
Weaving a Formal Methods Education with Problem-Based Learning
NASA Astrophysics Data System (ADS)
Gibson, J. Paul
The idea of weaving formal methods through computing (or software engineering) degrees is not a new one. However, there has been little success in developing and implementing such a curriculum. Formal methods continue to be taught as stand-alone modules and students, in general, fail to see how fundamental these methods are to the engineering of software. A major problem is one of motivation — how can the students be expected to enthusiastically embrace a challenging subject when the learning benefits, beyond passing an exam and achieving curriculum credits, are not clear? Problem-based learning has gradually moved from being an innovative pedagogique technique, commonly used to better-motivate students, to being widely adopted in the teaching of many different disciplines, including computer science and software engineering. Our experience shows that a good problem can be re-used throughout a student's academic life. In fact, the best computing problems can be used with children (young and old), undergraduates and postgraduates. In this paper we present a process for weaving formal methods through a University curriculum that is founded on the application of problem-based learning and a library of good software engineering problems, where students learn about formal methods without sitting a traditional formal methods module. The process of constructing good problems and integrating them into the curriculum is shown to be analagous to the process of engineering software. This approach is not intended to replace more traditional formal methods modules: it will better prepare students for such specialised modules and ensure that all students have an understanding and appreciation for formal methods even if they do not go on to specialise in them.
NASA Technical Reports Server (NTRS)
Merwarth, P., D.
1983-01-01
The Common Software Module Repository (CSMR) is computerized library system with high product and service visibility to potential users. Online capabilities of system allow both librarian and user to interact with library. Librarian is responsible for maintaining information in CSMR library. User searches library to locate software modules that meet his or her current needs.
Membrane Transfer Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry
1996-01-01
Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.
Next Generation Drivetrain Development and Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Jonathan; Erdman, Bill; Blodgett, Doug
2015-11-03
This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)
2001-01-01
The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by employing soft computing technologies, the quality and reliability of the overall scheme to engine controller development is further improved and vehicle safety is further insured. The final product that this paper proposes is an approach to development of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft vehicles requiring low cost advanced avionics architectures for autonomous operations from engine pre-start to engine shutdown.
A software platform for continuum modeling of ion channels based on unstructured mesh
NASA Astrophysics Data System (ADS)
Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)
1994-01-01
The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system administration.
A framework for development of an intelligent system for design and manufacturing of stamping dies
NASA Astrophysics Data System (ADS)
Hussein, H. M. A.; Kumar, S.
2014-07-01
An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.
SeisComP 3 - Where are we now?
NASA Astrophysics Data System (ADS)
Saul, Joachim; Becker, Jan; Hanka, Winfried; Heinloo, Andres; Weber, Bernd
2010-05-01
The seismological software SeisComP has evolved within the last approximately 10 years from a pure acquisition modules to a fully featured real-time earthquake monitoring software. The now very popular SeedLink protocol for seismic data transmission has been the core of SeisComP from the very beginning. Later additions included simple, purely automatic event detection, location and magnitude determination capabilities. Especially within the development of the 3rd-generation SeisComP, also known as "SeisComP 3", automatic processing capabilities have been augmented by graphical user interfaces for vizualization, rapid event review and quality control. Communication between the modules is achieved using a a TCP/IP infrastructure that allows distributed computing and remote review. For seismological metadata exchange export/import to/from QuakeML is avalable, which also provides a convenient interface with 3rd-party software. SeisComP is the primary seismological processing software at the GFZ Potsdam. It has also been in use for years in numerous seismic networks in Europe and, more recently, has been adopted as primary monitoring software by several tsunami warning centers around the Indian Ocean. In our presentation we describe the current status of development as well as future plans. We illustrate its possibilities by discussing different use cases for global and regional real-time earthquake monitoring and tsunami warning.
WGCNA: an R package for weighted correlation network analysis.
Langfelder, Peter; Horvath, Steve
2008-12-29
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
WGCNA: an R package for weighted correlation network analysis
Langfelder, Peter; Horvath, Steve
2008-01-01
Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008
Screening_mgmt: a Python module for managing screening data.
Helfenstein, Andreas; Tammela, Päivi
2015-02-01
High-throughput screening is an established technique in drug discovery and, as such, has also found its way into academia. High-throughput screening generates a considerable amount of data, which is why specific software is used for its analysis and management. The commercially available software packages are often beyond the financial limits of small-scale academic laboratories and, furthermore, lack the flexibility to fulfill certain user-specific requirements. We have developed a Python module, screening_mgmt, which is a lightweight tool for flexible data retrieval, analysis, and storage for different screening assays in one central database. The module reads custom-made analysis scripts and plotting instructions, and it offers a graphical user interface to import, modify, and display the data in a uniform manner. During the test phase, we used this module for the management of 10,000 data points of various origins. It has provided a practical, user-friendly tool for sharing and exchanging information between researchers. © 2014 Society for Laboratory Automation and Screening.
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
Multipurpose Educational Modules to Teach Hydraulic Hybrid Vehicle Technologies
DOT National Transportation Integrated Search
2007-09-01
The goal of the overall project is to develop a software simulation for a hydraulic hybrid vehicle. The simulation will enable students to compare various hybrid configurations with conventional IC engine performance.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rapchun, David A.; Jones, Hollis H.
2001-01-01
The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1980-01-01
A generalized three dimensional perspective software capability was developed within the framework of a low cost computer oriented geographically based information system using the Earth Resources Laboratory Applications Software (ELAS) operating subsystem. This perspective software capability, developed primarily to support data display requirements at the NASA/NSTL Earth Resources Laboratory, provides a means of displaying three dimensional feature space object data in two dimensional picture plane coordinates and makes it possible to overlay different types of information on perspective drawings to better understand the relationship of physical features. An example topographic data base is constructed and is used as the basic input to the plotting module. Examples are shown which illustrate oblique viewing angles that convey spatial concepts and relationships represented by the topographic data planes.
The geo-control system for station keeping and colocation of geostationary satellites
NASA Technical Reports Server (NTRS)
Montenbruck, O.; Eckstein, M. C.; Gonner, J.
1993-01-01
GeoControl is a compact but powerful and accurate software system for station keeping of single and colocated satellites, which has been developed at the German Space Operations Center. It includes four core modules for orbit determination (including maneuver estimation), maneuver planning, monitoring of proximities between colocated satellites, and interference and event prediction. A simple database containing state vector and maneuver information at selected epochs is maintained as a central interface between the modules. A menu driven shell utilizing form screens for data input serves as the central user interface. The software is written in Ada and FORTRAN and may be used on VAX workstations or mainframes under the VMS operating system.
Version 2.0 Visual Sample Plan (VSP): UXO Module Code Description and Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Richard O.; Wilson, John E.; O'Brien, Robert F.
2003-05-06
The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and other sites. The statistical methods developed by PNNL have been coded into the UXO module of the Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, the U.S. Department of Energy (DOE, and the U.S. Environmental Protectionmore » Agency (EPA). (The VSP software and VSP Users Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) This report describes and documents the statistical methods developed and the calculations and verification testing that have been conducted to verify that VSPs implementation of these methods is correct and accurate.« less
Indoor Unmanned Airship System Airborne Control Module Design
NASA Astrophysics Data System (ADS)
YongXia, Gao; YiBo, Li
By adopting STC12C5A60S2 SCM as a system control unit, assisted by appropriate software and hardware resources, we complete the airborne control module's design of unmanned airship system. This paper introduces hardware control module's structure, airship-driven composition and software realization. Verified by the China Science and Technology Museum special-shaped airship,this control module can work well.
SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert
"SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less
SSL: A software specification language
NASA Technical Reports Server (NTRS)
Austin, S. L.; Buckles, B. P.; Ryan, J. P.
1976-01-01
SSL (Software Specification Language) is a new formalism for the definition of specifications for software systems. The language provides a linear format for the representation of the information normally displayed in a two-dimensional module inter-dependency diagram. In comparing SSL to FORTRAN or ALGOL, it is found to be largely complementary to the algorithmic (procedural) languages. SSL is capable of representing explicitly module interconnections and global data flow, information which is deeply imbedded in the algorithmic languages. On the other hand, SSL is not designed to depict the control flow within modules. The SSL level of software design explicitly depicts intermodule data flow as a functional specification.
NASA Astrophysics Data System (ADS)
Pandey, Palak; Kunte, Pravin D.
2016-10-01
This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.
GIS-Based Noise Simulation Open Source Software: N-GNOIS
NASA Astrophysics Data System (ADS)
Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh
2015-12-01
Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.
Automated control and data acquisition for a tunable diode laser heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Shull, T. S.; Rinsland, P. L.
1983-01-01
This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.
Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device
NASA Astrophysics Data System (ADS)
Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin
A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.
ISLE (Image and Signal Processing LISP Environment) reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, R.J.; Searfus, R.M.
1990-01-01
ISLE is a rapid prototyping system for performing image and signal processing. It is designed to meet the needs of a person doing development of image and signal processing algorithms in a research environment. The image and signal processing modules in ISLE form a very capable package in themselves. They also provide a rich environment for quickly and easily integrating user-written software modules into the package. ISLE is well suited to applications in which there is a need to develop a processing algorithm in an interactive manner. It is straightforward to develop the algorithms, load it into ISLE, apply themore » algorithm to an image or signal, display the results, then modify the algorithm and repeat the develop-load-apply-display cycle. ISLE consists of a collection of image and signal processing modules integrated into a cohesive package through a standard command interpreter. ISLE developer elected to concentrate their effort on developing image and signal processing software rather than developing a command interpreter. A COMMON LISP interpreter was selected for the command interpreter because it already has the features desired in a command interpreter, it supports dynamic loading of modules for customization purposes, it supports run-time parameter and argument type checking, it is very well documented, and it is a commercially supported product. This manual is intended to be a reference manual for the ISLE functions The functions are grouped into a number of categories and briefly discussed in the Function Summary chapter. The full descriptions of the functions and all their arguments are given in the Function Descriptions chapter. 6 refs.« less
Find Pairs: The Module for Protein Quantification of the PeakQuant Software Suite
Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E.
2012-01-01
Abstract Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in 14N/15N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as 14N/15N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use. PMID:22909347
Simulation verification techniques study. Subsystem simulation validation techniques
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1974-01-01
Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.
Reliability measurement during software development. [for a multisensor tracking system
NASA Technical Reports Server (NTRS)
Hecht, H.; Sturm, W. A.; Trattner, S.
1977-01-01
During the development of data base software for a multi-sensor tracking system, reliability was measured. The failure ratio and failure rate were found to be consistent measures. Trend lines were established from these measurements that provided good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined.
NASA Astrophysics Data System (ADS)
Sadchikova, G. M.
2017-01-01
This article discusses the results of the introduction of computer-aided design NX by Siemens Plm Software to the classes of a higher education institution. The necessity of application of modern information technologies in teaching students of engineering profile and selection of a software product is substantiated. The author describes stages of the software module study in relation to some specific courses, considers the features of NX software, which require the creation of standard and unified product databases. The article also gives examples of research carried out by the students with the various software modules.
Efficient Parallel Engineering Computing on Linux Workstations
NASA Technical Reports Server (NTRS)
Lou, John Z.
2010-01-01
A C software module has been developed that creates lightweight processes (LWPs) dynamically to achieve parallel computing performance in a variety of engineering simulation and analysis applications to support NASA and DoD project tasks. The required interface between the module and the application it supports is simple, minimal and almost completely transparent to the user applications, and it can achieve nearly ideal computing speed-up on multi-CPU engineering workstations of all operating system platforms. The module can be integrated into an existing application (C, C++, Fortran and others) either as part of a compiled module or as a dynamically linked library (DLL).
Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A.; Alfultis, Michael
1998-01-01
Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.
A software control system for the ACTS high-burst-rate link evaluation terminal
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Daugherty, Elaine S.
1991-01-01
Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.
Ground station software for receiving and handling Irecin telemetry data
NASA Astrophysics Data System (ADS)
Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G
2004-11-01
The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are used. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin- stabilized with the spin-axis normal to the orbit. All IRECIN electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian; Robertson, Amy; Jonkman, Jason
2016-08-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Verification and Validation of the New Dynamic Mooring Modules Available in FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F.; Andersen, Morten T.; Robertson, Amy N.
2016-07-01
The open-source aero-hydro-servo-elastic wind turbine simulation software, FAST v8, was recently coupled to two newly developed mooring dynamics modules: MoorDyn and FEAMooring. MoorDyn is a lumped-mass-based mooring dynamics module developed by the University of Maine, and FEAMooring is a finite-element-based mooring dynamics module developed by Texas A&M University. This paper summarizes the work performed to verify and validate these modules against other mooring models and measured test data to assess their reliability and accuracy. The quality of the fairlead load predictions by the open-source mooring modules MoorDyn and FEAMooring appear to be largely equivalent to what is predicted by themore » commercial tool OrcaFlex. Both mooring dynamic model predictions agree well with the experimental data, considering the given limitations in the accuracy of the platform hydrodynamic load calculation and the quality of the measurement data.« less
Chen, Xiaojun; Xu, Lu; Wang, Huixiang; Wang, Fang; Wang, Qiugen; Kikinis, Ron
2017-01-01
Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module. PMID:28109564
Automated CFD Parameter Studies on Distributed Parallel Computers
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Aftosmis, Michael; Pandya, Shishir; Tejnil, Edward; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
The objective of the current work is to build a prototype software system which will automated the process of running CFD jobs on Information Power Grid (IPG) resources. This system should remove the need for user monitoring and intervention of every single CFD job. It should enable the use of many different computers to populate a massive run matrix in the shortest time possible. Such a software system has been developed, and is known as the AeroDB script system. The approach taken for the development of AeroDB was to build several discrete modules. These include a database, a job-launcher module, a run-manager module to monitor each individual job, and a web-based user portal for monitoring of the progress of the parameter study. The details of the design of AeroDB are presented in the following section. The following section provides the results of a parameter study which was performed using AeroDB for the analysis of a reusable launch vehicle (RLV). The paper concludes with a section on the lessons learned in this effort, and ideas for future work in this area.
The use of computer-aided learning in chemistry laboratory instruction
NASA Astrophysics Data System (ADS)
Allred, Brian Robert Tracy
This research involves developing and implementing computer software for chemistry laboratory instruction. The specific goal is to design the software and investigate whether it can be used to introduce concepts and laboratory procedures without a lecture format. This would allow students to conduct an experiment even though they may not have been introduced to the chemical concept in their lecture course. This would also allow for another type of interaction for those students who respond more positively to a visual approach to instruction. The first module developed was devoted to using computer software to help introduce students to the concepts related to thin-layer chromatography and setting up and running an experiment. This was achieved through the use of digitized pictures and digitized video clips along with written information. A review quiz was used to help reinforce the learned information. The second module was devoted to the concept of the "dry lab". This module presented students with relevant information regarding the chemical concepts and then showed them the outcome of mixing solutions. By these observations, they were to determine the composition of unknown solutions based on provided descriptions and comparison with their written observations. The third piece of the software designed was a computer game. This program followed the first two modules in providing information the students were to learn. The difference here, though, was incorporating a game scenario for students to use to help reinforce the learning. Students were then assessed to see how much information they retained after playing the game. In each of the three cases, a control group exposed to the traditional lecture format was used. Their results were compared to the experimental group using the computer modules. Based upon the findings, it can be concluded that using technology to aid in the instructional process is definitely of benefit and students were more successful in learning. It is important to note, though, that one single type of instructional method is not the best way to inspire learning. It seems multiple methods provide the best educational experience for all.
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
NASA Astrophysics Data System (ADS)
Danobeitia, J.; Oscar, G.; Bartolomé, R.; Sorribas, J.; Del Rio, J.; Cadena, J.; Toma, D. M.; Bghiel, I.; Martinez, E.; Bardaji, R.; Piera, J.; Favali, P.; Beranzoli, L.; Rolin, J. F.; Moreau, B.; Andriani, P.; Lykousis, V.; Hernandez Brito, J.; Ruhl, H.; Gillooly, M.; Terrinha, P.; Radulescu, V.; O'Neill, N.; Best, M.; Marinaro, G.
2016-12-01
European Multidisciplinary seafloor and the Observatory of the water column for Development (EMSODEV) is a Horizon-2020 UE project whose overall objective is the operationalization of eleven marine observatories and four test sites distributed throughout Europe, from the Arctic to the Atlantic, from the Mediterranean to the Black Sea. The whole infrastructure is managed by the European consortium EMSO-ERIC (European Research Infrastructure Consortium) with the participation of 8 European countries and other partner countries. Now, we are implementing a Generic Sensor Module (EGIM) within the EMSO ERIC distributed marine research infrastructure. Our involvement is mainly on developing standard-compliant generic software for Sensor Web Enablement (SWE) on EGIM device. The main goal of this development is to support the sensors data acquisition on a new interoperable EGIM system. The EGIM software structure is made up of one acquisition layer located between the recorded data at EGIM module and the data management services. Therefore, two main interfaces are implemented: first, assuring the EGIM hardware acquisition and second allowing push and pull data from data management layer (Sensor Web Enable standard compliant). All software components used are Open source licensed and has been configured to manage different roles on the whole system (52º North SOS Server, Zabbix Monitoring System). The acquisition data module has been implemented with the aim to join all components for EGIM data acquisition and server fulfilling SOS standards interface. The system is already achieved awaiting for the first laboratory bench test and shallow water test connection to the OBSEA node, offshore Vilanova I la Geltrú (Barcelona, Spain). The EGIM module will record a wide range of ocean parameters in a long-term consistent, accurate and comparable manner from disciplines such as biology, geology, chemistry, physics, engineering, and computer science, from polar to subtropical environments, through the water column down to the deep sea. The measurements recorded along EMSO NODES are critical to respond accurately to the social and scientific challenges such as climate change, changes in marine ecosystems, and marine hazards.
NASA Astrophysics Data System (ADS)
Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir
2017-10-01
A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.
NASA Astrophysics Data System (ADS)
Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.
2013-12-01
The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.
NASA Astrophysics Data System (ADS)
Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.
2015-12-01
Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).
Software tool for portal dosimetry research.
Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C
2008-09-01
This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.
Space shuttle on-orbit flight control software requirements, preliminary version
NASA Technical Reports Server (NTRS)
1975-01-01
Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.
SU-E-T-76: A Software System to Monitor VMAT Plan Complexity in a Large Radiotherapy Centre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, S; Xing, A; Ingham Institute, Sydney, NSW
2015-06-15
Purpose: To develop a system that analyses and reports the complexity of Volumetric Modulated Arc Therapy (VMAT) plans to aid in the decision making for streamlining patient specific dosimetric quality assurance (QA) tests. Methods: A software system, Delcheck, was developed in-house to calculate VMAT plan and delivery complexity using the treatment delivery file. Delcheck has the functionality to calculate multiple plan complexity metrics including the Li-Xing Modulation Index (LI-MI), multiplicative combination of Leaf Travel and Modulation Complexity Score (LTMCSv), Monitor Units per prescribed dose (MU/D) and the delivery complexity index (MIt) that incorporates the modulation of dose rate, leaf speedmore » and gantry speed. Delcheck includes database functionality to store and compare plan metrics for a specified treatment site. The overall plan and delivery complexity is assessed based on the 95% conformance limit of the complexity metrics as Similar, More or Less complex. The functionality of the software was tested using 42 prostate conventional, 10 prostate SBRT and 15 prostate bed VMAT plans generated for an Elekta linear accelerator. Results: The mean(σ) of LI-MI for conventional, SBRT and prostate bed plans were 1690(486), 3215.4(1294) and 3258(982) respectively. The LTMCSv of the studied categories were 0.334(0.05), 0.325(0.07) and 0.3112(0.09). The MU/D of the studied categories were 2.4(0.4), 2.7(0.7) and 2.5(0.5). The MIt of the studied categories were 21.6(3.4), 18.2(3.0) and 35.9(6.6). The values of the complexity metrics show that LI-MI appeared to resolve the plan complexity better than LTMCSv and MU/D. The MIt value increased as the delivery complexity increased. Conclusion: The developed software was shown to be working as expected. In studied treatment categories Prostate bed plans are more complex in both plan and delivery and SBRT is more complex in plan and less complex in delivery as demonstrated by LI-MI and MIt. This project was funded through a Cancer Council NSW Project Grant (RG14-11)« less
NASA Technical Reports Server (NTRS)
Albus, James S.; Mccain, Harry G.; Lumia, Ronald
1989-01-01
The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.
System on chip module configured for event-driven architecture
Robbins, Kevin; Brady, Charles E.; Ashlock, Tad A.
2017-10-17
A system on chip (SoC) module is described herein, wherein the SoC modules comprise a processor subsystem and a hardware logic subsystem. The processor subsystem and hardware logic subsystem are in communication with one another, and transmit event messages between one another. The processor subsystem executes software actors, while the hardware logic subsystem includes hardware actors, the software actors and hardware actors conform to an event-driven architecture, such that the software actors receive and generate event messages and the hardware actors receive and generate event messages.
Advanced Transport Operating System (ATOPS) control display unit software description
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.
1992-01-01
The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.
Ohmann, C; Eich, H P; Sippel, H
1998-01-01
This paper describes the design and development of a multilingual documentation and decision support system for the diagnosis of acute abdominal pain. The work was performed within a multi-national COPERNICUS European concerted action dealing with information technology for quality assurance in acute abdominal pain in Europe (EURO-AAP, 555). The software engineering was based on object-oriented analysis design and programming. The program cover three modules: a data dictionary, a documentation program and a knowledge based system. National versions of the software were provided and introduced into 16 centers from Central and Eastern Europe. A prospective data collection was performed in which 4020 patients were recruited. The software design has been proven to be very efficient and useful for the development of multilingual software.
The mathematical statement for the solving of the problem of N-version software system design
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.
2015-10-01
The N-version programming, as a methodology of the fault-tolerant software systems design, allows successful solving of the mentioned tasks. The use of N-version programming approach turns out to be effective, since the system is constructed out of several parallel executed versions of some software module. Those versions are written to meet the same specification but by different programmers. The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality.
2013-09-01
Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
Scalable Performance Environments for Parallel Systems
NASA Technical Reports Server (NTRS)
Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.
1991-01-01
As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.
Interface Specifications for the A-7E Shared Services Module.
1982-09-08
To illustrate the principles, the onboard software for the Navy’s A-7E aircraft will be redesigned and rewritten. The Shared Services module provides...purpose of the Shared Services module is to allow the remainder of the software to remain unchanged when the requirements-based rules for these values and...services change. This report describes the modular structure of the Shared Services module, and contains the abstract interface specifications for all
NASA Technical Reports Server (NTRS)
Zenie, Alexandre; Luguern, Jean-Pierre
1987-01-01
The specification, verification, validation, and evaluation, which make up the different steps of the CS-PN software are outlined. The colored stochastic Petri net software is applied to a Wound/Wait protocol decomposable into two principal modules: request or couple (transaction, granule) treatment module and wound treatment module. Each module is specified, verified, validated, and then evaluated separately, to deduce a verification, validation and evaluation of the complete protocol. The colored stochastic Petri nets tool is shown to be a natural extension of the stochastic tool, adapted to distributed systems and protocols, because the color conveniently takes into account the numerous sites, transactions, granules and messages.
The application of domain-driven design in NMS
NASA Astrophysics Data System (ADS)
Zhang, Jinsong; Chen, Yan; Qin, Shengjun
2011-12-01
In the traditional design approach of data-model-driven, system analysis and design phases are often separated which makes the demand information can not be expressed explicitly. The method is also easy to lead developer to the process-oriented programming, making codes between the modules or between hierarchies disordered. So it is hard to meet requirement of system scalability. The paper proposes a software hiberarchy based on rich domain model according to domain-driven design named FHRDM, then the Webwork + Spring + Hibernate (WSH) framework is determined. Domain-driven design aims to construct a domain model which not only meets the demand of the field where the software exists but also meets the need of software development. In this way, problems in Navigational Maritime System (NMS) development like big system business volumes, difficulty of requirement elicitation, high development costs and long development cycle can be resolved successfully.
Integrating interface slicing into software engineering processes
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.
Black Sea GIS developed in MHI
NASA Astrophysics Data System (ADS)
Zhuk, E.; Khaliulin, A.; Zodiatis, G.; Nikolaidis, A.; Isaeva, E.
2016-08-01
The work aims at creating the Black Sea geoinformation system (GIS) and complementing it with a model bank. The software for data access and visualization was developed using client server architecture. A map service based on MapServer and MySQL data management system were chosen for the Black Sea GIS. Php-modules and python-scripts are used to provide data access, processing, and exchange between the client application and the server. According to the basic data types, the module structure of GIS was developed. Each type of data is matched to a module which allows selection and visualization of the data. At present, a GIS complement with a model bank (the models build in to the GIS) and users' models (programs launched on users' PCs but receiving and displaying data via GIS) is developed.
Wide-Area Persistent Energy-Efficient Maritime Sensing
2015-09-30
Matt Reynolds, Lefteris Kampianakis, and Andreas Pedrosse-Engel at UW designed and tested a Software Defined Radar testbed as well as an Arduino - based ...hardware based on a software-defined radio platform. 2) Development of a standalone Arduino - based backscatter node. 3) Analysis of the limits of the... Arduino - based node that can modulate radar backscatter with data received from a sensor using a low-power Arduino Nano processor. Figure 5 shows a
artdaq: DAQ software development made simple
NASA Astrophysics Data System (ADS)
Biery, Kurt; Flumerfelt, Eric; Freeman, John; Ketchum, Wesley; Lukhanin, Gennadiy; Rechenmacher, Ron
2017-10-01
For a few years now, the artdaq data acquisition software toolkit has provided numerous experiments with ready-to-use components which allow for rapid development and deployment of DAQ systems. Developed within the Fermilab Scientific Computing Division, artdaq provides data transfer, event building, run control, and event analysis functionality. This latter feature includes built-in support for the art event analysis framework, allowing experiments to run art modules for real-time filtering, compression, disk writing and online monitoring. As art, also developed at Fermilab, is also used for offline analysis, a major advantage of artdaq is that it allows developers to easily switch between developing online and offline software. artdaq continues to be improved. Support for an alternate mode of running whereby data from some subdetector components are only streamed if requested has been added; this option will reduce unnecessary DAQ throughput. Real-time reporting of DAQ metrics has been implemented, along with the flexibility to choose the format through which experiments receive the reports; these formats include the Ganglia, Graphite and syslog software packages, along with flat ASCII files. Additionally, work has been performed investigating more flexible modes of online monitoring, including the capability to run multiple online monitoring processes on different hosts, each running its own set of art modules. Finally, a web-based GUI interface through which users can configure details of their DAQ system has been implemented, increasing the ease of use of the system. Already successfully deployed on the LArlAT, DarkSide-50, DUNE 35ton and Mu2e experiments, artdaq will be employed for SBND and is a strong candidate for use on ICARUS and protoDUNE. With each experiment comes new ideas for how artdaq can be made more flexible and powerful. The above improvements will be described, along with potential ideas for the future.
The theory of interface slicing
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.
The design of automatic software testing module for civil aviation information system
NASA Astrophysics Data System (ADS)
Qi, Qi; Sun, Yang
2018-05-01
In this paper, the practical innovation design is carried out according to the urgent needs of the automatic testing module of civil aviation information system. Firstly, the background and significance of the automatic testing module of civil aviation information system is expounded, and the current research status of automatic testing module and the advantages and disadvantages of related software are analyzed. Then, from the three aspects of macro demand, module functional requirement and module nonfunctional demand, we further study the needs of automatic testing module of civil aviation information system. Finally, from the four aspects of module structure, module core function, database and security, we have made an innovative plan for the automatic testing module of civil aviation information system.
NASA Astrophysics Data System (ADS)
Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.
2018-05-01
The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.
NASA Astrophysics Data System (ADS)
Kambe, Hidetoshi; Mitsui, Hiroyasu; Endo, Satoshi; Koizumi, Hisao
The applications of embedded system technologies have spread widely in various products, such as home appliances, cellular phones, automobiles, industrial machines and so on. Due to intensified competition, embedded software has expanded its role in realizing sophisticated functions, and new development methods like a hardware/software (HW/SW) co-design for uniting HW and SW development have been researched. The shortfall of embedded SW engineers was estimated to be approximately 99,000 in the year 2006, in Japan. Embedded SW engineers should understand HW technologies and system architecture design as well as SW technologies. However, a few universities offer this kind of education systematically. We propose a student experiment method for learning the basics of embedded system development, which includes a set of experiments for developing embedded SW, developing embedded HW and experiencing HW/SW co-design. The co-design experiment helps students learn about the basics of embedded system architecture design and the flow of designing actual HW and SW modules. We developed these experiments and evaluated them.
Open-Source as a strategy for operational software - the case of Enki
NASA Astrophysics Data System (ADS)
Kolberg, Sjur; Bruland, Oddbjørn
2014-05-01
Since 2002, SINTEF Energy has been developing what is now known as the Enki modelling system. This development has been financed by Norway's largest hydropower producer Statkraft, motivated by a desire for distributed hydrological models in operational use. As the owner of the source code, Statkraft has recently decided on Open Source as a strategy for further development, and for migration from an R&D context to operational use. A current cooperation project is currently carried out between SINTEF Energy, 7 large Norwegian hydropower producers including Statkraft, three universities and one software company. Of course, the most immediate task is that of software maturing. A more important challenge, however, is one of gaining experience within the operational hydropower industry. A transition from lumped to distributed models is likely to also require revision of measurement program, calibration strategy, use of GIS and modern data sources like weather radar and satellite imagery. On the other hand, map based visualisations enable a richer information exchange between hydrologic forecasters and power market traders. The operating context of a distributed hydrology model within hydropower planning is far from settled. Being both a modelling framework and a library of plugin-routines to build models from, Enki supports the flexibility needed in this situation. Recent development has separated the core from the user interface, paving the way for a scripting API, cross-platform compilation, and front-end programs serving different degrees of flexibility, robustness and security. The open source strategy invites anyone to use Enki and to develop and contribute new modules. Once tested, the same modules are available for the operational versions of the program. A core challenge is to offer rigid testing procedures and mechanisms to reject routines in an operational setting, without limiting the experimentation with new modules. The Open Source strategy also has implications for building and maintaining competence around the source code and the advanced hydrological and statistical routines in Enki. Originally developed by hydrologists, the Enki code is now approaching a state where maintenance requires a background in professional software development. Without the advantage of proprietary source code, both hydrologic improvements and software maintenance depend on donations or development support on a case-to-case basis, a situation well known within the open source community. It remains to see whether these mechanisms suffice to keep Enki at the maintenance level required by the hydropower sector. ENKI is available from www.opensource-enki.org.
The determination of measures of software reliability
NASA Technical Reports Server (NTRS)
Maxwell, F. D.; Corn, B. C.
1978-01-01
Measurement of software reliability was carried out during the development of data base software for a multi-sensor tracking system. The failure ratio and failure rate were found to be consistent measures. Trend lines could be established from these measurements that provide good visualization of the progress on the job as a whole as well as on individual modules. Over one-half of the observed failures were due to factors associated with the individual run submission rather than with the code proper. Possible application of these findings for line management, project managers, functional management, and regulatory agencies is discussed. Steps for simplifying the measurement process and for use of these data in predicting operational software reliability are outlined.
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
Parameterized hardware description as object oriented hardware model implementation
NASA Astrophysics Data System (ADS)
Drabik, Pawel K.
2010-09-01
The paper introduces novel model for design, visualization and management of complex, highly adaptive hardware systems. The model settles component oriented environment for both hardware modules and software application. It is developed on parameterized hardware description research. Establishment of stable link between hardware and software, as a purpose of designed and realized work, is presented. Novel programming framework model for the environment, named Graphic-Functional-Components is presented. The purpose of the paper is to present object oriented hardware modeling with mentioned features. Possible model implementation in FPGA chips and its management by object oriented software in Java is described.
Air Force Geophysics Laboratory portable PCM ground station
NASA Astrophysics Data System (ADS)
Shaw, H.; Lawrence, F. A.
The present paper is concerned with the development of a portable Pulse-Code Modulation (PCM) telemetry station for the Air Force Geophysics Laboratory (AFGL). A system description is provided, taking into account the system equipment, the interface, the decommutator (DECOM) section of the interface, the direct memory access (DMA) section, and system specifications and capabilities. In the context of selecting between two conflicting philosophies regarding software, it was decided to favor a small scale specialized approach. Attention is given to the operating system, aspects of setting up the software, the application software, and questions of portability.
Cuffney, Thomas F.; Brightbill, Robin A.
2011-01-01
The Invertebrate Data Analysis System (IDAS) software was developed to provide an accurate, consistent, and efficient mechanism for analyzing invertebrate data collected as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. The IDAS software is a stand-alone program for personal computers that run Microsoft Windows(Registered). It allows users to read data downloaded from the NAWQA Program Biological Transactional Database (Bio-TDB) or to import data from other sources either as Microsoft Excel(Registered) or Microsoft Access(Registered) files. The program consists of five modules: Edit Data, Data Preparation, Calculate Community Metrics, Calculate Diversities and Similarities, and Data Export. The Edit Data module allows the user to subset data on the basis of taxonomy or sample type, extract a random subsample of data, combine or delete data, summarize distributions, resolve ambiguous taxa (see glossary) and conditional/provisional taxa, import non-NAWQA data, and maintain and create files of invertebrate attributes that are used in the calculation of invertebrate metrics. The Data Preparation module allows the user to select the type(s) of sample(s) to process, calculate densities, delete taxa on the basis of laboratory processing notes, delete pupae or terrestrial adults, combine lifestages or keep them separate, select a lowest taxonomic level for analysis, delete rare taxa on the basis of the number of sites where a taxon occurs and (or) the abundance of a taxon in a sample, and resolve taxonomic ambiguities by one of four methods. The Calculate Community Metrics module allows the user to calculate 184 community metrics, including metrics based on organism tolerances, functional feeding groups, and behavior. The Calculate Diversities and Similarities module allows the user to calculate nine diversity and eight similarity indices. The Data Export module allows the user to export data to other software packages (CANOCO, Primer, PC-ORD, MVSP) and produce tables of community data that can be imported into spreadsheet, database, graphics, statistics, and word-processing programs. The IDAS program facilitates the documentation of analyses by keeping a log of the data that are processed, the files that are generated, and the program settings used to process the data. Though the IDAS program was developed to process NAWQA Program invertebrate data downloaded from Bio-TDB, the Edit Data module includes tools that can be used to convert non-NAWQA data into Bio-TDB format. Consequently, the data manipulation, analysis, and export procedures provided by the IDAS program can be used to process data generated outside of the NAWQA Program.
ERIC Educational Resources Information Center
Shapiro, Norma
This module on owning and operating a software design company is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are…
Advanced Structural Optimization Under Consideration of Cost Tracking
NASA Astrophysics Data System (ADS)
Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.
2014-06-01
In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.
Plug-and-play modules for flexible radiosynthesis
Herman, Henry; Flores, Graciela; Quinn, Kevin; Eddings, Mark; Olma, Sebastian; Moore, Melissa D.; Ding, Huijiang; Bobinski, Krzysztof P.; Wang, Mingwei; Williams, Dirk; Wiliams, Darin; Shen, Clifton Kwang-Fu; Phelps, Michael E.; van Dam, R. Michael
2015-01-01
We present a plug-and-play radiosynthesis platform and accompanying computer software based on modular subunits that can easily and flexibly be configured to implement a diverse range of radiosynthesis protocols. Modules were developed that perform: (i) reagent storage and delivery, (ii) evaporations and sealed reactions, and (iii) cartridge-based purifications. The reaction module incorporates a simple robotic mechanism that removes tubing from the vessel and replaces it with a stopper prior to sealed reactions, enabling the system to withstand high pressures and thus provide tremendous flexibility in choice of solvents and temperatures. Any number of modules can rapidly be connected together using only a few fluidic connections to implement a particular synthesis, and the resulting system is controlled in a semi-automated fashion by a single software interface. Radiosyntheses of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), 1-[18F]fluoro-4-nitrobenzene ([18F]FNB), and 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyl cytosine (D-[18F]FAC) were performed to validate the system and demonstrate its versatility. PMID:23702795
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Software components for medical image visualization and surgical planning
NASA Astrophysics Data System (ADS)
Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.
2001-05-01
Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.
Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao
2018-01-02
In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.
The SSM/PMAD automated test bed project
NASA Technical Reports Server (NTRS)
Lollar, Louis F.
1991-01-01
The Space Station Module/Power Management and Distribution (SSM/PMAD) autonomous subsystem project was initiated in 1984. The project's goal has been to design and develop an autonomous, user-supportive PMAD test bed simulating the SSF Hab/Lab module(s). An eighteen kilowatt SSM/PMAD test bed model with a high degree of automated operation has been developed. This advanced automation test bed contains three expert/knowledge based systems that interact with one another and with other more conventional software residing in up to eight distributed 386-based microcomputers to perform the necessary tasks of real-time and near real-time load scheduling, dynamic load prioritizing, and fault detection, isolation, and recovery (FDIR).
Research of real-time communication software
NASA Astrophysics Data System (ADS)
Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong
2003-11-01
Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.
Design of Mobile Health Tools to Promote Goal Achievement in Self-Management Tasks
Henderson, Geoffrey; Parmanto, Bambang
2017-01-01
Background Goal-setting within rehabilitation is a common practice ultimately geared toward helping patients make functional progress. Objective The purposes of this study were to (1) qualitatively analyze data from a wellness program for patients with spina bifida (SB) and spinal cord injury (SCI) in order to generate software requirements for a goal-setting module to support their complex goal-setting routines, (2) design a prototype of a goal-setting module within an existing mobile health (mHealth) system, and (3) identify what educational content might be necessary to integrate into the system. Methods A total of 750 goals were analyzed from patients with SB and SCI enrolled in a wellness program. These goals were qualitatively analyzed in order to operationalize a set of software requirements for an mHealth goal-setting module and identify important educational content. Results Those of male sex (P=.02) and with SCI diagnosis (P<.001) were more likely to achieve goals than females or those with SB. Temporality (P<.001) and type (P<.001) of goal were associated with likelihood that the goal would be achieved. Nearly all (210/213; 98.6%) of the fact-finding goals were achieved. There was no significant difference in achievement based on goal theme. Checklists, data tracking, and fact-finding tools were identified as three functionalities that could support goal-setting and achievement in an mHealth system. Based on the qualitative analysis, a list of software requirements for a goal-setting module was generated, and a prototype was developed. Targets for educational content were also generated. Conclusions Innovative mHealth tools can be developed to support commonly set goals by individuals with disabilities. PMID:28739558
Development of Fuel Shuffling Module for PHISICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan Mabe; Andrea Alfonsi; Cristian Rabiti
2013-06-01
PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less
Programmable bandwidth management in software-defined EPON architecture
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Wang, Wei; Hu, Weisheng; Xia, Ming
2016-07-01
This paper proposes a software-defined EPON architecture which replaces the hardware-implemented DBA module with reprogrammable DBA module. The DBA module allows pluggable bandwidth allocation algorithms among multiple ONUs adaptive to traffic profiles and network states. We also introduce a bandwidth management scheme executed at the controller to manage the customized DBA algorithms for all date queues of ONUs. Our performance investigation verifies the effectiveness of this new EPON architecture, and numerical results show that software-defined EPONs can achieve less traffic delay and provide better support to service differentiation in comparison with traditional EPONs.
NASA Astrophysics Data System (ADS)
Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Madden, D.; Tautz, M.; Roth, C.
2004-05-01
AF-GEOSpace is a graphics-intensive software program with space environment models and applications developed and distributed by the Space Weather Center of Excellence at AFRL. A review of current (Version 2.0) and planned (Version 2.1) AF-GEOSpace capabilities will be given. A wide range of physical domains is represented enabling the software to address such things as solar disturbance propagation, radiation belt configuration, and ionospheric auroral particle precipitation and scintillation. The software is currently being used to aid with the design, operation, and simulation of a wide variety of communications, navigation, and surveillance systems. Building on the success of previous releases, AF-GEOSpace has become a platform for the rapid prototyping of automated operational and simulation space weather visualization products and helps with a variety of tasks, including: orbit specification for radiation hazard avoidance; satellite design assessment and post-event anomaly analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; scientific model validation and comparison, physics research, and education. Version 2.0 provided a simplified graphical user interface, improved science and application modules, and significantly enhanced graphical performance. Common input data archive sets, application modules, and 1-D, 2-D, and 3-D visualization tools are provided to all models. Dynamic capabilities permit multiple environments to be generated at user-specified time intervals while animation tools enable displays such as satellite orbits and environment data together as a function of time. Building on the existing Version 2.0 software architecture, AF-GEOSpace Version 2.1 is currently under development and will include a host of new modules to provide, for example, geosynchronous charged particle fluxes, neutral atmosphere densities, cosmic ray cutoff maps, low-altitude trapped proton belt specification, and meteor shower/storm fluxes with spacecraft impact probabilities. AF-GEOSpace Version 2.1 is being developed for Windows NT/2000/XP and Linux systems.
Software-Based Safety Systems in Space - Learning from other Domains
NASA Astrophysics Data System (ADS)
Klicker, M.; Putzer, H.
2012-01-01
Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.
NASA Astrophysics Data System (ADS)
Löwe, Peter
2015-04-01
Many Free and Open Source Software (FOSS) tools have been created for the various application fields within geoscience. While FOSS allows re-implementation of functionalities in new environments by access to the original codebase, the easiest approach to build new software solutions for new problems is the combination or merging of existing software tools. Such mash-ups are implemented by embedding and encapsulating FOSS tools within each another, effectively focusing the use of the embedded software to the specific role it needs to perform in the given scenario, while ignoring all its other capabilities. GRASS GIS is a powerful and established FOSS GIS for raster, vector and volume data processing while the Generic Mapping Tools (GMT) are a suite of powerful Open Source mapping tools, which exceed the mapping capabilities of GRASS GIS. This poster reports on the new GRASS GIS add-on module r.out.polycones. It enables users to utilize non-continuous projections for map production within the GRASS production environment. This is implemented on the software level by encapsulating a subset of GMT mapping capabilities into a GRASS GIS (Version 6.x) add-on module. The module was developed at the German National Library of Science and Technology (TIB) to provide custom global maps of scientific collaboration networks, such as the DataCite consortium, the registration agency for Digital Object Identifiers (DOI) for research data. The GRASS GIS add-on module can be used for global mapping of raster data into a variety of non continuous sinosoidal projections, allowing the creation of printable biangles (gores) to be used for globe making. Due to the well structured modular nature of GRASS modules, technical follow-up work will focus on API-level Python-based integration in GRASS 7 [1]. Based on this, GMT based mapping capabilities in GRASS will be extended beyond non-continuous sinosoidal maps and advanced from raster-layers to content GRASS display monitors. References: [1] Petras, V., Petrasova, A., Chemin, Y., Zambelli, P., Landa, M., Gebbert, S., Neteler, N., Löwe, P.: Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7, Geophysical Research Abstracts Vol. 17, EGU2015-8142, 2015 (in preparation)
Coded Modulation in C and MATLAB
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Andrews, Kenneth S.
2011-01-01
This software, written separately in C and MATLAB as stand-alone packages with equivalent functionality, implements encoders and decoders for a set of nine error-correcting codes and modulators and demodulators for five modulation types. The software can be used as a single program to simulate the performance of such coded modulation. The error-correcting codes implemented are the nine accumulate repeat-4 jagged accumulate (AR4JA) low-density parity-check (LDPC) codes, which have been approved for international standardization by the Consultative Committee for Space Data Systems, and which are scheduled to fly on a series of NASA missions in the Constellation Program. The software implements the encoder and decoder functions, and contains compressed versions of generator and parity-check matrices used in these operations.
Task allocation model for minimization of completion time in distributed computer systems
NASA Astrophysics Data System (ADS)
Wang, Jai-Ping; Steidley, Carl W.
1993-08-01
A task in a distributed computing system consists of a set of related modules. Each of the modules will execute on one of the processors of the system and communicate with some other modules. In addition, precedence relationships may exist among the modules. Task allocation is an essential activity in distributed-software design. This activity is of importance to all phases of the development of a distributed system. This paper establishes task completion-time models and task allocation models for minimizing task completion time. Current work in this area is either at the experimental level or without the consideration of precedence relationships among modules. The development of mathematical models for the computation of task completion time and task allocation will benefit many real-time computer applications such as radar systems, navigation systems, industrial process control systems, image processing systems, and artificial intelligence oriented systems.
NASA Technical Reports Server (NTRS)
Guo, Daniel
2017-01-01
The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility (HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to perform timing based actions such as pump usage timing and sequence step timing. The purpose of this project was to develop a timing module that could fulfill these requirements and be adaptable for expanded use in the future. The code was written in Gensym G2 software platform, the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. Currently, the module has two timing capabilities, a stopwatch function and a countdown function. Although the module has gone through some functionality testing, actual integration of the module into NPAS and the INSIGHT program is contingent on the module passing later checks.
[Development of a Compared Software for Automatically Generated DVH in Eclipse TPS].
Xie, Zhao; Luo, Kelin; Zou, Lian; Hu, Jinyou
2016-03-01
This study is to automatically calculate the dose volume histogram(DVH) for the treatment plan, then to compare it with requirements of doctor's prescriptions. The scripting language Autohotkey and programming language C# were used to develop a compared software for automatically generated DVH in Eclipse TPS. This software is named Show Dose Volume Histogram (ShowDVH), which is composed of prescription documents generation, operation functions of DVH, software visualization and DVH compared report generation. Ten cases in different cancers have been separately selected, in Eclipse TPS 11.0 ShowDVH could not only automatically generate DVH reports but also accurately determine whether treatment plans meet the requirements of doctor’s prescriptions, then reports gave direction for setting optimization parameters of intensity modulated radiated therapy. The ShowDVH is an user-friendly and powerful software, and can automatically generated compared DVH reports fast in Eclipse TPS 11.0. With the help of ShowDVH, it greatly saves plan designing time and improves working efficiency of radiation therapy physicists.
Roll-Out and Turn-Off Display Software for Integrated Display System
NASA Technical Reports Server (NTRS)
Johnson, Edward J., Jr.; Hyer, Paul V.
1999-01-01
This report describes the software products, system architectures and operational procedures developed by Lockheed-Martin in support of the Roll-Out and Turn-Off (ROTO) sub-element of the Low Visibility Landing and Surface Operations (LVLASO) program at the NASA Langley Research Center. The ROTO portion of this program focuses on developing technologies that aid pilots in the task of managing the deceleration of an aircraft to a pre-selected exit taxiway. This report focuses on software that produces a system of redundant deceleration cues for a pilot during the landing roll-out, and presents these cues on a head up display (HUD). The software also produces symbology for aircraft operational phases involving cruise flight, approach, takeoff, and go-around. The algorithms and data sources used to compute the deceleration guidance and generate the displays are discussed. Examples of the display formats and symbology options are presented. Logic diagrams describing the design of the ROTO software module are also given.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2012-01-01
NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2013-01-01
NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
[Quality assurance of a virtual simulation software: application to IMAgo and SIMAgo (ISOgray)].
Isambert, A; Beaudré, A; Ferreira, I; Lefkopoulos, D
2007-06-01
Virtual simulation process is often used to prepare three dimensional conformal radiation therapy treatments. As the quality of the treatment is widely dependent on this step, it is mandatory to perform extensive controls on this software before clinical use. The tests presented in this work have been carried out on the treatment planning system ISOgray (DOSIsoft), including the delineation module IMAgo and the virtual simulation module SIMAgo. According to our experience, the most relevant controls of international protocols have been selected. These tests mainly focused on measuring and delineation tools, virtual simulation functionalities, and have been performed with three phantoms: the Quasar Multi-Purpose Body Phantom, the Quasar MLC Beam Geometry Phantom (Modus Medical Devices Inc.) and a phantom developed at Hospital Tenon. No major issues have been identified while performing the tests. These controls have emphasized the necessity for the user to consider with a critical eye the results displayed by a virtual simulation software. The contrast of visualisation, the slice thickness, the calculation and display mode of 3D structures used by the software are many factors of uncertainties. A virtual simulation software quality assurance procedure has been written and applied on a set of CT images. Similar tests have to be performed periodically and at minimum at each change of major version.
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
1998-01-01
Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.
Enhanced CARES Software Enables Improved Ceramic Life Prediction
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.
1997-01-01
The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
Sample Analysis at Mars Instrument Simulator
NASA Technical Reports Server (NTRS)
Benna, Mehdi; Nolan, Tom
2013-01-01
The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevitz, Daniel Wolf; Key, Brian P.; Garcia, Daniel B.
2017-09-05
The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the consequence on nearby objects. FIT is written in the programming language Python and is designed as a collection of interacting software modules. Each module has a function that interacts with the other modules to produce desired results.
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
Rezaei-Hachesu, Peyman; Samad-Soltani, Taha; Yaghoubi, Sajad; GhaziSaeedi, Marjan; Mirnia, Kayvan; Masoumi-Asl, Hossein; Safdari, Reza
2018-07-01
Neonatal intensive care units (NICUs) have complex patients in terms of their diagnoses and required treatments. Antimicrobial treatment is a common therapy for patients in NICUs. To solve problems pertaining to empirical therapy, antimicrobial stewardship programs have recently been introduced. Despite the success of these programs in terms of data collection, there is still inefficiency in terms of analyzing and reporting the data. Thus, to successfully implement these stewardship programs, the design of antimicrobial resistance (AMR) surveillance systems is recommended as a first step. As a result, this study aimed to design an AMR surveillance system for use in the NICUs in northwestern Iranian hospitals to cover these information gaps. The recommended system is compatible with the World Health Organization (WHO) guidelines. The business intelligence (BI) requirements were extracted in an interview with a product owner (PO) using a valid and reliable checklist. Following this, an AMR surveillance system was designed and evaluated in relation to user experiences via a user experience questionnaire (UEQ). Finally, an association analysis was performed on the database, and the results were reported by identifying the important multidrug resistances in the database. A customized software development methodology was proposed. The three major modules of the AMR surveillance are the data registry, dashboard, and decision support modules. The data registry module was implemented based on a three-tier architecture, and the Clinical Decision Support System (CDSS) and dashboard modules were designed based on the BI requirements of the Scrum product owner (PO). The mean values of UEQ measures were in a good range. This measures showed the suitable usability of the AMR surveillance system. Applying efficient software development methodologies allows for the systems' compatibility with users' opinions and requirements. In addition, the construction of interdisciplinary communication models for research and software engineering allows for research and development concepts to be used in operational environments. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1980-01-01
A general purpose squeeze-film damper interactive force element was developed, coded into a software package (module) and debugged. This software package was applied to nonliner dynamic analyses of some simple rotor systems. Results for pressure distributions show that the long bearing (end sealed) is a stronger bearing as compared to the short bearing as expected. Results of the nonlinear dynamic analysis, using a four degree of freedom simulation model, showed that the orbit of the rotating shaft increases nonlinearity to fill the bearing clearance as the unbalanced weight increases.
Specifications for a Federal Information Processing Standard Data Dictionary System
NASA Technical Reports Server (NTRS)
Goldfine, A.
1984-01-01
The development of a software specification that Federal agencies may use in evaluating and selecting data dictionary systems (DDS) is discussed. To supply the flexibility needed by widely different applications and environments in the Federal Government, the Federal Information Processing Standard (FIPS) specifies a core DDS together with an optimal set of modules. The focus and status of the development project are described. Functional specifications for the FIPS DDS are examined for the dictionary, the dictionary schema, and the dictionary processing system. The DDS user interfaces and DDS software interfaces are discussed as well as dictionary administration.
Design of EPON far-end equipment based on FTTH
NASA Astrophysics Data System (ADS)
Feng, Xiancheng; Yun, Xiang
2008-12-01
Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.
Generating Safety-Critical PLC Code From a High-Level Application Software Specification
NASA Technical Reports Server (NTRS)
2008-01-01
The benefits of automatic-application code generation are widely accepted within the software engineering community. These benefits include raised abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at Kennedy Space Center recognized the need for PLC code generation while developing the new ground checkout and launch processing system, called the Launch Control System (LCS). Engineers developed a process and a prototype software tool that automatically translates a high-level representation or specification of application software into ladder logic that executes on a PLC. All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most of the software in LCS is also planned to be COTS, with only small adapter software modules that must be developed in order to interface between the various COTS software products. A domain-specific language (DSL) is a programming language designed to perform tasks and to solve problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers created a DSL for developing test sequences of ground checkout and launch operations of future launch vehicle and spacecraft elements, and they are developing a tabular specification format that uses the DSL keywords and functions familiar to the ground and flight system users. The tabular specification format, or tabular spec, allows most ground and flight system users to document how the application software is intended to function and requires little or no software programming knowledge or experience. A small sample from a prototype tabular spec application is shown.
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Holmes, David R., III; Hanson, Dennis P.; Robb, Richard A.
2006-03-01
One of the greatest challenges for a software engineer is to create a complex application that is comprehensive enough to be useful to a diverse set of users, yet focused enough for individual tasks to be carried out efficiently with minimal training. This "powerful yet simple" paradox is particularly prevalent in advanced medical imaging applications. Recent research in the Biomedical Imaging Resource (BIR) at Mayo Clinic has been directed toward development of an imaging application framework that provides powerful image visualization/analysis tools in an intuitive, easy-to-use interface. It is based on two concepts very familiar to physicians - Cases and Workflows. Each case is associated with a unique patient and a specific set of routine clinical tasks, or a workflow. Each workflow is comprised of an ordered set of general-purpose modules which can be re-used for each unique workflow. Clinicians help describe and design the workflows, and then are provided with an intuitive interface to both patient data and analysis tools. Since most of the individual steps are common to many different workflows, the use of general-purpose modules reduces development time and results in applications that are consistent, stable, and robust. While the development of individual modules may reflect years of research by imaging scientists, new customized workflows based on the new modules can be developed extremely fast. If a powerful, comprehensive application is difficult to learn and complicated to use, it will be unacceptable to most clinicians. Clinical image analysis tools must be intuitive and effective or they simply will not be used.
NASA Ames Research Center R and D Services Directorate Biomedical Systems Development
NASA Technical Reports Server (NTRS)
Pollitt, J.; Flynn, K.
1999-01-01
The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.
Recent Developments in Grid Generation and Force Integration Technology for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; VanDalsem, William R. (Technical Monitor)
1994-01-01
Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.
Updates on HRF Payloads Operations in Columbus ATCS
NASA Technical Reports Server (NTRS)
DePalo, Savino; Wright, Bruce D.; La,e Robert E.; Challis, Simon; Davenport, Robert; Pietrafesa, Donata
2011-01-01
The NASA developed Human Research Facility 1 (HRF1) and Human Research Facility (HRF2) experiment racks have been operating in the European Space Agency (ESA) Columbus module of the International Space Station (ISS) since Summer 2008. The two racks are of the same design. Since the start of operations, unexpected pressure spikes were observed in the Columbus module's thermal-hydraulic system during the racks activation sequence. The root cause of these spikes was identified in the activation command sequence in the Rack Interface Controller (RIC), which controls the flow of thermal-hydraulic system fluid through the rack. A new Common RIC Software (CRS) release fixed the bug and was uploaded on both racks in late 2009. This paper gives a short introduction to the topic, describes the Columbus module countermeasures to mitigate the spikes, describes the ground validation test of the new software, and describes the flight checks performed before and after the final upload. Finally, the new on-orbit test designed to further simplify the racks hydraulic management is presented.
ERIC Educational Resources Information Center
Wrege, Rachael; And Others
1982-01-01
Describes the software modules produced by Texas Instruments for use with the TI-99/4A home computer. Among the modules described are: Personal Real Estate, Programing Aids, Home Financial Decisions, Music Maker, Weight Control and Nutrition, Early Learning Fun, and Tax/Investment Record Keeping. (JL)
GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data
NASA Astrophysics Data System (ADS)
Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.
2016-08-01
The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
NASA Astrophysics Data System (ADS)
Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Moitrier, Nicolas; Balesdent, Jérome; bruckler, Laurent; Moitrier, Nathalie; Nouguier, Cédric; Richard, Guy
2014-05-01
Models describing the soil functioning are valuable tools for addressing challenging issues related to agricultural production, soil protection or biogeochemical cycles. Coupling models that address different scientific fields is actually required in order to develop numerical tools able to simulate the complex interactions and feed-backs occurring within a soil profile in interaction with climate and human activities. We present here a component-based modelling platform named "VSoil", that aims at designing, developing, implementing and coupling numerical representation of biogeochemical and physical processes in soil, from the aggregate to the profile scales. The platform consists of four softwares, i) Vsoil_Processes dedicated to the conceptual description of processes and of their inputs and outputs, ii) Vsoil_Modules devoted to the development of numerical representation of elementary processes as modules, iii) Vsoil_Models which permits the coupling of modules to create models, iv) Vsoil_Player for the run of the model and the primary analysis of results. The platform is designed to be a collaborative tool, helping scientists to share not only their models, but also the scientific knowledge on which the models are built. The platform is based on the idea that processes of any kind can be described and characterized by their inputs (state variables required) and their outputs. The links between the processes are automatically detected by the platform softwares. For any process, several numerical representations (modules) can be developed and made available to platform users. When developing modules, the platform takes care of many aspects of the development task so that the user can focus on numerical calculations. Fortran2008 and C++ are the supported languages and existing codes can be easily incorporated into platform modules. Building a model from available modules simply requires selecting the processes being accounted for and for each process a module. During this task, the platform displays available modules and checks the compatibility between the modules. The model (main program) is automatically created when compatible modules have been selected for all the processes. A GUI is automatically generated to help the user providing parameters and initial situations. Numerical results can be immediately visualized, archived and exported. The platform also provides facilities to carry out sensitivity analysis. Parameters estimation and links with databases are being developed. The platform can be freely downloaded from the web site (http://www.inra.fr/sol_virtuel/) with a set of processes, variables, modules and models. However, it is designed so that any user can add its own components. Theses adds-on can be shared with co-workers by means of an export/import mechanism using the e-mail. The adds-on can also be made available to the whole community of platform users when developers asked for. A filtering tool is available to explore the content of the platform (processes, variables, modules, models).
Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol
NASA Technical Reports Server (NTRS)
Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David
2012-01-01
The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.
A survey of program slicing for software engineering
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.
Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.
Ondersma, Steven J; Martin, Joanne; Fortson, Beverly; Whitaker, Daniel J; Self-Brown, Shannon; Beatty, Jessica; Loree, Amy; Bard, David; Chaffin, Mark
2017-11-01
Early home visitation (EHV) for child maltreatment prevention is widely adopted but has received inconsistent empirical support. Supplementation with interactive software may facilitate attention to major risk factors and use of evidence-based approaches. We developed eight 20-min computer-delivered modules for use by mothers during the course of EHV. These modules were tested in a randomized trial in which 413 mothers were assigned to software-supplemented e-Parenting Program ( ePP), services as usual (SAU), or community referral conditions, with evaluation at 6 and 12 months. Outcomes included satisfaction, working alliance, EHV retention, child maltreatment, and child maltreatment risk factors. The software was well-received overall. At the 6-month follow-up, working alliance ratings were higher in the ePP condition relative to the SAU condition (Cohen's d = .36, p < .01), with no differences at 12 months. There were no between-group differences in maltreatment or major risk factors at either time point. Despite good acceptability and feasibility, these findings provide limited support for use of this software within EHV. These findings contribute to the mixed results seen across different models of EHV for child maltreatment prevention.
NASA Technical Reports Server (NTRS)
Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III
2011-01-01
The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.
78 FR 23231 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
...) Description and Quantity or Quantities of Articles or Services under Consideration for Purchase: 60 Active... equipment items, GEM-V GPS airborne receiver module, and communication security, software development... documents, U.S. Government and contract engineering and logistical personnel services, and other related...
A reconfigurable multicarrier demodulator architecture
NASA Technical Reports Server (NTRS)
Kwatra, S. C.; Jamali, M. M.
1991-01-01
An architecture based on parallel and pipline design approaches has been developed for the Frequency Division Multiple Access/Time Domain Multiplexed (FDMA/TDM) conversion system. The architecture has two main modules namely the transmultiplexer and the demodulator. The transmultiplexer has two pipelined modules. These are the shared multiplexed polyphase filter and the Fast Fourier Transform (FFT). The demodulator consists of carrier, clock, and data recovery modules which are interactive. Progress on the design of the MultiCarrier Demodulator (MCD) using commercially available chips and Application Specific Integrated Circuits (ASIC) and simulation studies using Viewlogic software will be presented at the conference.
Intelligent Software for System Design and Documentation
NASA Technical Reports Server (NTRS)
2002-01-01
In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.
A complexity-scalable software-based MPEG-2 video encoder.
Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin
2004-05-01
With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.
PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment
NASA Technical Reports Server (NTRS)
Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.
1995-01-01
PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
2008-04-16
Zhen (Edward) Hu Peng (Peter) Zhang Yu Song Amanpreet Singh Saini Corey Cooke April 16, 2006 Department of Electrical and Computer Engineering Center...and RF frequency agility is the most challenging issue for spectrum sensing. The radio under development is an ultra-wideband software -defined radio...PC USB programming cable and accom- panying PC software as well as download test vectors to the waveform memory module, as shown in Figure 3.25,3I
Application of Pulse Code Modulation (PCM) Technology to Aircraft Dynamics Data Acquisition.
1981-04-01
and 27 is a summary of pro- jected contract awards. This plan is ordered to minimize develop- ment risks and costs in the evolution of a fully qualified...160 DOTS/INCH YES YES FORTRAN CALLABLE PLOT SOFTWARE YES YES ANALYSIS SOFTWARE YES YES 206 7. RECOMM0ENDATIONS The evaluation of the results of Phase...on metallic heat strips and specific heat sinks to provide a high degree of heat conduction from the component bodies through bonded joints to the
Software architecture for a distributed real-time system in Ada, with application to telerobotics
NASA Technical Reports Server (NTRS)
Olsen, Douglas R.; Messiora, Steve; Leake, Stephen
1992-01-01
The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Beste, D. L.; Gregg, J.
1984-01-01
The User Manual for the Integrated Analysis Capability (IAC) Level 1 system is presented. The IAC system currently supports the thermal, structures, controls and system dynamics technologies, and its development is influenced by the requirements for design/analysis of large space systems. The system has many features which make it applicable to general problems in engineering, and to management of data and software. Information includes basic IAC operation, executive commands, modules, solution paths, data organization and storage, IAC utilities, and module implementation.
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
Agent-based Modeling with MATSim for Hazards Evacuation Planning
NASA Astrophysics Data System (ADS)
Jones, J. M.; Ng, P.; Henry, K.; Peters, J.; Wood, N. J.
2015-12-01
Hazard evacuation planning requires robust modeling tools and techniques, such as least cost distance or agent-based modeling, to gain an understanding of a community's potential to reach safety before event (e.g. tsunami) arrival. Least cost distance modeling provides a static view of the evacuation landscape with an estimate of travel times to safety from each location in the hazard space. With this information, practitioners can assess a community's overall ability for timely evacuation. More information may be needed if evacuee congestion creates bottlenecks in the flow patterns. Dynamic movement patterns are best explored with agent-based models that simulate movement of and interaction between individual agents as evacuees through the hazard space, reacting to potential congestion areas along the evacuation route. The multi-agent transport simulation model MATSim is an agent-based modeling framework that can be applied to hazard evacuation planning. Developed jointly by universities in Switzerland and Germany, MATSim is open-source software written in Java and freely available for modification or enhancement. We successfully used MATSim to illustrate tsunami evacuation challenges in two island communities in California, USA, that are impacted by limited escape routes. However, working with MATSim's data preparation, simulation, and visualization modules in an integrated development environment requires a significant investment of time to develop the software expertise to link the modules and run a simulation. To facilitate our evacuation research, we packaged the MATSim modules into a single application tailored to the needs of the hazards community. By exposing the modeling parameters of interest to researchers in an intuitive user interface and hiding the software complexities, we bring agent-based modeling closer to practitioners and provide access to the powerful visual and analytic information that this modeling can provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.A. Gates; J.R. Ferron; M. Bell
In 2003, the NSTX plasma control system was used for plasma shape control using real-time equilibrium reconstruction (using the rtEFIT code - J. Ferron, et al., Nucl. Fusion 38 1055 (1998)). rtEFIT is now in routine use for plasma boundary control [D. A. Gates, et al., submitted to Nuclear Fusion (2005)]. More recently, the system has been upgraded to support feedback control of the resistive wall mode (RWM). This paper describes the hardware and software improvements that were made in support of these physics requirements. The real-time data acquisition system now acquires 352 channels of data at 5kHz for eachmore » NSTX plasma discharge. The latency for the data acquisition, which uses the FPDP (Front Panel Data Port) protocol, is measured to be {approx}8 microseconds. A Stand-Alone digitizer (SAD), designed at PPPL, along with an FPDP Input multiplexing module (FIMM) allows for simple modular upgrades. An interface module was built to interface between the FPDP output of the NSTX control system and the legacy Power Conversion link (PCLINK) used for communicating with the PPPL power supplies (first used for TFTR). Additionally a module has been built for communicating with the switching power amplifiers (SPA) recently installed on NSTX. In addition to the hardware developments, the control software [D. Mastrovito, Fusion Eng. And Design 71 65 (2004)] on the NSTX control system has been upgraded. The control computer is an eight processor (8x333MHz G4) built by Sky Computers (Helmsford, MA). The device driver software for the hardware described above will be discussed, as well as the new control algorithms that have been developed to control the switching power supplies for RWM control. An important initial task in RWM feedback is to develop a reliable mode detection algorithm.« less
Development of a frequency-modulated ultrasonic sensor inspired by bat echolocation
NASA Astrophysics Data System (ADS)
Kepa, Krzysztof; Abaid, Nicole
2015-03-01
Bats have evolved to sense using ultrasonic signals with a variety of different frequency signatures which interact with their environment. Among these signals, those with time-varying frequencies may enable the animals to gather more complex information for obstacle avoidance and target tracking. Taking inspiration from this system, we present the development of a sonar sensor capable of generating frequency-modulated ultrasonic signals. The device is based on a miniature mobile computer, with on board data capture and processing capabilities, which is designed for eventual autonomous operation in a robotic swarm. The hardware and software components of the sensor are detailed, as well their integration. Preliminary results for target detection using both frequency-modulated and constant frequency signals are discussed.
NASA Astrophysics Data System (ADS)
Parhad, Ashutosh
Intelligent transportation systems use in-pavement inductive loop sensors to collect real time traffic data. This method is very expensive in terms of installation and maintenance. Our research is focused on developing advanced algorithms capable of generating high amounts of energy that can charge a battery. This electromechanical energy conversion is an optimal way of energy scavenging that makes use of piezoelectric sensors. The power generated is sufficient to run the vehicle detection module that has several sensors embedded together. To achieve these goals, we have developed a simulation module using software's like LabVIEW and Multisim. The simulation module recreates a practical scenario that takes into consideration vehicle weight, speed, wheel width and frequency of the traffic.
DAQ for commissioning and calibration of a multichannel analyzer of scintillation counters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tortorici, F.; Jones, M.; Bellini, V.
We report the status of the Data Acquisition (DAQ) system for the Coordinate Detector (CDET) module of the Super Bigbite Spectrometer facility at Hall A of Thomas Jefferson Accelerator Facility. Presently, the DAQ is fully assembled and tested with one CDET module. The commissioning of CDET module, that is the goal of the tests presented here, consists essentially in the measures of the amplitude and time-over-threshold of signals from cosmic rays. Hardware checks, the developing of DAQ control and off-line analysis software are ongoing; the module currently seems to work roughly accordingly to expectations. Data presented in this note aremore » still preliminary.« less
A qualitative approach to systemic diagnosis of the SSME
NASA Technical Reports Server (NTRS)
Bickmore, Timothy W.; Maul, William A.
1993-01-01
A generic software architecture has been developed for posttest diagnostics of rocket engines, and is presently being applied to the posttest analysis of the SSME. This investigation deals with the Systems Section module of the architecture, which is presently under development. Overviews of the manual SSME systems analysis process and the overall SSME diagnostic system architecture are presented.
Teaching Radiology Physics Interactively with Scientific Notebook Software.
Richardson, Michael L; Amini, Behrang
2018-06-01
The goal of this study is to demonstrate how the teaching of radiology physics can be enhanced with the use of interactive scientific notebook software. We used the scientific notebook software known as Project Jupyter, which is free, open-source, and available for the Macintosh, Windows, and Linux operating systems. We have created a scientific notebook that demonstrates multiple interactive teaching modules we have written for our residents using the Jupyter notebook system. Scientific notebook software allows educators to create teaching modules in a form that combines text, graphics, images, data, interactive calculations, and image analysis within a single document. These notebooks can be used to build interactive teaching modules, which can help explain complex topics in imaging physics to residents. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Using a Self-Administered Visual Basic Software Tool To Teach Psychological Concepts.
ERIC Educational Resources Information Center
Strang, Harold R.; Sullivan, Amie K.; Schoeny, Zahrl G.
2002-01-01
Introduces LearningLinks, a Visual Basic software tool that allows teachers to create individualized learning modules that use constructivist and behavioral learning principles. Describes field testing of undergraduates at the University of Virginia that tested a module designed to improve understanding of the psychological concepts of…
A Virtual Laboratory for Aviation and Airspace Prognostics Research
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh
2017-01-01
Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed.
Zebra: An advanced PWR lattice code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, L.; Wu, H.; Zheng, Y.
2012-07-01
This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less
Integration of an expert teaching assistant with distance learning software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, S.P.; Reed, N.E.
1996-12-31
The Remote Teaching Assistant (RTA) software currently under development at UC Davis allows students and Teaching Assistants (TA`s) to interact through multimedia communication via the Internet. To resolve the problem of TA unavailability and limited knowledge, an Expert Teaching Assistant (ETA) module is being developed. When TA`s are not on-line, students in need of help consult ETA. The focus of this research is the development and integration of ETA with RTA, the establishment of an architecture suitable for use with education (the domain) in any sub-domain (course), and the creation of a mechanism usable by non-technical personnel to maintain knowledgemore » bases.« less
Infotech Interactive: Increasing Student Participation Using Multimedia.
ERIC Educational Resources Information Center
Baxter, Anthony Q.
Multimedia techniques allow one to present information using text, video, animations, and sound. "Infotech Interactive" is a CD-ROM multimedia product developed to enhance an introductory computing concepts course. The software includes the following module topics: (1) "Mouse Basics"; (2) "Data into Information"; (3)…
APPLICATION OF EXAMS AS THE SURFACE WATER MODULE IN THE HWIR MULTIMEDIA RISK ASSESSMENT SYSTEM
Multimedia, multipathway risk assessment software has been developed for implementing the Hazardous Waste Identification Rule (HWIR). This regulation is intended to determine whether a waste should be considered hazardous, and confined to Subtitle D facilities, or safely release...
Folks, Russell D; Garcia, Ernest V; Taylor, Andrew T
2007-03-01
Quantitative nuclear renography has numerous potential sources of error. We previously reported the initial development of a computer software module for comprehensively addressing the issue of quality control (QC) in the analysis of radionuclide renal images. The objective of this study was to prospectively test the QC software. The QC software works in conjunction with standard quantitative renal image analysis using a renal quantification program. The software saves a text file that summarizes QC findings as possible errors in user-entered values, calculated values that may be unreliable because of the patient's clinical condition, and problems relating to acquisition or processing. To test the QC software, a technologist not involved in software development processed 83 consecutive nontransplant clinical studies. The QC findings of the software were then tabulated. QC events were defined as technical (study descriptors that were out of range or were entered and then changed, unusually sized or positioned regions of interest, or missing frames in the dynamic image set) or clinical (calculated functional values judged to be erroneous or unreliable). Technical QC events were identified in 36 (43%) of 83 studies. Clinical QC events were identified in 37 (45%) of 83 studies. Specific QC events included starting the camera after the bolus had reached the kidney, dose infiltration, oversubtraction of background activity, and missing frames in the dynamic image set. QC software has been developed to automatically verify user input, monitor calculation of renal functional parameters, summarize QC findings, and flag potentially unreliable values for the nuclear medicine physician. Incorporation of automated QC features into commercial or local renal software can reduce errors and improve technologist performance and should improve the efficiency and accuracy of image interpretation.
Generic Space Science Visualization in 2D/3D using SDDAS
NASA Astrophysics Data System (ADS)
Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.
2017-12-01
The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.
Discrete Address Beacon System (DABS) Software System Reliability Modeling and Prediction.
1981-06-01
Service ( ATARS ) module because of its interim status. Reliability prediction models for software modules were derived and then verified by matching...System (A’iCR3BS) and thus can be introduced gradually and economically without ma jor olper- ational or procedural change. Since DABS uses monopulse...lineanaly- sis tools or are ured during maintenance or pre-initialization were not modeled because they are not part of the mission software. The ATARS
Klein, Karsten; Wolff, Astrid C; Ziebold, Oliver; Liebscher, Thomas
2008-01-01
The ICW eHealth Framework (eHF) is a powerful infrastructure and platform for the development of service-oriented solutions in the health care business. It is the culmination of many years of experience of ICW in the development and use of in-house health care solutions and represents the foundation of ICW product developments based on the Java Enterprise Edition (Java EE). The ICW eHealth Framework has been leveraged to allow development by external partners - enabling adopters a straightforward integration into ICW solutions. The ICW eHealth Framework consists of reusable software components, development tools, architectural guidelines and conventions defining a full software-development and product lifecycle. From the perspective of a partner, the framework provides services and infrastructure capabilities for integrating applications within an eHF-based solution. This article introduces the ICW eHealth Framework's basic architectural concepts and technologies. It provides an overview of its module and component model, describes the development platform that supports the complete software development lifecycle of health care applications and outlines technological aspects, mainly focusing on application development frameworks and open standards.
NASA Technical Reports Server (NTRS)
1983-01-01
The structure and functions of each reporting software program for the Software Engineering Laboratory data base are described. Baseline diagrams, module descriptions, and listings of program generation files are included.
The National Transport Code Collaboration Module Library
NASA Astrophysics Data System (ADS)
Kritz, A. H.; Bateman, G.; Kinsey, J.; Pankin, A.; Onjun, T.; Redd, A.; McCune, D.; Ludescher, C.; Pletzer, A.; Andre, R.; Zakharov, L.; Lodestro, L.; Pearlstein, L. D.; Jong, R.; Houlberg, W.; Strand, P.; Wiley, J.; Valanju, P.; John, H. St.; Waltz, R.; Mandrekas, J.; Mau, T. K.; Carlsson, J.; Braams, B.
2004-12-01
This paper reports on the progress in developing a library of code modules under the auspices of the National Transport Code Collaboration (NTCC). Code modules are high quality, fully documented software packages with a clearly defined interface. The modules provide a variety of functions, such as implementing numerical physics models; performing ancillary functions such as I/O or graphics; or providing tools for dealing with common issues in scientific programming such as portability of Fortran codes. Researchers in the plasma community submit code modules, and a review procedure is followed to insure adherence to programming and documentation standards. The review process is designed to provide added confidence with regard to the use of the modules and to allow users and independent reviews to validate the claims of the modules' authors. All modules include source code; clear instructions for compilation of binaries on a variety of target architectures; and test cases with well-documented input and output. All the NTCC modules and ancillary information, such as current standards and documentation, are available from the NTCC Module Library Website http://w3.pppl.gov/NTCC. The goal of the project is to develop a resource of value to builders of integrated modeling codes and to plasma physics researchers generally. Currently, there are more than 40 modules in the module library.
The Use of Uas for Rapid 3d Mapping in Geomatics Education
NASA Astrophysics Data System (ADS)
Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan
2016-06-01
With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.
Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.
Chen, Qiang; Li, Weihua; Wu, Jiangtao
2014-01-01
A microcomputer-based ultrasonic gas flowmeter with transit-time method is presented. Modules of the flowmeter are designed systematically, including the acoustic path arrangement, ultrasound emission and reception module, transit-time measurement module, the software and so on. Four 200 kHz transducers forming two acoustic paths are used to send and receive ultrasound simultaneously. The synchronization of the transducers can eliminate the influence caused by the inherent switch time in simple chord flowmeter. The distribution of the acoustic paths on the mechanical apparatus follows the Tailored integration, which could reduce the inherent error by 2-3% compared with the Gaussian integration commonly used in the ultrasonic flowmeter now. This work also develops timing modules to determine the flight time of the acoustic signal. The timing mechanism is different from the traditional method. The timing circuit here adopts high capability chip TDC-GP2, with the typical resolution of 50 ps. The software of Labview is used to receive data from the circuit and calculate the gas flow value. Finally, the two paths flowmeter has been calibrated and validated on the test facilities for air flow in Shaanxi Institute of Measurement & Testing. Copyright © 2013 Elsevier B.V. All rights reserved.
Telepathology: design of a modular system.
Brauchli, K; Christen, H; Meyer, P; Haroske, G; Meyer, W; Kunze, K D; Otto, R; Oberholzer, M
2000-01-01
Although telepathology systems have been developed for more than a decade, they are still not a widespread tool for routine diagnostic applications. Lacking interoperability, software that is not satisfying user needs as well as high costs have been identified as reasons. In this paper we would like to demonstrate that with a clear separation of the tasks required for a telepathology application, telepathology systems can be built in a modular way, where many modules can be implemented using standard software components. With such a modular design, systems can be easily adapted to changing user needs and new technological developments and it is easier to integrate modular systems into existing environments.
[Advances of portable electrocardiogram monitor design].
Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong
2014-06-01
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
Innovative Techniques Simplify Vibration Analysis
NASA Technical Reports Server (NTRS)
2010-01-01
In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."
Design of intelligent vehicle control system based on single chip microcomputer
NASA Astrophysics Data System (ADS)
Zhang, Congwei
2018-06-01
The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolko, I. E.; Prokudin, M. S.
A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The resultsmore » of the simulation are in good agreement with data.« less
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611
Software reuse in spacecraft planning and scheduling systems
NASA Technical Reports Server (NTRS)
Mclean, David; Tuchman, Alan; Broseghini, Todd; Yen, Wen; Page, Brenda; Johnson, Jay; Bogovich, Lynn; Burkhardt, Chris; Mcintyre, James; Klein, Scott
1993-01-01
The use of a software toolkit and development methodology that supports software reuse is described. The toolkit includes source-code-level library modules and stand-alone tools which support such tasks as data reformatting and report generation, simple relational database applications, user interfaces, tactical planning, strategic planning and documentation. The current toolkit is written in C and supports applications that run on IBM-PC's under DOS and UNlX-based workstations under OpenLook and Motif. The toolkit is fully integrated for building scheduling systems that reuse AI knowledge base technology. A typical scheduling scenario and three examples of applications that utilize the reuse toolkit will be briefly described. In addition to the tools themselves, a description of the software evolution and reuse methodology that was used is presented.
NASA Astrophysics Data System (ADS)
Zhang, M.; Zheng, G. Z.; Zheng, W.; Chen, Z.; Yuan, T.; Yang, C.
2016-04-01
The magnetic confinement nuclear fusion experiments require various real-time control applications like plasma control. ITER has designed the Fast Plant System Controller (FPSC) for this job. ITER provided hardware and software standards and guidelines for building a FPSC. In order to develop various real-time FPSC applications efficiently, a flexible real-time software framework called J-TEXT real-time framework (JRTF) is developed by J-TEXT tokamak team. JRTF allowed developers to implement different functions as independent and reusable modules called Application Blocks (AB). The AB developers only need to focus on implementing the control tasks or the algorithms. The timing, scheduling, data sharing and eventing are handled by the JRTF pipelines. JRTF provides great flexibility on developing ABs. Unit test against ABs can be developed easily and ABs can even be used in non-JRTF applications. JRTF also provides interfaces allowing JRTF applications to be configured and monitored at runtime. JRTF is compatible with ITER standard FPSC hardware and ITER (Control, Data Access and Communication) CODAC Core software. It can be configured and monitored using (Experimental Physics and Industrial Control System) EPICS. Moreover the JRTF can be ported to different platforms and be integrated with supervisory control software other than EPICS. The paper presents the design and implementation of JRTF as well as brief test results.
A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2009-01-01
SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.
NASA Astrophysics Data System (ADS)
Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.
2018-04-01
Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.
ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals.
Crispim Junior, Carlos Fernando; Pederiva, Cesar Nonato; Bose, Ricardo Chessini; Garcia, Vitor Augusto; Lino-de-Oliveira, Cilene; Marino-Neto, José
2012-02-01
We present a software (ETHOWATCHER(®)) developed to support ethography, object tracking and extraction of kinematic variables from digital video files of laboratory animals. The tracking module allows controlled segmentation of the target from the background, extracting image attributes used to calculate the distance traveled, orientation, length, area and a path graph of the experimental animal. The ethography module allows recording of catalog-based behaviors from environment or from video files continuously or frame-by-frame. The output reports duration, frequency and latency of each behavior and the sequence of events in a time-segmented format, set by the user. Validation tests were conducted on kinematic measurements and on the detection of known behavioral effects of drugs. This software is freely available at www.ethowatcher.ufsc.br. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
A circuit-based photovoltaic module simulator with shadow and fault settings
NASA Astrophysics Data System (ADS)
Chao, Kuei-Hsiang; Chao, Yuan-Wei; Chen, Jyun-Ping
2016-03-01
The main purpose of this study was to develop a photovoltaic (PV) module simulator. The proposed simulator, using electrical parameters from solar cells, could simulate output characteristics not only during normal operational conditions, but also during conditions of partial shadow and fault conditions. Such a simulator should possess the advantages of low cost, small size and being easily realizable. Experiments have shown that results from a proposed PV simulator of this kind are very close to that from simulation software during partial shadow conditions, and with negligible differences during fault occurrence. Meanwhile, the PV module simulator, as developed, could be used on various types of series-parallel connections to form PV arrays, to conduct experiments on partial shadow and fault events occurring in some of the modules. Such experiments are designed to explore the impact of shadow and fault conditions on the output characteristics of the system as a whole.
Towards Multimodal Emotion Recognition in E-Learning Environments
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents a framework (FILTWAM (Framework for Improving Learning Through Webcams And Microphones)) for real-time emotion recognition in e-learning by using webcams. FILTWAM offers timely and relevant feedback based upon learner's facial expressions and verbalizations. FILTWAM's facial expression software module has been developed and…
SCAILET: An intelligent assistant for satellite ground terminal operations
NASA Technical Reports Server (NTRS)
Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.
1993-01-01
NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.
SAM Photovoltaic Model Technical Reference 2016 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, Paul; DiOrio, Nicholas A; Freeman, Janine M
This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixedmore » arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.« less
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
Development of the engineering design integration (EDIN) system: A computer aided design development
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hirsch, G. N.
1977-01-01
The EDIN (Engineering Design Integration) System which provides a collection of hardware and software, enabling the engineer to perform man-in-the-loop interactive evaluation of aerospace vehicle concepts, was considered. Study efforts were concentrated in the following areas: (1) integration of hardware with the Univac Exec 8 System; (2) development of interactive software for the EDIN System; (3) upgrading of the EDIN technology module library to an interactive status; (4) verification of the soundness of the developing EDIN System; (5) support of NASA in design analysis studies using the EDIN System; (6) provide training and documentation in the use of the EDIN System; and (7) provide an implementation plan for the next phase of development and recommendations for meeting long range objectives.
Future GOES-R global ground receivers
NASA Astrophysics Data System (ADS)
Dafesh, P. A.; Grayver, E.
2006-08-01
The Aerospace Corporation has developed an end-to-end testbed to demonstrate a wide range of modern modulation and coding alternatives for future broadcast by the GOES-R Global Rebroadcast (GRB) system. In particular, this paper describes the development of a compact, low cost, flexible GRB digital receiver that was designed, implemented, fabricated, and tested as part of the development. This receiver demonstrates a 10-fold increase in data rate compared to the rate achievable by the current GOES generation, without a major impact on either cost or size. The digital receiver is integrated on a single PCI card with an FPGA device, and analog-to-digital converters. It supports a wide range of modulations (including 8-PSK and 16-QAM) and turbo coding. With appropriate FPGA firmware and software changes, it can also be configured to receive the current (legacy) GOES signals. The receiver has been validated by sending large image files over a high-fidelity satellite channel emulator, including a space-qualified power amplifier and a white noise source. The receiver is a key component of a future GOES-R weather receiver system (also called user terminal) that includes the antenna, low-noise amplifier, downconverter, filters, digital receiver, and receiver system software. This work describes this receiver proof of concept and its application to providing a very credible estimate of the impact of using modern modulation and coding techniques in the future GOES-R system.
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
Milewski, Marek C; Kamel, Karol; Kurzynska-Kokorniak, Anna; Chmielewski, Marcin K; Figlerowicz, Marek
2017-10-01
Experimental methods based on DNA and RNA hybridization, such as multiplex polymerase chain reaction, multiplex ligation-dependent probe amplification, or microarray analysis, require the use of mixtures of multiple oligonucleotides (primers or probes) in a single test tube. To provide an optimal reaction environment, minimal self- and cross-hybridization must be achieved among these oligonucleotides. To address this problem, we developed EvOligo, which is a software package that provides the means to design and group DNA and RNA molecules with defined lengths. EvOligo combines two modules. The first module performs oligonucleotide design, and the second module performs oligonucleotide grouping. The software applies a nearest-neighbor model of nucleic acid interactions coupled with a parallel evolutionary algorithm to construct individual oligonucleotides, and to group the molecules that are characterized by the weakest possible cross-interactions. To provide optimal solutions, the evolutionary algorithm sorts oligonucleotides into sets, preserves preselected parts of the oligonucleotides, and shapes their remaining parts. In addition, the oligonucleotide sets can be designed and grouped based on their melting temperatures. For the user's convenience, EvOligo is provided with a user-friendly graphical interface. EvOligo was used to design individual oligonucleotides, oligonucleotide pairs, and groups of oligonucleotide pairs that are characterized by the following parameters: (1) weaker cross-interactions between the non-complementary oligonucleotides and (2) more uniform ranges of the oligonucleotide pair melting temperatures than other available software products. In addition, in contrast to other grouping algorithms, EvOligo offers time-efficient sorting of paired and unpaired oligonucleotides based on various parameters defined by the user.
Metric analysis and data validation across FORTRAN projects
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Selby, Richard W., Jr.; Phillips, Tsai-Yun
1983-01-01
The desire to predict the effort in developing or explaining the quality of software has led to the proposal of several metrics. As a step toward validating these metrics, the Software Engineering Laboratory (SEL) has analyzed the software science metrics, cyclomatic complexity, and various standard program measures for their relation to effort (including design through acceptance testing), development errors (both discrete and weighted according to the amount of time to locate and fix), and one another. The data investigated are collected from a project FORTRAN environment and examined across several projects at once, within individual projects and by reporting accuracy checks demonstrating the need to validate a database. When the data comes from individual programmers or certain validated projects, the metrics' correlations with actual effort seem to be strongest. For modules developed entirely by individual programmers, the validity ratios induce a statistically significant ordering of several of the metrics' correlations. When comparing the strongest correlations, neither software science's E metric cyclomatic complexity not source lines of code appears to relate convincingly better with effort than the others.
Instrumentation: Software-Driven Instrumentation: The New Wave.
ERIC Educational Resources Information Center
Salit, M. L.; Parsons, M. L.
1985-01-01
Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…
ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A
NASA Technical Reports Server (NTRS)
Terwilliger, Robert B.; Campbell, Roy H.
1985-01-01
ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects.
Automating software design system DESTA
NASA Technical Reports Server (NTRS)
Lovitsky, Vladimir A.; Pearce, Patricia D.
1992-01-01
'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.
Flexible Software Architecture for Visualization and Seismic Data Analysis
NASA Astrophysics Data System (ADS)
Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.
2007-12-01
Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.
An experiment in software reliability: Additional analyses using data from automated replications
NASA Technical Reports Server (NTRS)
Dunham, Janet R.; Lauterbach, Linda A.
1988-01-01
A study undertaken to collect software error data of laboratory quality for use in the development of credible methods for predicting the reliability of software used in life-critical applications is summarized. The software error data reported were acquired through automated repetitive run testing of three independent implementations of a launch interceptor condition module of a radar tracking problem. The results are based on 100 test applications to accumulate a sufficient sample size for error rate estimation. The data collected is used to confirm the results of two Boeing studies reported in NASA-CR-165836 Software Reliability: Repetitive Run Experimentation and Modeling, and NASA-CR-172378 Software Reliability: Additional Investigations into Modeling With Replicated Experiments, respectively. That is, the results confirm the log-linear pattern of software error rates and reject the hypothesis of equal error rates per individual fault. This rejection casts doubt on the assumption that the program's failure rate is a constant multiple of the number of residual bugs; an assumption which underlies some of the current models of software reliability. data raises new questions concerning the phenomenon of interacting faults.
[The planning of resource support of secondary medical care in hospital].
Kungurov, N V; Zil'berberg, N V
2010-01-01
The Ural Institute of dermatovenerology and immunopathology developed and implemented the software concerning the personalized total recording of medical services and pharmaceuticals. The Institute also presents such software as listing of medical services, software module of calculation of financial costs of implementing full standards of secondary medical care in case of chronic dermatopathy, reference book of standards of direct specific costs on laboratory and physiotherapy services, reference book of pharmaceuticals, testing systems and consumables. The unified information system of management recording is a good technique to substantiate the costs of the implementation of standards of medical care, including high-tech care with taking into account the results of total calculation of provided medical services.
Implementation of an optimum profile guidance system on STOLAND
NASA Technical Reports Server (NTRS)
Flanagan, P. F.
1978-01-01
The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.
A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Christiansen, Erie
2010-01-01
A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.
Electronics design of the airborne stabilized platform attitude acquisition module
NASA Astrophysics Data System (ADS)
Xu, Jiang; Wei, Guiling; Cheng, Yong; Li, Baolin; Bu, Hongyi; Wang, Hao; Zhang, Zhanwei; Li, Xingni
2014-02-01
We present an attitude acquisition module electronics design for the airborne stabilized platform. The design scheme, which is based on Integrated MEMS sensor ADIS16405, develops the attitude information processing algorithms and the hardware circuit. The hardware circuits with a small volume of only 44.9 x 43.6 x 24.6 mm3, has the characteristics of lightweight, modularization and digitalization. The interface design of the PC software uses the combination plane chart with track line to receive the attitude information and display. Attitude calculation uses the Kalman filtering algorithm to improve the measurement accuracy of the module in the dynamic environment.
NASA Technical Reports Server (NTRS)
Haber, Benjamin M.; Green, Joseph J.
2010-01-01
The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.
A Unified Approach to Model-Based Planning and Execution
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)
2000-01-01
Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.
NASA Astrophysics Data System (ADS)
Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.
2018-03-01
Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.
Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network
NASA Astrophysics Data System (ADS)
Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.
2011-12-01
The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing procedures, the nonlinloc algorithm was implemented for manual and automatic locations using 1D and 3D velocity models; plugins for improved automatic phase picking and Ml computation were developed; and the graphical user interface for manual review was extended (including pick uncertainty definition; first motion focal mechanisms; interactive review of station magnitude waveforms; full inclusion of strong motion data). SC3 locations are fully compatible with those derived from the existing in-house processing tools and are stored in a database derived from the QuakeML data model. The database is shared with the SED alerting software, which merges origins from both SC3 and external sources in realtime and handles the alerting procedure. With the monitoring software being transitioned to SeisComp3, acquisition, archival and dissemination of SED waveform data now conforms to the seedlink and ArcLink protocols and continuous archives can be accessed via SED and all EIDA (European Integrated Data Archives) web-sites. Further, a SC3 module for waveform parameterisation has been developed, allowing rapid computation of peak values of ground motion and other engineering parameters within minutes of a new event. An output of this module is USGS ShakeMap XML. n minutes of a new event. An output of this module is USGS ShakeMap XML.
Embedded C Programming: A Practical Course Introducing Programmable Microprocessors
ERIC Educational Resources Information Center
Laverty, David M.; Milliken, Jonny; Milford, Matthew; Cregan, Michael
2012-01-01
This paper presents a new laboratory-based module for embedded systems teaching, which addresses the current lack of consideration for the link between hardware development, software implementation, course content and student evaluation in a laboratory environment. The course introduces second year undergraduate students to the interface between…
Using Microcomputers Interactively in Large Classrooms.
ERIC Educational Resources Information Center
Bowman, Barbara E.; Ellsworth, Randy
In 1980, Wichita State University received a grant to introduce microcomputers as interactive teaching tools in large science classrooms. Through this grant, 18 faculty in 11 departments developed software modules illustrating concepts that are often difficult to teach by usual lecture methods. To determine whether the use of microcomputers in…
Tools and Methods for Teaching Informatics at School: An Advanced Logo Course.
ERIC Educational Resources Information Center
Nikolov, Rumen
1992-01-01
Describes a course in educational informatics for preservice teachers and students in educational software development that emphasizes the use of LOGO, and summarizes course modules that cover tools and methods for teaching informatics, informatics curriculum design, introducing the basic notions of informatics, integrating informatics into the…
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien
2017-08-01
Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.
Signal processing and general purpose data acquisition system for on-line tomographic measurements
NASA Astrophysics Data System (ADS)
Murari, A.; Martin, P.; Hemming, O.; Manduchi, G.; Marrelli, L.; Taliercio, C.; Hoffmann, A.
1997-01-01
New analog signal conditioning electronics and data acquisition systems have been developed for the soft x-ray and bolometric tomography diagnostic in the reverse field pinch experiment (RFX). For the soft x-ray detectors the analog signal processing includes a fully differential current to voltage conversion, with up to a 200 kHz bandwidth. For the bolometers, a 50 kHz carrier frequency amplifier allows a maximum bandwidth of 10 kHz. In both cases the analog signals are digitized with a 1 MHz sampling rate close to the diagnostic and are transmitted via a transparent asynchronous xmitter/receiver interface (TAXI) link to purpose built Versa Module Europa (VME) modules which perform data acquisition. A software library has been developed for data preprocessing and tomographic reconstruction. It has been written in C language and is self-contained, i.e., no additional mathematical library is required. The package is therefore platform-free: in particular it can perform online analysis in a real-time application, such as continuous display and feedback, and is portable for long duration fusion or other physical experiments. Due to the modular organization of the library, new preprocessing and analysis modules can be easily integrated in the environment. This software is implemented in RFX over three different platforms: open VMS, digital Unix, and VME 68040 CPU.
NA-42 TI Shared Software Component Library FY2011 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.
The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessiblemore » by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed by PNNL is the development and continued maintenance of the NA-42 TI Software Development Questionnaire. This questionnaire is intended to help software development teams working under NA-42 TI in documenting their development activities. When sufficiently completed, the questionnaire illustrates that the software development activities recorded incorporate significant aspects of the software engineering lifecycle. The questionnaire template is updated as comments are received from NA-42 and/or its development teams and revised versions distributed to those using the questionnaire. PNNL also maintains a list of questionnaire recipients. The blank questionnaire template, the AVID and AMS software being developed, and the completed AVID AMS specific questionnaire are being used as the initial content to be established in the TI Component Library. This report summarizes the approach taken to identify requirements, search for and evaluate technologies, and the approach taken for installation of the software needed to host the component library. Additionally, it defines the process by which users request access for the contribution and retrieval of library content.« less
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
NASA Technical Reports Server (NTRS)
Crane, Robert K.; Wang, Xuhe; Westenhaver, David
1996-01-01
The preprocessing software manual describes the Actspp program originally developed to observe and diagnose Advanced Communications Technology Satellite (ACTS) propagation terminal/receiver problems. However, it has been quite useful for automating the preprocessing functions needed to convert the terminal output to useful attenuation estimates. Prior to having data acceptable for archival functions, the individual receiver system must be calibrated and the power level shifts caused by ranging tone modulation must be received. Actspp provides three output files: the daylog, the diurnal coefficient file, and the file that contains calibration information.
Initiating Formal Requirements Specifications with Object-Oriented Models
NASA Technical Reports Server (NTRS)
Ampo, Yoko; Lutz, Robyn R.
1994-01-01
This paper reports results of an investigation into the suitability of object-oriented models as an initial step in developing formal specifications. The requirements for two critical system-level software modules were used as target applications. It was found that creating object-oriented diagrams prior to formally specifying the requirements enhanced the accuracy of the initial formal specifications and reduced the effort required to produce them. However, the formal specifications incorporated some information not found in the object-oriented diagrams, such as higher-level strategy or goals of the software.
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.
1992-01-01
This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.
Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF
NASA Astrophysics Data System (ADS)
Mar, Jeich; Kuo, Chi-Cheng; Wu, Shin-Ru; Lin, You-Rong
The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.
Interferometric millimeter wave and THz wave doppler radar
Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas
2015-08-11
A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.
2013-01-01
This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.
Fan, Shounian; Jiang, Yi; Jiang, Chenxi; Yang, Tianhe; Zhang, Chengyun; Liu, Junshi; Wu, Qiang; Zheng, Yaxi; Liu, Xiaoqiao
2004-10-01
Polygraph has become a necessary instrument in interventional cardiology and fundamental research of medicine up to the present. In this study, a LabView development system (DS) (developed by NI in U.S.) used as software platform, a DAQ data acquisition module and universal computer used as hardware platform, were creatively coupled with our self-made low noise multi-channels preamplifier to develop Multi-channels electrocardiograph. The device possessed the functions such as real time display of physiological process, digit highpass and lowpass, 50Hz filtered and gain adjustment, instant storing, random playback and printing, and process control stimulation. Besides, it was small-sized, economically practical and easy to operate. It could advance the spread of cardiac intervention treatment in hospitals.
NASA Technical Reports Server (NTRS)
Psiaki, Mark L. (Inventor); Kintner, Jr., Paul M. (Inventor); Ledvina, Brent M. (Inventor); Powell, Steven P. (Inventor)
2007-01-01
A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.
NASA Technical Reports Server (NTRS)
Psiaki, Mark L. (Inventor); Ledvina, Brent M. (Inventor); Powell, Steven P. (Inventor); Kintner, Jr., Paul M. (Inventor)
2006-01-01
A real-time software receiver that executes on a general purpose processor. The software receiver includes data acquisition and correlator modules that perform, in place of hardware correlation, baseband mixing and PRN code correlation using bit-wise parallelism.
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Technical Reports Server (NTRS)
1992-01-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
An expert system for integrated structural analysis and design optimization for aerospace structures
NASA Astrophysics Data System (ADS)
1992-04-01
The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and design optimization tasks in the integrated aerospace structural design process. These expert systems were developed to work in conjunction with procedural finite element structural analysis and design optimization modules (developed in-house at SAT, Inc.). The complete software, AutoDesign, so developed, can be used for integrated 'intelligent' structural analysis and design optimization. The software was beta-tested at a variety of companies, used by a range of engineers with different levels of background and expertise. Based on the feedback obtained by such users, conclusions were developed and are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2014-01-10
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox – “Version 1.0” was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attackmore » analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release “Version 2.0” includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes – both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the “user-friendliness” of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE Performance Assessment (PA) community.« less
Development of a UAS-based survey module for ecological research
NASA Astrophysics Data System (ADS)
Meng, R.; McMahon, A. M.; Serbin, S.
2016-12-01
The development of small unmanned aircraft system (UAS, < 25 kg) techniques is enabling measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Given the potential for improved mission safety, high revisit frequency, and reduced operation cost, UAS platforms are of particular interest in the development for scientific research. Our group is developing a UAS-based survey module for ecological research (e.g. scaling and mapping plant functional traits). However, in addition to technical challenges, the complicated regulations required to operate a UAS for research (e.g. Certificates of Waiver or Authorization, COA, for each location) and complying with Federal Aviation Administration (FAA) restrictions, which still actively evolving, can have significant impacts on research and schedules. Here we briefly discuss our lessons-learned related to FAA registration and COA procedures, requirements, and regulations in the US, accompanied by our hand-on experiences (our group currently have two COA granted and three more under review by FAA). We then introduce our design for a modular data collection software framework. This framework is open source (available on GitHub) and cross-platform compatible (written in Python), providing flexibility in development and deployment hardware configurations. In addition our framework uses a central module to coordinate the data acquisition, synchronization with the UAS control system and data storage through a common interface and interchangeable, hardware specific software modules. Utilizing this structure and a common data transfer format, the system can be easily reconfigured to meet the needs of a specific platform or operation, eliminating the need to redevelop acquisition systems for specific instrument/platform configurations. On-site data measurement tests of UAS-based survey module were conducted and data quality from multi-sensors (e.g. a high-resolution digital camera, spectroradiometer, and a thermal infrared camera) was reported. Finally, the results of this prototype study show that the UAS techniques can be used to develop a low-cost alternative for ecological research, but much effort is still needed to carefully deal with flight regulations and integrate off-the-shelf instrumentation, by the practitioner.
Research on Control System of Three - phase Brushless DC Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Wang, Zhiwei; Jin, Hai; Guo, Jie; Su, Jie; Wang, Miao
2017-12-01
In order to study the three-phase brushless motor control system of electric vehicle, Freescale9S12XS128 chip is used as the control core, and the power MOSFET is used as the inverter device. The software is compiled by Codewarrior software. The speed control link adopts open-loop control, and the control chip collects the external sensor signal voltage Change control PWM signal output control three-phase brushless DC motor speed. The whole system consists of Hall position detection module, current detection module, power drive module and voltage detection module. The basic functions of three-phase brushless DC motor drive control are realized.
Long distance education for croatian nurses with open source software.
Radenovic, Aleksandar; Kalauz, Sonja
2006-01-01
Croatian Nursing Informatics Association (CNIA) has been established as result of continuing work on promoting nursing informatics in Croatia. Main goals of CNIA are promoting nursing informatics and education of nurses about nursing informatics and using information technology in nursing process. CNIA in start of work is developed three courses from nursing informatics all designed with support of long distance education with open source software. Courses are: A - 'From Data to Wisdom', B - 'Introduction to Nursing Informatics' and C - 'Nursing Informatics I'. Courses A and B are obligatory for C course. Technology used to implement these online courses is based on the open source Learning Management System (LMS), Claroline, free online collaborative learning platform. Courses are divided in two modules/days. First module/day participants have classical approach to education and second day with E-learning from home. These courses represent first courses from nursing informatics' and first long distance education for nurses also.
General software design for multisensor data fusion
NASA Astrophysics Data System (ADS)
Zhang, Junliang; Zhao, Yuming
1999-03-01
In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.
Validation of a Custom-made Software for DQE Assessment in Mammography Digital Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayala-Dominguez, L.; Perez-Ponce, H.; Brandan, M. E.
2010-12-07
This works presents the validation of a custom-made software, designed and developed in Matlab, intended for routine evaluation of detective quantum efficiency DQE, according to algorithms described in the IEC 62220-1-2 standard. DQE, normalized noise power spectrum NNPS and pre-sampling modulation transfer function MTF were calculated from RAW images from a GE Senographe DS (FineView disabled) and a Siemens Novation system. Calculated MTF is in close agreement with results obtained with alternative codes: MTF lowbar tool (Maidment), ImageJ plug-in (Perez-Ponce) and MIQuaELa (Ayala). Overall agreement better than {approx_equal}90% was found in MTF; the largest differences were observed at frequencies closemore » to the Nyquist limit. For the measurement of NNPS and DQE, agreement is similar to that obtained in the MTF. These results suggest that the developed software can be used with confidence for image quality assessment.« less
The Kepler Science Data Processing Pipeline Source Code Road Map
NASA Technical Reports Server (NTRS)
Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima;
2016-01-01
We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.
Modified timing module for Loran-C receiver
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1983-01-01
Full hardware documentation is provided for the circuit card implementing the Loran-C timing loop, and the receiver event-mark and re-track functions. This documentation is to be combined with overall receiver drawings to form the as-built record for this device. Computer software to support this module is integrated with the remainder of the receiver software, in the LORPROM program.
A new software on TUG-T60 autonomous telescope for astronomical transient events
NASA Astrophysics Data System (ADS)
Dindar, Murat; Helhel, Selçuk; Esenoğlu, Hasan; Parmaksızoğlu, Murat
2015-03-01
Robotic telescopes usually run under the control of a scheduler, which provides high-level control by selecting astronomical targets for observation. TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory (TUG)-T60 Robotic Telescope is controlled by open-source OCAAS software, formally named Talon. This study introduces new software which was designed for Talon to catch GRB, GAIA and transient alerts. The new GRB software module (daemon process) alertd is running with all other modules of Talon such as telescoped; focus, dome; camerad and telrun. Maximum slew velocity and acceleration limits of the T60 telescope are enough fast for the GRB and transient observations.
Experiences with a generator tool for building clinical application modules.
Kuhn, K A; Lenz, R; Elstner, T; Siegele, H; Moll, R
2003-01-01
To elaborate main system characteristics and relevant deployment experiences for the health information system (HIS) Orbis/OpenMed, which is in widespread use in Germany, Austria, and Switzerland. In a deployment phase of 3 years in a 1.200 bed university hospital, where the system underwent significant improvements, the system's functionality and its software design have been analyzed in detail. We focus on an integrated CASE tool for generating embedded clinical applications and for incremental system evolution. We present a participatory and iterative software engineering process developed for efficient utilization of such a tool. The system's functionality is comparable to other commercial products' functionality; its components are embedded in a vendor-specific application framework, and standard interfaces are being used for connecting subsystems. The integrated generator tool is a remarkable feature; it became a key factor of our project. Tool generated applications are workflow enabled and embedded into the overall data base schema. Rapid prototyping and iterative refinement are supported, so application modules can be adapted to the users' work practice. We consider tools supporting an iterative and participatory software engineering process highly relevant for health information system architects. The potential of a system to continuously evolve and to be effectively adapted to changing needs may be more important than sophisticated but hard-coded HIS functionality. More work will focus on HIS software design and on software engineering. Methods and tools are needed for quick and robust adaptation of systems to health care processes and changing requirements.
NASA Astrophysics Data System (ADS)
Ames, D. P.
2013-12-01
As has been seen in other informatics fields, well-documented and appropriately licensed open source software tools have the potential to significantly increase both opportunities and motivation for inter-institutional science and technology collaboration. The CUAHSI HIS (and related HydroShare) projects have aimed to foster such activities in hydrology resulting in the development of many useful community software components including the HydroDesktop software application. HydroDesktop is an open source, GIS-based, scriptable software application for discovering data on the CUAHSI Hydrologic Information System and related resources. It includes a well-defined plugin architecture and interface to allow 3rd party developers to create extensions and add new functionality without requiring recompiling of the full source code. HydroDesktop is built in the C# programming language and uses the open source DotSpatial GIS engine for spatial data management. Capabilities include data search, discovery, download, visualization, and export. An extension that integrates the R programming language with HydroDesktop provides scripting and data automation capabilities and an OpenMI plugin provides the ability to link models. Current revision and updates to HydroDesktop include migration of core business logic to cross platform, scriptable Python code modules that can be executed in any operating system or linked into other software front-end applications.
Surveillance and reconnaissance ground system architecture
NASA Astrophysics Data System (ADS)
Devambez, Francois
2001-12-01
Modern conflicts induces various modes of deployment, due to the type of conflict, the type of mission, and phase of conflict. It is then impossible to define fixed architecture systems for surveillance ground segments. Thales has developed a structure for a ground segment based on the operational functions required, and on the definition of modules and networks. Theses modules are software and hardware modules, including communications and networks. This ground segment is called MGS (Modular Ground Segment), and is intended for use in airborne reconnaissance systems, surveillance systems, and U.A.V. systems. Main parameters for the definition of a modular ground image exploitation system are : Compliance with various operational configurations, Easy adaptation to the evolution of theses configurations, Interoperability with NATO and multinational forces, Security, Multi-sensors, multi-platforms capabilities, Technical modularity, Evolutivity Reduction of life cycle cost The general performances of the MGS are presented : type of sensors, acquisition process, exploitation of images, report generation, data base management, dissemination, interface with C4I. The MGS is then described as a set of hardware and software modules, and their organization to build numerous operational configurations. Architectures are from minimal configuration intended for a mono-sensor image exploitation system, to a full image intelligence center, for a multilevel exploitation of multi-sensor.
Liaw, Siaw-Teng; Deveny, Elizabeth; Morrison, Iain; Lewis, Bryn
2006-09-01
Using a factorial vignette survey and modeling methodology, we developed clinical and information models - incorporating evidence base, key concepts, relevant terms, decision-making and workflow needed to practice safely and effectively - to guide the development of an integrated rule-based knowledge module to support prescribing decisions in asthma. We identified workflows, decision-making factors, factor use, and clinician information requirements. The Unified Modeling Language (UML) and public domain software and knowledge engineering tools (e.g. Protégé) were used, with the Australian GP Data Model as the starting point for expressing information needs. A Web Services service-oriented architecture approach was adopted within which to express functional needs, and clinical processes and workflows were expressed in the Business Process Execution Language (BPEL). This formal analysis and modeling methodology to define and capture the process and logic of prescribing best practice in a reference implementation is fundamental to tackling deficiencies in prescribing decision support software.
Plant-Level Modeling and Simulation of Used Nuclear Fuel Dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Almeida, Valmor F.
2012-09-07
Plant-level modeling and simulation of a used nuclear fuel prototype dissolver is presented. Emphasis is given in developing a modeling and simulation approach to be explored by other processes involved in the recycle of used fuel. The commonality concepts presented in a previous communication were used to create a model and realize its software module. An initial model was established based on a theory of chemical thermomechanical network transport outlined previously. A software module prototype was developed with the required external behavior and internal mathematical structure. Results obtained demonstrate the generality of the design approach and establish an extensible mathematicalmore » model with its corresponding software module for a wide range of dissolvers. Scale up numerical tests were made varying the type of used fuel (breeder and light-water reactors) and the capacity of dissolution (0.5 t/d to 1.7 t/d). These tests were motivated by user requirements in the area of nuclear materials safeguards. A computer module written in high-level programing languages (MATLAB and Octave) was developed, tested, and provided as open-source code (MATLAB) for integration into the Separations and Safeguards Performance Model application in development at Sandia National Laboratories. The modeling approach presented here is intended to serve as a template for a rational modeling of all plant-level modules. This will facilitate the practical application of the commonality features underlying the unifying network transport theory proposed recently. In addition, by example, this model describes, explicitly, the needed data from sub-scale models, and logical extensions for future model development. For example, from thermodynamics, an off-line simulation of molecular dynamics could quantify partial molar volumes for the species in the liquid phase; this simulation is currently at reach for high-performance computing. From fluid mechanics, a hold-up capacity function is needed for the dissolver device; this simulation is currently at reach for computational fluid mechanics given the existing CAD geometry. From chemical transport phenomena, a simulation of the particle-scale dissolution front is needed to derive an improved solid dissolution kinetics law by predicting the local surface area change; an example was provided in this report. In addition, the associated reaction mechanisms for dissolution are presently largely untested and simplified, hence even a parallel experimental program in reaction kinetics is needed to support modeling and simulation efforts. Last but not least, a simple account of finite rates of solid feed and transfer can be readily introduced via a coupled delayed model. These are some of the theoretical benefits of a rational plant-level modeling approach which guides the development of smaller length and time scale modeling. Practical, and other theoretical benefits have been presented on a previous report.« less
NASA Astrophysics Data System (ADS)
Maqueda, A.; Renard, P.; Cornaton, F. J.
2014-12-01
Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.
Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.
1992-01-01
This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.
The United States Environmental Protection Agency (EPA) is developing a comprehensive environmental exposure and risk analysis software system for agency-wide application using the methodology of a Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) model. This sof...
Health Information System Simulation. Curriculum Improvement Project. Region II.
ERIC Educational Resources Information Center
Anderson, Beth H.; Lacobie, Kevin
This volume is one of three in a self-paced computer literacy course that gives allied health students a firm base of knowledge concerning computer usage in the hospital environment. It also develops skill in several applications software packages. This volume contains five self-paced modules that allow students to interact with a health…
"M" to "Moonless": Lexical Databases in Development.
ERIC Educational Resources Information Center
Beam, Paul; Huntley, Frank
This paper describes the characteristics of lexicographic software programs used in a module on Alexander Pope's "The Rape of the Lock," a major component of a course on computer-assisted learning (CAL) at the University of Waterloo in Ontario, Canada. Two of the databases are specific to that school and are small, individualized, and…
Diagnostic Testing Package DX v 2.0 Technical Specification. Methodology Project.
ERIC Educational Resources Information Center
McArthur, David
This paper contains the technical specifications, schematic diagrams, and program printout for a computer software package for the development and administration of diagnostic tests. The second version of the Diagnostic Testing Package DX consists of a PASCAL-based set of modules located in two main programs: (1) EDITTEST creates, modifies, and…
2017-01-01
The U.S. Energy Information Administration's Short-Term Energy Outlook (STEO) produces monthly projections of energy supply, demand, trade, and prices over a 13-24 month period. Every January, the forecast horizon is extended through December of the following year. The STEO model is an integrated system of econometric regression equations and identities that link data on the various components of the U.S. energy industry together in order to develop consistent forecasts. The regression equations are estimated and the STEO model is solved using the EViews 9.5 econometric software package from IHS Global Inc. The model consists of various modules specific to each energy resource. All modules provide projections for the United States, and some modules provide more detailed forecasts for different regions of the country.
Integrated restructurable flight control system demonstration results
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1987-01-01
The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.
Preliminary Development of an Object-Oriented Optimization Tool
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2011-01-01
The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented.
Animated software training via the internet: lessons learned
NASA Technical Reports Server (NTRS)
Scott, C. J.
2000-01-01
The Mission Execution and Automation Section, Information Technologies and Software Systems Division at the Jet Propulsion Laboratory, recently delivered an animated software training module for the TMOD UPLINK Consolidation Task for operator training at the Deep Space Network.
Viennas, Emmanouil; Komianou, Angeliki; Mizzi, Clint; Stojiljkovic, Maja; Mitropoulou, Christina; Muilu, Juha; Vihinen, Mauno; Grypioti, Panagiota; Papadaki, Styliani; Pavlidis, Cristiana; Zukic, Branka; Katsila, Theodora; van der Spek, Peter J.; Pavlovic, Sonja; Tzimas, Giannis; Patrinos, George P.
2017-01-01
FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leading mostly to monogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnic mutation databases, all built around Microsoft's PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The abovementioned updates further enhance the impact of FINDbase, as a key resource for Genomic Medicine applications. PMID:27924022
NASA Astrophysics Data System (ADS)
Dubecký, F.; Perd'ochová, A.; Ščepko, P.; Zat'ko, B.; Sekerka, V.; Nečas, V.; Sekáčová, M.; Hudec, M.; Boháček, P.; Huran, J.
2005-07-01
The present work describes a portable digital X-ray scanner based on bulk undoped semi-insulating (SI) GaAs monolithic strip line detectors. The scanner operates in "quantum" imaging mode ("single photon counting"), with potential improvement of the dynamic range in contrast of the observed X-ray images. The "heart" of the scanner (detection unit) is based on SI GaAs strip line detectors. The measured detection efficiency of the SI GaAs detector reached a value of over 60 % (compared to the theoretical one of ˜75 %) for the detection of 60 keV photons at a reverse bias of 200 V. The read-out electronics consists of 20 modules fabricated using a progressive SMD technology with automatic assembly of electronic devices. Signals from counters included in the digital parts of the modules are collected in a PC via a USB port and evaluated by custom developed software allowing X-ray image reconstruction. The collected data were used for the creation of the first X-ray "quantum" images of various test objects using the imaging software developed.
Development of a 32-bit UNIX-based ELAS workstation
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.
1987-01-01
A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.
Reliability and engineering sciences area. Materials research: Single junction thin film
NASA Technical Reports Server (NTRS)
1986-01-01
A test bench was designed and fabricated for the purpose of improving control of hot-spot test accuracy. Electrochemical corrosion research focused on corrosion mechanisms to which both crystalline and a-Si modules may be subjected in central station applications. A variety of cells and several designs were subjected to accelerated stress tests. Humiditiy degradation rates were determined and key electrochemical failure mechanisms were identified. Software was developed for the prediction of power loss resulting from open circuits in an array field of a-Si modules. Failure analysis was continued on the four ARCO Solar Genesis modules. The interactions of water on the silicon module was examined. An autocatalytic photooxidation model was proposed. The reliability and durability of bonding materials and electrical insulation were also studied.
Huang, Rong; He, Hongmei; Pi, Xitian; Diao, Ziji; Zhao, Suwen
2014-06-01
Non-drug treatment of hypertension has become a research hotspot, which might overcome the heavy economic burden and side effects of drug treatment for the patients. Because of the good treatment effect and convenient operation, a new treatment based on slow breathing training is increasingly becoming a kind of physical therapy for hypertension. This paper explains the principle of hypertension treatment based on slow breathing training method, and introduces the overall structure of the portable blood pressure controlling instrument, including breathing detection circuit, the core control module, audio module, memory module and man-machine interaction module. We give a brief introduction to the instrument and the software in this paper. The prototype testing results showed that the treatment had a significant effect on controlling the blood pressure.
Development and preliminary verification of the 3D core neutronic code: COCO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H.; Mo, K.; Li, W.
As the recent blooming economic growth and following environmental concerns (China)) is proactively pushing forward nuclear power development and encouraging the tapping of clean energy. Under this situation, CGNPC, as one of the largest energy enterprises in China, is planning to develop its own nuclear related technology in order to support more and more nuclear plants either under construction or being operation. This paper introduces the recent progress in software development for CGNPC. The focus is placed on the physical models and preliminary verification results during the recent development of the 3D Core Neutronic Code: COCO. In the COCO code,more » the non-linear Green's function method is employed to calculate the neutron flux. In order to use the discontinuity factor, the Neumann (second kind) boundary condition is utilized in the Green's function nodal method. Additionally, the COCO code also includes the necessary physical models, e.g. single-channel thermal-hydraulic module, burnup module, pin power reconstruction module and cross-section interpolation module. The preliminary verification result shows that the COCO code is sufficient for reactor core design and analysis for pressurized water reactor (PWR). (authors)« less
AF-GEOSpace Version 2.0: Space Environment Software Products for 2002
NASA Astrophysics Data System (ADS)
Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.
2002-05-01
AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric scintillation, and shock propagation models. New application modules for estimating linear energy transfer (LET) and single event upset (SEU) rates in solid-state devices, and graphic modules for visualizing radar fans, communication domes, and satellite detector cones and links were added. Automated FTP scripts permitted users to update their global input parameter set directly from NOAA/SEC. What?s New? Version 2.0 includes the first true dynamic run capabilities and offers new and enhanced graphical and data visualization tools such as 3-D volume rendering and eclipse umbra and penumbra determination. Animations of all model results can now be displayed together in all dimensions. There is a new realistic day-to-day ionospheric scintillation simulation generator (IONSCINT), an upgrade to the WBMOD scintillation code, a simplified HF ionospheric ray tracing module, and applications built on the NASA AE-8 and AP-8 radiation belt models. User-generated satellite data sets can now be visualized along with their orbital ephemeris. A prototype tool for visualizing MHD model results stored in structured grids provides a hint of where future space weather model development efforts are headed. A new graphical user interface (GUI) with improved module tracking and renaming features greatly simplifies software operation. AF-GEOSpace is distributed by the Space Weather Center of Excellence in the Space Vehicles Directorate of AFRL. Recently released for WindowsNT/2000/XP, versions for UNIX and LINUX operating systems will follow shortly. To obtain AF-GEOSpace Version 2.0, please send an e-mail request to the first author.
The development of a post-test diagnostic system for rocket engines
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.
1991-01-01
An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.
Bernal-Rusiel, Jorge L; Rannou, Nicolas; Gollub, Randy L; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E; Pienaar, Rudolph
2017-01-01
In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView , a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.
Dataworks for GNSS: Software for Supporting Data Sharing and Federation of Geodetic Networks
NASA Astrophysics Data System (ADS)
Boler, F. M.; Meertens, C. M.; Miller, M. M.; Wier, S.; Rost, M.; Matykiewicz, J.
2015-12-01
Continuously-operating Global Navigation Satellite System (GNSS) networks are increasingly being installed globally for a wide variety of science and societal applications. GNSS enables Earth science research in areas including tectonic plate interactions, crustal deformation in response to loading by tectonics, magmatism, water and ice, and the dynamics of water - and thereby energy transfer - in the atmosphere at regional scale. The many individual scientists and organizations that set up GNSS stations globally are often open to sharing data, but lack the resources or expertise to deploy systems and software to manage and curate data and metadata and provide user tools that would support data sharing. UNAVCO previously gained experience in facilitating data sharing through the NASA-supported development of the Geodesy Seamless Archive Centers (GSAC) open source software. GSAC provides web interfaces and simple web services for data and metadata discovery and access, supports federation of multiple data centers, and simplifies transfer of data and metadata to long-term archives. The NSF supported the dissemination of GSAC to multiple European data centers forming the European Plate Observing System. To expand upon GSAC to provide end-to-end, instrument-to-distribution capability, UNAVCO developed Dataworks for GNSS with NSF funding to the COCONet project, and deployed this software on systems that are now operating as Regional GNSS Data Centers as part of the NSF-funded TLALOCNet and COCONet projects. Dataworks consists of software modules written in Python and Java for data acquisition, management and sharing. There are modules for GNSS receiver control and data download, a database schema for metadata, tools for metadata handling, ingest software to manage file metadata, data file management scripts, GSAC, scripts for mirroring station data and metadata from partner GSACs, and extensive software and operator documentation. UNAVCO plans to provide a cloud VM image of Dataworks that would allow standing up a Dataworks-enabled GNSS data center without requiring upfront investment in server hardware. By enabling data creators to organize their data and metadata for sharing, Dataworks helps scientists expand their data curation awareness and responsibility, and enhances data access for all.
Lobos, Gustavo A.; Poblete-Echeverría, Carlos
2017-01-01
This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules. PMID:28119705
Lobos, Gustavo A; Poblete-Echeverría, Carlos
2016-01-01
This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules.
Chen, Connie; Haddad, David; Selsky, Joshua; Hoffman, Julia E; Kravitz, Richard L; Estrin, Deborah E; Sim, Ida
2012-08-09
Mobile phones and devices, with their constant presence, data connectivity, and multiple intrinsic sensors, can support around-the-clock chronic disease prevention and management that is integrated with daily life. These mobile health (mHealth) devices can produce tremendous amounts of location-rich, real-time, high-frequency data. Unfortunately, these data are often full of bias, noise, variability, and gaps. Robust tools and techniques have not yet been developed to make mHealth data more meaningful to patients and clinicians. To be most useful, health data should be sharable across multiple mHealth applications and connected to electronic health records. The lack of data sharing and dearth of tools and techniques for making sense of health data are critical bottlenecks limiting the impact of mHealth to improve health outcomes. We describe Open mHealth, a nonprofit organization that is building an open software architecture to address these data sharing and "sense-making" bottlenecks. Our architecture consists of open source software modules with well-defined interfaces using a minimal set of common metadata. An initial set of modules, called InfoVis, has been developed for data analysis and visualization. A second set of modules, our Personal Evidence Architecture, will support scientific inferences from mHealth data. These Personal Evidence Architecture modules will include standardized, validated clinical measures to support novel evaluation methods, such as n-of-1 studies. All of Open mHealth's modules are designed to be reusable across multiple applications, disease conditions, and user populations to maximize impact and flexibility. We are also building an open community of developers and health innovators, modeled after the open approach taken in the initial growth of the Internet, to foster meaningful cross-disciplinary collaboration around new tools and techniques. An open mHealth community and architecture will catalyze increased mHealth efficiency, effectiveness, and innovation.
Chen, Connie; Haddad, David; Selsky, Joshua; Hoffman, Julia E; Kravitz, Richard L; Estrin, Deborah E
2012-01-01
Mobile phones and devices, with their constant presence, data connectivity, and multiple intrinsic sensors, can support around-the-clock chronic disease prevention and management that is integrated with daily life. These mobile health (mHealth) devices can produce tremendous amounts of location-rich, real-time, high-frequency data. Unfortunately, these data are often full of bias, noise, variability, and gaps. Robust tools and techniques have not yet been developed to make mHealth data more meaningful to patients and clinicians. To be most useful, health data should be sharable across multiple mHealth applications and connected to electronic health records. The lack of data sharing and dearth of tools and techniques for making sense of health data are critical bottlenecks limiting the impact of mHealth to improve health outcomes. We describe Open mHealth, a nonprofit organization that is building an open software architecture to address these data sharing and “sense-making” bottlenecks. Our architecture consists of open source software modules with well-defined interfaces using a minimal set of common metadata. An initial set of modules, called InfoVis, has been developed for data analysis and visualization. A second set of modules, our Personal Evidence Architecture, will support scientific inferences from mHealth data. These Personal Evidence Architecture modules will include standardized, validated clinical measures to support novel evaluation methods, such as n-of-1 studies. All of Open mHealth’s modules are designed to be reusable across multiple applications, disease conditions, and user populations to maximize impact and flexibility. We are also building an open community of developers and health innovators, modeled after the open approach taken in the initial growth of the Internet, to foster meaningful cross-disciplinary collaboration around new tools and techniques. An open mHealth community and architecture will catalyze increased mHealth efficiency, effectiveness, and innovation. PMID:22875563
Design and implement of pack filter module base on embedded firewall
NASA Astrophysics Data System (ADS)
Tian, Libo; Wang, Chen; Yang, Shunbo
2011-10-01
In the traditional security solution conditions, software firewall cannot intercept and respond the invasion before being attacked. And because of the high cost, the hardware firewall does not apply to the security strategy of the end nodes, so we have designed a kind of solution of embedded firewall with hardware and software. With ARM embedding Linux operating system, we have designed packet filter module and intrusion detection module to implement the basic function of firewall. Experiments and results show that that firewall has the advantages of low cost, high processing speed, high safety and the application of the computer terminals. This paper focuses on packet filtering module design and implementation.
Situation Awareness and Levels of Automation
NASA Technical Reports Server (NTRS)
Kaber, David B.
1999-01-01
During the first year of this project, a taxonomy of theoretical levels of automation (LOAs) was applied to the advanced commercial aircraft by categorizing actual modes of McDonald Douglas MD-11 autoflight system operation in terms of the taxonomy. As well, high LOAs included in the taxonomy (e.g., supervisory control) were modeled in the context of MD-11 autoflight systems through development of a virtual flight simulator. The flight simulator was an integration of a re-configurable simulator developed by the Georgia Institute Technology and new software prototypes of autoflight system modules found in the MD-11 cockpit. In addition to this work, a version of the Situation Awareness Global Assessment Technique (SAGAT) was developed for application to commercial piloting tasks. A software package was developed to deliver the SAGAT and was integrated with the virtual flight simulator.
NASA Technical Reports Server (NTRS)
Freeman, Kenneth A.; Walsh, Rick; Weeks, David J.
1988-01-01
Space Station issues in fault management are discussed. The system background is described with attention given to design guidelines and power hardware. A contractually developed fault management system, FRAMES, is integrated with the energy management functions, the control switchgear, and the scheduling and operations management functions. The constraints that shaped the FRAMES system and its implementation are considered.
Apollo experience report guidance and control systems: Lunar module abort guidance system
NASA Technical Reports Server (NTRS)
Kurten, P. M.
1975-01-01
The history of a unique development program that produced an operational fixed guidance system of inertial quality is presented. Each phase of development, beginning with requirement definition and concluding with qualification and testing, is addressed, and developmental problems are emphasized. Software generation and mission operations are described, and specifications for the inertial reference unit are included, as are flight performance results. Significant program observations are noted.
The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview
2010-01-20
backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of
A Gigabit-per-Second Ka-Band Demonstration Using a Reconfigurable FPGA Modulator
NASA Technical Reports Server (NTRS)
Lee, Dennis; Gray, Andrew A.; Kang, Edward C.; Tsou, Haiping; Lay, Norman E.; Fong, Wai; Fisher, Dave; Hoy, Scott
2005-01-01
Gigabit-per-second communications have been a desired target for future NASA Earth science missions, and for potential manned lunar missions. Frequency bandwidth at S-band and X-band is typically insufficient to support missions at these high data rates. In this paper, we present the results of a 1 Gbps 32-QAM end-to-end experiment at Ka-band using a reconfigurable Field Programmable Gate Array (FPGA) baseband modulator board. Bit error rate measurements of the received signal using a software receiver demonstrate the feasibility of using ultra-high data rates at Ka-band, although results indicate that error correcting coding and/or modulator predistortion must be implemented in addition. Also, results of the demonstration validate the low-cost, MOS-based reconfigurable modulator approach taken to development of a high rate modulator, as opposed to more expensive ASIC or pure analog approaches.
Kavadella, A; Kossioni, A E; Tsiklakis, K; Cowpe, J; Bullock, A; Barnes, E; Bailey, S; Thomas, H; Thomas, R; Karaharju-Suvanto, T; Suomalainen, K; Kersten, H; Povel, E; Giles, M; Walmsley, D; Soboleva, U; Liepa, A; Akota, I
2013-05-01
To provide evidence-based and peer-reviewed recommendations for the development of dental continuing professional development (CPD) learning e-modules. The present recommendations are consensus recommendations of the DentCPD project team and were informed by a literature research, consultations from e-learning and IT expert, discussions amongst the participants attending a special interest group during the 2012 ADEE meeting, and feedback from the evaluation procedures of the exemplar e-module (as described in a companion paper within this Supplement). The main focus of these recommendations is on the courses and modules organised and offered by dental schools. E-modules for dental CPD, as well as for other health professionals' continuing education, have been implemented and evaluated for a number of years. Research shows that the development of e-modules is a team process, undertaken by academics, subject experts, pedagogists, IT and web designers, learning technologists and librarians. The e-module must have clear learning objectives (outcomes), addressing the learners' individual needs, and must be visually attractive, relevant, interactive, promoting critical thinking and providing feedback. The text, graphics and animations must support the objectives and enable the learning process by creating an attractive, easy to navigate and interactive electronic environment. Technology is usually a concern for learners and tutors; therefore, it must be kept simple and interoperable within different systems and software. The pedagogical and technological proficiency of educators is of paramount importance, yet remains a challenge in many instances. The development of e-courses and modules for dental CPD is an endeavour undertaken by a group of professionals. It must be underpinned by sound pedagogical and e-learning principles and must incorporate elements for effective visual learning and visual design and a simple, consistent technology. © 2013 John Wiley & Sons A/S.
Utility of coupling nonlinear optimization methods with numerical modeling software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.
1996-08-05
Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel, III, Fred; Hart, Brian; Hart, Derek
Umbra is a software package that has been in development at Sandia National Laboratories since 1995, under the name Umbra since 1997. Umbra is a software framework written in C++ and Tcl/Tk that has been applied to many operations, primarily dealing with robotics and simulation. Umbra executables are C++ libraries orchestrated with Tcl/Tk scripts. Two major feature upgrades occurred from 4.7 to 4.8 1. System Umbra Module with its own Update Graph within the C++ framework. 2. New terrain graph for fast line-of-sight calculations All else were minor updates such as later versions of Visual Studio, OpenSceneGraph and Boost.
KSC Space Station Operations Language (SSOL)
NASA Technical Reports Server (NTRS)
1985-01-01
The Space Station Operations Language (SSOL) will serve a large community of diverse users dealing with the integration and checkout of Space Station modules. Kennedy Space Center's plan to achieve Level A specification of the SSOL system, encompassing both its language and its automated support environment, is presented in the format of a briefing. The SSOL concept is a collection of fundamental elements that span languages, operating systems, software development, software tools and several user classes. The approach outlines a thorough process that combines the benefits of rapid prototyping with a coordinated requirements gathering effort, yielding a Level A specification of the SSOL requirements.
Experience with case tools in the design of process-oriented software
NASA Astrophysics Data System (ADS)
Novakov, Ognian; Sicard, Claude-Henri
1994-12-01
In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.
Access to CAMAC from VxWorks and UNIX in DART
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streets, J.; Meadows, J.; Moore, C.
1996-02-01
All High Energy Physics experiments at Fermilab include CAMAC modules which need to be read out for each triggered event. There is also a need to access CAMAC modules for control and monitoring of the experiment. As part of the DART Project the authors have developed a package of software for CAMAC access from UNIX and VxWorks platforms, with support for several hardware interfaces. The authors report on developments for the CES CBD8210 VME to parallel CAMAC, the Hytec VSD2992 VME to serial CAMAC and Jorway 411S SCSI to parallel and serial CAMAC branch drivers, and give a summary ofmore » the timings obtained.« less
Network command processing system overview
NASA Technical Reports Server (NTRS)
Nam, Yon-Woo; Murphy, Lisa D.
1993-01-01
The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.
Open access for ALICE analysis based on virtualization technology
NASA Astrophysics Data System (ADS)
Buncic, P.; Gheata, M.; Schutz, Y.
2015-12-01
Open access is one of the important leverages for long-term data preservation for a HEP experiment. To guarantee the usability of data analysis tools beyond the experiment lifetime it is crucial that third party users from the scientific community have access to the data and associated software. The ALICE Collaboration has developed a layer of lightweight components built on top of virtualization technology to hide the complexity and details of the experiment-specific software. Users can perform basic analysis tasks within CernVM, a lightweight generic virtual machine, paired with an ALICE specific contextualization. Once the virtual machine is launched, a graphical user interface is automatically started without any additional configuration. This interface allows downloading the base ALICE analysis software and running a set of ALICE analysis modules. Currently the available tools include fully documented tutorials for ALICE analysis, such as the measurement of strange particle production or the nuclear modification factor in Pb-Pb collisions. The interface can be easily extended to include an arbitrary number of additional analysis modules. We present the current status of the tools used by ALICE through the CERN open access portal, and the plans for future extensions of this system.
Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation
NASA Technical Reports Server (NTRS)
Leachman, Jonathan
2010-01-01
A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.
Poon, Candice C; Ebacher, Vincent; Liu, Katherine; Yong, Voon Wee; Kelly, John James Patrick
2018-05-03
Automated slide scanning and segmentation of fluorescently-labeled tissues is the most efficient way to analyze whole slides or large tissue sections. Unfortunately, many researchers spend large amounts of time and resources developing and optimizing workflows that are only relevant to their own experiments. In this article, we describe a protocol that can be used by those with access to a widefield high-content analysis system (WHCAS) to image any slide-mounted tissue, with options for customization within pre-built modules found in the associated software. Not originally intended for slide scanning, the steps detailed in this article make it possible to acquire slide scanning images in the WHCAS which can be imported into the associated software. In this example, the automated segmentation of brain tumor slides is demonstrated, but the automated segmentation of any fluorescently-labeled nuclear or cytoplasmic marker is possible. Furthermore, there are a variety of other quantitative software modules including assays for protein localization/translocation, cellular proliferation/viability/apoptosis, and angiogenesis that can be run. This technique will save researchers time and effort and create an automated protocol for slide analysis.
Knowledge base methodology: Methodology for first Engineering Script Language (ESL) knowledge base
NASA Technical Reports Server (NTRS)
Peeris, Kumar; Izygon, Michel E.
1992-01-01
The primary goal of reusing software components is that software can be developed faster, cheaper and with higher quality. Though, reuse is not automatic and can not just happen. It has to be carefully engineered. For example a component needs to be easily understandable in order to be reused, and it has also to be malleable enough to fit into different applications. In fact the software development process is deeply affected when reuse is being applied. During component development, a serious effort has to be directed toward making these components as reusable. This implies defining reuse coding style guidelines and applying then to any new component to create as well as to any old component to modify. These guidelines should point out the favorable reuse features and may apply to naming conventions, module size and cohesion, internal documentation, etc. During application development, effort is shifted from writing new code toward finding and eventually modifying existing pieces of code, then assembling them together. We see here that reuse is not free, and therefore has to be carefully managed.
Phillips, Jeffrey D.
2007-01-01
Introduction Geosoft executables (GX's) are custom software modules for use with the Geosoft Oasis montaj geophysical data processing system, which currently runs under the Microsoft Windows 2000 or XP operating systems. The U.S. Geological Survey (USGS) uses Oasis montaj primarily for the processing and display of airborne geophysical data. The ability to add custom software modules to the Oasis montaj system is a feature employed by the USGS in order to take advantage of the large number of geophysical algorithms developed by the USGS during the past half century. This main part of this report, along with Appendix 1, describes Version 2.0 GX's developed by the USGS or specifically for the USGS by contractors. These GX's perform both basic and advanced operations. Version 1.0 GX's developed by the USGS were described by Phillips and others (2003), and are included in Version 2.0. Appendix 1 contains the help files for the individual GX's. Appendix 2 describes the new method that was used to create the compiled GX files, starting from legacy Fortran source code. Although the new method shares many steps with the approach presented in the Geosoft GX Developer manual, it differs from that approach in that it uses free, open-source Fortran and C compilers and avoids all Fortran-to-C conversion.
NASA Astrophysics Data System (ADS)
Fazliev, A.
2009-04-01
The information and knowledge layers of information-computational system for water spectroscopy are described. Semantic metadata for all the tasks of domain information model that are the basis of the layers have been studied. The principle of semantic metadata determination and mechanisms of the usage during information systematization in molecular spectroscopy has been revealed. The software developed for the work with semantic metadata is described as well. Formation of domain model in the framework of Semantic Web is based on the use of explicit specification of its conceptualization or, in other words, its ontologies. Formation of conceptualization for molecular spectroscopy was described in Refs. 1, 2. In these works two chains of task are selected for zeroth approximation for knowledge domain description. These are direct tasks chain and inverse tasks chain. Solution schemes of these tasks defined approximation of data layer for knowledge domain conceptualization. Spectroscopy tasks solutions properties lead to a step-by-step extension of molecular spectroscopy conceptualization. Information layer of information system corresponds to this extension. An advantage of molecular spectroscopy model designed in a form of tasks chain is actualized in the fact that one can explicitly define data and metadata at each step of solution of these molecular spectroscopy chain tasks. Metadata structure (tasks solutions properties) in knowledge domain also has form of a chain in which input data and metadata of the previous task become metadata of the following tasks. The term metadata is used in its narrow sense: metadata are the properties of spectroscopy tasks solutions. Semantic metadata represented with the help of OWL 3 are formed automatically and they are individuals of classes (A-box). Unification of T-box and A-box is an ontology that can be processed with the help of inference engine. In this work we analyzed the formation of individuals of molecular spectroscopy applied ontologies as well as the software used for their creation by means of OWL DL language. The results of this work are presented in a form of an information layer and a knowledge layer in W@DIS information system 4. 1 FORMATION OF INDIVIDUALS OF WATER SPECTROSCOPY APPLIED ONTOLOGY Applied tasks ontology contains explicit description of input an output data of physical tasks solved in two chains of molecular spectroscopy tasks. Besides physical concepts, related to spectroscopy tasks solutions, an information source, which is a key concept of knowledge domain information model, is also used. Each solution of knowledge domain task is linked to the information source which contains a reference on published task solution, molecule and task solution properties. Each information source allows us to identify a certain knowledge domain task solution contained in the information system. Water spectroscopy applied ontology classes are formed on the basis of molecular spectroscopy concepts taxonomy. They are defined by constrains on properties of the selected conceptualization. Extension of applied ontology in W@DIS information system is actualized according to two scenarios. Individuals (ontology facts or axioms) formation is actualized during the task solution upload in the information system. Ontology user operation that implies molecular spectroscopy taxonomy and individuals is performed solely by the user. For this purpose Protege ontology editor was used. For the formation, processing and visualization of knowledge domain tasks individuals a software was designed and implemented. Method of individual formation determines the sequence of steps of created ontology individuals' generation. Tasks solutions properties (metadata) have qualitative and quantitative values. Qualitative metadata are regarded as metadata describing qualitative side of a task such as solution method or other information that can be explicitly specified by object properties of OWL DL language. Quantitative metadata are metadata that describe quantitative properties of task solution such as minimal and maximal data value or other information that can be explicitly obtained by programmed algorithmic operations. These metadata are related to DatatypeProperty properties of OWL specification language Quantitative metadata can be obtained automatically during data upload into information system. Since ObjectProperty values are objects, processing of qualitative metadata requires logical constraints. In case of the task solved in W@DIS ICS qualitative metadata can be formed automatically (for example in spectral functions calculation task). The used methods of translation of qualitative metadata into quantitative is characterized as roughened representation of knowledge in knowledge domain. The existence of two ways of data obtainment is a key moment in the formation of applied ontology of molecular spectroscopy task. experimental method (metadata for experimental data contain description of equipment, experiment conditions and so on) on the initial stage and inverse task solution on the following stages; calculation method (metadata for calculation data are closely related to the metadata used for the description of physical and mathematical models of molecular spectroscopy) 2 SOFTWARE FOR ONTOLOGY OPERATION Data collection in water spectroscopy information system is organized in a form of workflow that contains such operations as information source creation, entry of bibliographic data on publications, formation of uploaded data schema an so on. Metadata are generated in information source as well. Two methods are used for their formation: automatic metadata generation and manual metadata generation (performed by user). Software implementation of support of actions related to metadata formation is performed by META+ module. Functions of META+ module can be divided into two groups. The first groups contains the functions necessary to software developer while the second one the functions necessary to a user of the information system. META+ module functions necessary to the developer are: 1. creation of taxonomy (T-boxes) of applied ontology classes of knowledge domain tasks; 2. creation of instances of task classes; 3. creation of data schemes of tasks in a form of an XML-pattern and based on XML-syntax. XML-pattern is developed for instances generator and created according to certain rules imposed on software generator implementation. 4. implementation of metadata values calculation algorithms; 5. creation of a request interface and additional knowledge processing function for the solution of these task; 6. unification of the created functions and interfaces into one information system The following sequence is universal for the generation of task classes' individuals that form chains. Special interfaces for user operations management are designed for software developer in META+ module. There are means for qualitative metadata values updating during data reuploading to information source. The list of functions necessary to end user contains: - data sets visualization and editing, taking into account their metadata, e.g.: display of unique number of bands in transitions for a certain data source; - export of OWL/RDF models from information system to the environment in XML-syntax; - visualization of instances of classes of applied ontology tasks on molecular spectroscopy; - import of OWL/RDF models into the information system and their integration with domain vocabulary; - formation of additional knowledge of knowledge domain for the construction of ontological instances of task classes using GTML-formats and their processing; - formation of additional knowledge in knowledge domain for the construction of instances of task classes, using software algorithm for data sets processing; - function of semantic search implementation using an interface that formulates questions in a form of related triplets in order for getting an adequate answer. 3 STRUCTURE OF META+ MODULE META+ software module that provides the above functions contains the following components: - a knowledge base that stores semantic metadata and taxonomies of information system; - software libraries POWL and RAP 5 created by third-party developer and providing access to ontological storage; - function classes and libraries that form the core of the module and perform the tasks of formation, storage and visualization of classes instances; - configuration files and module patterns that allow one to adjust and organize operation of different functional blocks; META+ module also contains scripts and patterns implemented according to the rules of W@DIS information system development environment. - scripts for interaction with environment by means of the software core of information system. These scripts provide organizing web-oriented interactive communication; - patterns for the formation of functionality visualization realized by the scripts Software core of scientific information-computational system W@DIS is created with the help of MVC (Model - View - Controller) design pattern that allows us to separate logic of application from its representation. It realizes the interaction of three logical components, actualizing interactivity with the environment via Web and performing its preprocessing. Functions of «Controller» logical component are realized with the help of scripts designed according to the rules imposed by software core of the information system. Each script represents a definite object-oriented class with obligatory class method of script initiation called "start". Functions of actualization of domain application operation results representation (i.e. "View" component) are sets of HTML-patterns that allow one to visualize the results of domain applications operation with the help of additional constructions processed by software core of the system. Besides the interaction with the software core of the scientific information system this module also deals with configuration files of software core and its database. Such organization of work provides closer integration with software core and deeper and more adequate connection in operating system support. 4 CONCLUSION In this work the problems of semantic metadata creation in information system oriented on information representation in the area of molecular spectroscopy have been discussed. The described method of semantic metadata and functions formation as well as realization and structure of META+ module have been described. Architecture of META+ module is closely related to the existing software of "Molecular spectroscopy" scientific information system. Realization of the module is performed with the use of modern approaches to Web-oriented applications development. It uses the existing applied interfaces. The developed software allows us to: - perform automatic metadata annotation of calculated tasks solutions directly in the information system; - perform automatic annotation of metadata on the solution of tasks on task solution results uploading outside the information system forming an instance of the solved task on the basis of entry data; - use ontological instances of task solution for identification of data in information tasks of viewing, comparison and search solved by information system; - export applied tasks ontologies for the operation with them by external means; - solve the task of semantic search according to the pattern and using question-answer type interface. 5 ACKNOWLEDGEMENT The authors are grateful to RFBR for the financial support of development of distributed information system for molecular spectroscopy. REFERENCES A.D.Bykov, A.Z. Fazliev, N.N.Filippov, A.V. Kozodoev, A.I.Privezentsev, L.N.Sinitsa, M.V.Tonkov and M.Yu.Tretyakov, Distributed information system on atmospheric spectroscopy // Geophysical Research Abstracts, SRef-ID: 1607-7962/gra/EGU2007-A-01906, 2007, v. 9, p. 01906. A.I.Prevezentsev, A.Z. Fazliev Applied task ontology for molecular spectroscopy information resources systematization. The Proceedings of 9th Russian scientific conference "Electronic libraries: advanced methods and technologies, electronic collections" - RCDL'2007, Pereslavl Zalesskii, 2007, part.1, 2007, P.201-210. OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/REC-owl-semantics-20040210/ W@DIS information system, http://wadis.saga.iao.ru RAP library, http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/.
NASA Technical Reports Server (NTRS)
Thompson, David S.; Soni, Bharat K.
2000-01-01
An integrated software package, ICEG2D, was developed to automate computational fluid dynamics (CFD) simulations for single-element airfoils with ice accretion. ICEG2D is designed to automatically perform three primary functions: (1) generating a grid-ready, surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generating a high-quality grid using the generated surface point distribution, and (3) generating the input and restart files needed to run the general purpose CFD solver NPARC. ICEG2D can be executed in batch mode using a script file or in an interactive mode by entering directives from a command line. This report summarizes activities completed in the first year of a three-year research and development program to address issues related to CFD simulations for aircraft components with ice accretion. Specifically, this document describes the technology employed in the software, the installation procedure, and a description of the operation of the software package. Validation of the geometry and grid generation modules of ICEG2D is also discussed.
Smartphone-coupled rhinolaryngoscopy at the point of care
NASA Astrophysics Data System (ADS)
Mink, Jonah; Bolton, Frank J.; Sebag, Cathy M.; Peterson, Curtis W.; Assia, Shai; Levitz, David
2018-02-01
Rhinolaryngoscopy remains difficult to perform in resource-limited settings due to the high cost of purchasing and maintaining equipment as well as the need for specialists to interpret exam findings. While the lack of expertise can be obviated by adopting telemedicine-based approaches, the capture, storage, and sharing of images/video is not a common native functionality of medical devices. Most rhinolaryngoscopy systems consist of an endoscope that interfaces with the patient's naso/oropharynx, and a tower of modules that record video/images. However, these expensive and bulky modules can be replaced by a smartphone that can fulfill the same functions but at a lower cost. To demonstrate this, a commercially available rhinolaryngoscope was coupled to a smartphone using a 3D-printed adapter. Software developed for other clinical applications was repurposed for ENT use, including an application that controls image and video capture, a HIPAA-compliant image/video storage and transfer cloud database, and customized software features developed to improve practitioner competency. Audio recording capabilities to assess speech pathology were also integrated into the smartphone rhinolaryngoscope system. The illumination module coupled onto the endoscope remained unchanged. The spatial resolution of the rhinolaryngoscope system was defined by the fiber diameter of endoscope fiber bundle, rather than the smartphone camera. The mobile rhinolaryngoscope system was used with appropriate patients by a general practitioner in an office setting. The general practitioner then consulted with an ENT specialist via the HIPAA compliant cloud database and workflow modules on difficult cases. These results suggest the smartphone-based rhinolaryngoscope holds promise for use in low-resource settings.
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, Scott R.; Parkhurst, David L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.
Modules based on the geochemical model PHREEQC for use in scripting and programming languages
Charlton, S.R.; Parkhurst, D.L.
2011-01-01
The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Briscoe, Jeri M.
2005-01-01
Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.
Mathematical biology modules based on modern molecular biology and modern discrete mathematics.
Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.
Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics
Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.