Sample records for software quality engineering

  1. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and themore » software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.« less

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management andmore » software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.« less

  3. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  4. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  5. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  6. Engineering Quality Software: 10 Recommendations for Improved Software Quality Management

    DTIC Science & Technology

    2010-04-27

    lack of user involvement • Inadequate Software Process Management & Control By Contractors • No “Team” of Vendors and users; little SME participation...1990 Quality Perspectives • Process Quality ( CMMI ) • Product Quality (ISO/IEC 2500x) – Internal Quality Attributes – External Quality Attributes... CMMI /ISO 9000 Assessments – Capture organizational knowledge • Identify best practices, lessons learned Know where you are, and where you need to be

  7. Proceedings of the Seventeenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.

  8. Software engineering methodologies and tools

    NASA Technical Reports Server (NTRS)

    Wilcox, Lawrence M.

    1993-01-01

    Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.

  9. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  10. Software metrics: Software quality metrics for distributed systems. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Post, J. V.

    1981-01-01

    Software quality metrics was extended to cover distributed computer systems. Emphasis is placed on studying embedded computer systems and on viewing them within a system life cycle. The hierarchy of quality factors, criteria, and metrics was maintained. New software quality factors were added, including survivability, expandability, and evolvability.

  11. Software quality in 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.

    1997-11-01

    For many years, software quality assurance lagged behind hardware quality assurance in terms of methods, metrics, and successful results. New approaches such as Quality Function Deployment (QFD) the ISO 9000-9004 standards, the SEI maturity levels, and Total Quality Management (TQM) are starting to attract wide attention, and in some cases to bring software quality levels up to a parity with manufacturing quality levels. Since software is on the critical path for many engineered products, and for internal business systems as well, the new approaches are starting to affect global competition and attract widespread international interest. It can be hypothesized thatmore » success in mastering software quality will be a key strategy for dominating global software markets in the 21st century.« less

  12. Proceedings of the Eighth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The four major topics of discussion included: the NASA Software Engineering Laboratory, software testing, human factors in software engineering and software quality assessment. As in the past years, there were 12 position papers presented (3 for each topic) followed by questions and very heavy participation by the general audience.

  13. The research and practice of spacecraft software engineering

    NASA Astrophysics Data System (ADS)

    Chen, Chengxin; Wang, Jinghua; Xu, Xiaoguang

    2017-06-01

    In order to ensure the safety and reliability of spacecraft software products, it is necessary to execute engineering management. Firstly, the paper introduces the problems of unsystematic planning, uncertain classified management and uncontinuous improved mechanism in domestic and foreign spacecraft software engineering management. Then, it proposes a solution for software engineering management based on system-integrated ideology in the perspective of spacecraft system. Finally, a application result of spacecraft is given as an example. The research can provides a reference for executing spacecraft software engineering management and improving software product quality.

  14. Software archeology: a case study in software quality assurance and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonald, John M; Lloyd, Jane A; Turner, Cameron J

    2009-01-01

    Ideally, quality is designed into software, just as quality is designed into hardware. However, when dealing with legacy systems, demonstrating that the software meets required quality standards may be difficult to achieve. As the need to demonstrate the quality of existing software was recognized at Los Alamos National Laboratory (LANL), an effort was initiated to uncover and demonstrate that legacy software met the required quality standards. This effort led to the development of a reverse engineering approach referred to as software archaeology. This paper documents the software archaeology approaches used at LANL to document legacy software systems. A case studymore » for the Robotic Integrated Packaging System (RIPS) software is included.« less

  15. Building quality into medical product software design.

    PubMed

    Mallory, S R

    1993-01-01

    The software engineering and quality assurance disciplines are a requisite to the design of safe and effective software-based medical devices. It is in the areas of software methodology and process that the most beneficial application of these disciplines to software development can be made. Software is a product of complex operations and methodologies and is not amenable to the traditional electromechanical quality assurance processes. Software quality must be built in by the developers, with the software verification and validation engineers acting as the independent instruments for ensuring compliance with performance objectives and with development and maintenance standards. The implementation of a software quality assurance program is a complex process involving management support, organizational changes, and new skill sets, but the benefits are profound. Its rewards provide safe, reliable, cost-effective, maintainable, and manageable software, which may significantly speed the regulatory review process and therefore potentially shorten the overall time to market. The use of a trial project can greatly facilitate the learning process associated with the first-time application of a software quality assurance program.

  16. SWiFT Software Quality Assurance Plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Jonathan Charles

    This document describes the software development practice areas and processes which contribute to the ability of SWiFT software developers to provide quality software. These processes are designed to satisfy the requirements set forth by the Sandia Software Quality Assurance Program (SSQAP). APPROVALS SWiFT Software Quality Assurance Plan (SAND2016-0765) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Controls Engineer Jonathan Berg (6121) Date CHANGE HISTORY Issue Date Originator(s) Description A 2016/01/27 Jon Berg (06121) Initial release of the SWiFT Software Quality Assurance Plan

  17. Training, Quality Assurance Factors, and Tools Investigation: a Work Report and Suggestions on Software Quality Assurance

    NASA Technical Reports Server (NTRS)

    Lee, Pen-Nan

    1991-01-01

    Previously, several research tasks have been conducted, some observations were obtained, and several possible suggestions have been contemplated involving software quality assurance engineering at NASA Johnson. These research tasks are briefly described. Also, a brief discussion is given on the role of software quality assurance in software engineering along with some observations and suggestions. A brief discussion on a training program for software quality assurance engineers is provided. A list of assurance factors as well as quality factors are also included. Finally, a process model which can be used for searching and collecting software quality assurance tools is presented.

  18. Software Quality Assurance Metrics

    NASA Technical Reports Server (NTRS)

    McRae, Kalindra A.

    2004-01-01

    Software Quality Assurance (SQA) is a planned and systematic set of activities that ensures conformance of software life cycle processes and products conform to requirements, standards and procedures. In software development, software quality means meeting requirements and a degree of excellence and refinement of a project or product. Software Quality is a set of attributes of a software product by which its quality is described and evaluated. The set of attributes includes functionality, reliability, usability, efficiency, maintainability, and portability. Software Metrics help us understand the technical process that is used to develop a product. The process is measured to improve it and the product is measured to increase quality throughout the life cycle of software. Software Metrics are measurements of the quality of software. Software is measured to indicate the quality of the product, to assess the productivity of the people who produce the product, to assess the benefits derived from new software engineering methods and tools, to form a baseline for estimation, and to help justify requests for new tools or additional training. Any part of the software development can be measured. If Software Metrics are implemented in software development, it can save time, money, and allow the organization to identify the caused of defects which have the greatest effect on software development. The summer of 2004, I worked with Cynthia Calhoun and Frank Robinson in the Software Assurance/Risk Management department. My task was to research and collect, compile, and analyze SQA Metrics that have been used in other projects that are not currently being used by the SA team and report them to the Software Assurance team to see if any metrics can be implemented in their software assurance life cycle process.

  19. Software Engineering Education Directory

    DTIC Science & Technology

    1988-01-01

    Dana Hausman and Suzanne Woolf were crucial to the successful completion of this edition of the directory. Their teamwork, energy, and dedication...for this directory began in the summer of 1986 with a questionnaire mailed to schools selected from Peterson’s Graduate Programs in Engineering and...Christoper, and Siegel, Stan Software Cost Estimation and Life-Cycle Control by Putnam, Lawrence H. Software Quality Assurance: A Practical Approach by

  20. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 15

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  1. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 14

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  2. Software Engineering Laboratory Series: Collected Software Engineering Papers. Volume 13

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  3. Future of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1997-01-01

    In the new millennium, software engineering standards are expected to continue to influence the process of producing software-intensive systems which are cost-effetive and of high quality. These sytems may range from ground and flight systems used for planetary exploration to educational support systems used in schools as well as consumer-oriented systems.

  4. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Berard, Edward V.

    1988-01-01

    The following topics are discussed in the context of software engineering: early use of the term; the 1968 NATO conference; Barry Boehm's definition; four requirements fo software engineering; and additional criteria for software engineering. Additionally, the four major requirements for software engineering--computer science, mathematics, engineering disciplines, and excellent communication skills--are discussed. The presentation is given in vugraph form.

  5. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Gibbs, Norman

    1988-01-01

    The goals of the Software Engineering Institute's Education Program are as follows: to increase the number of highly qualified software engineers--new software engineers and existing practitioners; and to be the leading center of expertise for software engineering education and training. A discussion of these goals is presented in vugraph form.

  6. Effective Software Engineering Leadership for Development Programs

    ERIC Educational Resources Information Center

    Cagle West, Marsha

    2010-01-01

    Software is a critical component of systems ranging from simple consumer appliances to complex health, nuclear, and flight control systems. The development of quality, reliable, and effective software solutions requires the incorporation of effective software engineering processes and leadership. Processes, approaches, and methodologies for…

  7. Software engineering laboratory series: Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1992-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) the Software Engineering Laboratory; (2) the Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  8. Performing Verification and Validation in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  9. Software engineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III; Hiott, Jim; Golej, Jim; Plumb, Allan

    1993-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. The Johnson Space Center (JSC) created a significant set of tools to develop and maintain FORTRAN and C code during development of the space shuttle. This tool set forms the basis for an integrated environment to reengineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. The latest release of the environment was in Feb. 1992.

  10. Software engineering and Ada in design

    NASA Technical Reports Server (NTRS)

    Oneill, Don

    1986-01-01

    Modern software engineering promises significant reductions in software costs and improvements in software quality. The Ada language is the focus for these software methodology and tool improvements. The IBM FSD approach, including the software engineering practices that guide the systematic design and development of software products and the management of the software process are examined. The revised Ada design language adaptation is revealed. This four level design methodology is detailed including the purpose of each level, the management strategy that integrates the software design activity with the program milestones, and the technical strategy that maps the Ada constructs to each level of design. A complete description of each design level is provided along with specific design language recording guidelines for each level. Finally, some testimony is offered on education, tools, architecture, and metrics resulting from project use of the four level Ada design language adaptation.

  11. Socio-Cultural Challenges in Global Software Engineering Education

    ERIC Educational Resources Information Center

    Hoda, Rashina; Babar, Muhammad Ali; Shastri, Yogeshwar; Yaqoob, Humaa

    2017-01-01

    Global software engineering education (GSEE) is aimed at providing software engineering (SE) students with knowledge, skills, and understanding of working in globally distributed arrangements so they can be prepared for the global SE (GSE) paradigm. It is important to understand the challenges involved in GSEE for improving the quality and…

  12. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint

  13. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  14. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  15. Software Engineering Laboratory Series: Proceedings of the Twentieth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  16. Software Process Improvement through the Removal of Project-Level Knowledge Flow Obstacles: The Perceptions of Software Engineers

    ERIC Educational Resources Information Center

    Mitchell, Susan Marie

    2012-01-01

    Uncontrollable costs, schedule overruns, and poor end product quality continue to plague the software engineering field. Innovations formulated with the expectation to minimize or eliminate cost, schedule, and quality problems have generally fallen into one of three categories: programming paradigms, software tools, and software process…

  17. Experimentation in software engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Selby, R. W.; Hutchens, D. H.

    1986-01-01

    Experimentation in software engineering supports the advancement of the field through an iterative learning process. In this paper, a framework for analyzing most of the experimental work performed in software engineering over the past several years is presented. A variety of experiments in the framework is described and their contribution to the software engineering discipline is discussed. Some useful recommendations for the application of the experimental process in software engineering are included.

  18. Software Engineering Laboratory Series: Proceedings of the Twenty-First Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  19. Software Engineering Laboratory Series: Proceedings of the Twenty-Second Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.

  20. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  1. The Research of Software Engineering Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  2. Software Engineering Improvement Activities/Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14). Work accomplishments included development, evaluation, and enhancement of a software cost model, performing literature search and evaluation of software tools available for code analysis and requirements analysis, and participating in other relevant software engineering activities. Monthly reports were submitted. This support was provided to the Flight Software Group/ED 1 4 in accomplishing the software engineering improvement engineering activities of the Marshall Space Flight Center (MSFC) Software Engineering Improvement Plan.

  3. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  4. A Guideline of Using Case Method in Software Engineering Courses

    ERIC Educational Resources Information Center

    Zainal, Dzulaiha Aryanee Putri; Razali, Rozilawati; Shukur, Zarina

    2014-01-01

    Software Engineering (SE) education has been reported to fall short in producing high quality software engineers. In seeking alternative solutions, Case Method (CM) is regarded as having potential to solve the issue. CM is a teaching and learning (T&L) method that has been found to be effective in Social Science education. In principle,…

  5. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  6. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  7. A research review of quality assessment for software

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Measures were recommended to assess the quality of software submitted to the AdaNet program. The quality factors that are important to software reuse are explored and methods of evaluating those factors are discussed. Quality factors important to software reuse are: correctness, reliability, verifiability, understandability, modifiability, and certifiability. Certifiability is included because the documentation of many factors about a software component such as its efficiency, portability, and development history, constitute a class for factors important to some users, not important at all to other, and impossible for AdaNet to distinguish between a priori. The quality factors may be assessed in different ways. There are a few quantitative measures which have been shown to indicate software quality. However, it is believed that there exists many factors that indicate quality and have not been empirically validated due to their subjective nature. These subjective factors are characterized by the way in which they support the software engineering principles of abstraction, information hiding, modularity, localization, confirmability, uniformity, and completeness.

  8. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  9. Pragmatic quality metrics for evolutionary software development models

    NASA Technical Reports Server (NTRS)

    Royce, Walker

    1990-01-01

    Due to the large number of product, project, and people parameters which impact large custom software development efforts, measurement of software product quality is a complex undertaking. Furthermore, the absolute perspective from which quality is measured (customer satisfaction) is intangible. While we probably can't say what the absolute quality of a software product is, we can determine the relative quality, the adequacy of this quality with respect to pragmatic considerations, and identify good and bad trends during development. While no two software engineers will ever agree on an optimum definition of software quality, they will agree that the most important perspective of software quality is its ease of change. We can call this flexibility, adaptability, or some other vague term, but the critical characteristic of software is that it is soft. The easier the product is to modify, the easier it is to achieve any other software quality perspective. This paper presents objective quality metrics derived from consistent lifecycle perspectives of rework which, when used in concert with an evolutionary development approach, can provide useful insight to produce better quality per unit cost/schedule or to achieve adequate quality more efficiently. The usefulness of these metrics is evaluated by applying them to a large, real world, Ada project.

  10. A Discussion of the Software Quality Assurance Role

    NASA Technical Reports Server (NTRS)

    Kandt, Ronald Kirk

    2010-01-01

    The basic idea underlying this paper is that the conventional understanding of the role of a Software Quality Assurance (SQA) engineer is unduly limited. This is because few have asked who the customers of a SQA engineer are. Once you do this, you can better define what tasks a SQA engineer should perform, as well as identify the knowledge and skills that such a person should have. The consequence of doing this is that a SQA engineer can provide greater value to his or her customers. It is the position of this paper that a SQA engineer providing significant value to his or her customers must not only assume the role of an auditor, but also that of a software and systems engineer. This is because software engineers and their managers particularly value contributions that directly impact products and their development. These ideas are summarized as lessons learned, based on my experience at Jet Propulsion Laboratory (JPL).

  11. Computer-Aided Software Engineering - An approach to real-time software development

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  12. The Effects of Development Team Skill on Software Product Quality

    NASA Technical Reports Server (NTRS)

    Beaver, Justin M.; Schiavone, Guy A.

    2006-01-01

    This paper provides an analysis of the effect of the skill/experience of the software development team on the quality of the final software product. A method for the assessment of software development team skill and experience is proposed, and was derived from a workforce management tool currently in use by the National Aeronautics and Space Administration. Using data from 26 smallscale software development projects, the team skill measures are correlated to 5 software product quality metrics from the ISO/IEC 9126 Software Engineering Product Quality standard. in the analysis of the results, development team skill is found to be a significant factor in the adequacy of the design and implementation. In addition, the results imply that inexperienced software developers are tasked with responsibilities ill-suited to their skill level, and thus have a significant adverse effect on the quality of the software product. Keywords: software quality, development skill, software metrics

  13. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  14. Computer systems and software engineering

    NASA Technical Reports Server (NTRS)

    Mckay, Charles W.

    1988-01-01

    The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.

  15. A Survey On Management Of Software Engineering In Japan

    NASA Astrophysics Data System (ADS)

    Kadono, Yasuo; Tsubaki, Hiroe; Tsuruho, Seishiro

    2008-05-01

    The purpose of this study is to clarity the mechanism of how software engineering capabilities relate to the business performance of IT vendors in Japan. To do this, we developed a structural model using factors related to software engineering, business performance and competitive environment. By analyzing the data collected from 78 major IT vendors in Japan, we found that superior deliverables and business performance were correlated with the effort expended particularly on human resource development, quality assurance, research and development and process improvement.

  16. SOFTWARE ENGINEERING INSTITUTE (SEI)

    EPA Science Inventory

    The Software Engineering Institute (SEI) is a federally funded research and development center established in 1984 by the U.S. Department of Defense and operated by Carnegie Mellon University. SEI has a broad charter to provide leadership in the practice of software engineering t...

  17. Software engineering from a Langley perspective

    NASA Technical Reports Server (NTRS)

    Voigt, Susan

    1994-01-01

    A brief introduction to software engineering is presented. The talk is divided into four sections beginning with the question 'What is software engineering', followed by a brief history of the progression of software engineering at the Langley Research Center in the context of an expanding computing environment. Several basic concepts and terms are introduced, including software development life cycles and maturity levels. Finally, comments are offered on what software engineering means for the Langley Research Center and where to find more information on the subject.

  18. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  19. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon D.

    1991-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  20. Software engineering for ESO's VLT project

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    1994-12-01

    This paper reports on the experience at the European Southern Observatory on the application of software engineering techniques to a 200 man-year control software project for the Very Large Telescope (VLT). This shall provide astronomers, before the end of the century, with one of the most powerful telescopes in the world. From the definition of the general model, described in the software management plan, specific activities have been and will be defined: standards for documents and for code development, design approach using a CASE tool, the process of reviewing both documentation and code, quality assurance, test strategy, etc. The initial choices, the current implementation and the future planned activities are presented and, where feedback is already available, pros and cons are discussed.

  1. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  2. Software Engineering Education Directory. Software Engineering Curriculum Project

    DTIC Science & Technology

    1991-05-01

    1986 with a questionnaire mailed to schools selected from Peterson’s Graduate Programs in Engineering and Applied Sciences 1986. We contacted schools...the publi- cation more complete. To discuss any issues related to this report, please contact: Education Program Software Engineering Institute...considered to be required course reading. How to Use This Section This portion of the directory is organized by state (in the U.S.), province (in

  3. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Groves, Paula; Valett, Jon

    1990-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author.

  4. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Valett, Jon

    1993-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory: software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. This document contains an index of these publications classified by individual author.

  5. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  6. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Kistler, David; Bristow, John; Smith, Don

    1994-01-01

    This document is an annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. Nearly 200 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. This document contains an index of these publications classified by individual author.

  7. Research on Visualization Design Method in the Field of New Media Software Engineering

    NASA Astrophysics Data System (ADS)

    Deqiang, Hu

    2018-03-01

    In the new period of increasingly developed science and technology, with the increasingly fierce competition in the market and the increasing demand of the masses, new design and application methods have emerged in the field of new media software engineering, that is, the visualization design method. Applying the visualization design method to the field of new media software engineering can not only improve the actual operation efficiency of new media software engineering but more importantly the quality of software development can be enhanced by means of certain media of communication and transformation; on this basis, the progress and development of new media software engineering in China are also continuously promoted. Therefore, the application of visualization design method in the field of new media software engineering is analysed concretely in this article from the perspective of the overview of visualization design methods and on the basis of systematic analysis of the basic technology.

  8. Software Design Improvements. Part 2; Software Quality and the Design and Inspection Process

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    The application of assurance engineering techniques improves the duration of failure-free performance of software. The totality of features and characteristics of a software product are what determine its ability to satisfy customer needs. Software in safety-critical systems is very important to NASA. We follow the System Safety Working Groups definition for system safety software as: 'The optimization of system safety in the design, development, use and maintenance of software and its integration with safety-critical systems in an operational environment. 'If it is not safe, say so' has become our motto. This paper goes over methods that have been used by NASA to make software design improvements by focusing on software quality and the design and inspection process.

  9. Collected software engineering papers, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics addressed include: summaries of the software engineering laboratory (SEL) organization, operation, and research activities; results of specific research projects in the areas of resource models and software measures; and strategies for data collection for software engineering research.

  10. A Brief Study of Software Engineering Professional Continuing Education in DoD Acquisition

    DTIC Science & Technology

    2010-04-01

    Lifecycle Processes (IEEE 12207 ) (810) 37% 61% 2% Guide to the Software Engineering Body of K l d (SWEBOK) (804) 67% 31% 2% now e ge Software...Engineering-Software Measurement Process ( ISO /IEC 15939) (797) 55% 44% 2% Capability Maturity Model Integration (806) 17% 81% 2% Six Sigma Process...Improvement (804) 7% 91% 1% ISO 9000 Quality Management Systems (803) 10% 89% 1% 28 Conclusions Significant problem areas R i tequ remen s Management Very

  11. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  12. Technology transfer in software engineering

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1989-01-01

    The University of Houston-Clear Lake is the prime contractor for the AdaNET Research Project under the direction of NASA Johnson Space Center. AdaNET was established to promote the principles of software engineering to the software development industry. AdaNET will contain not only environments and tools, but also concepts, principles, models, standards, guidelines and practices. Initially, AdaNET will serve clients from the U.S. government and private industry who are working in software development. It will seek new clients from those who have not yet adopted the principles and practices of software engineering. Some of the goals of AdaNET are to become known as an objective, authoritative source of new software engineering information and parts, to provide easy access to information and parts, and to keep abreast of innovations in the field.

  13. Quality Attributes for Mission Flight Software: A Reference for Architects

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan; Fesq, Lorraine; Dvorak, Dan

    2016-01-01

    In the international standards for architecture descriptions in systems and software engineering (ISO/IEC/IEEE 42010), "concern" is a primary concept that often manifests itself in relation to the quality attributes or "ilities" that a system is expected to exhibit - qualities such as reliability, security and modifiability. One of the main uses of an architecture description is to serve as a basis for analyzing how well the architecture achieves its quality attributes, and that requires architects to be as precise as possible about what they mean in claiming, for example, that an architecture supports "modifiability." This paper describes a table, generated by NASA's Software Architecture Review Board, which lists fourteen key quality attributes, identifies different important aspects of each quality attribute and considers each aspect in terms of requirements, rationale, evidence, and tactics to achieve the aspect. This quality attribute table is intended to serve as a guide to software architects, software developers, and software architecture reviewers in the domain of mission-critical real-time embedded systems, such as space mission flight software.

  14. Annotated bibliography of software engineering laboratory literature

    NASA Technical Reports Server (NTRS)

    Buhler, Melanie; Valett, Jon

    1989-01-01

    An annotated bibliography is presented of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory. The bibliography was updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials were grouped into eight general subject areas for easy reference: (1) The Software Engineering Laboratory; (2) The Software Engineering Laboratory: Software Development Documents; (3) Software Tools; (4) Software Models; (5) Software Measurement; (6) Technology Evaluations; (7) Ada Technology; and (8) Data Collection. Subject and author indexes further classify these documents by specific topic and individual author.

  15. Software And Systems Engineering Risk Management

    DTIC Science & Technology

    2010-04-01

    RSKM 2004 COSO Enterprise RSKM Framework 2006 ISO/IEC 16085 Risk Management Process 2008 ISO/IEC 12207 Software Lifecycle Processes 2009 ISO/IEC...1 Software And Systems Engineering Risk Management John Walz VP Technical and Conferences Activities, IEEE Computer Society Vice-Chair Planning...Software & Systems Engineering Standards Committee, IEEE Computer Society US TAG to ISO TMB Risk Management Working Group Systems and Software

  16. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    NASA Astrophysics Data System (ADS)

    Phillips, Dewanne Marie

    architecture framework and acquisition methodology to improve the resiliency of space systems from a software perspective with an emphasis on the early phases of the systems engineering life cycle. This methodology involves seven steps: 1) Define technical resiliency requirements, 1a) Identify standards/policy for software resiliency, 2) Develop a request for proposal (RFP)/statement of work (SOW) for resilient space systems software, 3) Define software resiliency goals for space systems, 4) Establish software resiliency quality attributes, 5) Perform architectural tradeoffs and identify risks, 6) Conduct architecture assessments as part of the procurement process, and 7) Ascertain space system software architecture resiliency metrics. Data illustrates that software vulnerabilities can lead to opportunities for malicious cyber activities, which could degrade the space mission capability for the user community. Reducing the number of vulnerabilities by improving architecture and software system engineering practices can contribute to making space systems more resilient. Since cyber-attacks are enabled by shortfalls in software, robust software engineering practices and an architectural design are foundational to resiliency, which is a quality that allows the system to "take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". To achieve software resiliency for space systems, acquirers and suppliers must identify relevant factors and systems engineering practices to apply across the lifecycle, in software requirements analysis, architecture development, design, implementation, verification and validation, and maintenance phases.

  17. Towards a mature measurement environment: Creating a software engineering research environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1990-01-01

    Software engineering researchers are building tools, defining methods, and models; however, there are problems with the nature and style of the research. The research is typically bottom-up, done in isolation so the pieces cannot be easily logically or physically integrated. A great deal of the research is essentially the packaging of a particular piece of technology with little indication of how the work would be integrated with other prices of research. The research is not aimed at solving the real problems of software engineering, i.e., the development and maintenance of quality systems in a productive manner. The research results are not evaluated or analyzed via experimentation or refined and tailored to the application environment. Thus, it cannot be easily transferred into practice. Because of these limitations we have not been able to understand the components of the discipline as a coherent whole and the relationships between various models of the process and product. What is needed is a top down experimental, evolutionary framework in which research can be focused, logically and physically integrated to produce quality software productively, and evaluated and tailored to the application environment. This implies the need for experimentation, which in turn implies the need for a laboratory that is associated with the artifact we are studying. This laboratory can only exist in an environment where software is being built, i.e., as part of a real software development and maintenance organization. Thus, we propose that Software Engineering Laboratory (SEL) type activities exist in all organizations to support software engineering research. We describe the SEL from a researcher's point of view, and discuss the corporate and government benefits of the SEL. The discussion focuses on the benefits to the research community.

  18. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  19. Software engineering ethics

    NASA Technical Reports Server (NTRS)

    Bown, Rodney L.

    1991-01-01

    Software engineering ethics is reviewed. The following subject areas are covered: lack of a system viewpoint; arrogance of PC DOS software vendors; violation od upward compatibility; internet worm; internet worm revisited; student cheating and company hiring interviews; computing practitioners and the commodity market; new projects and old programming languages; schedule and budget; and recent public domain comments.

  20. An Engineering Context for Software Engineering

    DTIC Science & Technology

    2008-09-01

    medium in which I can plant the ideas from this dissertation. I have also written a book on requirements development that is used at NPS by myself and...Addison-Wesley, Anniversary ed., 1995. [Bry00] Bryant, A., “Metaphor, Myth, and Mimicry : The Bases of Software Engineering,” Annals of Software

  1. Collected Software Engineering Papers, Volume 10

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from Oct. 1991 - Nov. 1992. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document. For the convenience of this presentation, the 11 papers contained here are grouped into 5 major sections: (1) the Software Engineering Laboratory; (2) software tools studies; (3) software models studies; (4) software measurement studies; and (5) Ada technology studies.

  2. Software Engineering Frameworks: Textbooks vs. Student Perceptions

    ERIC Educational Resources Information Center

    McMaster, Kirby; Hadfield, Steven; Wolthuis, Stuart; Sambasivam, Samuel

    2012-01-01

    This research examines the frameworks used by Computer Science and Information Systems students at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64 Software Engineering concepts was given to students upon completion of their first Software Engineering course. This survey was given to samples of…

  3. Software Development for EECU Platform of Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  4. Software cost/resource modeling: Software quality tradeoff measurement

    NASA Technical Reports Server (NTRS)

    Lawler, R. W.

    1980-01-01

    A conceptual framework for treating software quality from a total system perspective is developed. Examples are given to show how system quality objectives may be allocated to hardware and software; to illustrate trades among quality factors, both hardware and software, to achieve system performance objectives; and to illustrate the impact of certain design choices on software functionality.

  5. V&V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and Validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission-critical software. V&V is a systems engineering discipline that evaluates the software in a systems context, and is currently applied during the development of a specific application system. In order to bring the effectiveness of V&V to bear within reuse-based software engineering, V&V must be incorporated within the domain engineering process.

  6. Consolidated View on Space Software Engineering Problems - An Empirical Study

    NASA Astrophysics Data System (ADS)

    Silva, N.; Vieira, M.; Ricci, D.; Cotroneo, D.

    2015-09-01

    Independent software verification and validation (ISVV) has been a key process for engineering quality assessment for decades, and is considered in several international standards. The “European Space Agency (ESA) ISVV Guide” is used for the European Space market to drive the ISVV tasks and plans, and to select applicable tasks and techniques. Software artefacts have room for improvement due to the amount if issues found during ISVV tasks. This article presents the analysis of the results of a large set of ISVV issues originated from three different ESA missions-amounting to more than 1000 issues. The study presents the main types, triggers and impacts related to the ISVV issues found and sets the path for a global software engineering improvement based on the most common deficiencies identified for space projects.

  7. Annotated bibliography of Software Engineering Laboratory literature

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 100 publications are summarized. These publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials are grouped into five general subject areas for easy reference: (1) the software engineering laboratory; (2) software tools; (3) models and measures; (4) technology evaluations; and (5) data collection. An index further classifies these documents by specific topic.

  8. Software component quality evaluation

    NASA Technical Reports Server (NTRS)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  9. Software engineering standards and practices

    NASA Technical Reports Server (NTRS)

    Durachka, R. W.

    1981-01-01

    Guidelines are presented for the preparation of a software development plan. The various phases of a software development project are discussed throughout its life cycle including a general description of the software engineering standards and practices to be followed during each phase.

  10. Glossary of Software Engineering Laboratory terms

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A glossary of terms used in the Software Engineering Laboratory (SEL) is given. The terms are defined within the context of the software development environment for flight dynamics at the Goddard Space Flight Center. A concise reference for clarifying the language employed in SEL documents and data collection forms is given. Basic software engineering concepts are explained and standard definitions for use by SEL personnel are established.

  11. Software engineering and the role of Ada: Executive seminar

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1987-01-01

    The objective was to introduce the basic terminology and concepts of software engineering and Ada. The life cycle model is reviewed. The application of the goals and principles of software engineering is applied. An introductory understanding of the features of the Ada language is gained. Topics addressed include: the software crises; the mandate of the Space Station Program; software life cycle model; software engineering; and Ada under the software engineering umbrella.

  12. Modernization of software quality assurance

    NASA Technical Reports Server (NTRS)

    Bhaumik, Gokul

    1988-01-01

    The customers satisfaction depends not only on functional performance, it also depends on the quality characteristics of the software products. An examination of this quality aspect of software products will provide a clear, well defined framework for quality assurance functions, which improve the life-cycle activities of software development. Software developers must be aware of the following aspects which have been expressed by many quality experts: quality cannot be added on; the level of quality built into a program is a function of the quality attributes employed during the development process; and finally, quality must be managed. These concepts have guided our development of the following definition for a Software Quality Assurance function: Software Quality Assurance is a formal, planned approach of actions designed to evaluate the degree of an identifiable set of quality attributes present in all software systems and their products. This paper is an explanation of how this definition was developed and how it is used.

  13. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  14. Data systems and computer science: Software Engineering Program

    NASA Technical Reports Server (NTRS)

    Zygielbaum, Arthur I.

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. This review is specifically concerned with the Software Engineering Program. The goals of the Software Engineering Program are as follows: (1) improve NASA's ability to manage development, operation, and maintenance of complex software systems; (2) decrease NASA's cost and risk in engineering complex software systems; and (3) provide technology to assure safety and reliability of software in mission critical applications.

  15. Unified Engineering Software System

    NASA Technical Reports Server (NTRS)

    Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.

    1989-01-01

    Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.

  16. Professional Ethics of Software Engineers: An Ethical Framework.

    PubMed

    Lurie, Yotam; Mark, Shlomo

    2016-04-01

    The purpose of this article is to propose an ethical framework for software engineers that connects software developers' ethical responsibilities directly to their professional standards. The implementation of such an ethical framework can overcome the traditional dichotomy between professional skills and ethical skills, which plagues the engineering professions, by proposing an approach to the fundamental tasks of the practitioner, i.e., software development, in which the professional standards are intrinsically connected to the ethical responsibilities. In so doing, the ethical framework improves the practitioner's professionalism and ethics. We call this approach Ethical-Driven Software Development (EDSD), as an approach to software development. EDSD manifests the advantages of an ethical framework as an alternative to the all too familiar approach in professional ethics that advocates "stand-alone codes of ethics". We believe that one outcome of this synergy between professional and ethical skills is simply better engineers. Moreover, since there are often different software solutions, which the engineer can provide to an issue at stake, the ethical framework provides a guiding principle, within the process of software development, that helps the engineer evaluate the advantages and disadvantages of different software solutions. It does not and cannot affect the end-product in and of-itself. However, it can and should, make the software engineer more conscious and aware of the ethical ramifications of certain engineering decisions within the process.

  17. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    NASA Astrophysics Data System (ADS)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  18. Milestones in software engineering and knowledge engineering history: a comparative review.

    PubMed

    del Águila, Isabel M; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because "those who cannot remember the past are condemned to repeat it." This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one.

  19. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  20. Improving Software Engineering on NASA Projects

    NASA Technical Reports Server (NTRS)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  1. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  2. Milestones in Software Engineering and Knowledge Engineering History: A Comparative Review

    PubMed Central

    del Águila, Isabel M.; Palma, José; Túnez, Samuel

    2014-01-01

    We present a review of the historical evolution of software engineering, intertwining it with the history of knowledge engineering because “those who cannot remember the past are condemned to repeat it.” This retrospective represents a further step forward to understanding the current state of both types of engineerings; history has also positive experiences; some of them we would like to remember and to repeat. Two types of engineerings had parallel and divergent evolutions but following a similar pattern. We also define a set of milestones that represent a convergence or divergence of the software development methodologies. These milestones do not appear at the same time in software engineering and knowledge engineering, so lessons learned in one discipline can help in the evolution of the other one. PMID:24624046

  3. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  4. Culture shock: Improving software quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Jong, K.; Trauth, S.L.

    1988-01-01

    The concept of software quality can represent a significant shock to an individual who has been developing software for many years and who believes he or she has been doing a high quality job. The very idea that software includes lines of code and associated documentation is foreign and difficult to grasp, at best. Implementation of a software quality program hinges on the concept that software is a product whose quality needs improving. When this idea is introduced into a technical community that is largely ''self-taught'' and has been producing ''good'' software for some time, a fundamental understanding of themore » concepts associated with software is often weak. Software developers can react as if to say, ''What are you talking about. What do you mean I'm not doing a good job. I haven't gotten any complaints about my code yetexclamation'' Coupling such surprise and resentment with the shock that software really is a product and software quality concepts do exist, can fuel the volatility of these emotions. In this paper, we demonstrate that the concept of software quality can indeed pose a culture shock to developers. We also show that a ''typical'' quality assurance approach, that of imposing a standard and providing inspectors and auditors to assure its adherence, contributes to this shock and detracts from the very goal the approach should achieve. We offer an alternative, adopted through experience, to implement a software quality program: cooperative assistance. We show how cooperation, education, consultation and friendly assistance can overcome this culture shock. 3 refs.« less

  5. Proceedings of the Fifteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.

  6. Implementing large projects in software engineering courses

    NASA Astrophysics Data System (ADS)

    Coppit, David

    2006-03-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.

  7. Collected software engineering papers, volume 8

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period November 1989 through October 1990 is presented. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography. The seven presented papers are grouped into four major categories: (1) experimental research and evaluation of software measurement; (2) studies on models for software reuse; (3) a software tool evaluation; and (4) Ada technology and studies in the areas of reuse and specification.

  8. Selection of software for mechanical engineering undergraduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, C. T.; Yin, C. S.; Halim, T.

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  9. Collected software engineering papers, volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1990 through October 1991. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the ninth such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. For the convenience of this presentation, the eight papers contained here are grouped into three major categories: (1) software models studies; (2) software measurement studies; and (3) Ada technology studies. The first category presents studies on reuse models, including a software reuse model applied to maintenance and a model for an organization to support software reuse. The second category includes experimental research methods and software measurement techniques. The third category presents object-oriented approaches using Ada and object-oriented features proposed for Ada. The SEL is actively working to understand and improve the software development process at GSFC.

  10. Software engineering aspects of real-time programming concepts

    NASA Astrophysics Data System (ADS)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  11. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  12. The Assistant for Specifying the Quality Software (ASQS) Operational Concept Document. Volume 1

    DTIC Science & Technology

    1990-09-01

    Assistant in which the manager supplies system-specific characteristics and needs and the Assistant fills in the software quality concepts and methods. The...member(s) of the Computer Resources Working Group (CRWG) to aid in performing a software quality engineering study. Figure 3.4-1 outlines the...need to recovery from faults more likely than need _o provide alternative functions or interfaces), and more on Autcncmy - 27 - that Modularity

  13. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software.

    PubMed

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians.

  14. Engineering bioinformatics: building reliability, performance and productivity into bioinformatics software

    PubMed Central

    Lawlor, Brendan; Walsh, Paul

    2015-01-01

    There is a lack of software engineering skills in bioinformatic contexts. We discuss the consequences of this lack, examine existing explanations and remedies to the problem, point out their shortcomings, and propose alternatives. Previous analyses of the problem have tended to treat the use of software in scientific contexts as categorically different from the general application of software engineering in commercial settings. In contrast, we describe bioinformatic software engineering as a specialization of general software engineering, and examine how it should be practiced. Specifically, we highlight the difference between programming and software engineering, list elements of the latter and present the results of a survey of bioinformatic practitioners which quantifies the extent to which those elements are employed in bioinformatics. We propose that the ideal way to bring engineering values into research projects is to bring engineers themselves. We identify the role of Bioinformatic Engineer and describe how such a role would work within bioinformatic research teams. We conclude by recommending an educational emphasis on cross-training software engineers into life sciences, and propose research on Domain Specific Languages to facilitate collaboration between engineers and bioinformaticians. PMID:25996054

  15. Evaluating software development characteristics: Assessment of software measures in the Software Engineering Laboratory. [reliability engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1981-01-01

    Work on metrics is discussed. Factors that affect software quality are reviewed. Metrics is discussed in terms of criteria achievements, reliability, and fault tolerance. Subjective and objective metrics are distinguished. Product/process and cost/quality metrics are characterized and discussed.

  16. Framework for Small-Scale Experiments in Software Engineering: Guidance and Control Software Project: Software Engineering Case Study

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1998-01-01

    Software is becoming increasingly significant in today's critical avionics systems. To achieve safe, reliable software, government regulatory agencies such as the Federal Aviation Administration (FAA) and the Department of Defense mandate the use of certain software development methods. However, little scientific evidence exists to show a correlation between software development methods and product quality. Given this lack of evidence, a series of experiments has been conducted to understand why and how software fails. The Guidance and Control Software (GCS) project is the latest in this series. The GCS project is a case study of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, Software Considerations in Airborne Systems and Equipment Certification. All civil transport airframe and equipment vendors are expected to comply with these guidelines in building systems to be certified by the FAA for use in commercial aircraft. For the case study, two implementations of a guidance and control application were developed to comply with the DO-178B guidelines for Level A (critical) software. The development included the requirements, design, coding, verification, configuration management, and quality assurance processes. This paper discusses the details of the GCS project and presents the results of the case study.

  17. Proceedings of the Annual Ada Software Engineering Education and Training Symposium (3rd) Held in Denver, Colorado on June 14-16, 1988

    DTIC Science & Technology

    1988-06-01

    Based Software Engineering Project Course .............. 83 SSoftware Engineering, Software Engineering Concepts: The Importance of Object-Based...quality assurance, and independent system testing . The Chief Programmer is responsible for all software development activities, including prototyping...during the Requirements Analysis phase, the Preliminary Design, the Detailed Design, Coding and Unit Testing , CSC Integration and Testing , and informal

  18. Annotated bibliography of Software Engineering Laboratory (SEL) literature

    NASA Technical Reports Server (NTRS)

    Card, D.

    1982-01-01

    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is presented. More than 75 publications are summarized. An index of these publications by subject is also included. These publications cover many areas of software engineering and range from research reports to software documentation.

  19. On Quality and Measures in Software Engineering

    ERIC Educational Resources Information Center

    Bucur, Ion I.

    2006-01-01

    Complexity measures are mainly used to estimate vital information about reliability and maintainability of software systems from regular analysis of the source code. Such measures also provide constant feedback during a software project to assist the control of the development procedure. There exist several models to classify a software product's…

  20. TriBITS lifecycle model. Version 1.0, a lean/agile software lifecycle model for research-based computational science and engineering and applied mathematical software.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbring, James M.; Bartlett, Roscoe Ainsworth; Heroux, Michael Allen

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science and engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process - respecting the competing needs of research vs. production - cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for manymore » CSE software projects that are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Here, we advocate three to four phases or maturity levels that address the appropriate handling of many issues associated with the transition from research to production software. The goals of this lifecycle model are to better communicate maturity levels with customers and to help to identify and promote Software Engineering (SE) practices that will help to improve productivity and produce better software. An important collection of software in this domain is Trilinos, which is used as the motivation and the initial target for this lifecycle model. However, many other related and similar CSE (and non-CSE) software projects can also make good use of this lifecycle model, especially those that use the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  1. Towards a Controlled Vocabulary on Software Engineering Education

    ERIC Educational Resources Information Center

    Pizard, Sebastián; Vallespir, Diego

    2017-01-01

    Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common…

  2. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  3. The need for scientific software engineering in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Luty, Brock; Rose, Peter W.

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  4. The need for scientific software engineering in the pharmaceutical industry.

    PubMed

    Luty, Brock; Rose, Peter W

    2017-03-01

    Scientific software engineering is a distinct discipline from both computational chemistry project support and research informatics. A scientific software engineer not only has a deep understanding of the science of drug discovery but also the desire, skills and time to apply good software engineering practices. A good team of scientific software engineers can create a software foundation that is maintainable, validated and robust. If done correctly, this foundation enable the organization to investigate new and novel computational ideas with a very high level of efficiency.

  5. Advances in knowledge-based software engineering

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt

    1991-01-01

    The underlying hypothesis of this work is that a rigorous and comprehensive software reuse methodology can bring about a more effective and efficient utilization of constrained resources in the development of large-scale software systems by both government and industry. It is also believed that correct use of this type of software engineering methodology can significantly contribute to the higher levels of reliability that will be required of future operational systems. An overview and discussion of current research in the development and application of two systems that support a rigorous reuse paradigm are presented: the Knowledge-Based Software Engineering Environment (KBSEE) and the Knowledge Acquisition fo the Preservation of Tradeoffs and Underlying Rationales (KAPTUR) systems. Emphasis is on a presentation of operational scenarios which highlight the major functional capabilities of the two systems.

  6. Software Quality Perceptions of Stakeholders Involved in the Software Development Process

    ERIC Educational Resources Information Center

    Padmanabhan, Priya

    2013-01-01

    Software quality is one of the primary determinants of project management success. Stakeholders involved in software development widely agree that quality is important (Barney and Wohlin 2009). However, they may differ on what constitutes software quality, and which of its attributes are more important than others. Although, software quality…

  7. A Multidimensional Software Engineering Course

    ERIC Educational Resources Information Center

    Barzilay, O.; Hazzan, O.; Yehudai, A.

    2009-01-01

    Software engineering (SE) is a multidimensional field that involves activities in various areas and disciplines, such as computer science, project management, and system engineering. Though modern SE curricula include designated courses that address these various subjects, an advanced summary course that synthesizes them is still missing. Such a…

  8. V & V Within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is used to increase the level of assurance of critical software, particularly that of safety-critical and mission critical software. This paper describes the working group's success in identifying V&V tasks that could be performed in the domain engineering and transition levels of reuse-based software engineering. The primary motivation for V&V at the domain level is to provide assurance that the domain requirements are correct and that the domain artifacts correctly implement the domain requirements. A secondary motivation is the possible elimination of redundant V&V activities at the application level. The group also considered the criteria and motivation for performing V&V in domain engineering.

  9. Proceedings of the 19th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.

  10. Requirements Engineering in Building Climate Science Software

    ERIC Educational Resources Information Center

    Batcheller, Archer L.

    2011-01-01

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…

  11. Real World Software Engineering

    DTIC Science & Technology

    1994-07-15

    Corvision Cortex Corporation Daisys S /Cubed, Inc. Design/IDF & CPN Meta Software Corp. 22 EasyCase Professional Evergreen CASE Tools 8522 150th 4th Ave NE...Final RSUoTL 28 Sep 92-31 May 94 4. TITLE AND SUBTITLE S . FUNDING NUMBERS Real World Software Engineering 6. AUTHOR( S ) Donald Gotterbarn Robert Riser . a...nin• Sm-i t’h 7. PERFORMING ORGANIZATION NAME( S ) AND AOORESS(ES1 8. PERFORMING ORGANIZATION REPORT NUMBER East Tennessee State University Department

  12. FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.

    1997-01-01

    The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.

  13. A report on NASA software engineering and Ada training requirements

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn B.; Svabek, L.

    1987-01-01

    NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.

  14. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  15. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical

  16. Large-scale visualization projects for teaching software engineering.

    PubMed

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  17. Repository-based software engineering program

    NASA Technical Reports Server (NTRS)

    Wilson, James

    1992-01-01

    The activities performed during September 1992 in support of Tasks 01 and 02 of the Repository-Based Software Engineering Program are outlined. The recommendations and implementation strategy defined at the September 9-10 meeting of the Reuse Acquisition Action Team (RAAT) are attached along with the viewgraphs and reference information presented at the Institute for Defense Analyses brief on legal and patent issues related to software reuse.

  18. Software Quality Assurance Audits Guidebooks

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The growth in cost and importance of software to NASA has caused NASA to address the improvement of software development across the agency. One of the products of this program is a series of guidebooks that define a NASA concept of the assurance processes that are used in software development. The Software Assurance Guidebook, NASA-GB-A201, issued in September, 1989, provides an overall picture of the NASA concepts and practices in software assurance. Second level guidebooks focus on specific activities that fall within the software assurance discipline, and provide more detailed information for the manager and/or practitioner. This is the second level Software Quality Assurance Audits Guidebook that describes software quality assurance audits in a way that is compatible with practices at NASA Centers.

  19. In the soft-to-hard technical spectrum: Where is software engineering?

    NASA Technical Reports Server (NTRS)

    Leibfried, Theodore F.; Macdonald, Robert B.

    1992-01-01

    In the computer journals and tabloids, there have been a plethora of articles written about the software engineering field. But while advocates of the need for an engineering approach to software development, it is impressive how many authors have treated the subject of software engineering without adequately addressing the fundamentals of what engineering as a discipline consists of. A discussion is presented of the various related facets of this issue in a logical framework to advance the thesis that the software development process is necessarily an engineering process. The purpose is to examine more of the details of the issue of whether or not the design and development of software for digital computer processing systems should be both viewed and treated as a legitimate field of professional engineering. Also, the type of academic and professional level education programs that would be required to support a software engineering discipline is examined.

  20. Software Engineering Technology Infusion Within NASA

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  1. Proceedings of the Thirteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.

  2. Ten recommendations for software engineering in research.

    PubMed

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  3. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  4. Proceedings of the Twenty-Fourth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On December 1 and 2, the Software Engineering Laboratory (SEL), a consortium composed of NASA/Goddard, the University of Maryland, and CSC, held the 24th Software Engineering Workshop (SEW), the last of the millennium. Approximately 240 people attended the 2-day workshop. Day 1 was composed of four sessions: International Influence of the Software Engineering Laboratory; Object Oriented Testing and Reading; Software Process Improvement; and Space Software. For the first session, three internationally known software process experts discussed the influence of the SEL with respect to software engineering research. In the Space Software session, prominent representatives from three different NASA sites- GSFC's Marti Szczur, the Jet Propulsion Laboratory's Rick Doyle, and the Ames Research Center IV&V Facility's Lou Blazy- discussed the future of space software in their respective centers. At the end of the first day, the SEW sponsored a reception at the GSFC Visitors' Center. Day 2 also provided four sessions: Using the Experience Factory; A panel discussion entitled "Software Past, Present, and Future: Views from Government, Industry, and Academia"; Inspections; and COTS. The day started with an excellent talk by CSC's Frank McGarry on "Attaining Level 5 in CMM Process Maturity." Session 2, the panel discussion on software, featured NASA Chief Information Officer Lee Holcomb (Government), our own Jerry Page (Industry), and Mike Evangelist of the National Science Foundation (Academia). Each presented his perspective on the most important developments in software in the past 10 years, in the present, and in the future.

  5. Proceedings of the Eighteenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The workshop provided a forum for software practitioners from around the world to exchange information on the measurement, use, and evaluation of software methods, models, and tools. This year, approximately 450 people attended the workshop, which consisted of six sessions on the following topics: the Software Engineering Laboratory, measurement, technology assessment, advanced concepts, process, and software engineering issues in NASA. Three presentations were given in each of the topic areas. The content of those presentations and the research papers detailing the work reported are included in these proceedings. The workshop concluded with a tutorial session on how to start an Experience Factory.

  6. Implementing Large Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Coppit, David

    2006-01-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that…

  7. Software Engineering Principles for Courseware Development.

    ERIC Educational Resources Information Center

    Magel, Kenneth

    1980-01-01

    Courseware (computer based curriculum materials) development should follow the lessons learned by software engineers. The most important of 28 principles of software development presented here include a stress on human readability, the importance of early planning and analysis, the need for independent evaluation, and the need to be flexible.…

  8. Data collection procedures for the Software Engineering Laboratory (SEL) database

    NASA Technical Reports Server (NTRS)

    Heller, Gerard; Valett, Jon; Wild, Mary

    1992-01-01

    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms.

  9. The Many Faces of a Software Engineer in a Research Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold

    2013-10-14

    The ability to gather, analyze and make decisions based on real world data is changing nearly every field of human endeavor. These changes are particularly challenging for software engineers working in a scientific community, designing and developing large, complex systems. To avoid the creation of a communications gap (almost a language barrier), the software engineers should possess an ‘adaptive’ skill. In the science and engineering research community, the software engineers must be responsible for more than creating mechanisms for storing and analyzing data. They must also develop a fundamental scientific and engineering understanding of the data. This paper looks atmore » the many faces that a software engineer should have: developer, domain expert, business analyst, security expert, project manager, tester, user experience professional, etc. Observations made during work on a power-systems scientific software development are analyzed and extended to describe more generic software development projects.« less

  10. Software process improvement in the NASA software engineering laboratory

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  11. Automating Software Design Metrics.

    DTIC Science & Technology

    1984-02-01

    INTRODUCTION 1 ", ... 0..1 1.2 HISTORICAL PERSPECTIVE High quality software is of interest to both the software engineering com- munity and its users. As...contributions of many other software engineering efforts, most notably [MCC 77] and [Boe 83b], which have defined and refined a framework for quantifying...AUTOMATION OF DESIGN METRICS Software metrics can be useful within the context of an integrated soft- ware engineering environment. The purpose of this

  12. Glossary of software engineering laboratory terms

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A glossary of terms used in the Software Engineering Laboratory (SEL) is presented. The terms are defined within the context of the software development environment for flight dynamics at Goddard Space Flight Center. A concise reference for clarifying and understanding the language employed in SEL documents and data collection forms is provided.

  13. Diversification and Challenges of Software Engineering Standards

    NASA Technical Reports Server (NTRS)

    Poon, Peter T.

    1994-01-01

    The author poses certain questions in this paper: 'In the future, should there be just one software engineering standards set? If so, how can we work towards that goal? What are the challenges of internationalizing standards?' Based on the author's personal view, the statement of his position is as follows: 'There should NOT be just one set of software engineering standards in the future. At the same time, there should NOT be the proliferation of standards, and the number of sets of standards should be kept to a minimum.It is important to understand the diversification of the areas which are spanned by the software engineering standards.' The author goes on to describe the diversification of processes, the diversification in the national and international character of standards organizations, the diversification of the professional organizations producing standards, the diversification of the types of businesses and industries, and the challenges of internationalizing standards.

  14. The IEEE Software Engineering Standards Process

    PubMed Central

    Buckley, Fletcher J.

    1984-01-01

    Software Engineering has emerged as a field in recent years, and those involved increasingly recognize the need for standards. As a result, members of the Institute of Electrical and Electronics Engineers (IEEE) formed a subcommittee to develop these standards. This paper discusses the ongoing standards development, and associated efforts.

  15. Software quality: Process or people

    NASA Technical Reports Server (NTRS)

    Palmer, Regina; Labaugh, Modenna

    1993-01-01

    This paper will present data related to software development processes and personnel involvement from the perspective of software quality assurance. We examine eight years of data collected from six projects. Data collected varied by project but usually included defect and fault density with limited use of code metrics, schedule adherence, and budget growth information. The data are a blend of AFSCP 800-14 and suggested productivity measures in Software Metrics: A Practioner's Guide to Improved Product Development. A software quality assurance database tool, SQUID, was used to store and tabulate the data.

  16. The Hidden Job Requirements for a Software Engineer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.

    In a world increasingly operated by computers, where innovation depends on software, the software engineer’s role is changing continuously and gaining new dimensions. In commercial software development as well as scientific research environments, the way software developers are perceived is changing, because they are more important to the business than ever before. Nowadays, their job requires skills extending beyond the regular job description posted by HR, and more is expected. To advance and thrive in their new roles, the software engineers must embrace change, and practice the themes of the new era (integration, collaboration and optimization). The challenges may bemore » somehow intimidating for freshly graduated software engineers. Through this paper the authors hope to set them on a path for success, by helping them relinquish their fear of the unknown.« less

  17. Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Hammond, G. E.

    2017-12-01

    Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such

  18. Collected software engineering papers, volume 12

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1993 through October 1994. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the 12th such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document.

  19. Collected software engineering papers, volume 11

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document is a collection of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) from November 1992 through November 1993. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. This is the 11th such volume of technical papers produced by the SEL. Although these papers cover several topics related to software engineering, they do not encompass the entire scope of SEL activities and interests. Additional information about the SEL and its research efforts may be obtained from the sources listed in the bibliography at the end of this document.

  20. An Ontology for Software Engineering Education

    ERIC Educational Resources Information Center

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  1. A software engineering approach to expert system design and verification

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.; Goodwin, Mary Ann

    1988-01-01

    Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.

  2. Proceedings of the Ninth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experiences in measurement, utilization, and evaluation of software methodologies, models, and tools are discussed. NASA's involvement in ever larger and more complex systems, like the space station project, provides a motive for the support of software engineering research and the exchange of ideas in such forums. The topics of current SEL research are software error studies, experiments with software development, and software tools.

  3. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  4. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  5. Towards a controlled vocabulary on software engineering education

    NASA Astrophysics Data System (ADS)

    Pizard, Sebastián; Vallespir, Diego

    2017-11-01

    Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common approach to understand a thematic area. This study examines previous publications in software engineering education to obtain a first controlled vocabulary (a more formal definition of a classification schema) in the field. Publications from 1988 to 2014 were collected and processed using automatic clustering techniques and the outcomes were analysed manually. The result is an initial controlled vocabulary with a taxonomy form with 43 concepts that were identified as the most used in the research publications. We present the classification of the concepts in three facets: 'what to teach', 'how to teach' and 'where to teach' and the evolution of concepts over time.

  6. A Structure for Creating Quality Software.

    ERIC Educational Resources Information Center

    Christensen, Larry C.; Bodey, Michael R.

    1990-01-01

    Addresses the issue of assuring quality software for use in computer-aided instruction and presents a structure by which developers can create quality courseware. Differences between courseware and computer-aided instruction software are discussed, methods for testing software are described, and human factors issues as well as instructional design…

  7. Ada Implementation Guide. Software Engineering With Ada. Volume 1

    DTIC Science & Technology

    1994-04-01

    Staff, Department ofDefense Dictionary of Military and Associated Terms, Washington, D.C., 1989. STARS McDonal , C., and S . Redwine, *STARS Glossary: A...ADýA28 357> offj I Volume I I SI I t Ada Implementation II Guide 5 Software Engineering With AdaI I S DTIC QUALITY INSPECTED S 5 April 1994 g " 94...and Abbreviations ...................... I I N p a S I I I i I Libt of F4g u OW Tahl Figures 2-1 DON Directives and Instructions for Implementing Public

  8. Experiences with Integrating Simulation into a Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bollin, Andreas; Hochmuller, Elke; Mittermeir, Roland; Samuelis, Ladislav

    2012-01-01

    Software Engineering education must account for a broad spectrum of knowledge and skills software engineers will be required to apply throughout their professional life. Covering all the topics in depth within a university setting is infeasible due to curricular constraints as well as due to the inherent differences between educational…

  9. 7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.

  10. Repository-Based Software Engineering Program: Working Program Management Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  11. Repository-Based Software Engineering (RBSE) program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Support of a software engineering program was provided in the following areas: client/customer liaison; research representation/outreach; and program support management. Additionally, a list of deliverables is presented.

  12. Improvement of Computer Software Quality through Software Automated Tools.

    DTIC Science & Technology

    1986-08-31

    requirement for increased emphasis on software quality assurance has lead to the creation of various methods of verification and validation. Experience...result was a vast array of methods , systems, languages and automated tools to assist in the process. Given that the primary role of quality assurance is...Unfortunately, there is no single method , tool or technique that can insure accurate, reliable and cost effective software. Therefore, government and industry

  13. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  14. Software technology insertion: A study of success factors

    NASA Technical Reports Server (NTRS)

    Lydon, Tom

    1990-01-01

    Managing software development in large organizations has become increasingly difficult due to increasing technical complexity, stricter government standards, a shortage of experienced software engineers, competitive pressure for improved productivity and quality, the need to co-develop hardware and software together, and the rapid changes in both hardware and software technology. The 'software factory' approach to software development minimizes risks while maximizing productivity and quality through standardization, automation, and training. However, in practice, this approach is relatively inflexible when adopting new software technologies. The methods that a large multi-project software engineering organization can use to increase the likelihood of successful software technology insertion (STI), especially in a standardized engineering environment, are described.

  15. Software engineering processes for Class D missions

    NASA Astrophysics Data System (ADS)

    Killough, Ronnie; Rose, Debi

    2013-09-01

    Software engineering processes are often seen as anathemas; thoughts of CMMI key process areas and NPR 7150.2A compliance matrices can motivate a software developer to consider other career fields. However, with adequate definition, common-sense application, and an appropriate level of built-in flexibility, software engineering processes provide a critical framework in which to conduct a successful software development project. One problem is that current models seem to be built around an underlying assumption of "bigness," and assume that all elements of the process are applicable to all software projects regardless of size and tolerance for risk. This is best illustrated in NASA's NPR 7150.2A in which, aside from some special provisions for manned missions, the software processes are to be applied based solely on the criticality of the software to the mission, completely agnostic of the mission class itself. That is, the processes applicable to a Class A mission (high priority, very low risk tolerance, very high national significance) are precisely the same as those applicable to a Class D mission (low priority, high risk tolerance, low national significance). This paper will propose changes to NPR 7150.2A, taking mission class into consideration, and discuss how some of these changes are being piloted for a current Class D mission—the Cyclone Global Navigation Satellite System (CYGNSS).

  16. Collected software engineering papers, volume 7

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A collection is presented of selected technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period Dec. 1988 to Oct. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the seven papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  17. Architecture independent environment for developing engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  18. The Institute for Software Engineering.

    ERIC Educational Resources Information Center

    Inselbert, Armond

    1982-01-01

    The Institute for Software Engineering, a data processing education, publishing and consulting organization with offices and members worldwide, is described. The goal of the Institute is to assist data processing management and staff in providing the service levels required to support an organization's business needs. (Author/MLW)

  19. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  20. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    NASA Astrophysics Data System (ADS)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  1. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  2. Software Engineering Laboratory (SEL) data and information policy

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank

    1991-01-01

    The policies and overall procedures that are used in distributing and in making available products of the Software Engineering Laboratory (SEL) are discussed. The products include project data and measures, project source code, reports, and software tools.

  3. Proceedings of the Twenty-Third Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems.

  4. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  5. Collected software engineering papers, volume 6

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A collection is presented of technical papers produced by participants in the Software Engineering Laboratory (SEL) during the period 1 Jun. 1987 to 1 Jan. 1989. The purpose of the document is to make available, in one reference, some results of SEL research that originally appeared in a number of different forums. For the convenience of this presentation, the twelve papers contained here are grouped into three major categories: (1) Software Measurement and Technology Studies; (2) Measurement Environment Studies; and (3) Ada Technology Studies. The first category presents experimental research and evaluation of software measurement and technology; the second presents studies on software environments pertaining to measurement. The last category represents Ada technology and includes research, development, and measurement studies.

  6. Proceedings of the 14th Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Several software related topics are presented. Topics covered include studies and experiment at the Software Engineering Laboratory at the Goddard Space Flight Center, predicting project success from the Software Project Management Process, software environments, testing in a reuse environment, domain directed reuse, and classification tree analysis using the Amadeus measurement and empirical analysis.

  7. Some Future Software Engineering Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Boehm, Barry

    This paper provides an update and extension of a 2006 paper, “Some Future Trends and Implications for Systems and Software Engineering Processes,” Systems Engineering, Spring 2006. Some of its challenges and opportunities are similar, such as the need to simultaneously achieve high levels of both agility and assurance. Others have emerged as increasingly important, such as the challenges of dealing with ultralarge volumes of data, with multicore chips, and with software as a service. The paper is organized around eight relatively surprise-free trends and two “wild cards” whose trends and implications are harder to foresee. The eight surprise-free trends are:

  8. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  9. Software Engineering Education Directory

    DTIC Science & Technology

    1989-02-01

    engineering degree programs . In future editions of this directory, we plan to provide indices and cross tabulations showing a profile of ongoing software...Compilation of entries for this directory began in the summer of 1986 with a questionnaire mailed to schools selected from Peterson’s- Graduate Programs ...organized the directory by state and country. How to Use this Directory The directory is organized by state and province. Within each section, the

  10. Survey on Intelligent Assistance for Workplace Learning in Software Engineering

    NASA Astrophysics Data System (ADS)

    Ras, Eric; Rech, Jörg

    Technology-enhanced learning (TEL) systems and intelligent assistance systems aim at supporting software engineers during learning and work. A questionnaire-based survey with 89 responses from industry was conducted to find out what kinds of services should be provided and how, as well as to determine which software engineering phases they should focus on. In this paper, we present the survey results regarding intelligent assistance for workplace learning in software engineering. We analyzed whether specific types of assistance depend on the organization's size, the respondent's role, and the experience level. The results show a demand for TEL that supports short-term problem solving and long-term competence development at the workplace.

  11. Shaping Software Engineering Curricula Using Open Source Communities: A Case Study

    ERIC Educational Resources Information Center

    Bowring, James; Burke, Quinn

    2016-01-01

    This paper documents four years of a novel approach to teaching a two-course sequence in software engineering as part of the ABET-accredited computer science curriculum at the College of Charleston. This approach is team-based and centers on learning software engineering in the context of open source software projects. In the first course, teams…

  12. Investigation of the current requirements engineering practices among software developers at the Universiti Utara Malaysia Information Technology (UUMIT) centre

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Abdullah, Inam

    2016-08-01

    Requirements Engineering (RE) is a systemic and integrated process of eliciting, elaborating, negotiating, validating and managing of the requirements of a system in a software development project. UUM has been supported by various systems developed and maintained by the UUM Information Technology (UUMIT) Centre. The aim of this study was to assess the current requirements engineering practices at UUMIT. The main problem that prompted this research is the lack of studies that support software development activities at the UUMIT. The study is geared at helping UUMIT produce quality but time and cost saving software products by implementing cutting edge and state of the art requirements engineering practices. Also, the study contributes to UUM by identifying the activities needed for software development so that the management will be able to allocate budget to provide adequate and precise training for the software developers. Three variables were investigated: Requirement Description, Requirements Development (comprising: Requirements Elicitation, Requirements Analysis and Negotiation, Requirements Validation), and Requirement Management. The results from the study showed that the current practice of requirement engineering in UUMIT is encouraging, but still need further development and improvement because a few RE practices were seldom practiced.

  13. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    NASA Technical Reports Server (NTRS)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  14. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  15. Engineering software development with HyperCard

    NASA Technical Reports Server (NTRS)

    Darko, Robert J.

    1990-01-01

    The successful and unsuccessful techniques used in the development of software using HyperCard are described. The viability of the HyperCard for engineering is evaluated and the future use of HyperCard by this particular group of developers is discussed.

  16. On the Prospects and Concerns of Integrating Open Source Software Environment in Software Engineering Education

    ERIC Educational Resources Information Center

    Kamthan, Pankaj

    2007-01-01

    Open Source Software (OSS) has introduced a new dimension in software community. As the development and use of OSS becomes prominent, the question of its integration in education arises. In this paper, the following practices fundamental to projects and processes in software engineering are examined from an OSS perspective: project management;…

  17. Software Past, Present, and Future: Views from Government, Industry and Academia

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Page, Jerry; Evangelist, Michael

    2000-01-01

    Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.

  18. Model-based engineering for medical-device software.

    PubMed

    Ray, Arnab; Jetley, Raoul; Jones, Paul L; Zhang, Yi

    2010-01-01

    This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software. 1.

  19. Automated Theorem Proving in High-Quality Software Design

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    The amount and complexity of software developed during the last few years has increased tremendously. In particular, programs are being used more and more in embedded systems (from car-brakes to plant-control). Many of these applications are safety-relevant, i.e. a malfunction of hardware or software can cause severe damage or loss. Tremendous risks are typically present in the area of aviation, (nuclear) power plants or (chemical) plant control. Here, even small problems can lead to thousands of casualties and huge financial losses. Large financial risks also exist when computer systems are used in the area of telecommunication (telephone, electronic commerce) or space exploration. Computer applications in this area are not only subject to safety considerations, but also security issues are important. All these systems must be designed and developed to guarantee high quality with respect to safety and security. Even in an industrial setting which is (or at least should be) aware of the high requirements in Software Engineering, many incidents occur. For example, the Warshaw Airbus crash, was caused by an incomplete requirements specification. Uncontrolled reuse of an Ariane 4 software module was the reason for the Ariane 5 disaster. Some recent incidents in the telecommunication area, like illegal "cloning" of smart-cards of D2GSM handies, or the extraction of (secret) passwords from German T-online users show that also in this area serious flaws can happen. Due to the inherent complexity of computer systems, most authors claim that only a rigorous application of formal methods in all stages of the software life cycle can ensure high quality of the software and lead to real safe and secure systems. In this paper, we will have a look, in how far automated theorem proving can contribute to a more widespread application of formal methods and their tools, and what automated theorem provers (ATPs) must provide in order to be useful.

  20. Quality measures and assurance for AI (Artificial Intelligence) software

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1988-01-01

    This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.

  1. A Review of the Suitability of Available Computer Aided Software Engineering (CASE) Tools for the Small Software Development Environment

    DTIC Science & Technology

    1989-07-11

    LITERATURE CITED [Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment," Datamation, 19, 5, (May 1973), pp 48-59. [Boeh76...Boehm, Barry W., "Software Engineering," IEEE Transactions on Computers, C-25, 12, (December 1976), pp 1226-1241. [Boeh81a] Boehm, Barry W., Software...Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ, (1981). [Boeh8lb] Boehm, Barry W., "An Experiment in Small Scale Application Software

  2. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  3. Integrating MPI and deduplication engines: a software architecture roadmap.

    PubMed

    Baksi, Dibyendu

    2009-03-01

    The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.

  4. Experimental software engineering: Seventeen years of lessons in the SEL

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank E.

    1992-01-01

    Seven key principles developed by the Software Engineering Laboratory (SEL) at the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA) are described. For the past 17 years, the SEL has been experimentally analyzing the development of production software as varying techniques and methodologies are applied in this one environment. The SEL has collected, archived, and studied detailed measures from more than 100 flight dynamics projects, thereby gaining significant insight into the effectiveness of numerous software techniques, as well as extensive experience in the overall effectiveness of 'Experimental Software Engineering'. This experience has helped formulate follow-on studies in the SEL, and it has helped other software organizations better understand just what can be accomplished and what cannot be accomplished through experimentation.

  5. Software Reviews Since Acquisition Reform - The Artifact Perspective

    DTIC Science & Technology

    2004-01-01

    Risk Management OLD NEW Slide 13Acquisition of Software Intensive Systems 2004 – Peter Hantos Single, basic software paradigm Single processor Low...software risk mitigation related trade-offs must be done together Integral Software Engineering Activities Process Maturity and Quality Frameworks Quality

  6. Software Engineering Infrastructure in a Large Virtual Campus

    ERIC Educational Resources Information Center

    Cristobal, Jesus; Merino, Jorge; Navarro, Antonio; Peralta, Miguel; Roldan, Yolanda; Silveira, Rosa Maria

    2011-01-01

    Purpose: The design, construction and deployment of a large virtual campus are a complex issue. Present virtual campuses are made of several software applications that complement e-learning platforms. In order to develop and maintain such virtual campuses, a complex software engineering infrastructure is needed. This paper aims to analyse the…

  7. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  8. Using software metrics and software reliability models to attain acceptable quality software for flight and ground support software for avionic systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Stella

    1992-01-01

    This paper is concerned with methods of measuring and developing quality software. Reliable flight and ground support software is a highly important factor in the successful operation of the space shuttle program. Reliability is probably the most important of the characteristics inherent in the concept of 'software quality'. It is the probability of failure free operation of a computer program for a specified time and environment.

  9. Sharing Research Models: Using Software Engineering Practices for Facilitation

    PubMed Central

    Bryant, Stephanie P.; Solano, Eric; Cantor, Susanna; Cooley, Philip C.; Wagener, Diane K.

    2011-01-01

    Increasingly, researchers are turning to computational models to understand the interplay of important variables on systems’ behaviors. Although researchers may develop models that meet the needs of their investigation, application limitations—such as nonintuitive user interface features and data input specifications—may limit the sharing of these tools with other research groups. By removing these barriers, other research groups that perform related work can leverage these work products to expedite their own investigations. The use of software engineering practices can enable managed application production and shared research artifacts among multiple research groups by promoting consistent models, reducing redundant effort, encouraging rigorous peer review, and facilitating research collaborations that are supported by a common toolset. This report discusses three established software engineering practices— the iterative software development process, object-oriented methodology, and Unified Modeling Language—and the applicability of these practices to computational model development. Our efforts to modify the MIDAS TranStat application to make it more user-friendly are presented as an example of how computational models that are based on research and developed using software engineering practices can benefit a broader audience of researchers. PMID:21687780

  10. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...

  11. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...

  12. A Candidate Strategy for the Software Engineering Institute

    DTIC Science & Technology

    1983-03-15

    Strategy For The Software Engineering I Institute InstiuteG PL4FOPRMING ONG. REPORT NUMBER 7. AUTNOR(,) S. CONTRACT OR GRANT NUMUERfaj The DoD Joint Service...interface standards, STARS, APSE, training, state-of-the-practice, mission critical systems, software technology, hardware. 20. ABSTRACT fCantinue an , vape ...CLASSIFIrCATION OFr THIS PACE (When Data 211111104, A.•.. A CANDIDATE STRATEGY FOR THE SOFTWARE ENGINEEERING INSTITUTE Aoocession For DTIC TAB u t l It J oil

  13. Automated software development workstation

    NASA Technical Reports Server (NTRS)

    Prouty, Dale A.; Klahr, Philip

    1988-01-01

    A workstation is being developed that provides a computational environment for all NASA engineers across application boundaries, which automates reuse of existing NASA software and designs, and efficiently and effectively allows new programs and/or designs to be developed, catalogued, and reused. The generic workstation is made domain specific by specialization of the user interface, capturing engineering design expertise for the domain, and by constructing/using a library of pertinent information. The incorporation of software reusability principles and expert system technology into this workstation provide the obvious benefits of increased productivity, improved software use and design reliability, and enhanced engineering quality by bringing engineering to higher levels of abstraction based on a well tested and classified library.

  14. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  15. The software-cycle model for re-engineering and reuse

    NASA Technical Reports Server (NTRS)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  16. Measuring health care process quality with software quality measures.

    PubMed

    Yildiz, Ozkan; Demirörs, Onur

    2012-01-01

    Existing quality models focus on some specific diseases, clinics or clinical areas. Although they contain structure, process, or output type measures, there is no model which measures quality of health care processes comprehensively. In addition, due to the not measured overall process quality, hospitals cannot compare quality of processes internally and externally. To bring a solution to above problems, a new model is developed from software quality measures. We have adopted the ISO/IEC 9126 software quality standard for health care processes. Then, JCIAS (Joint Commission International Accreditation Standards for Hospitals) measurable elements were added to model scope for unifying functional requirements. Assessment (diagnosing) process measurement results are provided in this paper. After the application, it was concluded that the model determines weak and strong aspects of the processes, gives a more detailed picture for the process quality, and provides quantifiable information to hospitals to compare their processes with multiple organizations.

  17. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    ERIC Educational Resources Information Center

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  18. Assessing students' performance in software requirements engineering education using scoring rubrics

    NASA Astrophysics Data System (ADS)

    Mkpojiogu, Emmanuel O. C.; Hussain, Azham

    2017-10-01

    The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.

  19. A knowledge based software engineering environment testbed

    NASA Technical Reports Server (NTRS)

    Gill, C.; Reedy, A.; Baker, L.

    1985-01-01

    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processing

  20. Can your software engineer program your PLC?

    NASA Astrophysics Data System (ADS)

    Borrowman, Alastair J.; Taylor, Philip

    2016-07-01

    The use of Programmable Logic Controllers (PLCs) in the control of large physics experiments is ubiquitous1, 2, 3. The programming of these controllers is normally the domain of engineers with a background in electronics, this paper introduces PLC program development from the software engineer's perspective. PLC programs provide the link between control software running on PC architecture systems and physical hardware controlled and monitored by digital and analog signals. The higher-level software running on the PC is typically responsible for accepting operator input and from this deciding when and how hardware connected to the PLC is controlled. The PLC accepts demands from the PC, considers the current state of its connected hardware and if correct to do so (based upon interlocks or other constraints) adjusts its hardware output signals appropriately for the PC's demands. A published ICD (Interface Control Document) defines the PLC memory locations available to be written and read by the PC to control and monitor the hardware. Historically the method of programming PLCs has been ladder diagrams that closely resemble circuit diagrams, however, PLC manufacturers nowadays also provide, and promote, the use of higher-level programming languages4. Based on techniques used in the development of high-level PC software to control PLCs for multiple telescopes, this paper examines the development of PLC programs to operate the hardware of a medical cyclotron beamline controlled from a PC using the Experimental Physics and Industrial Control System (EPICS), which is also widely used in telescope control5, 6, 7. The PLC used is the new generation Siemens S7-1200 programmed using Siemens Pascal based Structured Control Language (SCL), which is their implementation of Structured Text (ST). The approach described is that from a software engineer's perspective, utilising Siemens Totally Integrated Automation (TIA) Portal integrated development environment (IDE) to create

  1. Software engineering and Ada (Trademark) training: An implementation model for NASA

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn

    1988-01-01

    The choice of Ada for software engineering for projects such as the Space Station has resulted in government and industrial groups considering training programs that help workers become familiar with both a software culture and the intricacies of a new computer language. The questions of how much time it takes to learn software engineering with Ada, how much an organization should invest in such training, and how the training should be structured are considered. Software engineering is an emerging, dynamic discipline. It is defined by the author as the establishment and application of sound engineering environments, tools, methods, models, principles, and concepts combined with appropriate standards, guidelines, and practices to support computing which is correct, modifiable, reliable and safe, efficient, and understandable throughout the life cycle of the application. Neither the training programs needed, nor the content of such programs, have been well established. This study addresses the requirements for training for NASA personnel and recommends an implementation plan. A curriculum and a means of delivery are recommended. It is further suggested that a knowledgeable programmer may be able to learn Ada in 5 days, but that it takes 6 to 9 months to evolve into a software engineer who uses the language correctly and effectively. The curriculum and implementation plan can be adapted for each NASA Center according to the needs dictated by each project.

  2. Models and metrics for software management and engineering

    NASA Technical Reports Server (NTRS)

    Basili, V. R.

    1988-01-01

    This paper attempts to characterize and present a state of the art view of several quantitative models and metrics of the software life cycle. These models and metrics can be used to aid in managing and engineering software projects. They deal with various aspects of the software process and product, including resources allocation and estimation, changes and errors, size, complexity and reliability. Some indication is given of the extent to which the various models have been used and the success they have achieved.

  3. Software Quality Control at Belle II

    NASA Astrophysics Data System (ADS)

    Ritter, M.; Kuhr, T.; Hauth, T.; Gebard, T.; Kristof, M.; Pulvermacher, C.; Belle Software Group, II

    2017-10-01

    Over the last seven years the software stack of the next generation B factory experiment Belle II has grown to over one million lines of C++ and Python code, counting only the part included in offline software releases. There are several thousand commits to the central repository by about 100 individual developers per year. To keep a coherent software stack of high quality that it can be sustained and used efficiently for data acquisition, simulation, reconstruction, and analysis over the lifetime of the Belle II experiment is a challenge. A set of tools is employed to monitor the quality of the software and provide fast feedback to the developers. They are integrated in a machinery that is controlled by a buildbot master and automates the quality checks. The tools include different compilers, cppcheck, the clang static analyzer, valgrind memcheck, doxygen, a geometry overlap checker, a check for missing or extra library links, unit tests, steering file level tests, a sophisticated high-level validation suite, and an issue tracker. The technological development infrastructure is complemented by organizational means to coordinate the development.

  4. [Stressor and stress reduction strategies for computer software engineers].

    PubMed

    Asakura, Takashi

    2002-07-01

    First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.

  5. Quality engineering as a profession.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Rachel R.; Hoover, Marcey L.

    Over the course of time, the profession of quality engineering has witnessed significant change, from its original emphasis on quality control and inspection to a more contemporary focus on upholding quality processes throughout the organization and its product realization activities. This paper describes the profession of quality engineering, exploring how todays quality engineers and quality professionals are certified individuals committed to upholding quality processes and principles while working with different dimensions of product development. It also discusses the future of the quality engineering profession and the future of the quality movement as a whole.

  6. IEEE Computer Society/Software Engineering Institute Software Process Achievement (SPA) Award 2009

    DTIC Science & Technology

    2011-03-01

    capabilities to our GDM. We also introduced software as a service ( SaaS ) as part our technology solutions and have further enhanced our ability to...model PROSPER Infosys production support methodology Q&P quality and productivity R&D research and development SaaS software as a service ... Software Development Life Cycle (SDLC) 23 Table 10: Scientific Estimation Coverage by Service Line 27 CMU/SEI-2011-TR-008 | vi CMU/SEI-2011

  7. Software quality assurance plan for GCS

    NASA Technical Reports Server (NTRS)

    Duncan, Stephen E.; Bailey, Elizabeth K.

    1990-01-01

    The software quality assurance (SQA) function for the Guidance and Control Software (GCS) project which is part of a software error studies research program is described. The SQA plan outlines all of the procedures, controls, and audits to be carried out by the SQA organization to ensure adherence to the policies, procedures, and standards for the GCS project.

  8. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 2: Program descriptions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The structure and functions of each reporting software program for the Software Engineering Laboratory data base are described. Baseline diagrams, module descriptions, and listings of program generation files are included.

  9. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1997-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.

  10. Enhancing requirements engineering for patient registry software systems with evidence-based components.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2017-07-01

    Patient registries are instrumental for medical research. Often their structures are complex and their implementations use composite software systems to meet the wide spectrum of challenges. Commercial and open-source systems are available for registry implementation, but many research groups develop their own systems. Methodological approaches in the selection of software as well as the construction of proprietary systems are needed. We propose an evidence-based checklist, summarizing essential items for patient registry software systems (CIPROS), to accelerate the requirements engineering process. Requirements engineering activities for software systems follow traditional software requirements elicitation methods, general software requirements specification (SRS) templates, and standards. We performed a multistep procedure to develop a specific evidence-based CIPROS checklist: (1) A systematic literature review to build a comprehensive collection of technical concepts, (2) a qualitative content analysis to define a catalogue of relevant criteria, and (3) a checklist to construct a minimal appraisal standard. CIPROS is based on 64 publications and covers twelve sections with a total of 72 items. CIPROS also defines software requirements. Comparing CIPROS with traditional software requirements elicitation methods, SRS templates and standards show a broad consensus but differences in issues regarding registry-specific aspects. Using an evidence-based approach to requirements engineering for registry software adds aspects to the traditional methods and accelerates the software engineering process for registry software. The method we used to construct CIPROS serves as a potential template for creating evidence-based checklists in other fields. The CIPROS list supports developers in assessing requirements for existing systems and formulating requirements for their own systems, while strengthening the reporting of patient registry software system descriptions. It may be

  11. Questioning the Role of Requirements Engineering in the Causes of Safety-Critical Software Failures

    NASA Technical Reports Server (NTRS)

    Johnson, C. W.; Holloway, C. M.

    2006-01-01

    Many software failures stem from inadequate requirements engineering. This view has been supported both by detailed accident investigations and by a number of empirical studies; however, such investigations can be misleading. It is often difficult to distinguish between failures in requirements engineering and problems elsewhere in the software development lifecycle. Further pitfalls arise from the assumption that inadequate requirements engineering is a cause of all software related accidents for which the system fails to meet its requirements. This paper identifies some of the problems that have arisen from an undue focus on the role of requirements engineering in the causes of major accidents. The intention is to provoke further debate within the emerging field of forensic software engineering.

  12. Software for Optimizing Quality Assurance of Other Software

    NASA Technical Reports Server (NTRS)

    Feather, Martin; Cornford, Steven; Menzies, Tim

    2004-01-01

    Software assurance is the planned and systematic set of activities that ensures that software processes and products conform to requirements, standards, and procedures. Examples of such activities are the following: code inspections, unit tests, design reviews, performance analyses, construction of traceability matrices, etc. In practice, software development projects have only limited resources (e.g., schedule, budget, and availability of personnel) to cover the entire development effort, of which assurance is but a part. Projects must therefore select judiciously from among the possible assurance activities. At its heart, this can be viewed as an optimization problem; namely, to determine the allocation of limited resources (time, money, and personnel) to minimize risk or, alternatively, to minimize the resources needed to reduce risk to an acceptable level. The end result of the work reported here is a means to optimize quality-assurance processes used in developing software.

  13. Software architecture and engineering for patient records: current and future.

    PubMed

    Weng, Chunhua; Levine, Betty A; Mun, Seong K

    2009-05-01

    During the "The National Forum on the Future of the Defense Health Information System," a track focusing on "Systems Architecture and Software Engineering" included eight presenters. These presenters identified three key areas of interest in this field, which include the need for open enterprise architecture and a federated database design, net centrality based on service-oriented architecture, and the need for focus on software usability and reusability. The eight panelists provided recommendations related to the suitability of service-oriented architecture and the enabling technologies of grid computing and Web 2.0 for building health services research centers and federated data warehouses to facilitate large-scale collaborative health care and research. Finally, they discussed the need to leverage industry best practices for software engineering to facilitate rapid software development, testing, and deployment.

  14. Proposing an Evidence-Based Strategy for Software Requirements Engineering.

    PubMed

    Lindoerfer, Doris; Mansmann, Ulrich

    2016-01-01

    This paper discusses an evidence-based approach to software requirements engineering. The approach is called evidence-based, since it uses publications on the specific problem as a surrogate for stakeholder interests, to formulate risks and testing experiences. This complements the idea that agile software development models are more relevant, in which requirements and solutions evolve through collaboration between self-organizing cross-functional teams. The strategy is exemplified and applied to the development of a Software Requirements list used to develop software systems for patient registries.

  15. APPLICATION OF SOFTWARE QUALITY ASSURANCE CONCEPTS AND PROCEDURES TO ENVIORNMENTAL RESEARCH INVOLVING SOFTWARE DEVELOPMENT

    EPA Science Inventory

    As EPA’s environmental research expands into new areas that involve the development of software, quality assurance concepts and procedures that were originally developed for environmental data collection may not be appropriate. Fortunately, software quality assurance is a ...

  16. Software assurance standard

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This standard specifies the software assurance program for the provider of software. It also delineates the assurance activities for the provider and the assurance data that are to be furnished by the provider to the acquirer. In any software development effort, the provider is the entity or individual that actually designs, develops, and implements the software product, while the acquirer is the entity or individual who specifies the requirements and accepts the resulting products. This standard specifies at a high level an overall software assurance program for software developed for and by NASA. Assurance includes the disciplines of quality assurance, quality engineering, verification and validation, nonconformance reporting and corrective action, safety assurance, and security assurance. The application of these disciplines during a software development life cycle is called software assurance. Subsequent lower-level standards will specify the specific processes within these disciplines.

  17. Evaluating Predictive Models of Software Quality

    NASA Astrophysics Data System (ADS)

    Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.

    2014-06-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  18. A survey of Canadian medical physicists: software quality assurance of in-house software.

    PubMed

    Salomons, Greg J; Kelly, Diane

    2015-01-05

    This paper reports on a survey of medical physicists who write and use in-house written software as part of their professional work. The goal of the survey was to assess the extent of in-house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple-choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software-related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines.

  19. The Application of V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward

    1996-01-01

    Verification and Validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In reuse-based software engineering, decisions on the requirements, design and even implementation of domain assets can can be made prior to beginning development of a specific system. in order to bring the effectiveness of V&V to bear within reuse-based software engineering. V&V must be incorporated within the domain engineering process.

  20. Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering Workforce Development

    DTIC Science & Technology

    2010-04-01

    for decoupled parallel development Ref: Barry Boehm 12 Impacts of Technological Changes in the Cyber Environment on Software/Systems Engineering... Pressman , R.S., Software Engineering: A Practitioner’s Approach, 13 Impacts of Technological Changes in the Cyber Environment on Software/Systems

  1. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel; Morasca, Sandro; Basili, Victor R.

    1995-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysis, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact, and rigorous, because it is based on precise mathematical concepts. This framework defines several important measurement concepts (size, length, complexity, cohesion, coupling). It is not intended to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalism and properties we introduce are convenient and intuitive. In addition, we have reviewed the literature on this subject and compared it with our work. This framework contributes constructively to a firmer theoretical ground of software measurement.

  2. JTIDS Software and Test Engineering

    DTIC Science & Technology

    1994-08-01

    AD-A284 134 Final Technical Report August 1994 / JTIDS SOFTWARE AND TEST ENGINEERING D TI’-C--• - Harris Corporation 5LP0 8 1994 Dennis Tebbe F W...PERFORMING ORGANIZATION Harris Corporation REPORT NUMBER P 0 Box 91000 N/A Melbourne FL 32902 a SPONOFNGIMONING AGENCY NAME($) AND ADORESS(ES) 10...Force Base, New York 94 900 186 This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National

  3. The Impact of Software on Associate Degree Programs in Electronic Engineering Technology.

    ERIC Educational Resources Information Center

    Hata, David M.

    1986-01-01

    Assesses the range and extent of computer assisted instruction software available in electronic engineering technology education. Examines the need for software skills in four areas: (1) high-level languages; (2) assembly language; (3) computer-aided engineering; and (4) computer-aided instruction. Outlines strategies for the future in three…

  4. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  5. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts.

    PubMed

    Shah, Hemant; Allard, Raymond D; Enberg, Robert; Krishnan, Ganesh; Williams, Patricia; Nadkarni, Prakash M

    2012-03-09

    A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies.

  6. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts

    PubMed Central

    2012-01-01

    Background A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. Methods In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). Results The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. Conclusions When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies. PMID:22405400

  7. What's Happening in the Software Engineering Laboratory?

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  8. Software Quality Assurance and Controls Standard

    DTIC Science & Technology

    2010-04-27

    Software Quality Assurance d C t l St d dan on ro s an ar Sue Carroll Principal Software Quality Analyst, SAS John Wal z VP Technology and...for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that...Cycle (SLC) process? • What is in a SQA Process? • Where are SQA Controls? • What is the SQA standards history? Wh t i h i i SQA?• a s c ang ng n

  9. Software Engineering Laboratory Ada performance study: Results and implications

    NASA Technical Reports Server (NTRS)

    Booth, Eric W.; Stark, Michael E.

    1992-01-01

    The SEL is an organization sponsored by NASA/GSFC to investigate the effectiveness of software engineering technologies applied to the development of applications software. The SEL was created in 1977 and has three organizational members: NASA/GSFC, Systems Development Branch; The University of Maryland, Computer Sciences Department; and Computer Sciences Corporation, Systems Development Operation. The goals of the SEL are as follows: (1) to understand the software development process in the GSFC environments; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include the Ada Performance Study Report. This paper describes the background of Ada in the Flight Dynamics Division (FDD), the objectives and scope of the Ada Performance Study, the measurement approach used, the performance tests performed, the major test results, and the implications for future FDD Ada development efforts.

  10. Shuttle avionics software trials, tribulations and success

    NASA Technical Reports Server (NTRS)

    Henderson, O. L.

    1985-01-01

    The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.

  11. Software quality for 1997 - what works and what doesn`t?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, C.

    1997-11-01

    This presentation provides a view of software quality for 1997 - what works and what doesn`t. For many years, software quality assurance lagged behind hardware quality assurance in terms of methods, metrics, and successful results. New approaches such as Quality Function Development (WFD) the ISO 9000-9004 standards, the SEI maturity levels, and Total Quality Management (TQM) are starting to attract wide attention, and in some cases to bring software quality levels up to a parity with manufacturing quality levels.

  12. Software IV and V Research Priorities and Applied Program Accomplishments Within NASA

    NASA Technical Reports Server (NTRS)

    Blazy, Louis J.

    2000-01-01

    The mission of this research is to be world-class creators and facilitators of innovative, intelligent, high performance, reliable information technologies that enable NASA missions to (1) increase software safety and quality through error avoidance, early detection and resolution of errors, by utilizing and applying empirically based software engineering best practices; (2) ensure customer software risks are identified and/or that requirements are met and/or exceeded; (3) research, develop, apply, verify, and publish software technologies for competitive advantage and the advancement of science; and (4) facilitate the transfer of science and engineering data, methods, and practices to NASA, educational institutions, state agencies, and commercial organizations. The goals are to become a national Center Of Excellence (COE) in software and system independent verification and validation, and to become an international leading force in the field of software engineering for improving the safety, quality, reliability, and cost performance of software systems. This project addresses the following problems: Ensure safety of NASA missions, ensure requirements are met, minimize programmatic and technological risks of software development and operations, improve software quality, reduce costs and time to delivery, and improve the science of software engineering

  13. Guidance and Control Software,

    DTIC Science & Technology

    1980-05-01

    commitments of function, cost, and schedule . The phrase "software engineering" was intended to contrast with the phrase "computer science" the latter aims...the software problems of cost, delivery schedule , and quality were gradually being recognized at the highest management levels. Thus, in a project... schedule dates. Although the analysis of software problems indicated that the entire software development process (figure 1) needed new methods, only

  14. The Effective Use of Professional Software in an Undergraduate Mining Engineering Curriculum

    ERIC Educational Resources Information Center

    Kecojevic, Vladislav; Bise, Christopher; Haight, Joel

    2005-01-01

    The use of professional software is an integral part of a student's education in the mining engineering curriculum at The Pennsylvania State University. Even though mining engineering represents a limited market across U.S. educational institutions, the goal still exists for using this type of software to enrich the learning environment with…

  15. Success Factors for Using Case Method in Teaching and Learning Software Engineering

    ERIC Educational Resources Information Center

    Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri

    2013-01-01

    The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…

  16. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  17. A Software Engineering Environment for the Navy.

    DTIC Science & Technology

    1982-03-31

    Engineering Pr.cess . - 55 ?art II: Description of A Software Engineering Env.Lonnmeut 1. Data Base ........................................ 7 -3 L.I...Methodology to Tool 1-54 2.2.2.2-6 Flow of Management: Activity to Methodology to Tool 21- 55 2.2.2.2-7 Pipelining for Activity-Specific Tools 11-56 A.1.1-1 A...testing techniques. 2.2. 2 Methodciogies and Tools: Correctness Analysis Pai e T- 4Metboioioo ies aews - Pev2.ews Jeicrmine the in ernai ’ Qolc .. ness and

  18. Software Engineering Laboratory (SEL) data base reporting software user's guide and system description. Volume 1: Introduction and user's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Reporting software programs provide formatted listings and summary reports of the Software Engineering Laboratory (SEL) data base contents. The operating procedures and system information for 18 different reporting software programs are described. Sample output reports from each program are provided.

  19. The Need for V&V in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    V&V is currently performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to entire' domain or product line rather than a critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. engineering. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for activities.

  20. ARROWSMITH-P: A prototype expert system for software engineering management

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Ramsey, Connie Loggia

    1985-01-01

    Although the field of software engineering is relatively new, it can benefit from the use of expert systems. Two prototype expert systems were developed to aid in software engineering management. Given the values for certain metrics, these systems will provide interpretations which explain any abnormal patterns of these values during the development of a software project. The two systems, which solve the same problem, were built using different methods, rule-based deduction and frame-based abduction. A comparison was done to see which method was better suited to the needs of this field. It was found that both systems performed moderately well, but the rule-based deduction system using simple rules provided more complete solutions than did the frame-based abduction system.

  1. The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.

    2006-01-01

    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.

  2. Increasing the reliability of ecological models using modern software engineering techniques

    Treesearch

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  3. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: synthesis - integrating product and process; Serpent - a user interface management system; prototyping distributed simulation networks; and software reuse.

  4. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  5. RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers presented at RICIS Software Engineering Symposium are compiled. The following subject areas are covered: flight critical software; management of real-time Ada; software reuse; megaprogramming software; Ada net; POSIX and Ada integration in the Space Station Freedom Program; and assessment of formal methods for trustworthy computer systems.

  6. Operational excellence (six sigma) philosophy: Application to software quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackner, M.

    1997-11-01

    This report contains viewgraphs on operational excellence philosophy of six sigma applied to software quality assurance. This report outlines the following: goal of six sigma; six sigma tools; manufacturing vs administrative processes; Software quality assurance document inspections; map software quality assurance requirements document; failure mode effects analysis for requirements document; measuring the right response variables; and questions.

  7. Development of an Ada programming support environment database SEAD (Software Engineering and Ada Database) administration manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    Software Engineering and Ada Database (SEAD) was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities which are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce duplication of effort while improving quality in the development of future software systems. SEAD data is organized into five major areas: information regarding education and training resources which are relevant to the life cycle of Ada-based software engineering projects such as those in the Space Station program; research publications relevant to NASA projects such as the Space Station Program and conferences relating to Ada technology; the latest progress reports on Ada projects completed or in progress both within NASA and throughout the free world; Ada compilers and other commercial products that support Ada software development; and reusable Ada components generated both within NASA and from elsewhere in the free world. This classified listing of reusable components shall include descriptions of tools, libraries, and other components of interest to NASA. Sources for the data include technical newletters and periodicals, conference proceedings, the Ada Information Clearinghouse, product vendors, and project sponsors and contractors.

  8. Imprinting Community College Computer Science Education with Software Engineering Principles

    ERIC Educational Resources Information Center

    Hundley, Jacqueline Holliday

    2012-01-01

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and…

  9. A survey of Canadian medical physicists: software quality assurance of in‐house software

    PubMed Central

    Kelly, Diane

    2015-01-01

    This paper reports on a survey of medical physicists who write and use in‐house written software as part of their professional work. The goal of the survey was to assess the extent of in‐house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple‐choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software‐related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines. PACS number: 87.55.Qr PMID:25679168

  10. Software Quality and Copyright: Issues in Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Helm, Virginia

    The two interconnected problems of educational quality and piracy are described and analyzed in this book, which begins with an investigation of the accusations regarding the alleged dismal quality of educational software. The reality behind accusations of rampant piracy and the effect of piracy on the quality of educational software is examined…

  11. The repository-based software engineering program: Redefining AdaNET as a mainstream NASA source

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Repository-based Software Engineering Program (RBSE) is described to inform and update senior NASA managers about the program. Background and historical perspective on software reuse and RBSE for NASA managers who may not be familiar with these topics are provided. The paper draws upon and updates information from the RBSE Concept Document, baselined by NASA Headquarters, Johnson Space Center, and the University of Houston - Clear Lake in April 1992. Several of NASA's software problems and what RBSE is now doing to address those problems are described. Also, next steps to be taken to derive greater benefit from this Congressionally-mandated program are provided. The section on next steps describes the need to work closely with other NASA software quality, technology transfer, and reuse activities and focuses on goals and objectives relative to this need. RBSE's role within NASA is addressed; however, there is also the potential for systematic transfer of technology outside of NASA in later stages of the RBSE program. This technology transfer is discussed briefly.

  12. Modeling a distributed environment for a petroleum reservoir engineering application with software product line

    NASA Astrophysics Data System (ADS)

    de Faria Scheidt, Rafael; Vilain, Patrícia; Dantas, M. A. R.

    2014-10-01

    Petroleum reservoir engineering is a complex and interesting field that requires large amount of computational facilities to achieve successful results. Usually, software environments for this field are developed without taking care out of possible interactions and extensibilities required by reservoir engineers. In this paper, we present a research work which it is characterized by the design and implementation based on a software product line model for a real distributed reservoir engineering environment. Experimental results indicate successfully the utilization of this approach for the design of distributed software architecture. In addition, all components from the proposal provided greater visibility of the organization and processes for the reservoir engineers.

  13. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  14. Software metrics: The key to quality software on the NCC project

    NASA Technical Reports Server (NTRS)

    Burns, Patricia J.

    1993-01-01

    Network Control Center (NCC) Project metrics are captured during the implementation and testing phases of the NCCDS software development lifecycle. The metrics data collection and reporting function has interfaces with all elements of the NCC project. Close collaboration with all project elements has resulted in the development of a defined and repeatable set of metrics processes. The resulting data are used to plan and monitor release activities on a weekly basis. The use of graphical outputs facilitates the interpretation of progress and status. The successful application of metrics throughout the NCC project has been instrumental in the delivery of quality software. The use of metrics on the NCC Project supports the needs of the technical and managerial staff. This paper describes the project, the functions supported by metrics, the data that are collected and reported, how the data are used, and the improvements in the quality of deliverable software since the metrics processes and products have been in use.

  15. Ada Software Engineering Education and Training Requirements Within the U.S. Army

    DTIC Science & Technology

    1988-12-01

    Services and DoD. DoD Directive 3405.1 requires the use of Ada in all applications and DoD Directive 3405.2 establishes the policy of using Ada in...covers DoD structure and procedures, Army policies , and all aspects of software engineering theory, systems engineering, and software development and...acquisition policy , concept development, workload requirements, contracting, and maintenance. The second course covers many of the same areas

  16. CrossTalk: The Journal of Defense Software Engineering. Volume 21, Number 9

    DTIC Science & Technology

    2008-09-01

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE CrossTalk: The Journal of Defense Software Engineering...The Journal of Defense Software Engineering September 2008 4 10 15 19 24 26 Securing Legacy C Applications Using Dynamic Data Flow Analysis This

  17. Parallelization of Rocket Engine Simulator Software (PRESS)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1997-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The second-year funding, which supports two graduate students enrolled in our new Master's program in Computer Science at Hampton University and the principal investigator, have been obtained for the period from October 19, 1996 through October 18, 1997. The key part of the interim report was new directions for the second year funding. This came about from discussions during Rocket Engine Numeric Simulator (RENS) project meeting in Pensacola on January 17-18, 1997. At that time, a software agreement between Hampton University and NASA Lewis Research Center had already been concluded. That agreement concerns off-NASA-site experimentation with PUMPDES/TURBDES software. Before this agreement, during the first year of the project, another large-scale FORTRAN-based software, Two-Dimensional Kinetics (TDK), was being used for translation to an object-oriented language and parallelization experiments. However, that package proved to be too complex and lacking sufficient documentation for effective translation effort to the object-oriented C + + source code. The focus, this time with better documented and more manageable PUMPDES/TURBDES package, was still on translation to C + + with design improvements. At the RENS Meeting, however, the new impetus for the RENS projects in general, and PRESS in particular, has shifted in two important ways. One was closer alignment with the work on Numerical Propulsion System Simulator (NPSS) through cooperation and collaboration with LERC ACLU organization. The other was to see whether and how NASA's various rocket design software can be run over local and intra nets without any radical efforts for redesign and translation into object-oriented source code. There were also suggestions that the Fortran based code be

  18. Quality Market: Design and Field Study of Prediction Market for Software Quality Control

    ERIC Educational Resources Information Center

    Krishnamurthy, Janaki

    2010-01-01

    Given the increasing competition in the software industry and the critical consequences of software errors, it has become important for companies to achieve high levels of software quality. While cost reduction and timeliness of projects continue to be important measures, software companies are placing increasing attention on identifying the user…

  19. Changes in Transferable Knowledge Resulting from Study in a Graduate Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Bareiss, Ray; Sedano, Todd; Katz, Edward

    2012-01-01

    This paper presents the initial results of a study of the evolution of students' knowledge of software engineering from the beginning to the end of a master's degree curriculum in software engineering. Students were presented with a problem involving the initiation of a complex new project at the beginning of the program and again at the end of…

  20. Software Design Improvements. Part 1; Software Benefits and Limitations

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.; Packard, Michael H.; Ziemianski, Tom

    1997-01-01

    Computer hardware and associated software have been used for many years to process accounting information, to analyze test data and to perform engineering analysis. Now computers and software also control everything from automobiles to washing machines and the number and type of applications are growing at an exponential rate. The size of individual program has shown similar growth. Furthermore, software and hardware are used to monitor and/or control potentially dangerous products and safety-critical systems. These uses include everything from airplanes and braking systems to medical devices and nuclear plants. The question is: how can this hardware and software be made more reliable? Also, how can software quality be improved? What methodology needs to be provided on large and small software products to improve the design and how can software be verified?

  1. Software Engineering Institute, Annual Report 2001

    DTIC Science & Technology

    2002-03-01

    PSP and TSP written by Watts S . Humphrey for the Addison- Wesley SEI Series in...become SCAMPI Lead Assessors. SEI A n n u a l R epo r t fy20 0 1 • 25 CMM Pioneer: Watts S . Humphrey The effort to create the original concepts of the SW...CMM was led by SEI Fellow Watts S . Humphrey , who has had a profound impact on the field of software engineering. In February 2000, a new

  2. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  3. [Quality assurance of the renal applications software].

    PubMed

    del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M

    2007-01-01

    The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.

  4. Technology Transfer Challenges for High-Assurance Software Engineering Tools

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.

    2003-01-01

    In this paper, we describe our experience with the challenges thar we are currently facing in our effort to develop advanced software verification and validation tools. We categorize these challenges into several areas: cost benefits modeling, tool usability, customer application domain, and organizational issues. We provide examples of challenges in each area and identrfj, open research issues in areas which limit our ability to transfer high-assurance software engineering tools into practice.

  5. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  6. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 6, June 2007

    DTIC Science & Technology

    2007-06-01

    California. He has co-authored the book Software Cost Estimation With COCOMO II with Barry Boehm and others. Clark helped define the COCOMO II model...Software Engineering at the University of Southern California. She worked with Barry Boehm and Chris Abts to develop and calibrate a cost-estimation...2003/02/ schorsch.html>. 2. See “Software Engineering, A Practitioners Approach” by Roger Pressman for a good description of coupling, cohesion

  7. Agile Software Teams: How They Engage with Systems Engineering on DoD Acquisition Programs

    DTIC Science & Technology

    2014-07-01

    under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer- ing Institute, a federally funded...issues that would preclude or limit the use of Agile methods within the DoD” [Broadus 2013]. As operational tempos increase and programs fight to...environment in which it operates . This makes software different from other disciplines that have toleranc- es, generally resulting in software engineering

  8. Software engineering with application-specific languages

    NASA Technical Reports Server (NTRS)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  9. Software forecasting as it is really done: A study of JPL software engineers

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.

    1993-01-01

    This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.

  10. Master Pump Shutdown MPS Software Quality Assurance Plan (SQAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEVINS, R.R.

    2000-09-20

    The MPSS Software Quality Assurance (SQAP) describes the tools and strategy used in the development of the MPSS software. The document also describes the methodology for controlling and managing changes to the software.

  11. ClassCompass: A Software Design Mentoring System

    ERIC Educational Resources Information Center

    Coelho, Wesley; Murphy, Gail

    2007-01-01

    Becoming a quality software developer requires practice under the guidance of an expert mentor. Unfortunately, in most academic environments, there are not enough experts to provide any significant design mentoring for software engineering students. To address this problem, we present a collaborative software design tool intended to maximize an…

  12. Improving collaborative learning in online software engineering education

    NASA Astrophysics Data System (ADS)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-11-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.

  13. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 9

    DTIC Science & Technology

    2005-09-01

    2004. 12. Humphrey , Watts . Introduction to the Personal Software Process SM. Addison- Wesley 1997. 13. Humphrey , Watts . Introduction to the Team...Personal Software ProcessSM (PSPSM)is a software development process orig- inated by Watts Humphrey at the Software Engineering Institute (SEI) in the...meets its commitments and bring a sense of control and predictability into an apparently chaotic project.u References 1. Humphrey , Watts . Coaching

  14. Error-Free Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  15. Support for Different Roles in Software Engineering Master's Thesis Projects

    ERIC Educational Resources Information Center

    Host, M.; Feldt, R.; Luders, F.

    2010-01-01

    Like many engineering programs in Europe, the final part of most Swedish software engineering programs is a longer project in which the students write a Master's thesis. These projects are often conducted in cooperation between a university and industry, and the students often have two supervisors, one at the university and one in industry. In…

  16. The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)

    2003-01-01

    We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.

  17. Software Engineering Research/Developer Collaborations (C104)

    NASA Technical Reports Server (NTRS)

    Shell, Elaine; Shull, Forrest

    2005-01-01

    The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with

  18. Improving Collaborative Learning in Online Software Engineering Education

    ERIC Educational Resources Information Center

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-01-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all…

  19. Software environment for implementing engineering applications on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K. A.; Schiff, S.

    1990-01-01

    In this paper the concept for a software environment for developing engineering application systems for multiprocessor hardware (MIMD) is presented. The philosophy employed is to solve the largest problems possible in a reasonable amount of time, rather than solve existing problems faster. In the proposed environment most of the problems concerning parallel computation and handling of large distributed data spaces are hidden from the application program developer, thereby facilitating the development of large-scale software applications. Applications developed under the environment can be executed on a variety of MIMD hardware; it protects the application software from the effects of a rapidly changing MIMD hardware technology.

  20. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  1. Software Engineering Laboratory (SEL) cleanroom process model

    NASA Technical Reports Server (NTRS)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon

    1991-01-01

    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  2. A measurement system for large, complex software programs

    NASA Technical Reports Server (NTRS)

    Rone, Kyle Y.; Olson, Kitty M.; Davis, Nathan E.

    1994-01-01

    This paper describes measurement systems required to forecast, measure, and control activities for large, complex software development and support programs. Initial software cost and quality analysis provides the foundation for meaningful management decisions as a project evolves. In modeling the cost and quality of software systems, the relationship between the functionality, quality, cost, and schedule of the product must be considered. This explicit relationship is dictated by the criticality of the software being developed. This balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and developers with respect to the processes being employed.

  3. ICESat (GLAS) Science Processing Software Document Series. Volume 1; Science Software Management Plan; 3.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III

    1999-01-01

    This document provides the Software Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Terminal (IST) Software. For the I-SIPS Software, the SDS will produce Level 0, Level 1, and Level 2 data products as well as the associated product quality assessments and descriptive information. For the IST Software, the SDS will accommodate the GLAS instrument support areas of engineering status, command, performance assessment, and instrument health status.

  4. A software quality model and metrics for risk assessment

    NASA Technical Reports Server (NTRS)

    Hyatt, L.; Rosenberg, L.

    1996-01-01

    A software quality model and its associated attributes are defined and used as the model for the basis for a discussion on risk. Specific quality goals and attributes are selected based on their importance to a software development project and their ability to be quantified. Risks that can be determined by the model's metrics are identified. A core set of metrics relating to the software development process and its products is defined. Measurements for each metric and their usability and applicability are discussed.

  5. Development and application of new quality model for software projects.

    PubMed

    Karnavel, K; Dillibabu, R

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects.

  6. Software for Collaborative Engineering of Launch Rockets

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  7. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the

  8. Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses

    ERIC Educational Resources Information Center

    Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.

    2014-01-01

    Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…

  9. Quality Assurance in Software Development: An Exploratory Investigation in Software Project Failures and Business Performance

    ERIC Educational Resources Information Center

    Ichu, Emmanuel A.

    2010-01-01

    Software quality is perhaps one of the most sought-after attributes in product development, however; this goal is unattained. Problem factors in software development and how these have affected the maintainability of the delivered software systems requires a thorough investigation. It was, therefore, very important to understand software…

  10. 2016 KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    Los Alamos National Laboratory and its collaborators are facilitating engine modeling by improving accuracy and robustness of the modeling, and improving the robustness of software. We also continue to improve the physical modeling methods. We are developing and implementing new mathematical algorithms, those that represent the physics within an engine. We provide software that others may use directly or that they may alter with various models e.g., sophisticated chemical kinetics, different turbulent closure methods or other fuel injection and spray systems.

  11. Software requirements specification for the GIS-T/ISTEA pooled fund study phase C linear referencing engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amai, W.; Espinoza, J. Jr.; Fletcher, D.R.

    1997-06-01

    This Software Requirements Specification (SRS) describes the features to be provided by the software for the GIS-T/ISTEA Pooled Fund Study Phase C Linear Referencing Engine project. This document conforms to the recommendations of IEEE Standard 830-1984, IEEE Guide to Software Requirements Specification (Institute of Electrical and Electronics Engineers, Inc., 1984). The software specified in this SRS is a proof-of-concept implementation of the Linear Referencing Engine as described in the GIS-T/ISTEA pooled Fund Study Phase B Summary, specifically Sheet 13 of the Phase B object model. The software allows an operator to convert between two linear referencing methods and a datummore » network.« less

  12. Software Engineering Tools for Scientific Models

    NASA Technical Reports Server (NTRS)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  13. Epistemology, software engineering and formal methods

    NASA Technical Reports Server (NTRS)

    Holloway, C. Michael

    1994-01-01

    One of the most basic questions anyone can ask is, 'How do I know that what I think I know is true?' The study of this question is called epistemology. Traditionally, epistemology has been considered to be of legitimate interest only to philosophers, theologians, and three year old children who respond to every statement by asking, 'Why?' Software engineers need to be interested in the subject, however, because a lack of sufficient understanding of epistemology contributes to many of the current problems in the field.

  14. Information Systems and Software Engineering Research and Education in Oulu until the 1990s

    NASA Astrophysics Data System (ADS)

    Oinas-Kukkonen, Henry; Kerola, Pentti; Oinas-Kukkonen, Harri; Similä, Jouni; Pulli, Petri

    This paper discusses the internationalization of software business in the Oulu region. Despite its small size, the region grew rapidly and very successfully into a global information and communication technology business center. The University of Oulu, which was the northern most university in the world at the time of its establishment (1958) had a strong emphasis on engineering since its very beginning. Research on electronics was carried out since the early 1960s. Later, when the Department of Information Processing Science was founded in 1969, research on information systems and later also on software engineering was carried out. This paper discusses the role of the information systems and software engineering research for the business growth of the region. Special emphasis is put on understanding the role of system-theoretical and software development expertise for transferring research knowledge into practice.

  15. Statistical Software Engineering

    DTIC Science & Technology

    1998-04-13

    multiversion software subject to coincident errors. IEEE Trans. Software Eng. SE-11:1511-1517. Eckhardt, D.E., A.K Caglayan, J.C. Knight, L.D. Lee, D.F...J.C. and N.G. Leveson. 1986. Experimental evaluation of the assumption of independence in multiversion software. IEEE Trans. Software

  16. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    PubMed

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  17. Orthographic Software Modelling: A Novel Approach to View-Based Software Engineering

    NASA Astrophysics Data System (ADS)

    Atkinson, Colin

    The need to support multiple views of complex software architectures, each capturing a different aspect of the system under development, has been recognized for a long time. Even the very first object-oriented analysis/design methods such as the Booch method and OMT supported a number of different diagram types (e.g. structural, behavioral, operational) and subsequent methods such as Fusion, Kruchten's 4+1 views and the Rational Unified Process (RUP) have added many more views over time. Today's leading modeling languages such as the UML and SysML, are also oriented towards supporting different views (i.e. diagram types) each able to portray a different facets of a system's architecture. More recently, so called enterprise architecture frameworks such as the Zachman Framework, TOGAF and RM-ODP have become popular. These add a whole set of new non-functional views to the views typically emphasized in traditional software engineering environments.

  18. Development and Application of New Quality Model for Software Projects

    PubMed Central

    Karnavel, K.; Dillibabu, R.

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects. PMID:25478594

  19. Student computer attitudes, experience and perceptions about the use of two software applications in Building Engineering

    NASA Astrophysics Data System (ADS)

    Chiner, Esther; Garcia-Vera, Victoria E.

    2017-11-01

    The purpose of this study was to examine students' computer attitudes and experience, as well as students' perceptions about the use of two specific software applications (Google Drive Spreadsheets and Arquimedes) in the Building Engineering context. The relationships among these variables were also examined. Ninety-two students took part in this study. Results suggest that students hold favourable computer attitudes. Moreover, it was found a significant positive relationship among students' attitudes and their computer experience. Findings also show that students find Arquimedes software more useful and with higher output quality than Google Drive Spreadsheets, while the latter is perceived to be easier to use. Regarding the relationship among students' attitudes towards the use of computers and their perceptions about the use of both software applications, only a significant positive relationship in the case of Arquimedes was found. Findings are discussed in terms of its implications for practice and further research.

  20. Aspect-Oriented Model-Driven Software Product Line Engineering

    NASA Astrophysics Data System (ADS)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  1. Adoption of Requirements Engineering Practices in Malaysian Software Development Companies

    NASA Astrophysics Data System (ADS)

    Solemon, Badariah; Sahibuddin, Shamsul; Ghani, Abdul Azim Abd

    This paper presents exploratory survey results on Requirements Engineering (RE) practices of some software development companies in Malaysia. The survey attempted to identify patterns of RE practices the companies are implementing. Information required for the survey was obtained through a survey, mailed self-administered questionnaires distributed to project managers and software developers who are working at software development companies operated across the country. The results showed that the overall adoption of the RE practices in these companies is strong. However, the results also indicated that fewer companies in the survey have use appropriate CASE tools or software to support their RE process and practices, define traceability policies and maintain traceability manual in their projects.

  2. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  3. Standardized development of computer software. Part 2: Standards

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1978-01-01

    This monograph contains standards for software development and engineering. The book sets forth rules for design, specification, coding, testing, documentation, and quality assurance audits of software; it also contains detailed outlines for the documentation to be produced.

  4. Software engineering capability for Ada (GRASP/Ada Tool)

    NASA Technical Reports Server (NTRS)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  5. A Framework for Performing Verification and Validation in Reuse Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  6. Multidisciplinary and Active/Collaborative Approaches in Teaching Requirements Engineering

    ERIC Educational Resources Information Center

    Rosca, Daniela

    2005-01-01

    The requirements engineering course is a core component of the curriculum for the Master's in Software Engineering programme, at Monmouth University (MU). It covers the process, methods and tools specific to this area, together with the corresponding software quality issues. The need to produce software engineers with strong teamwork and…

  7. The Company Approach to Software Engineering Project Courses

    ERIC Educational Resources Information Center

    Broman, D.; Sandahl, K.; Abu Baker, M.

    2012-01-01

    Teaching larger software engineering project courses at the end of a computing curriculum is a way for students to learn some aspects of real-world jobs in industry. Such courses, often referred to as capstone courses, are effective for learning how to apply the skills they have acquired in, for example, design, test, and configuration management.…

  8. Common Database Interface for Heterogeneous Software Engineering Tools.

    DTIC Science & Technology

    1987-12-01

    SUB-GROUP Database Management Systems ;Programming(Comuters); 1e 05 Computer Files;Information Transfer;Interfaces; 19. ABSTRACT (Continue on reverse...Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems ...Literature ..... 8 System 690 Configuration ......... 8 Database Functionis ............ 14 Software Engineering Environments ... 14 Data Manager

  9. Using UML Modeling to Facilitate Three-Tier Architecture Projects in Software Engineering Courses

    ERIC Educational Resources Information Center

    Mitra, Sandeep

    2014-01-01

    This article presents the use of a model-centric approach to facilitate software development projects conforming to the three-tier architecture in undergraduate software engineering courses. Many instructors intend that such projects create software applications for use by real-world customers. While it is important that the first version of these…

  10. Domain and Specification Models for Software Engineering

    NASA Technical Reports Server (NTRS)

    Iscoe, Neil; Liu, Zheng-Yang; Feng, Guohui

    1992-01-01

    This paper discusses our approach to representing application domain knowledge for specific software engineering tasks. Application domain knowledge is embodied in a domain model. Domain models are used to assist in the creation of specification models. Although many different specification models can be created from any particular domain model, each specification model is consistent and correct with respect to the domain model. One aspect of the system-hierarchical organization is described in detail.

  11. A Framework for Performing V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  12. Software Engineering Laboratory (SEL) relationships, models, and management rules

    NASA Technical Reports Server (NTRS)

    Decker, William; Hendrick, Robert; Valett, Jon D.

    1991-01-01

    Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.

  13. Early experiences building a software quality prediction model

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  14. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; hide

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  15. Integrating Requirements Engineering, Modeling, and Verification Technologies into Software and Systems Engineering

    DTIC Science & Technology

    2007-10-28

    Software Engineering, FASE󈧉, volume 3442 of Lecture Notes in Computer Science, pages 175--189. Springer, 2005. Andreas Bauer, Martin Leucker, and Jonathan ...of Personnel receiving masters degrees NAME Markus Strohmeier Gerrit Hanselmann Jonathan Streit Ernst Sassen 4Total Number: Names of personnel...developed and documented mainly within the master thesis by Jonathan Streit [Str06]: • Jonathan Streit. Development of a programming language like tem

  16. Proteomics Quality Control: Quality Control Software for MaxQuant Results.

    PubMed

    Bielow, Chris; Mastrobuoni, Guido; Kempa, Stefan

    2016-03-04

    Mass spectrometry-based proteomics coupled to liquid chromatography has matured into an automatized, high-throughput technology, producing data on the scale of multiple gigabytes per instrument per day. Consequently, an automated quality control (QC) and quality analysis (QA) capable of detecting measurement bias, verifying consistency, and avoiding propagation of error is paramount for instrument operators and scientists in charge of downstream analysis. We have developed an R-based QC pipeline called Proteomics Quality Control (PTXQC) for bottom-up LC-MS data generated by the MaxQuant software pipeline. PTXQC creates a QC report containing a comprehensive and powerful set of QC metrics, augmented with automated scoring functions. The automated scores are collated to create an overview heatmap at the beginning of the report, giving valuable guidance also to nonspecialists. Our software supports a wide range of experimental designs, including stable isotope labeling by amino acids in cell culture (SILAC), tandem mass tags (TMT), and label-free data. Furthermore, we introduce new metrics to score MaxQuant's Match-between-runs (MBR) functionality by which peptide identifications can be transferred across Raw files based on accurate retention time and m/z. Last but not least, PTXQC is easy to install and use and represents the first QC software capable of processing MaxQuant result tables. PTXQC is freely available at https://github.com/cbielow/PTXQC .

  17. CrossTalk: The Journal of Defense Software Engineering. Volume 24, Number 6. November/December 2011

    DTIC Science & Technology

    2011-11-01

    Software Development.” Software Quality Professional Journal, American Society for Quality (ASQ), (March 2010) 4-14. 3. Nair, Gopalakrishnan T.R...Inspection Performance Metric”. Software Quality Professional Journal, American Society for Quality (ASQ), Volume 13, Issue 2, (March 2011) 14-26...the discovery process and are marketed by compa- nies such as Black Duck Software, OpenLogic, Palamida, and Protecode, among others.7 A number of open

  18. Ethical education in software engineering: responsibility in the production of complex systems.

    PubMed

    Génova, Gonzalo; González, M Rosario; Fraga, Anabel

    2007-12-01

    Among the various contemporary schools of moral thinking, consequence-based ethics, as opposed to rule-based, seems to have a good acceptance among professionals such as software engineers. But naïve consequentialism is intellectually too weak to serve as a practical guide in the profession. Besides, the complexity of software systems makes it very hard to know in advance the consequences that will derive from professional activities in the production of software. Therefore, following the spirit of well-known codes of ethics such as the ACM/IEEE's, we advocate for a more solid position in the ethical education of software engineers, which we call 'moderate deontologism', that takes into account both rules and consequences to assess the goodness of actions, and at the same time pays an adequate consideration to the absolute values of human dignity. In order to educate responsible professionals, however, this position should be complemented with a pedagogical approach to virtue ethics.

  19. Tool Use Within NASA Software Quality Assurance

    NASA Technical Reports Server (NTRS)

    Shigeta, Denise; Port, Dan; Nikora, Allen P.; Wilf, Joel

    2013-01-01

    As space mission software systems become larger and more complex, it is increasingly important for the software assurance effort to have the ability to effectively assess both the artifacts produced during software system development and the development process itself. Conceptually, assurance is a straightforward idea - it is the result of activities carried out by an organization independent of the software developers to better inform project management of potential technical and programmatic risks, and thus increase management's confidence in the decisions they ultimately make. In practice, effective assurance for large, complex systems often entails assessing large, complex software artifacts (e.g., requirements specifications, architectural descriptions) as well as substantial amounts of unstructured information (e.g., anomaly reports resulting from testing activities during development). In such an environment, assurance engineers can benefit greatly from appropriate tool support. In order to do so, an assurance organization will need accurate and timely information on the tool support available for various types of assurance activities. In this paper, we investigate the current use of tool support for assurance organizations within NASA, and describe on-going work at JPL for providing assurance organizations with the information about tools they need to use them effectively.

  20. Design and implementation of software for automated quality control and data analysis for a complex LC/MS/MS assay for urine opiates and metabolites.

    PubMed

    Dickerson, Jane A; Schmeling, Michael; Hoofnagle, Andrew N; Hoffman, Noah G

    2013-01-16

    Mass spectrometry provides a powerful platform for performing quantitative, multiplexed assays in the clinical laboratory, but at the cost of increased complexity of analysis and quality assurance calculations compared to other methodologies. Here we describe the design and implementation of a software application that performs quality control calculations for a complex, multiplexed, mass spectrometric analysis of opioids and opioid metabolites. The development and implementation of this application improved our data analysis and quality assurance processes in several ways. First, use of the software significantly improved the procedural consistency for performing quality control calculations. Second, it reduced the amount of time technologists spent preparing and reviewing the data, saving on average over four hours per run, and in some cases improving turnaround time by a day. Third, it provides a mechanism for coupling procedural and software changes with the results of each analysis. We describe several key details of the implementation including the use of version control software and automated unit tests. These generally useful software engineering principles should be considered for any software development project in the clinical lab. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Implementing Software Safety in the NASA Environment

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha S.; Radley, Charles F.

    1994-01-01

    Until recently, NASA did not consider allowing computers total control of flight systems. Human operators, via hardware, have constituted the ultimate safety control. In an attempt to reduce costs, NASA has come to rely more and more heavily on computers and software to control space missions. (For example. software is now planned to control most of the operational functions of the International Space Station.) Thus the need for systematic software safety programs has become crucial for mission success. Concurrent engineering principles dictate that safety should be designed into software up front, not tested into the software after the fact. 'Cost of Quality' studies have statistics and metrics to prove the value of building quality and safety into the development cycle. Unfortunately, most software engineers are not familiar with designing for safety, and most safety engineers are not software experts. Software written to specifications which have not been safety analyzed is a major source of computer related accidents. Safer software is achieved step by step throughout the system and software life cycle. It is a process that includes requirements definition, hazard analyses, formal software inspections, safety analyses, testing, and maintenance. The greatest emphasis is placed on clearly and completely defining system and software requirements, including safety and reliability requirements. Unfortunately, development and review of requirements are the weakest link in the process. While some of the more academic methods, e.g. mathematical models, may help bring about safer software, this paper proposes the use of currently approved software methodologies, and sound software and assurance practices to show how, to a large degree, safety can be designed into software from the start. NASA's approach today is to first conduct a preliminary system hazard analysis (PHA) during the concept and planning phase of a project. This determines the overall hazard potential of

  2. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 11

    DTIC Science & Technology

    2005-11-01

    languages. Our discipline of software engineering has really experienced phenomenal growth right before our eyes. A sign that software design has...approach on a high level of abstraction. The main emphasis is on the identification and allocation of a needed functionality (e.g., a target tracker ), rather...messaging software that is the backbone of teenage culture. As increasing security constraints will increase the cost of developing and main- taining any

  3. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  4. QUICK - An interactive software environment for engineering design

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1989-01-01

    QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.

  5. The software product assurance metrics study: JPL's software systems quality and productivity

    NASA Technical Reports Server (NTRS)

    Bush, Marilyn W.

    1989-01-01

    The findings are reported of the Jet Propulsion Laboratory (JPL)/Software Product Assurance (SPA) Metrics Study, conducted as part of a larger JPL effort to improve software quality and productivity. Until recently, no comprehensive data had been assembled on how JPL manages and develops software-intensive systems. The first objective was to collect data on software development from as many projects and for as many years as possible. Results from five projects are discussed. These results reflect 15 years of JPL software development, representing over 100 data points (systems and subsystems), over a third of a billion dollars, over four million lines of code and 28,000 person months. Analysis of this data provides a benchmark for gauging the effectiveness of past, present and future software development work. In addition, the study is meant to encourage projects to record existing metrics data and to gather future data. The SPA long term goal is to integrate the collection of historical data and ongoing project data with future project estimations.

  6. Evaluation of a deidentification (De-Id) software engine to share pathology reports and clinical documents for research.

    PubMed

    Gupta, Dilip; Saul, Melissa; Gilbertson, John

    2004-02-01

    We evaluated a comprehensive deidentification engine at the University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, that uses a complex set of rules, dictionaries, pattern-matching algorithms, and the Unified Medical Language System to identify and replace identifying text in clinical reports while preserving medical information for sharing in research. In our initial data set of 967 surgical pathology reports, the software did not suppress outside (103), UPMC (47), and non-UPMC (56) accession numbers; dates (7); names (9) or initials (25) of case pathologists; or hospital or laboratory names (46). In 150 reports, some clinical information was suppressed inadvertently (overmarking). The engine retained eponymic patient names, eg, Barrett and Gleason. In the second evaluation (1,000 reports), the software did not suppress outside (90) or UPMC (6) accession numbers or names (4) or initials (2) of case pathologists. In the third evaluation, the software removed names of patients, hospitals (297/300), pathologists (297/300), transcriptionists, residents and physicians, dates of procedures, and accession numbers (298/300). By the end of the evaluation, the system was reliably and specifically removing safe-harbor identifiers and producing highly readable deidentified text without removing important clinical information. Collaboration between pathology domain experts and system developers and continuous quality assurance are needed to optimize ongoing deidentification processes.

  7. Applying object-oriented software engineering at the BaBar collaboration

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bob; BaBar Collaboration Reconstruction Software Group

    1997-02-01

    The BaBar experiment at SLAC will start taking data in 1999. We are attempting to build its reconstruction software using good software engineering practices, including the use of object-oriented technology. We summarize our experience to date with analysis and design activities, training, CASE and documentation tools, C++ programming practice and similar topics. The emphasis is on the practical issues of simultaneously introducing new techniques to a large collaboration while under a deadline for system delivery.

  8. The Personal Software Process (PSPSM): An Empirical Study of the Impact of PSP on Individual Engineers.

    DTIC Science & Technology

    1997-12-01

    Watts Humphrey and is described in his book A Discipline for Software Engineering [ Humphrey 95]. Its intended use is to guide the planning and...Pat; Humphrey , Watts S .; Khajenoori, Soheil; Macke, Susan; & Matvya, Annette. "Introducing the Personal Software Process: Three Industry Case... Humphrey 95] Humphrey , Watts S . A Discipline for Software Engineering. Reading, Ma.: Addison-Wesley, 1995. [Mauchly 40] Mauchly, J.W. "Significance

  9. Collaborative Approach in Software Engineering Education: An Interdisciplinary Case

    ERIC Educational Resources Information Center

    Vicente, Aileen Joan; Tan, Tiffany Adelaine; Yu, Alvin Ray

    2018-01-01

    Aim/Purpose: This study was aimed at enhancing students' learning of software engineering methods. A collaboration between the Computer Science, Business Management, and Product Design programs was formed to work on actual projects with real clients. This interdisciplinary form of collaboration simulates the realities of a diverse Software…

  10. Software Engineering and Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  11. Software Acquisition: Evolution, Total Quality Management, and Applications to the Army Tactical Missile System

    DTIC Science & Technology

    1992-06-01

    presents the concept of software Total Quality Management (TQM) which focuses on the entire process of software acquisition, as a partial solution to...software TQM can be applied to software acquisition. Software Development, Software Acquisition, Total Quality management (TQM), Army Tactical Missile

  12. Software for Engineering Simulations of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  13. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  14. Effects of the Meetings-Flow Approach on Quality Teamwork in the Training of Software Capstone Projects

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Hong, Ya-Chun; Chen, Pei-Chi

    2014-01-01

    Software development relies heavily on teamwork; determining how to streamline this collaborative development is an essential training subject in computer and software engineering education. A team process known as the meetings-flow (MF) approach has recently been introduced in software capstone projects in engineering programs at various…

  15. Innovation Online Teaching Module Plus Digital Engineering Kit with Proteus Software through Hybrid Learning Method to Improve Student Skills

    NASA Astrophysics Data System (ADS)

    Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza

    2018-04-01

    Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.

  16. Health care professional workstation: software system construction using DSSA scenario-based engineering process.

    PubMed

    Hufnagel, S; Harbison, K; Silva, J; Mettala, E

    1994-01-01

    This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.

  17. The development of an Ada programming support environment database: SEAD (Software Engineering and Ada Database), user's manual

    NASA Technical Reports Server (NTRS)

    Liaw, Morris; Evesson, Donna

    1988-01-01

    This is a manual for users of the Software Engineering and Ada Database (SEAD). SEAD was developed to provide an information resource to NASA and NASA contractors with respect to Ada-based resources and activities that are available or underway either in NASA or elsewhere in the worldwide Ada community. The sharing of such information will reduce the duplication of effort while improving quality in the development of future software systems. The manual describes the organization of the data in SEAD, the user interface from logging in to logging out, and concludes with a ten chapter tutorial on how to use the information in SEAD. Two appendices provide quick reference for logging into SEAD and using the keyboard of an IBM 3270 or VT100 computer terminal.

  18. The impact of software quality characteristics on healthcare outcome: a literature review.

    PubMed

    Aghazadeh, Sakineh; Pirnejad, Habibollah; Moradkhani, Alireza; Aliev, Alvosat

    2014-01-01

    The aim of this study was to discover the effect of software quality characteristics on healthcare quality and efficiency indicators. Through a systematic literature review, we selected and analyzed 37 original research papers to investigate the impact of the software indicators (coming from the standard ISO 9126 quality characteristics and sub-characteristics) on some of healthcare important outcome indicators and finally ranked these software indicators. The results showed that the software characteristics usability, reliability and efficiency were mostly favored in the studies, indicating their importance. On the other hand, user satisfaction, quality of patient care, clinical workflow efficiency, providers' communication and information exchange, patient satisfaction and care costs were among the healthcare outcome indicators frequently evaluated in relation to the mentioned software characteristics. Regression Logistic Method was the most common assessment methodology, and Confirmatory Factor Analysis and Structural Equation Modeling were performed to test the structural model's fit. The software characteristics were considered to impact the healthcare outcome indicators through other intermediate factors (variables).

  19. Software Engineering Program: Software Process Improvement Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this document is to provide experience-based guidance in implementing a software process improvement program in any NASA software development or maintenance community. This guidebook details how to define, operate, and implement a working software process improvement program. It describes the concept of the software process improvement program and its basic organizational components. It then describes the structure, organization, and operation of the software process improvement program, illustrating all these concepts with specific NASA examples. The information presented in the document is derived from the experiences of several NASA software organizations, including the SEL, the SEAL, and the SORCE. Their experiences reflect many of the elements of software process improvement within NASA. This guidebook presents lessons learned in a form usable by anyone considering establishing a software process improvement program within his or her own environment. This guidebook attempts to balance general and detailed information. It provides material general enough to be usable by NASA organizations whose characteristics do not directly match those of the sources of the information and models presented herein. It also keeps the ideas sufficiently close to the sources of the practical experiences that have generated the models and information.

  20. Training in software used by practising engineers should be included in university curricula

    NASA Astrophysics Data System (ADS)

    Silveira, A.; Perdigones, A.; García, J. L.

    2009-04-01

    Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors

  1. Software life cycle methodologies and environments

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest

    1991-01-01

    Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.

  2. Changes and challenges in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose

    1994-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.

  3. Systems Engineering, Quality and Testing

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2015-01-01

    AS9100 has little to say about how to apply a Quality Management System (QMS) to aerospace test programs. There is little in the quality engineering Body of Knowledge that applies to testing, unless it is nondestructive examination or some type of lab or bench testing. If one examines how the systems engineering processes are implemented throughout a test program; and how these processes can be mapped to AS9100, a number of areas for involvement of the quality professional are revealed.

  4. Continuous integration and quality control for scientific software

    NASA Astrophysics Data System (ADS)

    Neidhardt, A.; Ettl, M.; Brisken, W.; Dassing, R.

    2013-08-01

    Modern software has to be stable, portable, fast and reliable. This is going to be also more and more important for scientific software. But this requires a sophisticated way to inspect, check and evaluate the quality of source code with a suitable, automated infrastructure. A centralized server with a software repository and a version control system is one essential part, to manage the code basis and to control the different development versions. While each project can be compiled separately, the whole code basis can also be compiled with one central “Makefile”. This is used to create automated, nightly builds. Additionally all sources are inspected automatically with static code analysis and inspection tools, which check well-none error situations, memory and resource leaks, performance issues, or style issues. In combination with an automatic documentation generator it is possible to create the developer documentation directly from the code and the inline comments. All reports and generated information are presented as HTML page on a Web server. Because this environment increased the stability and quality of the software of the Geodetic Observatory Wettzell tremendously, it is now also available for scientific communities. One regular customer is already the developer group of the DiFX software correlator project.

  5. Issues in Software Engineering of Relevance to Instructional Design

    ERIC Educational Resources Information Center

    Douglas, Ian

    2006-01-01

    Software engineering is popularly misconceived as being an upmarket term for programming. In a way, this is akin to characterizing instructional design as the process of creating PowerPoint slides. In both these areas, the construction of systems, whether they are learning or computer systems, is only one part of a systematic process. The most…

  6. Simulation software: engineer processes before reengineering.

    PubMed

    Lepley, C J

    2001-01-01

    People make decisions all the time using intuition. But what happens when you are asked: "Are you sure your predictions are accurate? How much will a mistake cost? What are the risks associated with this change?" Once a new process is engineered, it is difficult to analyze what would have been different if other options had been chosen. Simulating a process can help senior clinical officers solve complex patient flow problems and avoid wasted efforts. Simulation software can give you the data you need to make decisions. The author introduces concepts, methodologies, and applications of computer aided simulation to illustrate their use in making decisions to improve workflow design.

  7. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  8. Math Description Engine Software Development Kit

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  9. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  10. IMPROVING (SOFTWARE) PATENT QUALITY THROUGH THE ADMINISTRATIVE PROCESS

    PubMed Central

    Rai, Arti K.

    2014-01-01

    The available evidence indicates that patent quality, particularly in the area of software, needs improvement. This Article argues that even an agency as institutionally constrained as the U.S. Patent and Trademark Office (“PTO”) could implement a portfolio of pragmatic, cost-effective quality improvement strategies. The argument in favor of these strategies draws upon not only legal theory and doctrine but also new data from a PTO software examination unit with relatively strict practices. Strategies that resolve around Section 112 of the patent statute could usefully be deployed at the initial examination stage. Other strategies could be deployed within the new post-issuance procedures available to the agency under the America Invents Act. Notably, although the strategies the Article discusses have the virtue of being neutral as to technology, they are likely to have a very significant practical impact in the area of software. PMID:25221346

  11. IMPROVING (SOFTWARE) PATENT QUALITY THROUGH THE ADMINISTRATIVE PROCESS.

    PubMed

    Rai, Arti K

    2013-11-24

    The available evidence indicates that patent quality, particularly in the area of software, needs improvement. This Article argues that even an agency as institutionally constrained as the U.S. Patent and Trademark Office ("PTO") could implement a portfolio of pragmatic, cost-effective quality improvement strategies. The argument in favor of these strategies draws upon not only legal theory and doctrine but also new data from a PTO software examination unit with relatively strict practices. Strategies that resolve around Section 112 of the patent statute could usefully be deployed at the initial examination stage. Other strategies could be deployed within the new post-issuance procedures available to the agency under the America Invents Act. Notably, although the strategies the Article discusses have the virtue of being neutral as to technology, they are likely to have a very significant practical impact in the area of software.

  12. Improving Software Quality and Management Through Use of Service Level Agreements

    DTIC Science & Technology

    2005-03-01

    many who believe that the quality of the development process is the best predictor of software product quality. ( Fenton ) Repeatable software processes...reduced errors per KLOC for small projects ( Fenton ), and the quality management metric (QMM) (Machniak, Osmundson). There are also numerous IEEE 14...attention to cosmetic user interface issues and any problems that may arise with the prototype. (Sawyer) The validation process is also another check

  13. Database Access Manager for the Software Engineering Laboratory (DAMSEL) user's guide

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Operating instructions for the Database Access Manager for the Software Engineering Laboratory (DAMSEL) system are presented. Step-by-step instructions for performing various data entry and report generation activities are included. Sample sessions showing the user interface display screens are also included. Instructions for generating reports are accompanied by sample outputs for each of the reports. The document groups the available software functions by the classes of users that may access them.

  14. Simple solution to the medical instrumentation software problem

    NASA Astrophysics Data System (ADS)

    Leif, Robert C.; Leif, Suzanne B.; Leif, Stephanie H.; Bingue, E.

    1995-04-01

    Medical devices now include a substantial software component, which is both difficult and expensive to produce and maintain. Medical software must be developed according to `Good Manufacturing Practices', GMP. Good Manufacturing Practices as specified by the FDA and ISO requires the definition and compliance to a software processes which ensures quality products by specifying a detailed method of software construction. The software process should be based on accepted standards. US Department of Defense software standards and technology can both facilitate the development and improve the quality of medical systems. We describe the advantages of employing Mil-Std-498, Software Development and Documentation, and the Ada programming language. Ada provides the very broad range of functionalities, from embedded real-time to management information systems required by many medical devices. It also includes advanced facilities for object oriented programming and software engineering.

  15. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2002-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC "E" test-stand complex and utilize the SSC file format. The programs are the following: 1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel; 2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris); and 3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  16. Software for Preprocessing Data from Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2004-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot (a free graphing program written by Rick Paris). EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PV-WAVE based plotting software.

  17. Software for Preprocessing Data From Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Cheng, Chiu-Fu

    2003-01-01

    Three computer programs have been written to preprocess digitized outputs of sensors during rocket-engine tests at Stennis Space Center (SSC). The programs apply exclusively to the SSC E test-stand complex and utilize the SSC file format. The programs are the following: (1) Engineering Units Generator (EUGEN) converts sensor-output-measurement data to engineering units. The inputs to EUGEN are raw binary test-data files, which include the voltage data, a list identifying the data channels, and time codes. EUGEN effects conversion by use of a file that contains calibration coefficients for each channel. (2) QUICKLOOK enables immediate viewing of a few selected channels of data, in contradistinction to viewing only after post-test processing (which can take 30 minutes to several hours depending on the number of channels and other test parameters) of data from all channels. QUICKLOOK converts the selected data into a form in which they can be plotted in engineering units by use of Winplot. (3) EUPLOT provides a quick means for looking at data files generated by EUGEN without the necessity of relying on the PVWAVE based plotting software.

  18. The (mis)use of subjective process measures in software engineering

    NASA Technical Reports Server (NTRS)

    Valett, Jon D.; Condon, Steven E.

    1993-01-01

    A variety of measures are used in software engineering research to develop an understanding of the software process and product. These measures fall into three broad categories: quantitative, characteristics, and subjective. Quantitative measures are those to which a numerical value can be assigned, for example effort or lines of code (LOC). Characteristics describe the software process or product; they might include programming language or the type of application. While such factors do not provide a quantitative measurement of a process or product, they do help characterize them. Subjective measures (as defined in this study) are those that are based on the opinion or opinions of individuals; they are somewhat unique and difficult to quantify. Capturing of subjective measure data typically involves development of some type of scale. For example, 'team experience' is one of the subjective measures that were collected and studied by the Software Engineering Laboratory (SEL). Certainly, team experience could have an impact on the software process or product; actually measuring a team's experience, however, is not a strictly mathematical exercise. Simply adding up each team member's years of experience appears inadequate. In fact, most researchers would agree that 'years' do not directly translate into 'experience.' Team experience must be defined subjectively and then a scale must be developed e.g., high experience versus low experience; or high, medium, low experience; or a different or more granular scale. Using this type of scale, a particular team's overall experience can be compared with that of other teams in the development environment. Defining, collecting, and scaling subjective measures is difficult. First, precise definitions of the measures must be established. Next, choices must be made about whose opinions will be solicited to constitute the data. Finally, care must be given to defining the right scale and level of granularity for measurement.

  19. Assuring quality in high-consequence engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Marcey L.; Kolb, Rachel R.

    2014-03-01

    In high-consequence engineering organizations, such as Sandia, quality assurance may be heavily dependent on staff competency. Competency-dependent quality assurance models are at risk when the environment changes, as it has with increasing attrition rates, budget and schedule cuts, and competing program priorities. Risks in Sandia's competency-dependent culture can be mitigated through changes to hiring, training, and customer engagement approaches to manage people, partners, and products. Sandia's technical quality engineering organization has been able to mitigate corporate-level risks by driving changes that benefit all departments, and in doing so has assured Sandia's commitment to excellence in high-consequence engineering and national service.

  20. Impacts of software and its engineering on the carbon footprint of ICT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, Eva, E-mail: e.kern@umwelt-campus.de; Dick, Markus, E-mail: sustainablesoftwareblog@gmail.com; Naumann, Stefan, E-mail: s.naumann@umwelt-campus.de

    2015-04-15

    The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO{sub 2} emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discussmore » impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering.« less

  1. Collaboration in Global Software Engineering Based on Process Description Integration

    NASA Astrophysics Data System (ADS)

    Klein, Harald; Rausch, Andreas; Fischer, Edward

    Globalization is one of the big trends in software development. Development projects need a variety of different resources with appropriate expert knowledge to be successful. More and more of these resources are nowadays obtained from specialized organizations and countries all over the world, varying in development approaches, processes, and culture. As seen with early outsourcing attempts, collaboration may fail due to these differences. Hence, the major challenge in global software engineering is to streamline collaborating organizations towards a successful conjoint development. Based on typical collaboration scenarios, this paper presents a structured approach to integrate processes in a comprehensible way.

  2. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    ERIC Educational Resources Information Center

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  3. Benchmarking the ATLAS software through the Kit Validation engine

    NASA Astrophysics Data System (ADS)

    De Salvo, Alessandro; Brasolin, Franco

    2010-04-01

    The measurement of the experiment software performance is a very important metric in order to choose the most effective resources to be used and to discover the bottlenecks of the code implementation. In this work we present the benchmark techniques used to measure the ATLAS software performance through the ATLAS offline testing engine Kit Validation and the online portal Global Kit Validation. The performance measurements, the data collection, the online analysis and display of the results will be presented. The results of the measurement on different platforms and architectures will be shown, giving a full report on the CPU power and memory consumption of the Monte Carlo generation, simulation, digitization and reconstruction of the most CPU-intensive channels. The impact of the multi-core computing on the ATLAS software performance will also be presented, comparing the behavior of different architectures when increasing the number of concurrent processes. The benchmark techniques described in this paper have been used in the HEPiX group since the beginning of 2008 to help defining the performance metrics for the High Energy Physics applications, based on the real experiment software.

  4. SOA: A Quality Attribute Perspective

    DTIC Science & Technology

    2011-06-23

    in software engineering from CMU. 6June 2011 Twitter #seiwebinar © 2011 Carnegie Mellon University Agenda Service -Oriented Architecture and... Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges 7June 2011 Twitter #seiwebinar © 2011...Architecture and Software Architecture: Review Service -Orientation and Quality Attributes Summary and Future Challenges Review 10June 2011 Twitter

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 3

    DTIC Science & Technology

    2006-03-01

    Humphreys & Associates, Inc., 2002. 3. Humphrey , Watts S . PSP : A Self- Improvement Process for...sanderfer.html>. 5. Humphrey , Watts S . A Discipline for Software Engineering. Addison- Wesley, 1995. 6. Tuma, David, and David R. Webb. “Personal Earned Value: Why...o u r c e li n e s o f c o d e ) Figure 3: Differences for Highest Degree Attained PSP /TSP 12 CROSSTALK The Journal of Defense Software

  6. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  7. Open Source Projects in Software Engineering Education: A Mapping Study

    ERIC Educational Resources Information Center

    Nascimento, Debora M. C.; Almeida Bittencourt, Roberto; Chavez, Christina

    2015-01-01

    Context: It is common practice in academia to have students work with "toy" projects in software engineering (SE) courses. One way to make such courses more realistic and reduce the gap between academic courses and industry needs is getting students involved in open source projects (OSP) with faculty supervision. Objective: This study…

  8. FSO and quality of service software prediction

    NASA Astrophysics Data System (ADS)

    Bouchet, O.; Marquis, T.; Chabane, M.; Alnaboulsi, M.; Sizun, H.

    2005-08-01

    Free-space optical (FSO) communication links constitute an alternative option to radio relay links and to optical cables facing growth needs in high-speed telecommunications (abundance of unregulated bandwidth, rapid installation, availability of low-cost optical components offering a high data rate, etc). Their operationalisation requires a good knowledge of the atmospheric effects which can negatively affect role propagation and the availability of the link, and thus to the quality of service (QoS). Better control of these phenomena will allow for the evaluation of system performance and thus assist with improving reliability. The aim of this paper is to compare the behavior of a FSO link located in south of France (Toulouse: with the following parameters: around 270 meters (0.2 mile) long, 34 Mbps data rate, 850 nm wavelength and PDH frame) with airport meteorological data. The second aim of the paper is to assess in-house FSO quality of service prediction software, through comparing simulations with the optical link data and the weather data. The analysis uses in-house software FSO quality of service prediction software ("FSO Prediction") developed by France Telecom Research & Development, which integrates news fog fading equations (compare to Kim & al.) and includes multiple effects (geometrical attenuation, atmospheric fading, rain, snow, scintillation and refraction attenuation due to atmospheric turbulence, optical mispointing attenuation). The FSO link field trial, intended to enable the demonstration and evaluation of these different effects, is described; and preliminary results of the field trial, from December 2004 to May 2005, are then presented.

  9. The Relationship between Job Satisfaction and Intent to Turnover among Software Engineers in the Information Technology Industry

    ERIC Educational Resources Information Center

    Agada, Chuks N.

    2013-01-01

    The focus of this study was to examine the relationship between job satisfaction and intent to turnover among software engineers in the information technology (IT) industry. The population that was analyzed in this study was software engineers in the IT industry to determine whether there is a relationship between job satisfaction and intent to…

  10. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  11. Investigation of specification measures for the Software Engineering Laboratory (SEL)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Requirements specification measures are investigated for potential application in the Software Engineering Laboratory. Eighty-seven candidate measures are defined; sixteen are recommended for use. Most measures are derived from a new representation, the Composite Specification Model, which is introduced. The results of extracting the specification measures from the requirements of a real system are described.

  12. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    PubMed

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  13. Experience Paper: Software Engineering and Community Codes Track in ATPESC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; Riley, Katherine M.

    Argonne Training Program in Extreme Scale Computing (ATPESC) was started by the Argonne National Laboratory with the objective of expanding the ranks of better prepared users of high performance computing (HPC) machines. One of the unique aspects of the program was inclusion of software engineering and community codes track. The inclusion was motivated by the observation that the projects with a good scientific and software process were better able to meet their scientific goals. In this paper we present our experience of running the software track from the beginning of the program until now. We discuss the motivations, the reception,more » and the evolution of the track over the years. We welcome discussion and input from the community to enhance the track in ATPESC, and also to facilitate inclusion of similar tracks in other HPC oriented training programs.« less

  14. Quality and standardization of telecommunication switching system software

    NASA Astrophysics Data System (ADS)

    Ranko, K.; Hivensaio, J.; Myllykangas, A.

    1981-12-01

    The purpose of this paper has been to illustrate quality and standardization of switching system software from the authors point of view with the aim of developing standardization in the user environment.

  15. Quality assurance and accreditation of engineering education in Jordan

    NASA Astrophysics Data System (ADS)

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-06-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the efforts undertaken by the faculty of engineering at JUST concerning quality assurance and accreditation. Three engineering departments were accorded substantial equivalency status by the Accreditation Board of Engineering and Technology in 2009. Various measures of quality improvement, including curricula development, laboratories improvement, computer facilities, e-learning, and other supporting services are also discussed. Further assessment of the current situation is made through two surveys, targeting engineering instructors and students. Finally, the paper draws conclusions and proposes recommendations to enhance the quality of engineering education at JUST and other Jordanian educational institutions.

  16. GenePRIMP: A software quality control tool

    ScienceCinema

    Amrita Pati

    2017-12-09

    Amrita Pati of the DOE Joint Genome Institute's Genome Biology group describes the software tool GenePRIMP and how it fits into the quality control pipeline for microbial genomics. Further details regarding GenePRIMP appear in a paper published online May 2, 2010 in Nature Methods.

  17. Enhancement/upgrade of Engine Structures Technology Best Estimator (EST/BEST) Software System

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin

    2003-01-01

    This report describes the work performed during the contract period and the capabilities included in the EST/BEST software system. The developed EST/BEST software system includes the integrated NESSUS, IPACS, COBSTRAN, and ALCCA computer codes required to perform the engine cycle mission and component structural analysis. Also, the interactive input generator for NESSUS, IPACS, and COBSTRAN computer codes have been developed and integrated with the EST/BEST software system. The input generator allows the user to create input from scratch as well as edit existing input files interactively. Since it has been integrated with the EST/BEST software system, it enables the user to modify EST/BEST generated files and perform the analysis to evaluate the benefits. Appendix A gives details of how to use the newly added features in the EST/BEST software system.

  18. Software Quality Evaluation Models Applicable in Health Information and Communications Technologies. A Review of the Literature.

    PubMed

    Villamor Ordozgoiti, Alberto; Delgado Hito, Pilar; Guix Comellas, Eva María; Fernandez Sanchez, Carlos Manuel; Garcia Hernandez, Milagros; Lluch Canut, Teresa

    2016-01-01

    Information and Communications Technologies in healthcare has increased the need to consider quality criteria through standardised processes. The aim of this study was to analyse the software quality evaluation models applicable to healthcare from the perspective of ICT-purchasers. Through a systematic literature review with the keywords software, product, quality, evaluation and health, we selected and analysed 20 original research papers published from 2005-2016 in health science and technology databases. The results showed four main topics: non-ISO models, software quality evaluation models based on ISO/IEC standards, studies analysing software quality evaluation models, and studies analysing ISO standards for software quality evaluation. The models provide cost-efficiency criteria for specific software, and improve use outcomes. The ISO/IEC25000 standard is shown as the most suitable for evaluating the quality of ICTs for healthcare use from the perspective of institutional acquisition.

  19. A proven approach for more effective software development and maintenance

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Hall, Dana; Sinclair, Craig

    1994-01-01

    Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the

  20. A Team Building Model for Software Engineering Courses Term Projects

    ERIC Educational Resources Information Center

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  1. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  2. Spectrum analysis on quality requirements consideration in software design documents.

    PubMed

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  3. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 2

    DTIC Science & Technology

    2005-02-01

    Richard J. Adams , Sergio Alvarado, Suellen Eslinger, and Joanne Tagami all with The Aerospace Corporation, and Scott A. Whitmire at ODS Software...Kiczales, G., and M. Kersten . “Show Me the Structure.” Software Develop- ment Apr. 2000. Notes 1. Please note that the M1-M11 number- ing of concepts did...VA: Integrated Computer Engineering, Inc., 2 Aug. 2000 (http://www.spmn.com). 3 Adams , Richard J., Suellen Eslinger, Karen L. Owens, and Mary A. Rich

  4. Development of innovative computer software to facilitate the setup and computation of water quality index.

    PubMed

    Nabizadeh, Ramin; Valadi Amin, Maryam; Alimohammadi, Mahmood; Naddafi, Kazem; Mahvi, Amir Hossein; Yousefzadeh, Samira

    2013-04-26

    Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases.

  5. Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) user's guide and system description

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Card, D.

    1983-01-01

    The Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) is explained. The various software facilities of the SEL, DBAM operating procedures, and DBAM system information are described. The relationships among DBAM components (baseline diagrams), component descriptions, overlay descriptions, indirect command file listings, file definitions, and sample data collection forms are provided.

  6. Software Engineering Laboratory (SEL) database organization and user's guide

    NASA Technical Reports Server (NTRS)

    So, Maria; Heller, Gerard; Steinberg, Sandra; Spiegel, Douglas

    1989-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base tables is described. In addition, techniques for accessing the database, through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL), are discussed.

  7. The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills

    ERIC Educational Resources Information Center

    Kösa, Temel; Karakus, Fatih

    2018-01-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…

  8. Application of NX Siemens PLM software in educational process in preparing students of engineering branch

    NASA Astrophysics Data System (ADS)

    Sadchikova, G. M.

    2017-01-01

    This article discusses the results of the introduction of computer-aided design NX by Siemens Plm Software to the classes of a higher education institution. The necessity of application of modern information technologies in teaching students of engineering profile and selection of a software product is substantiated. The author describes stages of the software module study in relation to some specific courses, considers the features of NX software, which require the creation of standard and unified product databases. The article also gives examples of research carried out by the students with the various software modules.

  9. Software reengineering

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest M., III

    1991-01-01

    Today's software systems generally use obsolete technology, are not integrated properly with other software systems, and are difficult and costly to maintain. The discipline of reverse engineering is becoming prominent as organizations try to move their systems up to more modern and maintainable technology in a cost effective manner. JSC created a significant set of tools to develop and maintain FORTRAN and C code during development of the Space Shuttle. This tool set forms the basis for an integrated environment to re-engineer existing code into modern software engineering structures which are then easier and less costly to maintain and which allow a fairly straightforward translation into other target languages. The environment will support these structures and practices even in areas where the language definition and compilers do not enforce good software engineering. The knowledge and data captured using the reverse engineering tools is passed to standard forward engineering tools to redesign or perform major upgrades to software systems in a much more cost effective manner than using older technologies. A beta vision of the environment was released in Mar. 1991. The commercial potential for such re-engineering tools is very great. CASE TRENDS magazine reported it to be the primary concern of over four hundred of the top MIS executives.

  10. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  11. Is Chinese Software Engineering Professionalizing or Not?: Specialization of Knowledge, Subjective Identification and Professionalization

    ERIC Educational Resources Information Center

    Yang, Yan

    2012-01-01

    Purpose: This paper aims to discuss the challenge for the classical idea of professionalism in understanding the Chinese software engineering industry after giving a close insight into the development of this industry as well as individual engineers with a psycho-societal perspective. Design/methodology/approach: The study starts with the general…

  12. Software Management Metrics

    DTIC Science & Technology

    1988-05-01

    obtained from Dr. Barry Boehm’s Software 5650, Contract No. F19628-86-C-O001, Engineering Economics [1] and from T. J. ESD/MITRE Software Center Acquisition...of References 1. Boehm, Barry W., SoJtware Engineering 3. Halstead, M. H., Elements of SoJhtare Economics, Englewood Cliffs, New Science, New York...1983, pp. 639-648. 35 35 - Bibliography Beizer, B., Software System Testing and Pressman , Roger S., Software Engineering:QualtyO Assurance, New York: Van

  13. Experiences of engineering Grid-based medical software.

    PubMed

    Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T

    2007-08-01

    Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the

  14. Development of innovative computer software to facilitate the setup and computation of water quality index

    PubMed Central

    2013-01-01

    Background Developing a water quality index which is used to convert the water quality dataset into a single number is the most important task of most water quality monitoring programmes. As the water quality index setup is based on different local obstacles, it is not feasible to introduce a definite water quality index to reveal the water quality level. Findings In this study, an innovative software application, the Iranian Water Quality Index Software (IWQIS), is presented in order to facilitate calculation of a water quality index based on dynamic weight factors, which will help users to compute the water quality index in cases where some parameters are missing from the datasets. Conclusion A dataset containing 735 water samples of drinking water quality in different parts of the country was used to show the performance of this software using different criteria parameters. The software proved to be an efficient tool to facilitate the setup of water quality indices based on flexible use of variables and water quality databases. PMID:24499556

  15. IEEE Conference on Software Engineering Education and Training (CSEE&T 2012) Proceedings (25th, Nanjing, Jiangsu, China, April 17-19, 2012)

    ERIC Educational Resources Information Center

    IEEE Conference on Software Engineering Education and Training, Proceedings (MS), 2012

    2012-01-01

    The Conference on Software Engineering Education and Training (CSEE&T) is the premier international peer-reviewed conference, sponsored by the Institute of Electrical and Electronics Engineers, Inc. (IEEE) Computer Society, which addresses all major areas related to software engineering education, training, and professionalism. This year, as…

  16. Adopting software quality measures for healthcare processes.

    PubMed

    Yildiz, Ozkan; Demirörs, Onur

    2009-01-01

    In this study, we investigated the adoptability of software quality measures for healthcare process measurement. Quality measures of ISO/IEC 9126 are redefined from a process perspective to build a generic healthcare process quality measurement model. Case study research method is used, and the model is applied to a public hospital's Entry to Care process. After the application, weak and strong aspects of the process can be easily observed. Access audibility, fault removal, completeness of documentation, and machine utilization are weak aspects and these aspects are the candidates for process improvement. On the other hand, functional completeness, fault ratio, input validity checking, response time, and throughput time are the strong aspects of the process.

  17. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  18. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  19. Rules of thumb to increase the software quality through testing

    NASA Astrophysics Data System (ADS)

    Buttu, M.; Bartolini, M.; Migoni, C.; Orlati, A.; Poppi, S.; Righini, S.

    2016-07-01

    The software maintenance typically requires 40-80% of the overall project costs, and this considerable variability mostly depends on the software internal quality: the more the software is designed and implemented to constantly welcome new changes, the lower will be the maintenance costs. The internal quality is typically enforced through testing, which in turn also affects the development and maintenance costs. This is the reason why testing methodologies have become a major concern for any company that builds - or is involved in building - software. Although there is no testing approach that suits all contexts, we infer some general guidelines learned during the Development of the Italian Single-dish COntrol System (DISCOS), which is a project aimed at producing the control software for the three INAF radio telescopes (the Medicina and Noto dishes, and the newly-built SRT). These guidelines concern both the development and the maintenance phases, and their ultimate goal is to maximize the DISCOS software quality through a Behavior-Driven Development (BDD) workflow beside a continuous delivery pipeline. We consider different topics and patterns; they involve the proper apportion of the tests (from end-to-end to low-level tests), the choice between hardware simulators and mockers, why and how to apply TDD and the dependency injection to increase the test coverage, the emerging technologies available for test isolation, bug fixing, how to protect the system from the external resources changes (firmware updating, hardware substitution, etc.) and, eventually, how to accomplish BDD starting from functional tests and going through integration and unit tests. We discuss pros and cons of each solution and point out the motivations of our choices either as a general rule or narrowed in the context of the DISCOS project.

  20. A Constrained and Guided Approach for Managing Software Engineering Course Projects

    ERIC Educational Resources Information Center

    Cheng, Y.-P.; Lin, J. M.-C.

    2010-01-01

    This paper documents several years of experimentation with a new approach to organizing and managing projects in a software engineering course. The initial failure and subsequent refinements that the new approach has been through since 2004 are described herein. The "constrained and guided" approach, as it is called, has helped to reduce…

  1. SEI Software Engineering Education Directory.

    DTIC Science & Technology

    1987-02-01

    Software Design and Development Gilbert. Philip Systems: CDC Cyber 170/750 CDC Cyber 170760 DEC POP 11/44 PRIME AT&T 3B5 IBM PC IBM XT IBM RT...Macintosh VAx 8300 Software System Development and Laboratory CS 480/480L U P X T Textbooks: Software Design and Development Gilbert, Philip Systems: CDC...Acting Chair (618) 692-2386 Courses: Software Design and Development CS 424 U P E Y Textbooks: Software Design and Development, Gilbert, Philip Topics

  2. The Future of Software Engineering for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G

    DOE ASCR requested that from May through mid-July 2015 a study group identify issues and recommend solutions from a software engineering perspective transitioning into the next generation of High Performance Computing. The approach used was to ask some of the DOE complex experts who will be responsible for doing this work to contribute to the study group. The technique used was to solicit elevator speeches: a short and concise write up done as if the author was a speaker with only a few minutes to convince a decision maker of their top issues. Pages 2-18 contain the original texts ofmore » the contributed elevator speeches and end notes identifying the 20 contributors. The study group also ranked the importance of each topic, and those scores are displayed with each topic heading. A perfect score (and highest priority) is three, two is medium priority, and one is lowest priority. The highest scoring topic areas were software engineering and testing resources; the lowest scoring area was compliance to DOE standards. The following two paragraphs are an elevator speech summarizing the contributed elevator speeches. Each sentence or phrase in the summary is hyperlinked to its source via a numeral embedded in the text. A risk one liner has also been added to each topic to allow future risk tracking and mitigation.« less

  3. A self-referential HOWTO on release engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galassi, Mark C.

    Release engineering is a fundamental part of the software development cycle: it is the point at which quality control is exercised and bug fixes are integrated. The way in which software is released also gives the end user her first experience of a software package, while in scientific computing release engineering can guarantee reproducibility. For these reasons and others, the release process is a good indicator of the maturity and organization of a development team. Software teams often do not put in place a release process at the beginning. This is unfortunate because the team does not have early andmore » continuous execution of test suites, and it does not exercise the software in the same conditions as the end users. I describe an approach to release engineering based on the software tools developed and used by the GNU project, together with several specific proposals related to packaging and distribution. I do this in a step-by-step manner, demonstrating how this very paper is written and built using proper release engineering methods. Because many aspects of release engineering are not exercised in the building of the paper, the accompanying software repository also contains examples of software libraries.« less

  4. ASSIP Study of Real-Time Safety-Critical Embedded Software-Intensive System Engineering Practices

    DTIC Science & Technology

    2008-02-01

    and assessment 2. product engineering processes 3. tooling processes 6 | CMU/SEI-2008-SR-001 Slide 1 Process Standards IEC/ ISO 12207 Software...and technical effort to align with 12207 IEC/ ISO 15026 System & Software Integrity Levels Generic Safety SAE ARP 4754 Certification Considerations...Process Frameworks in revision – ISO 9001, ISO 9004 – ISO 15288/ ISO 12207 harmonization – RTCA DO-178B, MOD Standard UK 00-56/3, … • Methods & Tools

  5. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    NASA Astrophysics Data System (ADS)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  6. Software Engineering Laboratory (SEL). Data base organization and user's guide, revision 1

    NASA Technical Reports Server (NTRS)

    Lo, P. S.; Wyckoff, D.; Page, J.; Mcgarry, F. E.

    1983-01-01

    The structure of the Software Engineering Laboratory (SEL) data base is described. It defines each data base file in detail and provides information about how to access and use the data for programmers and other users. Several data base reporting programs are described also.

  7. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  8. Integrating automated support for a software management cycle into the TAME system

    NASA Technical Reports Server (NTRS)

    Sunazuka, Toshihiko; Basili, Victor R.

    1989-01-01

    Software managers are interested in the quantitative management of software quality, cost and progress. An integrated software management methodology, which can be applied throughout the software life cycle for any number purposes, is required. The TAME (Tailoring A Measurement Environment) methodology is based on the improvement paradigm and the goal/question/metric (GQM) paradigm. This methodology helps generate a software engineering process and measurement environment based on the project characteristics. The SQMAR (software quality measurement and assurance technology) is a software quality metric system and methodology applied to the development processes. It is based on the feed forward control principle. Quality target setting is carried out before the plan-do-check-action activities are performed. These methodologies are integrated to realize goal oriented measurement, process control and visual management. A metric setting procedure based on the GQM paradigm, a management system called the software management cycle (SMC), and its application to a case study based on NASA/SEL data are discussed. The expected effects of SMC are quality improvement, managerial cost reduction, accumulation and reuse of experience, and a highly visual management reporting system.

  9. A Framework for Evaluating the Software Product Quality of Pregnancy Monitoring Mobile Personal Health Records.

    PubMed

    Idri, Ali; Bachiri, Mariam; Fernández-Alemán, José Luis

    2016-03-01

    Stakeholders' needs and expectations are identified by means of software quality requirements, which have an impact on software product quality. In this paper, we present a set of requirements for mobile personal health records (mPHRs) for pregnancy monitoring, which have been extracted from literature and existing mobile apps on the market. We also use the ISO/IEC 25030 standard to suggest the requirements that should be considered during the quality evaluation of these mPHRs. We then go on to design a checklist in which we contrast the mPHRs for pregnancy monitoring requirements with software product quality characteristics and sub-characteristics in order to calculate the impact of these requirements on software product quality, using the ISO/IEC 25010 software product quality standard. The results obtained show that the requirements related to the user's actions and the app's features have the most impact on the external sub-characteristics of the software product quality model. The only sub-characteristic affected by all the requirements is Appropriateness of Functional suitability. The characteristic Operability is affected by 95% of the requirements while the lowest degrees of impact were identified for Compatibility (15%) and Transferability (6%). Lastly, the degrees of the impact of the mPHRs for pregnancy monitoring requirements are discussed in order to provide appropriate recommendations for the developers and stakeholders of mPHRs for pregnancy monitoring.

  10. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  11. Automated Translation of Safety Critical Application Software Specifications into PLC Ladder Logic

    NASA Technical Reports Server (NTRS)

    Leucht, Kurt W.; Semmel, Glenn S.

    2008-01-01

    The numerous benefits of automatic application code generation are widely accepted within the software engineering community. A few of these benefits include raising the abstraction level of application programming, shorter product development time, lower maintenance costs, and increased code quality and consistency. Surprisingly, code generation concepts have not yet found wide acceptance and use in the field of programmable logic controller (PLC) software development. Software engineers at the NASA Kennedy Space Center (KSC) recognized the need for PLC code generation while developing their new ground checkout and launch processing system. They developed a process and a prototype software tool that automatically translates a high-level representation or specification of safety critical application software into ladder logic that executes on a PLC. This process and tool are expected to increase the reliability of the PLC code over that which is written manually, and may even lower life-cycle costs and shorten the development schedule of the new control system at KSC. This paper examines the problem domain and discusses the process and software tool that were prototyped by the KSC software engineers.

  12. Seeing beyond Computer Science and Software Engineering

    NASA Astrophysics Data System (ADS)

    Nori, Kesav Vithal

    The boundaries of computer science are defined by what symbolic computation can accomplish. Software Engineering is concerned with effective use of computing technology to support automatic computation on a large scale so as to construct desirable solutions to worthwhile problems. Both focus on what happens within the machine. In contrast, most practical applications of computing support end-users in realizing (often unsaid) objectives. It is often said that such objectives cannot be even specified, e.g., what is the specification of MS Word, or for that matter, any flavour of UNIX? This situation points to the need for architecting what people do with computers. Based on Systems Thinking and Cybernetics, we present such a viewpoint which hinges on Human Responsibility and means of living up to it.

  13. Concept document of the repository-based software engineering program: A constructive appraisal

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A constructive appraisal of the Concept Document of the Repository-Based Software Engineering Program is provided. The Concept Document is designed to provide an overview of the Repository-Based Software Engineering (RBSE) Program. The Document should be brief and provide the context for reading subsequent requirements and product specifications. That is, all requirements to be developed should be traceable to the Concept Document. Applied Expertise's analysis of the Document was directed toward assuring that: (1) the Executive Summary provides a clear, concise, and comprehensive overview of the Concept (rewrite as necessary); (2) the sections of the Document make best use of the NASA 'Data Item Description' for concept documents; (3) the information contained in the Document provides a foundation for subsequent requirements; and (4) the document adequately: identifies the problem being addressed; articulates RBSE's specific role; specifies the unique aspects of the program; and identifies the nature and extent of the program's users.

  14. Caltrans WeatherShare Phase II System: An Application of Systems and Software Engineering Process to Project Development

    DOT National Transportation Integrated Search

    2009-08-25

    In cooperation with the California Department of Transportation, Montana State University's Western Transportation Institute has developed the WeatherShare Phase II system by applying Systems Engineering and Software Engineering processes. The system...

  15. A systematic literature review of open source software quality assessment models.

    PubMed

    Adewumi, Adewole; Misra, Sanjay; Omoregbe, Nicholas; Crawford, Broderick; Soto, Ricardo

    2016-01-01

    Many open source software (OSS) quality assessment models are proposed and available in the literature. However, there is little or no adoption of these models in practice. In order to guide the formulation of newer models so they can be acceptable by practitioners, there is need for clear discrimination of the existing models based on their specific properties. Based on this, the aim of this study is to perform a systematic literature review to investigate the properties of the existing OSS quality assessment models by classifying them with respect to their quality characteristics, the methodology they use for assessment, and their domain of application so as to guide the formulation and development of newer models. Searches in IEEE Xplore, ACM, Science Direct, Springer and Google Search is performed so as to retrieve all relevant primary studies in this regard. Journal and conference papers between the year 2003 and 2015 were considered since the first known OSS quality model emerged in 2003. A total of 19 OSS quality assessment model papers were selected. To select these models we have developed assessment criteria to evaluate the quality of the existing studies. Quality assessment models are classified into five categories based on the quality characteristics they possess namely: single-attribute, rounded category, community-only attribute, non-community attribute as well as the non-quality in use models. Our study reflects that software selection based on hierarchical structures is found to be the most popular selection method in the existing OSS quality assessment models. Furthermore, we found that majority (47%) of the existing models do not specify any domain of application. In conclusion, our study will be a valuable contribution to the community and helps the quality assessment model developers in formulating newer models and also to the practitioners (software evaluators) in selecting suitable OSS in the midst of alternatives.

  16. The component-based architecture of the HELIOS medical software engineering environment.

    PubMed

    Degoulet, P; Jean, F C; Engelmann, U; Meinzer, H P; Baud, R; Sandblad, B; Wigertz, O; Le Meur, R; Jagermann, C

    1994-12-01

    The constitution of highly integrated health information networks and the growth of multimedia technologies raise new challenges for the development of medical applications. We describe in this paper the general architecture of the HELIOS medical software engineering environment devoted to the development and maintenance of multimedia distributed medical applications. HELIOS is made of a set of software components, federated by a communication channel called the HELIOS Unification Bus. The HELIOS kernel includes three main components, the Analysis-Design and Environment, the Object Information System and the Interface Manager. HELIOS services consist in a collection of toolkits providing the necessary facilities to medical application developers. They include Image Related services, a Natural Language Processor, a Decision Support System and Connection services. The project gives special attention to both object-oriented approaches and software re-usability that are considered crucial steps towards the development of more reliable, coherent and integrated applications.

  17. [Software for illustrating a cost-quality balance carried out by clinical laboratory practice].

    PubMed

    Nishibori, Masahiro; Asayama, Hitoshi; Kimura, Satoshi; Takagi, Yasushi; Hagihara, Michio; Fujiwara, Mutsunori; Yoneyama, Akiko; Watanabe, Takashi

    2010-09-01

    We have no proper reference indicating the quality of clinical laboratory practice, which should clearly illustrates that better medical tests require more expenses. Japanese Society of Laboratory Medicine was concerned about recent difficult medical economy and issued a committee report proposing a guideline to evaluate the good laboratory practice. According to the guideline, we developed software that illustrate a cost-quality balance carried out by clinical laboratory practice. We encountered a number of controversial problems, for example, how to measure and weight each quality-related factor, how to calculate costs of a laboratory test and how to consider characteristics of a clinical laboratory. Consequently we finished only prototype software within the given period and the budget. In this paper, software implementation of the guideline and the above-mentioned problems are summarized. Aiming to stimulate these discussions, the operative software will be put on the Society's homepage for trial

  18. The integration of automated knowledge acquisition with computer-aided software engineering for space shuttle expert systems

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.

  19. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 11

    DTIC Science & Technology

    2006-11-01

    8>. 7. Wallace, Delores R. Practical Soft- ware Reliability Modeling. Proc. of the 26th Annual NASA Goddard Software Engineering Workshop, Nov. 2001...STAR WARS TO STAR TREK To Request Back Issues on Topics Not Listed Above, Please Contact <stsc. customerservice@hill.af.mil>. About the Authors Kym

  20. Reverse Engineering and Software Products Reuse to Teach Collaborative Web Portals: A Case Study with Final-Year Computer Science Students

    ERIC Educational Resources Information Center

    Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio

    2010-01-01

    The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…

  1. Factors that Influence First-Career Choice of Undergraduate Engineers in Software Services Companies: A South Indian Experience

    ERIC Educational Resources Information Center

    Gokuladas, V. K.

    2010-01-01

    Purpose: The purpose of this paper is to identify how undergraduate engineering students differ in their perception about software services companies in India based on variables like gender, locations of the college and branches of engineering. Design/methodology/approach: Data obtained from 560 undergraduate engineering students who had the…

  2. The MDE Diploma: First International Postgraduate Specialization in Model-Driven Engineering

    ERIC Educational Resources Information Center

    Cabot, Jordi; Tisi, Massimo

    2011-01-01

    Model-Driven Engineering (MDE) is changing the way we build, operate, and maintain our software-intensive systems. Several projects using MDE practices are reporting significant improvements in quality and performance but, to be able to handle these projects, software engineers need a set of technical and interpersonal skills that are currently…

  3. A Prototype for the Support of Integrated Software Process Development and Improvement

    NASA Astrophysics Data System (ADS)

    Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian

    An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.

  4. Guidance and Control Software Project Data - Volume 4: Configuration Management and Quality Assurance Documents

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes configuration management and quality assurance documents from the GCS project. Volume 4 contains six appendices: A. Software Accomplishment Summary for the Guidance and Control Software Project; B. Software Configuration Index for the Guidance and Control Software Project; C. Configuration Management Records for the Guidance and Control Software Project; D. Software Quality Assurance Records for the Guidance and Control Software Project; E. Problem Report for the Pluto Implementation of the Guidance and Control Software Project; and F. Support Documentation Change Reports for the Guidance and Control Software Project.

  5. Proceedings of the Workshop on Software Engineering Foundations for End-User Programming (SEEUP 2009)

    DTIC Science & Technology

    2009-11-01

    interest of scientific and technical information exchange. This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a...an interesting conti- nuum between how many different requirements a program must satisfy: the more complex and diverse the requirements, the more... Gender differences in approaches to end-user software development have also been reported in debugging feature usage [1] and in end-user web programming

  6. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  7. Measuring the impact of computer resource quality on the software development process and product

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Valett, Jon; Hall, Dana

    1985-01-01

    The availability and quality of computer resources during the software development process was speculated to have measurable, significant impact on the efficiency of the development process and the quality of the resulting product. Environment components such as the types of tools, machine responsiveness, and quantity of direct access storage may play a major role in the effort to produce the product and in its subsequent quality as measured by factors such as reliability and ease of maintenance. During the past six years, the NASA Goddard Space Flight Center has conducted experiments with software projects in an attempt to better understand the impact of software development methodologies, environments, and general technologies on the software process and product. Data was extracted and examined from nearly 50 software development projects. All were related to support of satellite flight dynamics ground-based computations. The relationship between computer resources and the software development process and product as exemplified by the subject NASA data was examined. Based upon the results, a number of computer resource-related implications are provided.

  8. CREASE 6.0 Catalog of Resources for Education in Ada and Software Engineering

    DTIC Science & Technology

    1992-02-01

    Programming Software Engineering Strong Typing Tasking Audene . Computer Scientists Terbook(s): Barnes, J. Programming in Ada, 3rd ed. Addison-Wesley...Ada. Concept: Abstract Data Types Management Overview Package Real-Time Programming Tasking Audene Computer Scientists Textbook(s): Barnes, J

  9. The study on network security based on software engineering

    NASA Astrophysics Data System (ADS)

    Jia, Shande; Ao, Qian

    2012-04-01

    Developing a SP is a sensitive task because the SP itself can lead to security weaknesses if it is not conform to the security properties. Hence, appropriate techniques are necessary to overcome such problems. These techniques must accompany the policy throughout its deployment phases. The main contribution of this paper is then, the proposition of three of these activities: validation, test and multi-SP conflict management. Our techniques are inspired by the well established techniques of the software engineering for which we have found some similarities with the security domain.

  10. Teaching Software Engineering by Means of Computer-Game Development: Challenges and Opportunities

    ERIC Educational Resources Information Center

    Cagiltay, Nergiz Ercil

    2007-01-01

    Software-engineering education programs are intended to prepare students for a field that involves rapidly changing conditions and expectations. Thus, there is always a danger that the skills and the knowledge provided may soon become obsolete. This paper describes results and draws on experiences from the implementation of a computer…

  11. PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education

    ERIC Educational Resources Information Center

    dos Santos, Simone C.

    2017-01-01

    The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…

  12. Software requirements elicitation to support internal monitoring of quality assurance system for higher education in Indonesia

    NASA Astrophysics Data System (ADS)

    Amalia, A.; Gunawan, D.; Hardi, S. M.; Rachmawati, D.

    2018-02-01

    The Internal Quality Assurance System (in Indonesian: SPMI (Sistem Penjaminan Mutu Internal) is a systemic activity of quality assurance of higher education in Indonesia. SPMI should be done by all higher education or universities in Indonesia based on the Regulation of the Minister of Research, Technology and Higher Education of the Republic of Indonesia Number 62 of 2016. Implementation of SPMI must refer to the principle of SPMI that is independent, standardize, accurate, well planned and sustainable, documented and systematic. To assist the SPMI cycle properly, universities need a supporting software to monitor all the activities of SPMI. But in reality, many universities are not optimal in building this SPMI monitoring system. One of the obstacles is the determination of system requirements in support of SPMI principles is difficult to achieve. In this paper, we observe the initial phase of the engineering requirements elicitation. Unlike other methods that collect system requirements from users and stakeholders, we find the system requirements of the SPMI principles from SPMI guideline book. The result of this paper can be used as a choice in determining SPMI software requirements. This paper can also be used by developers and users to understand the scenario of SPMI so that could overcome the problems of understanding between this two parties.

  13. The effects of computer-aided design software on engineering students' spatial visualisation skills

    NASA Astrophysics Data System (ADS)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  14. Parallelization of Rocket Engine Simulator Software (P.R.E.S.S.)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1999-01-01

    Parallelization of Rocket Engine System Software (PRESS) project is part of a collaborative effort with Southern University at Baton Rouge (SUBR), University of West Florida (UWF), and Jackson State University (JSU). The project has started on October 19, 1995, and after a three-year period corresponding to project phases and fiscal-year funding by NASA Lewis Research Center (now Glenn Research Center), has ended on October 18, 1998. The one-year no-cost extension period was granted on June 7, 1998, until October 19, 1999. The aim of this one year no-cost extension period was to carry out further research to complete the work and lay the groundwork for subsequent research in the area of aerospace engine design optimization software tools. The previous progress for the research has been reported in great detail in respective interim and final research progress reports, seven of them, in all. While the purpose of this report is to be a final summary and an valuative view of the entire work since the first year funding, the following is a quick recap of the most important sections of the interim report dated April 30, 1999.

  15. Gaining Control and Predictability of Software-Intensive Systems Development and Sustainment

    DTIC Science & Technology

    2015-02-04

    implementation of the baselines, audits , and technical reviews within an overarching systems engineering process (SEP; Defense Acquisition University...warfighters’ needs. This management and metrics effort supplements and supports the system’s technical development through the baselines, audits and...other areas that could be researched and added into the nine-tier model. Areas including software metrics, quality assurance , software-oriented

  16. Mapping modern software process engineering techniques onto an HEP development environment

    NASA Astrophysics Data System (ADS)

    Wellisch, J. P.

    2003-04-01

    One of the most challenging issues faced in HEP in recent years is the question of how to capitalise on software development and maintenance experience in a continuous manner. To capitalise means in our context to evaluate and apply new process technologies as they arise, and to further evolve technologies already widely in use. It also implies the definition and adoption of standards. The CMS off-line software improvement effort aims at continual software quality improvement, and continual improvement in the efficiency of the working environment with the goal to facilitate doing great new physics. To achieve this, we followed a process improvement program based on ISO-15504, and Rational Unified Process. This experiment in software process improvement in HEP has been progressing now for a period of 3 years. Taking previous experience from ATLAS and SPIDER into account, we used a soft approach of continuous change within the limits of current culture to create of de facto software process standards within the CMS off line community as the only viable route to a successful software process improvement program in HEP. We will present the CMS approach to software process improvement in this process R&D, describe lessons learned, and mistakes made. We will demonstrate the benefits gained, and the current status of the software processes established in CMS off-line software.

  17. Software Program: Software Management Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.

  18. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  19. A Reference Model for Software and System Inspections. White Paper

    NASA Technical Reports Server (NTRS)

    He, Lulu; Shull, Forrest

    2009-01-01

    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level.

  20. The Design and Evaluation of a Cryptography Teaching Strategy for Software Engineering Students

    ERIC Educational Resources Information Center

    Dowling, T.

    2006-01-01

    The present paper describes the design, implementation and evaluation of a cryptography module for final-year software engineering students. The emphasis is on implementation architectures and practical cryptanalysis rather than a standard mathematical approach. The competitive continuous assessment process reflects this approach and rewards…

  1. Methodology for automating software systems. Task 1 of the foundations for automating software systems

    NASA Technical Reports Server (NTRS)

    Moseley, Warren

    1989-01-01

    The early stages of a research program designed to establish an experimental research platform for software engineering are described. Major emphasis is placed on Computer Assisted Software Engineering (CASE). The Poor Man's CASE Tool is based on the Apple Macintosh system, employing available software including Focal Point II, Hypercard, XRefText, and Macproject. These programs are functional in themselves, but through advanced linking are available for operation from within the tool being developed. The research platform is intended to merge software engineering technology with artificial intelligence (AI). In the first prototype of the PMCT, however, the sections of AI are not included. CASE tools assist the software engineer in planning goals, routes to those goals, and ways to measure progress. The method described allows software to be synthesized instead of being written or built.

  2. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, S; Dolly, S; Cai, B

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality

  3. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  4. Quality Dimensions of Internet Search Engines.

    ERIC Educational Resources Information Center

    Xie, M.; Wang, H.; Goh, T. N.

    1998-01-01

    Reviews commonly used search engines (AltaVista, Excite, infoseek, Lycos, HotBot, WebCrawler), focusing on existing comparative studies; considers quality dimensions from the customer's point of view based on a SERVQUAL framework; and groups these quality expectations in five dimensions: tangibles, reliability, responsiveness, assurance, and…

  5. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    NASA Technical Reports Server (NTRS)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  6. Assess/Mitigate Risk through the Use of Computer-Aided Software Engineering (CASE) Tools

    NASA Technical Reports Server (NTRS)

    Aguilar, Michael L.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) was requested to perform an independent assessment of the mitigation of the Constellation Program (CxP) Risk 4421 through the use of computer-aided software engineering (CASE) tools. With the cancellation of the CxP, the assessment goals were modified to capture lessons learned and best practices in the use of CASE tools. The assessment goal was to prepare the next program for the use of these CASE tools. The outcome of the assessment is contained in this document.

  7. Repository-based software engineering program: Concept document

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document provides the context for Repository-Based Software Engineering's (RBSE's) evolving functional and operational product requirements, and it is the parent document for development of detailed technical and management plans. When furnished, requirements documents will serve as the governing RBSE product specification. The RBSE Program Management Plan will define resources, schedules, and technical and organizational approaches to fulfilling the goals and objectives of this concept. The purpose of this document is to provide a concise overview of RBSE, describe the rationale for the RBSE Program, and define a clear, common vision for RBSE team members and customers. The document also provides the foundation for developing RBSE user and system requirements and a corresponding Program Management Plan. The concept is used to express the program mission to RBSE users and managers and to provide an exhibit for community review.

  8. Factors associated with sleep quality among operating engineers.

    PubMed

    Choi, Seung Hee; Terrell, Jeffrey E; Pohl, Joanne M; Redman, Richard W; Duffy, Sonia A

    2013-06-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of risky health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34 % (n = 143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality.

  9. Factors Associated With Sleep Quality Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Terrell, Jeffrey E.; Pohl, Joanne M.; Redman, Richard W.

    2016-01-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of the health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34% (n=143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality. PMID:23393021

  10. A toolbox for developing bioinformatics software

    PubMed Central

    Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M.

    2012-01-01

    Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787

  11. Qualities Required from Engineers of the Global Times

    NASA Astrophysics Data System (ADS)

    Senuma, Takehide

    In this paper, the qualities and characteristics required from an engineer who works globally are discussed based on my own experience of a joint research project with a European company. The most important qualities and characteristics are integrity, one‧s own initiative, basic and expert knowledge, creativity, communicative skills and broad world view. Having initiative seems to be especially significant but is a weak point of young engineers in Japan at present. Ways to develop students‧ initiative are discussed in detail from a view point of the engineering education.

  12. CrossTalk, The Journal of Defense Software Engineering. Volume 27, Number 3. May/June 2014

    DTIC Science & Technology

    2014-06-01

    field of software engineering. by Delores M. Etter, Jennifer Webb, and John Howard The Problem of Prolific Process What is the optimal amount and...Programming Will Never Be Obsolete The creativity of software developers will always be needed to solve problems of the future and to then translate those...utilized to address some of the complex problems associated with biometric database construction. 1. A Next Generation Multispectral Iris Biometric

  13. 78 FR 16474 - Extension of the Period for Comments on the Enhancement of Quality of Software-Related Patents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...] Extension of the Period for Comments on the Enhancement of Quality of Software-Related Patents AGENCY... announcing the formation of a partnership with the software community to enhance the quality of software-related patents (Software Partnership), and a request for comments on the preparation of patent...

  14. Generic domain models in software engineering

    NASA Technical Reports Server (NTRS)

    Maiden, Neil

    1992-01-01

    This paper outlines three research directions related to domain-specific software development: (1) reuse of generic models for domain-specific software development; (2) empirical evidence to determine these generic models, namely elicitation of mental knowledge schema possessed by expert software developers; and (3) exploitation of generic domain models to assist modelling of specific applications. It focuses on knowledge acquisition for domain-specific software development, with emphasis on tool support for the most important phases of software development.

  15. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  16. UrQt: an efficient software for the Unsupervised Quality trimming of NGS data.

    PubMed

    Modolo, Laurent; Lerat, Emmanuelle

    2015-04-29

    Quality control is a necessary step of any Next Generation Sequencing analysis. Although customary, this step still requires manual interventions to empirically choose tuning parameters according to various quality statistics. Moreover, current quality control procedures that provide a "good quality" data set, are not optimal and discard many informative nucleotides. To address these drawbacks, we present a new quality control method, implemented in UrQt software, for Unsupervised Quality trimming of Next Generation Sequencing reads. Our trimming procedure relies on a well-defined probabilistic framework to detect the best segmentation between two segments of unreliable nucleotides, framing a segment of informative nucleotides. Our software only requires one user-friendly parameter to define the minimal quality threshold (phred score) to consider a nucleotide to be informative, which is independent of both the experiment and the quality of the data. This procedure is implemented in C++ in an efficient and parallelized software with a low memory footprint. We tested the performances of UrQt compared to the best-known trimming programs, on seven RNA and DNA sequencing experiments and demonstrated its optimality in the resulting tradeoff between the number of trimmed nucleotides and the quality objective. By finding the best segmentation to delimit a segment of good quality nucleotides, UrQt greatly increases the number of reads and of nucleotides that can be retained for a given quality objective. UrQt source files, binary executables for different operating systems and documentation are freely available (under the GPLv3) at the following address: https://lbbe.univ-lyon1.fr/-UrQt-.html .

  17. Decision Engines for Software Analysis Using Satisfiability Modulo Theories Solvers

    NASA Technical Reports Server (NTRS)

    Bjorner, Nikolaj

    2010-01-01

    The area of software analysis, testing and verification is now undergoing a revolution thanks to the use of automated and scalable support for logical methods. A well-recognized premise is that at the core of software analysis engines is invariably a component using logical formulas for describing states and transformations between system states. The process of using this information for discovering and checking program properties (including such important properties as safety and security) amounts to automatic theorem proving. In particular, theorem provers that directly support common software constructs offer a compelling basis. Such provers are commonly called satisfiability modulo theories (SMT) solvers. Z3 is a state-of-the-art SMT solver. It is developed at Microsoft Research. It can be used to check the satisfiability of logical formulas over one or more theories such as arithmetic, bit-vectors, lists, records and arrays. The talk describes some of the technology behind modern SMT solvers, including the solver Z3. Z3 is currently mainly targeted at solving problems that arise in software analysis and verification. It has been applied to various contexts, such as systems for dynamic symbolic simulation (Pex, SAGE, Vigilante), for program verification and extended static checking (Spec#/Boggie, VCC, HAVOC), for software model checking (Yogi, SLAM), model-based design (FORMULA), security protocol code (F7), program run-time analysis and invariant generation (VS3). We will describe how it integrates support for a variety of theories that arise naturally in the context of the applications. There are several new promising avenues and the talk will touch on some of these and the challenges related to SMT solvers. Proceedings

  18. Engineering Software Suite Validates System Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    EDAptive Computing Inc.'s (ECI) EDAstar engineering software tool suite, created to capture and validate system design requirements, was significantly funded by NASA's Ames Research Center through five Small Business Innovation Research (SBIR) contracts. These programs specifically developed Syscape, used to capture executable specifications of multi-disciplinary systems, and VectorGen, used to automatically generate tests to ensure system implementations meet specifications. According to the company, the VectorGen tests considerably reduce the time and effort required to validate implementation of components, thereby ensuring their safe and reliable operation. EDASHIELD, an additional product offering from ECI, can be used to diagnose, predict, and correct errors after a system has been deployed using EDASTAR -created models. Initial commercialization for EDASTAR included application by a large prime contractor in a military setting, and customers include various branches within the U.S. Department of Defense, industry giants like the Lockheed Martin Corporation, Science Applications International Corporation, and Ball Aerospace and Technologies Corporation, as well as NASA's Langley and Glenn Research Centers

  19. Teaching Tip: Managing Software Engineering Student Teams Using Pellerin's 4-D System

    ERIC Educational Resources Information Center

    Doman, Marguerite; Besmer, Andrew; Olsen, Anne

    2015-01-01

    In this article, we discuss the use of Pellerin's Four Dimension Leadership System (4-D) as a way to manage teams in a classroom setting. Over a 5-year period, we used a modified version of the 4-D model to manage teams within a senior level Software Engineering capstone course. We found that this approach for team management in a classroom…

  20. Modern software approaches applied to a Hydrological model: the GEOtop Open-Source Software Project

    NASA Astrophysics Data System (ADS)

    Cozzini, Stefano; Endrizzi, Stefano; Cordano, Emanuele; Bertoldi, Giacomo; Dall'Amico, Matteo

    2017-04-01

    The GEOtop hydrological scientific package is an integrated hydrological model that simulates the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of snow cover, soil temperature and moisture. The core components of the package were presented in the 2.0 version (Endrizzi et al, 2014), which was released as Free Software Open-source project. However, despite the high scientific quality of the project, a modern software engineering approach was still missing. Such weakness hindered its scientific potential and its use both as a standalone package and, more importantly, in an integrate way with other hydrological software tools. In this contribution we present our recent software re-engineering efforts to create a robust and stable scientific software package open to the hydrological community, easily usable by researchers and experts, and interoperable with other packages. The activity takes as a starting point the 2.0 version, scientifically tested and published. This version, together with several test cases based on recent published or available GEOtop applications (Cordano and Rigon, 2013, WRR, Kollet et al, 2016, WRR) provides the baseline code and a certain number of referenced results as benchmark. Comparison and scientific validation can then be performed for each software re-engineering activity performed on the package. To keep track of any single change the package is published on its own github repository geotopmodel.github.io/geotop/ under GPL v3.0 license. A Continuous Integration mechanism by means of Travis-CI has been enabled on the github repository on master and main development branches. The usage of CMake configuration tool

  1. Software Engineering Laboratory (SEL) database organization and user's guide, revision 2

    NASA Technical Reports Server (NTRS)

    Morusiewicz, Linda; Bristow, John

    1992-01-01

    The organization of the Software Engineering Laboratory (SEL) database is presented. Included are definitions and detailed descriptions of the database tables and views, the SEL data, and system support data. The mapping from the SEL and system support data to the base table is described. In addition, techniques for accessing the database through the Database Access Manager for the SEL (DAMSEL) system and via the ORACLE structured query language (SQL) are discussed.

  2. Quality engineering as a discipline of study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Rachel R.; Hoover, Marcey L.

    2012-12-01

    The current framework for quality scholarship in the United States ranges from the training and education of future quality engineers, managers, and professionals to focused and sustained research initiatives that, through academic institutions and other organizations, aim to improve the knowledge and application of quality across a variety of sectors. Numerous quality journals also provide a forum for professional dissemination of information.

  3. An empirical evaluation of software quality assurance practices and challenges in a developing country: a comparison of Nigeria and Turkey.

    PubMed

    Sowunmi, Olaperi Yeside; Misra, Sanjay; Fernandez-Sanz, Luis; Crawford, Broderick; Soto, Ricardo

    2016-01-01

    The importance of quality assurance in the software development process cannot be overemphasized because its adoption results in high reliability and easy maintenance of the software system and other software products. Software quality assurance includes different activities such as quality control, quality management, quality standards, quality planning, process standardization and improvement amongst others. The aim of this work is to further investigate the software quality assurance practices of practitioners in Nigeria. While our previous work covered areas on quality planning, adherence to standardized processes and the inherent challenges, this work has been extended to include quality control, software process improvement and international quality standard organization membership. It also makes comparison based on a similar study carried out in Turkey. The goal is to generate more robust findings that can properly support decision making by the software community. The qualitative research approach, specifically, the use of questionnaire research instruments was applied to acquire data from software practitioners. In addition to the previous results, it was observed that quality assurance practices are quite neglected and this can be the cause of low patronage. Moreover, software practitioners are neither aware of international standards organizations or the required process improvement techniques; as such their claimed standards are not aligned to those of accredited bodies, and are only limited to their local experience and knowledge, which makes it questionable. The comparison with Turkey also yielded similar findings, making the results typical of developing countries. The research instrument used was tested for internal consistency using the Cronbach's alpha, and it was proved reliable. For the software industry in developing countries to grow strong and be a viable source of external revenue, software assurance practices have to be taken seriously

  4. The Software Engineering Prototype.

    DTIC Science & Technology

    1983-06-01

    34. sThis cnly means that the ’claim’, i.e., "accepted wisdcu" in systems design, was set up as the aiternative to the hypcthesis, in accord with tra dit ion...conflict and its resolution are m~~lyto occur when users can exercise their influence 4n the levelc2- inert prcezss. Ccnflict 4itsslY os snotr lead...the traditional method of software de- velopment often has poor results. Recently, a new approach to software development, the prototype approach

  5. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  6. Software Quality Assurance and Verification for the MPACT Library Generation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Williams, Mark L.; Wiarda, Dorothea

    This report fulfills the requirements for the Consortium for the Advanced Simulation of Light-Water Reactors (CASL) milestone L2:RTM.P14.02, “SQA and Verification for MPACT Library Generation,” by documenting the current status of the software quality, verification, and acceptance testing of nuclear data libraries for MPACT. It provides a brief overview of the library generation process, from general-purpose evaluated nuclear data files (ENDF/B) to a problem-dependent cross section library for modeling of light-water reactors (LWRs). The software quality assurance (SQA) programs associated with each of the software used to generate the nuclear data libraries are discussed; specific tests within the SCALE/AMPX andmore » VERA/XSTools repositories are described. The methods and associated tests to verify the quality of the library during the generation process are described in detail. The library generation process has been automated to a degree to (1) ensure that it can be run without user intervention and (2) to ensure that the library can be reproduced. Finally, the acceptance testing process that will be performed by representatives from the Radiation Transport Methods (RTM) Focus Area prior to the production library’s release is described in detail.« less

  7. Identifying strengths and weaknesses of Quality Management Unit University of Sumatera Utara software using SCAMPI C

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Amalia, A.; Rahmat, R. F.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Identification of software maturity level is a technique to determine the quality of the software. By identifying the software maturity level, the weaknesses of the software can be observed. As a result, the recommendations might be a reference for future software maintenance and development. This paper discusses the software Capability Level (CL) with case studies on Quality Management Unit (Unit Manajemen Mutu) University of Sumatera Utara (UMM-USU). This research utilized Standard CMMI Appraisal Method for Process Improvement class C (SCAMPI C) model with continuous representation. This model focuses on activities for developing quality products and services. The observation is done in three process areas, such as Project Planning (PP), Project Monitoring and Control (PMC), and Requirements Management (REQM). According to the measurement of software capability level for UMM-USU software, turns out that the capability level for the observed process area is in the range of CL1 and CL2. Planning Project (PP) is the only process area which reaches capability level 2, meanwhile, PMC and REQM are still in CL 1 or in performed level. This research reveals several weaknesses of existing UMM-USU software. Therefore, this study proposes several recommendations for UMM-USU to improve capability level for observed process areas.

  8. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  9. Evaluation of a Game to Teach Requirements Collection and Analysis in Software Engineering at Tertiary Education Level

    ERIC Educational Resources Information Center

    Hainey, Thomas; Connolly, Thomas M.; Stansfield, Mark; Boyle, Elizabeth A.

    2011-01-01

    A highly important part of software engineering education is requirements collection and analysis which is one of the initial stages of the Database Application Lifecycle and arguably the most important stage of the Software Development Lifecycle. No other conceptual work is as difficult to rectify at a later stage or as damaging to the overall…

  10. Quality Assurance and Accreditation of Engineering Education in Jordan

    ERIC Educational Resources Information Center

    Aqlan, Faisal; Al-Araidah, Omar; Al-Hawari, Tarek

    2010-01-01

    This paper provides a study of the quality assurance and accreditation in the Jordanian higher education sector and focuses mainly on engineering education. It presents engineering education, accreditation and quality assurance in Jordan and considers the Jordan University of Science and Technology (JUST) for a case study. The study highlights the…

  11. Assessment Environment for Complex Systems Software Guide

    NASA Technical Reports Server (NTRS)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  12. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  13. Identification of Patient Safety Risks Associated with Electronic Health Records: A Software Quality Perspective.

    PubMed

    Virginio, Luiz A; Ricarte, Ivan Luiz Marques

    2015-01-01

    Although Electronic Health Records (EHR) can offer benefits to the health care process, there is a growing body of evidence that these systems can also incur risks to patient safety when developed or used improperly. This work is a literature review to identify these risks from a software quality perspective. Therefore, the risks were classified based on the ISO/IEC 25010 software quality model. The risks identified were related mainly to the characteristics of "functional suitability" (i.e., software bugs) and "usability" (i.e., interface prone to user error). This work elucidates the fact that EHR quality problems can adversely affect patient safety, resulting in errors such as incorrect patient identification, incorrect calculation of medication dosages, and lack of access to patient data. Therefore, the risks presented here provide the basis for developers and EHR regulating bodies to pay attention to the quality aspects of these systems that can result in patient harm.

  14. Flight Software Math Library

    NASA Technical Reports Server (NTRS)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  15. Rule groupings: A software engineering approach towards verification of expert systems

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala

    1991-01-01

    Currently, most expert system shells do not address software engineering issues for developing or maintaining expert systems. As a result, large expert systems tend to be incomprehensible, difficult to debug or modify and almost impossible to verify or validate. Partitioning rule based systems into rule groups which reflect the underlying subdomains of the problem should enhance the comprehensibility, maintainability, and reliability of expert system software. Attempts were made to semiautomatically structure a CLIPS rule base into groups of related rules that carry the same type of information. Different distance metrics that capture relevant information from the rules for grouping are discussed. Two clustering algorithms that partition the rule base into groups of related rules are given. Two independent evaluation criteria are developed to measure the effectiveness of the grouping strategies. Results of the experiment with three sample rule bases are presented.

  16. A Study of the Use of Ontologies for Building Computer-Aided Control Engineering Self-Learning Educational Software

    ERIC Educational Resources Information Center

    García, Isaías; Benavides, Carmen; Alaiz, Héctor; Alonso, Angel

    2013-01-01

    This paper describes research on the use of knowledge models (ontologies) for building computer-aided educational software in the field of control engineering. Ontologies are able to represent in the computer a very rich conceptual model of a given domain. This model can be used later for a number of purposes in different software applications. In…

  17. CrossTalk: The Journal of Defense Software Engineering. Volume 19, Number 6

    DTIC Science & Technology

    2006-06-01

    improvement methods. The total volume of projects studied now exceeds 12,000. Software Productivity Research, LLC Phone: (877) 570-5459 (973) 273-5829...While performing quality con- sulting, Olson has helped organizations measurably improve quality and productivity , save millions of dollars in costs of...This article draws parallels between the outrageous events on the Jerry Springer Show and problems faced by process improvement programs. by Paul

  18. Software Reporting Metrics. Revision 2.

    DTIC Science & Technology

    1985-11-01

    MITRE Corporation and ESD. Some of the data has been obtained from Dr. Barry Boehm’s Software Engineering Economics (Ref. 1). Thanks are also given to...data level control management " SP = structured programming Barry W. Boehm, Software Engineering Economics, &©1981, p. 122. Reprinted by permission of...investigated and implemented in future prototypes. 43 REFERENCES For further reading: " 1. Boehm, Barry W. Software Engineering Economics; Englewood

  19. EOS MLS Level 1B Data Processing Software. Version 3

    NASA Technical Reports Server (NTRS)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  20. Selective Guide to Literature on Software Review Sources. Engineering Literature Guides, Number 8.

    ERIC Educational Resources Information Center

    Bean, Margaret H., Ed.

    This selective literature guide serves as a directory to software evaluation sources for all sizes of microcomputers. Information is provided on review sources and guides which deal with a variety of applications such as library, engineering, school, and business as well as a variety of systems, including DOS and CP/M. This document is intended to…