Sample records for software testing techniques

  1. Executable assertions and flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    Executable assertions are used to test flight control software. The techniques used for testing flight software; however, are different from the techniques used to test other kinds of software. This is because of the redundant nature of flight software. An experimental setup for testing flight software using executable assertions is described. Techniques for writing and using executable assertions to test flight software are presented. The error detection capability of assertions is studied and many examples of assertions are given. The issues of placement and complexity of assertions and the language features to support efficient use of assertions are discussed.

  2. Integrating Testing into Software Engineering Courses Supported by a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Clarke, Peter J.; Davis, Debra; King, Tariq M.; Pava, Jairo; Jones, Edward L.

    2014-01-01

    As software becomes more ubiquitous and complex, the cost of software bugs continues to grow at a staggering rate. To remedy this situation, there needs to be major improvement in the knowledge and application of software validation techniques. Although there are several software validation techniques, software testing continues to be one of the…

  3. Proactive Security Testing and Fuzzing

    NASA Astrophysics Data System (ADS)

    Takanen, Ari

    Software is bound to have security critical flaws, and no testing or code auditing can ensure that software is flaw-less. But software security testing requirements have improved radically during the past years, largely due to criticism from security conscious consumers and Enterprise customers. Whereas in the past, security flaws were taken for granted (and patches were quietly and humbly installed), they now are probably one of the most common reasons why people switch vendors or software providers. The maintenance costs from security updates often add to become one of the biggest cost items to large Enterprise users. Fortunately test automation techniques have also improved. Techniques like model-based testing (MBT) enable efficient generation of security tests that reach good confidence levels in discovering zero-day mistakes in software. This technique is called fuzzing.

  4. A methodology for producing reliable software, volume 1

    NASA Technical Reports Server (NTRS)

    Stucki, L. G.; Moranda, P. B.; Foshee, G.; Kirchoff, M.; Omre, R.

    1976-01-01

    An investigation into the areas having an impact on producing reliable software including automated verification tools, software modeling, testing techniques, structured programming, and management techniques is presented. This final report contains the results of this investigation, analysis of each technique, and the definition of a methodology for producing reliable software.

  5. Validation and Verification of LADEE Models and Software

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2013-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) mission will orbit the moon in order to measure the density, composition and time variability of the lunar dust environment. The ground-side and onboard flight software for the mission is being developed using a Model-Based Software methodology. In this technique, models of the spacecraft and flight software are developed in a graphical dynamics modeling package. Flight Software requirements are prototyped and refined using the simulated models. After the model is shown to work as desired in this simulation framework, C-code software is automatically generated from the models. The generated software is then tested in real time Processor-in-the-Loop and Hardware-in-the-Loop test beds. Travelling Road Show test beds were used for early integration tests with payloads and other subsystems. Traditional techniques for verifying computational sciences models are used to characterize the spacecraft simulation. A lightweight set of formal methods analysis, static analysis, formal inspection and code coverage analyses are utilized to further reduce defects in the onboard flight software artifacts. These techniques are applied early and often in the development process, iteratively increasing the capabilities of the software and the fidelity of the vehicle models and test beds.

  6. Testing Scientific Software: A Systematic Literature Review.

    PubMed

    Kanewala, Upulee; Bieman, James M

    2014-10-01

    Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques.

  7. Modeling Student Software Testing Processes: Attitudes, Behaviors, Interventions, and Their Effects

    ERIC Educational Resources Information Center

    Buffardi, Kevin John

    2014-01-01

    Effective software testing identifies potential bugs and helps correct them, producing more reliable and maintainable software. As software development processes have evolved, incremental testing techniques have grown in popularity, particularly with introduction of test-driven development (TDD). However, many programmers struggle to adopt TDD's…

  8. A Human Reliability Based Usability Evaluation Method for Safety-Critical Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillippe Palanque; Regina Bernhaupt; Ronald Boring

    2006-04-01

    Recent years have seen an increasing use of sophisticated interaction techniques including in the field of safety critical interactive software [8]. The use of such techniques has been required in order to increase the bandwidth between the users and systems and thus to help them deal efficiently with increasingly complex systems. These techniques come from research and innovation done in the field of humancomputer interaction (HCI). A significant effort is currently being undertaken by the HCI community in order to apply and extend current usability evaluation techniques to these new kinds of interaction techniques. However, very little has been donemore » to improve the reliability of software offering these kinds of interaction techniques. Even testing basic graphical user interfaces remains a challenge that has rarely been addressed in the field of software engineering [9]. However, the non reliability of interactive software can jeopardize usability evaluation by showing unexpected or undesired behaviors. The aim of this SIG is to provide a forum for both researchers and practitioners interested in testing interactive software. Our goal is to define a roadmap of activities to cross fertilize usability and reliability testing of these kinds of systems to minimize duplicate efforts in both communities.« less

  9. Testing Scientific Software: A Systematic Literature Review

    PubMed Central

    Kanewala, Upulee; Bieman, James M.

    2014-01-01

    Context Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. Objective This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. Method We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. Results We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Conclusions Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques. PMID:25125798

  10. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  11. Behavior driven testing in ALMA telescope calibration software

    NASA Astrophysics Data System (ADS)

    Gil, Juan P.; Garces, Mario; Broguiere, Dominique; Shen, Tzu-Chiang

    2016-07-01

    ALMA software development cycle includes well defined testing stages that involves developers, testers and scientists. We adapted Behavior Driven Development (BDD) to testing activities applied to Telescope Calibration (TELCAL) software. BDD is an agile technique that encourages communication between roles by defining test cases using natural language to specify features and scenarios, what allows participants to share a common language and provides a high level set of automated tests. This work describes how we implemented and maintain BDD testing for TELCAL, the infrastructure needed to support it and proposals to expand this technique to other subsystems.

  12. Software component quality evaluation

    NASA Technical Reports Server (NTRS)

    Clough, A. J.

    1991-01-01

    The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.

  13. A Framework for Testing Scientific Software: A Case Study of Testing Amsterdam Discrete Dipole Approximation Software

    NASA Astrophysics Data System (ADS)

    Shao, Hongbing

    Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.

  14. Study of fault tolerant software technology for dynamic systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Zacharias, G. L.

    1985-01-01

    The major aim of this study is to investigate the feasibility of using systems-based failure detection isolation and compensation (FDIC) techniques in building fault-tolerant software and extending them, whenever possible, to the domain of software fault tolerance. First, it is shown that systems-based FDIC methods can be extended to develop software error detection techniques by using system models for software modules. In particular, it is demonstrated that systems-based FDIC techniques can yield consistency checks that are easier to implement than acceptance tests based on software specifications. Next, it is shown that systems-based failure compensation techniques can be generalized to the domain of software fault tolerance in developing software error recovery procedures. Finally, the feasibility of using fault-tolerant software in flight software is investigated. In particular, possible system and version instabilities, and functional performance degradation that may occur in N-Version programming applications to flight software are illustrated. Finally, a comparative analysis of N-Version and recovery block techniques in the context of generic blocks in flight software is presented.

  15. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    NASA Technical Reports Server (NTRS)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  16. A Model Independent S/W Framework for Search-Based Software Testing

    PubMed Central

    Baik, Jongmoon

    2014-01-01

    In Model-Based Testing (MBT) area, Search-Based Software Testing (SBST) has been employed to generate test cases from the model of a system under test. However, many types of models have been used in MBT. If the type of a model has changed from one to another, all functions of a search technique must be reimplemented because the types of models are different even if the same search technique has been applied. It requires too much time and effort to implement the same algorithm over and over again. We propose a model-independent software framework for SBST, which can reduce redundant works. The framework provides a reusable common software platform to reduce time and effort. The software framework not only presents design patterns to find test cases for a target model but also reduces development time by using common functions provided in the framework. We show the effectiveness and efficiency of the proposed framework with two case studies. The framework improves the productivity by about 50% when changing the type of a model. PMID:25302314

  17. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training.

  18. Model-based software process improvement

    NASA Technical Reports Server (NTRS)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  19. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  20. Preliminary design of the redundant software experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Roy; Deimel, Lionel; Eckhardt, Dave, Jr.; Kelly, John; Knight, John; Lauterbach, Linda; Lee, Larry; Mcallister, Dave; Mchugh, John

    1985-01-01

    The goal of the present experiment is to characterize the fault distributions of highly reliable software replicates, constructed using techniques and environments which are similar to those used in comtemporary industrial software facilities. The fault distributions and their effect on the reliability of fault tolerant configurations of the software will be determined through extensive life testing of the replicates against carefully constructed randomly generated test data. Each detected error will be carefully analyzed to provide insight in to their nature and cause. A direct objective is to develop techniques for reducing the intensity of coincident errors, thus increasing the reliability gain which can be achieved with fault tolerance. Data on the reliability gains realized, and the cost of the fault tolerant configurations can be used to design a companion experiment to determine the cost effectiveness of the fault tolerant strategy. Finally, the data and analysis produced by this experiment will be valuable to the software engineering community as a whole because it will provide a useful insight into the nature and cause of hard to find, subtle faults which escape standard software engineering validation techniques and thus persist far into the software life cycle.

  1. Development and validation of techniques for improving software dependability

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1992-01-01

    A collection of document abstracts are presented on the topic of improving software dependability through NASA grant NAG-1-1123. Specific topics include: modeling of error detection; software inspection; test cases; Magnetic Stereotaxis System safety specifications and fault trees; and injection of synthetic faults into software.

  2. CrossTalk. The Journal of Defense Software Engineering. Volume 13, Number 6, June 2000

    DTIC Science & Technology

    2000-06-01

    Techniques for Efficiently Generating and Testing Software This paper presents a proven process that uses advanced tools to design, develop and test... optimal software. by Keith R. Wegner Large Software Systems—Back to Basics Development methods that work on small problems seem to not scale well to...Ability Requirements for Teamwork: Implications for Human Resource Management, Journal of Management, Vol. 20, No. 2, 1994. 11. Ferguson, Pat, Watts S

  3. Risk-Based Object Oriented Testing

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda H.; Stapko, Ruth; Gallo, Albert

    2000-01-01

    Software testing is a well-defined phase of the software development life cycle. Functional ("black box") testing and structural ("white box") testing are two methods of test case design commonly used by software developers. A lesser known testing method is risk-based testing, which takes into account the probability of failure of a portion of code as determined by its complexity. For object oriented programs, a methodology is proposed for identification of risk-prone classes. Risk-based testing is a highly effective testing technique that can be used to find and fix the most important problems as quickly as possible.

  4. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  5. Test Driven Development: Lessons from a Simple Scientific Model

    NASA Astrophysics Data System (ADS)

    Clune, T. L.; Kuo, K.

    2010-12-01

    In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.

  6. Estimation and enhancement of real-time software reliability through mutation analysis

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Offutt, A. J.; Harris, Frederick C., Jr.

    1992-01-01

    A simulation-based technique for obtaining numerical estimates of the reliability of N-version, real-time software is presented. An extended stochastic Petri net is employed to represent the synchronization structure of N versions of the software, where dependencies among versions are modeled through correlated sampling of module execution times. Test results utilizing specifications for NASA's planetary lander control software indicate that mutation-based testing could hold greater potential for enhancing reliability than the desirable but perhaps unachievable goal of independence among N versions.

  7. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  8. Testing Evolutionary Hypotheses in the Classroom with MacClade Software.

    ERIC Educational Resources Information Center

    Codella, Sylvio G.

    2002-01-01

    Introduces MacClade which is a Macintosh-based software package that uses the techniques of cladistic analysis to explore evolutionary patterns. Describes a novel and effective exercise that allows undergraduate biology majors to test a hypothesis about behavioral evolution in insects. (Contains 13 references.) (Author/YDS)

  9. Software for Automated Image-to-Image Co-registration

    NASA Technical Reports Server (NTRS)

    Benkelman, Cody A.; Hughes, Heidi

    2007-01-01

    The project objectives are: a) Develop software to fine-tune image-to-image co-registration, presuming images are orthorectified prior to input; b) Create a reusable software development kit (SDK) to enable incorporation of these tools into other software; d) provide automated testing for quantitative analysis; and e) Develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.

  10. Factors That Affect Software Testability

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey M.

    1991-01-01

    Software faults that infrequently affect software's output are dangerous. When a software fault causes frequent software failures, testing is likely to reveal the fault before the software is releases; when the fault remains undetected during testing, it can cause disaster after the software is installed. A technique for predicting whether a particular piece of software is likely to reveal faults within itself during testing is found in [Voas91b]. A piece of software that is likely to reveal faults within itself during testing is said to have high testability. A piece of software that is not likely to reveal faults within itself during testing is said to have low testability. It is preferable to design software with higher testabilities from the outset, i.e., create software with as high of a degree of testability as possible to avoid the problems of having undetected faults that are associated with low testability. Information loss is a phenomenon that occurs during program execution that increases the likelihood that a fault will remain undetected. In this paper, I identify two brad classes of information loss, define them, and suggest ways of predicting the potential for information loss to occur. We do this in order to decrease the likelihood that faults will remain undetected during testing.

  11. Validation of highly reliable, real-time knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.

    1988-01-01

    Knowledge-based systems have the potential to greatly increase the capabilities of future aircraft and spacecraft and to significantly reduce support manpower needed for the space station and other space missions. However, a credible validation methodology must be developed before knowledge-based systems can be used for life- or mission-critical applications. Experience with conventional software has shown that the use of good software engineering techniques and static analysis tools can greatly reduce the time needed for testing and simulation of a system. Since exhaustive testing is infeasible, reliability must be built into the software during the design and implementation phases. Unfortunately, many of the software engineering techniques and tools used for conventional software are of little use in the development of knowledge-based systems. Therefore, research at Langley is focused on developing a set of guidelines, methods, and prototype validation tools for building highly reliable, knowledge-based systems. The use of a comprehensive methodology for building highly reliable, knowledge-based systems should significantly decrease the time needed for testing and simulation. A proven record of delivering reliable systems at the beginning of the highly visible testing and simulation phases is crucial to the acceptance of knowledge-based systems in critical applications.

  12. Quality measures and assurance for AI (Artificial Intelligence) software

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1988-01-01

    This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.

  13. The use of applied software for the professional training of students studying humanities

    NASA Astrophysics Data System (ADS)

    Sadchikova, A. S.; Rodin, M. M.

    2017-01-01

    Research practice is an integral part of humanities students' training process. In this regard the training process is to include modern information techniques of the training process of students studying humanities. This paper examines the most popular applied software products used for data processing in social science. For testing purposes we selected the most commonly preferred professional packages: MS Excel, IBM SPSS Statistics, STATISTICA, STADIA. Moreover the article contains testing results of a specialized software Prikladnoy Sotsiolog that is applicable for the preparation stage of the research. The specialised software were tested during one term in groups of students studying humanities.

  14. SimulCAT: Windows Software for Simulating Computerized Adaptive Test Administration

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2012-01-01

    Most, if not all, computerized adaptive testing (CAT) programs use simulation techniques to develop and evaluate CAT program administration and operations, but such simulation tools are rarely available to the public. Up to now, several software tools have been available to conduct CAT simulations for research purposes; however, these existing…

  15. A methodology for model-based development and automated verification of software for aerospace systems

    NASA Astrophysics Data System (ADS)

    Martin, L.; Schatalov, M.; Hagner, M.; Goltz, U.; Maibaum, O.

    Today's software for aerospace systems typically is very complex. This is due to the increasing number of features as well as the high demand for safety, reliability, and quality. This complexity also leads to significant higher software development costs. To handle the software complexity, a structured development process is necessary. Additionally, compliance with relevant standards for quality assurance is a mandatory concern. To assure high software quality, techniques for verification are necessary. Besides traditional techniques like testing, automated verification techniques like model checking become more popular. The latter examine the whole state space and, consequently, result in a full test coverage. Nevertheless, despite the obvious advantages, this technique is rarely yet used for the development of aerospace systems. In this paper, we propose a tool-supported methodology for the development and formal verification of safety-critical software in the aerospace domain. The methodology relies on the V-Model and defines a comprehensive work flow for model-based software development as well as automated verification in compliance to the European standard series ECSS-E-ST-40C. Furthermore, our methodology supports the generation and deployment of code. For tool support we use the tool SCADE Suite (Esterel Technology), an integrated design environment that covers all the requirements for our methodology. The SCADE Suite is well established in avionics and defense, rail transportation, energy and heavy equipment industries. For evaluation purposes, we apply our approach to an up-to-date case study of the TET-1 satellite bus. In particular, the attitude and orbit control software is considered. The behavioral models for the subsystem are developed, formally verified, and optimized.

  16. Holographic Interferometry and Image Analysis for Aerodynamic Testing

    DTIC Science & Technology

    1980-09-01

    tunnels, (2) development of automated image analysis techniques for reducing quantitative flow-field data from holographic interferograms, and (3...investigation and development of software for the application of digital image analysis to other photographic techniques used in wind tunnel testing.

  17. Software engineering techniques and CASE tools in RD13

    NASA Astrophysics Data System (ADS)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  18. The study on network security based on software engineering

    NASA Astrophysics Data System (ADS)

    Jia, Shande; Ao, Qian

    2012-04-01

    Developing a SP is a sensitive task because the SP itself can lead to security weaknesses if it is not conform to the security properties. Hence, appropriate techniques are necessary to overcome such problems. These techniques must accompany the policy throughout its deployment phases. The main contribution of this paper is then, the proposition of three of these activities: validation, test and multi-SP conflict management. Our techniques are inspired by the well established techniques of the software engineering for which we have found some similarities with the security domain.

  19. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  20. NASA software specification and evaluation system: Software verification/validation techniques

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA software requirement specifications were used in the development of a system for validating and verifying computer programs. The software specification and evaluation system (SSES) provides for the effective and efficient specification, implementation, and testing of computer software programs. The system as implemented will produce structured FORTRAN or ANSI FORTRAN programs, but the principles upon which SSES is designed allow it to be easily adapted to other high order languages.

  1. Writing executable assertions to test flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  2. Developing Confidence Limits For Reliability Of Software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1991-01-01

    Technique developed for estimating reliability of software by use of Moranda geometric de-eutrophication model. Pivotal method enables straightforward construction of exact bounds with associated degree of statistical confidence about reliability of software. Confidence limits thus derived provide precise means of assessing quality of software. Limits take into account number of bugs found while testing and effects of sampling variation associated with random order of discovering bugs.

  3. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  4. Integrating Formal Methods and Testing 2002

    NASA Technical Reports Server (NTRS)

    Cukic, Bojan

    2002-01-01

    Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.

  5. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1976-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program assembly control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools are described, as well as the program test plans and their implementation on the various simulators. Failure effects analysis and the creation of special failure generating software for testing purposes are described.

  6. Ffuzz: Towards full system high coverage fuzz testing on binary executables.

    PubMed

    Zhang, Bin; Ye, Jiaxi; Bi, Xing; Feng, Chao; Tang, Chaojing

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool-Ffuzz-on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently.

  7. Software engineering project management - A state-of-the-art report

    NASA Technical Reports Server (NTRS)

    Thayer, R. H.; Lehman, J. H.

    1977-01-01

    The management of software engineering projects in the aerospace industry was investigated. The survey assessed such features as contract type, specification preparation techniques, software documentation required by customers, planning and cost-estimating, quality control, the use of advanced program practices, software tools and test procedures, the education levels of project managers, programmers and analysts, work assignment, automatic software monitoring capabilities, design and coding reviews, production times, success rates, and organizational structure of the projects.

  8. Using Automation to Improve the Flight Software Testing Process

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Morgenstern, Wendy M.; Bartholomew, Maureen O.; McComas, David C.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, attitude control, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on previous missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the perceived benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

  9. Using Automation to Improve the Flight Software Testing Process

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.

    2001-01-01

    One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

  10. Software resilience and the effectiveness of software mitigation in microcontrollers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather; Baker, Zachary; Fairbanks, Tom

    Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less

  11. Software resilience and the effectiveness of software mitigation in microcontrollers

    DOE PAGES

    Quinn, Heather; Baker, Zachary; Fairbanks, Tom; ...

    2015-12-01

    Commercially available microprocessors could be useful to the space community for noncritical computations. There are many possible components that are smaller, lower-power, and less expensive than traditional radiation-hardened microprocessors. Many commercial microprocessors have issues with single-event effects (SEEs), such as single-event upsets (SEUs) and single-event transients (SETs), that can cause the microprocessor to calculate an incorrect result or crash. In this paper we present the Trikaya technique for masking SEUs and SETs through software mitigation techniques. Furthermore, test results show that this technique can be very effective at masking errors, making it possible to fly these microprocessors for a varietymore » of missions.« less

  12. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  13. AspectAssay: A Technique for Expanding the Pool of Available Aspect Mining Test Data Using Concern Seeding

    ERIC Educational Resources Information Center

    Moore, David G., Jr.

    2013-01-01

    Aspect-oriented software design (AOSD) enables better and more complete separation of concerns in software-intensive systems. By extracting aspect code and relegating crosscutting functionality to aspects, software engineers can improve the maintainability of their code by reducing code tangling and coupling of code concerns. Further, the number…

  14. Method and computer product to increase accuracy of time-based software verification for sensor networks

    DOEpatents

    Foo Kune, Denis [Saint Paul, MN; Mahadevan, Karthikeyan [Mountain View, CA

    2011-01-25

    A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

  15. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  16. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  17. Evaluating software development by analysis of changes: The data from the software engineering laboratory

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An effective data collection methodology for evaluating software development methodologies was applied to four different software development projects. Goals of the data collection included characterizing changes and errors, characterizing projects and programmers, identifying effective error detection and correction techniques, and investigating ripple effects. The data collected consisted of changes (including error corrections) made to the software after code was written and baselined, but before testing began. Data collection and validation were concurrent with software development. Changes reported were verified by interviews with programmers.

  18. A Reference Model for Software and System Inspections. White Paper

    NASA Technical Reports Server (NTRS)

    He, Lulu; Shull, Forrest

    2009-01-01

    Software Quality Assurance (SQA) is an important component of the software development process. SQA processes provide assurance that the software products and processes in the project life cycle conform to their specified requirements by planning, enacting, and performing a set of activities to provide adequate confidence that quality is being built into the software. Typical techniques include: (1) Testing (2) Simulation (3) Model checking (4) Symbolic execution (5) Management reviews (6) Technical reviews (7) Inspections (8) Walk-throughs (9) Audits (10) Analysis (complexity analysis, control flow analysis, algorithmic analysis) (11) Formal method Our work over the last few years has resulted in substantial knowledge about SQA techniques, especially the areas of technical reviews and inspections. But can we apply the same QA techniques to the system development process? If yes, what kind of tailoring do we need before applying them in the system engineering context? If not, what types of QA techniques are actually used at system level? And, is there any room for improvement.) After a brief examination of the system engineering literature (especially focused on NASA and DoD guidance) we found that: (1) System and software development process interact with each other at different phases through development life cycle (2) Reviews are emphasized in both system and software development. (Figl.3). For some reviews (e.g. SRR, PDR, CDR), there are both system versions and software versions. (3) Analysis techniques are emphasized (e.g. Fault Tree Analysis, Preliminary Hazard Analysis) and some details are given about how to apply them. (4) Reviews are expected to use the outputs of the analysis techniques. In other words, these particular analyses are usually conducted in preparation for (before) reviews. The goal of our work is to explore the interaction between the Quality Assurance (QA) techniques at the system level and the software level.

  19. Digital adaptive controllers for VTOL vehicles. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.; Pratt, S. G.

    1979-01-01

    The VTOL approach and landing test (VALT) adaptive software is documented. Two self-adaptive algorithms, one based on an implicit model reference design and the other on an explicit parameter estimation technique were evaluated. The organization of the software, user options, and a nominal set of input data are presented along with a flow chart and program listing of each algorithm.

  20. Spacecraft Avionics Software Development Then and Now: Different but the Same

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  1. Alternatives for Developing User Documentation for Applications Software

    DTIC Science & Technology

    1991-09-01

    style that is designed to match adult reading behaviors, using reader-based writing techniques, developing effective graphics , creating reference aids...involves research, analysis, design , and testing. The writer must have a solid understanding of the technical aspects of the document being prepared, good...ABSTRACT The preparation of software documentation is an iterative process that involves research, analysis, design , and testing. The writer must have

  2. Software fault tolerance using data diversity

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1991-01-01

    Research on data diversity is discussed. Data diversity relies on a different form of redundancy from existing approaches to software fault tolerance and is substantially less expensive to implement. Data diversity can also be applied to software testing and greatly facilitates the automation of testing. Up to now it has been explored both theoretically and in a pilot study, and has been shown to be a promising technique. The effectiveness of data diversity as an error detection mechanism and the application of data diversity to differential equation solvers are discussed.

  3. Ffuzz: Towards full system high coverage fuzz testing on binary executables

    PubMed Central

    2018-01-01

    Bugs and vulnerabilities in binary executables threaten cyber security. Current discovery methods, like fuzz testing, symbolic execution and manual analysis, both have advantages and disadvantages when exercising the deeper code area in binary executables to find more bugs. In this paper, we designed and implemented a hybrid automatic bug finding tool—Ffuzz—on top of fuzz testing and selective symbolic execution. It targets full system software stack testing including both the user space and kernel space. Combining these two mainstream techniques enables us to achieve higher coverage and avoid getting stuck both in fuzz testing and symbolic execution. We also proposed two key optimizations to improve the efficiency of full system testing. We evaluated the efficiency and effectiveness of our method on real-world binary software and 844 memory corruption vulnerable programs in the Juliet test suite. The results show that Ffuzz can discover software bugs in the full system software stack effectively and efficiently. PMID:29791469

  4. Test Driven Development of Scientific Models

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.

    2012-01-01

    Test-Driven Development (TDD) is a software development process that promises many advantages for developer productivity and has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices. Of course, scientific/technical software differs from other software categories in a number of important respects, but I nonetheless believe that TDD is quite applicable to the development of such software and has the potential to significantly improve programmer productivity and code quality within the scientific community. After a detailed introduction to TDD, I will present the experience within the Software Systems Support Office (SSSO) in applying the technique to various scientific applications. This discussion will emphasize the various direct and indirect benefits as well as some of the difficulties and limitations of the methodology. I will conclude with a brief description of pFUnit, a unit testing framework I co-developed to support test-driven development of parallel Fortran applications.

  5. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  6. Product-oriented Software Certification Process for Software Synthesis

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy; Fischer, Bernd; Denney, Ewen; Schumann, Johann; Richardson, Julian; Oh, Phil

    2004-01-01

    The purpose of this document is to propose a product-oriented software certification process to facilitate use of software synthesis and formal methods. Why is such a process needed? Currently, software is tested until deemed bug-free rather than proving that certain software properties exist. This approach has worked well in most cases, but unfortunately, deaths still occur due to software failure. Using formal methods (techniques from logic and discrete mathematics like set theory, automata theory and formal logic as opposed to continuous mathematics like calculus) and software synthesis, it is possible to reduce this risk by proving certain software properties. Additionally, software synthesis makes it possible to automate some phases of the traditional software development life cycle resulting in a more streamlined and accurate development process.

  7. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1975-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.

  8. Relative Utility of Selected Software Requirement Metrics

    DTIC Science & Technology

    1991-12-01

    testing . They can also help in deciding if and how to use complexity reduction techniques. In summary, requirement metrics can be useful because they...answer items in a test instrument. In order to differentiate between misinterpretation and comprehension, the measurement technique must be able to...effectively test a requirement, it is verifiable. Ramamoorthy and others have proposed requirements complexity metrics that can be used to infer the

  9. Software design for automated assembly of truss structures

    NASA Technical Reports Server (NTRS)

    Herstrom, Catherine L.; Grantham, Carolyn; Allen, Cheryl L.; Doggett, William R.; Will, Ralph W.

    1992-01-01

    Concern over the limited intravehicular activity time has increased the interest in performing in-space assembly and construction operations with automated robotic systems. A technique being considered at LaRC is a supervised-autonomy approach, which can be monitored by an Earth-based supervisor that intervenes only when the automated system encounters a problem. A test-bed to support evaluation of the hardware and software requirements for supervised-autonomy assembly methods was developed. This report describes the design of the software system necessary to support the assembly process. The software is hierarchical and supports both automated assembly operations and supervisor error-recovery procedures, including the capability to pause and reverse any operation. The software design serves as a model for the development of software for more sophisticated automated systems and as a test-bed for evaluation of new concepts and hardware components.

  10. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  11. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  12. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  13. Image analysis software for following progression of peripheral neuropathy

    NASA Astrophysics Data System (ADS)

    Epplin-Zapf, Thomas; Miller, Clayton; Larkin, Sean; Hermesmeyer, Eduardo; Macy, Jenny; Pellegrini, Marco; Luccarelli, Saverio; Staurenghi, Giovanni; Holmes, Timothy

    2009-02-01

    A relationship has been reported by several research groups [1 - 4] between the density and shapes of nerve fibers in the cornea and the existence and severity of peripheral neuropathy. Peripheral neuropathy is a complication of several prevalent diseases or conditions, which include diabetes, HIV, prolonged alcohol overconsumption and aging. A common clinical technique for confirming the condition is intramuscular electromyography (EMG), which is invasive, so a noninvasive technique like the one proposed here carries important potential advantages for the physician and patient. A software program that automatically detects the nerve fibers, counts them and measures their shapes is being developed and tested. Tests were carried out with a database of subjects with levels of severity of diabetic neuropathy as determined by EMG testing. Results from this testing, that include a linear regression analysis are shown.

  14. Universal computer test stand (recommended computer test requirements). [for space shuttle computer evaluation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.

  15. (Quickly) Testing the Tester via Path Coverage

    NASA Technical Reports Server (NTRS)

    Groce, Alex

    2009-01-01

    The configuration complexity and code size of an automated testing framework may grow to a point that the tester itself becomes a significant software artifact, prone to poor configuration and implementation errors. Unfortunately, testing the tester by using old versions of the software under test (SUT) may be impractical or impossible: test framework changes may have been motivated by interface changes in the tested system, or fault detection may become too expensive in terms of computing time to justify running until errors are detected on older versions of the software. We propose the use of path coverage measures as a "quick and dirty" method for detecting many faults in complex test frameworks. We also note the possibility of using techniques developed to diversify state-space searches in model checking to diversify test focus, and an associated classification of tester changes into focus-changing and non-focus-changing modifications.

  16. Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William

    2017-01-01

    NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.

  17. Comparative test-retest reliability of metabolite values assessed with magnetic resonance spectroscopy of the brain. The LCModel versus the manufacturer software.

    PubMed

    Fayed, Nicolas; Modrego, Pedro J; Medrano, Jaime

    2009-06-01

    Reproducibility is an essential strength of any diagnostic technique for cross-sectional and longitudinal works. To determine in vivo short-term comparatively, the test-retest reliability of magnetic resonance spectroscopy (MRS) of the brain was compared using the manufacturer's software package and the widely used linear combination of model (LCModel) technique. Single-voxel H-MRS was performed in a series of patients with different pathologies on a 1.5 T clinical scanner. Four areas of the brain were explored with the point resolved spectroscopy technique acquisition mode; the echo time was 35 milliseconds and the repetition time was 2000 milliseconds. We enrolled 15 patients for every area, and the intra-individual variations of metabolites were studied in two consecutive scans without removing the patient from the scanner. Curve fitting and analysis of metabolites were made with the software of GE and the LCModel. Spectra non-fulfilling the minimum criteria of quality in relation to linewidths and signal/noise ratio were rejected. The intraclass correlation coefficients for the N-acetylaspartate/creatine (NAA/Cr) ratios were 0.93, 0.89, 0.9 and 0.8 for the posterior cingulate gyrus, occipital, prefrontal and temporal regions, respectively, with the GE software. For the LCModel, the coefficients were 0.9, 0.89, 0.87 and 0.84, respectively. For the absolute value of NAA, the GE software was also slightly more reproducible than LCModel. However, for the choline/Cr and myo-inositol/Cr ratios, the LCModel was more reliable than the GE software. The variability we have seen hovers around the percentages observed in previous reports (around 10% for the NAA/Cr ratios). We did not find that the LCModel software is superior to the software of the manufacturer. Reproducibility of metabolite values relies more on the observance of the quality parameters than on the software used.

  18. An Empirical Approach to Logical Clustering of Software Failure Regions

    DTIC Science & Technology

    1994-03-01

    this is a coincidence or normal behavior of failure regions. " Software faults were numbered in order as they were discovered, by the various testing...locations of the associated faults. The goal of this research will be an improved testing technique that incorporates failure region behavior . To do this...clustering behavior . This, however, does not correlate with the structural clustering of failure regions observed by Ginn (1991) on the same set of data

  19. Test/score/report: Simulation techniques for automating the test process

    NASA Technical Reports Server (NTRS)

    Hageman, Barbara H.; Sigman, Clayton B.; Koslosky, John T.

    1994-01-01

    A Test/Score/Report capability is currently being developed for the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) system which will automate testing of the Goddard Space Flight Center (GSFC) Payload Operations Control Center (POCC) and Mission Operations Center (MOC) software in three areas: telemetry decommutation, spacecraft command processing, and spacecraft memory load and dump processing. Automated computer control of the acceptance test process is one of the primary goals of a test team. With the proper simulation tools and user interface, the task of acceptance testing, regression testing, and repeatability of specific test procedures of a ground data system can be a simpler task. Ideally, the goal for complete automation would be to plug the operational deliverable into the simulator, press the start button, execute the test procedure, accumulate and analyze the data, score the results, and report the results to the test team along with a go/no recommendation to the test team. In practice, this may not be possible because of inadequate test tools, pressures of schedules, limited resources, etc. Most tests are accomplished using a certain degree of automation and test procedures that are labor intensive. This paper discusses some simulation techniques that can improve the automation of the test process. The TASS system tests the POCC/MOC software and provides a score based on the test results. The TASS system displays statistics on the success of the POCC/MOC system processing in each of the three areas as well as event messages pertaining to the Test/Score/Report processing. The TASS system also provides formatted reports documenting each step performed during the tests and the results of each step. A prototype of the Test/Score/Report capability is available and currently being used to test some POCC/MOC software deliveries. When this capability is fully operational it should greatly reduce the time necessary to test a POCC/MOC software delivery, as well as improve the quality of the test process.

  20. Black Box Testing: Experiments with Runway Incursion Advisory Alerting System

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2005-01-01

    This report summarizes our research findings on the Black box testing of Runway Incursion Advisory Alerting System (RIAAS) and Runway Safety Monitor (RSM) system. Developing automated testing software for such systems has been a problem because of the extensive information that has to be processed. Customized software solutions have been proposed. However, they are time consuming to develop. Here, we present a less expensive, and a more general test platform that is capable of performing complete black box testing. The technique is based on the classification of the anomalies that arise during Monte Carlo simulations. In addition, we also discuss a generalized testing tool (prototype) that we have developed.

  1. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  2. Application of Metamorphic Testing to Supervised Classifiers

    PubMed Central

    Xie, Xiaoyuan; Ho, Joshua; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2010-01-01

    Many applications in the field of scientific computing - such as computational biology, computational linguistics, and others - depend on Machine Learning algorithms to provide important core functionality to support solutions in the particular problem domains. However, it is difficult to test such applications because often there is no “test oracle” to indicate what the correct output should be for arbitrary input. To help address the quality of such software, in this paper we present a technique for testing the implementations of supervised machine learning classification algorithms on which such scientific computing software depends. Our technique is based on an approach called “metamorphic testing”, which has been shown to be effective in such cases. More importantly, we demonstrate that our technique not only serves the purpose of verification, but also can be applied in validation. In addition to presenting our technique, we describe a case study we performed on a real-world machine learning application framework, and discuss how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also discuss how our findings can be of use to other areas outside scientific computing, as well. PMID:21243103

  3. New techniques for test development for tactical auto-pilots using microprocessors

    NASA Astrophysics Data System (ADS)

    Shemeta, E. H.

    1980-07-01

    This paper reports on a demonstration of the application of the method to generate system level tests for a typical tactical missile autopilot. The test algorithms are based on the autopilot control law. When loaded on the tester with appropriate control information, the complete autopilot is tested to establish if the specified control law requirements are met. Thus, the test procedure not only checks to see if the hardware is functional, but also checks the operational software. The technique also uses a 'learning' mode to allow minor timing or functional deviations from the expected responses to be incorporated in the test procedures. A potential application of this test development technique is the extraction of production test data for the various subassemblies. The technique will 'learn' the input-output patterns forming the basis for developement and production tests. If successful, these new techniques should allow the test development process to keep pace with semiconductor progress.

  4. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development and lower operating costs. However, as those system close control loops and arbitrate resources on board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques and concrete experiments at NASA.

  5. Verification and Validation of Autonomy Software at NASA

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles

    2000-01-01

    Autonomous software holds the promise of new operation possibilities, easier design and development, and lower operating costs. However, as those system close control loops and arbitrate resources on-board with specialized reasoning, the range of possible situations becomes very large and uncontrollable from the outside, making conventional scenario-based testing very inefficient. Analytic verification and validation (V&V) techniques, and model checking in particular, can provide significant help for designing autonomous systems in a more efficient and reliable manner, by providing a better coverage and allowing early error detection. This article discusses the general issue of V&V of autonomy software, with an emphasis towards model-based autonomy, model-checking techniques, and concrete experiments at NASA.

  6. Pairwise-Comparison Software

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1995-01-01

    Pairwise comparison (PWC) is computer program that collects data for psychometric scaling techniques now used in cognitive research. It applies technique of pairwise comparisons, which is one of many techniques commonly used to acquire the data necessary for analyses. PWC administers task, collects data from test subject, and formats data for analysis. Written in Turbo Pascal v6.0.

  7. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  8. Simulation verification techniques study: Simulation self test hardware design and techniques report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.

  9. CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection

    PubMed Central

    Dai, Huning; Murphy, Christian; Kaiser, Gail

    2010-01-01

    Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations and inputs together with a certain runtime environment. One approach to detecting these vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, we present a new testing methodology called Configuration Fuzzing. Configuration Fuzzing is a technique whereby the configuration of the running application is mutated at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks “security invariants” that, if violated, indicate a vulnerability. We discuss the approach and introduce a prototype framework called ConFu (CONfiguration FUzzing testing framework) for implementation. We also present the results of case studies that demonstrate the approach’s feasibility and evaluate its performance. PMID:21037923

  10. Validation of software for calculating the likelihood ratio for parentage and kinship.

    PubMed

    Drábek, J

    2009-03-01

    Although the likelihood ratio is a well-known statistical technique, commercial off-the-shelf (COTS) software products for its calculation are not sufficiently validated to suit general requirements for the competence of testing and calibration laboratories (EN/ISO/IEC 17025:2005 norm) per se. The software in question can be considered critical as it directly weighs the forensic evidence allowing judges to decide on guilt or innocence or to identify person or kin (i.e.: in mass fatalities). For these reasons, accredited laboratories shall validate likelihood ratio software in accordance with the above norm. To validate software for calculating the likelihood ratio in parentage/kinship scenarios I assessed available vendors, chose two programs (Paternity Index and familias) for testing, and finally validated them using tests derived from elaboration of the available guidelines for the field of forensics, biomedicine, and software engineering. MS Excel calculation using known likelihood ratio formulas or peer-reviewed results of difficult paternity cases were used as a reference. Using seven testing cases, it was found that both programs satisfied the requirements for basic paternity cases. However, only a combination of two software programs fulfills the criteria needed for our purpose in the whole spectrum of functions under validation with the exceptions of providing algebraic formulas in cases of mutation and/or silent allele.

  11. Radiation Hardening by Software Techniques on FPGAs: Flight Experiment Evaluation and Results

    NASA Technical Reports Server (NTRS)

    Schmidt, Andrew G.; Flatley, Thomas

    2017-01-01

    We present our work on implementing Radiation Hardening by Software (RHBSW) techniques on the Xilinx Virtex5 FPGAs PowerPC 440 processors on the SpaceCube 2.0 platform. The techniques have been matured and tested through simulation modeling, fault emulation, laser fault injection and now in a flight experiment, as part of the Space Test Program- Houston 4-ISS SpaceCube Experiment 2.0 (STP-H4-ISE 2.0). This work leverages concepts such as heartbeat monitoring, control flow assertions, and checkpointing, commonly used in the High Performance Computing industry, and adapts them for use in remote sensing embedded systems. These techniques are extremely low overhead (typically <1.3%), enabling a 3.3x gain in processing performance as compared to the equivalent traditionally radiation hardened processor. The recently concluded STP-H4 flight experiment was an opportunity to upgrade the RHBSW techniques for the Virtex5 FPGA and demonstrate them on-board the ISS to achieve TRL 7. This work details the implementation of the RHBSW techniques, that were previously developed for the Virtex4-based SpaceCube 1.0 platform, on the Virtex5-based SpaceCube 2.0 flight platform. The evaluation spans the development and integration with flight software, remotely uploading the new experiment to the ISS SpaceCube 2.0 platform, and conducting the experiment continuously for 16 days before the platform was decommissioned. The experiment was conducted on two PowerPCs embedded within the Virtex5 FPGA devices and the experiment collected 19,400 checkpoints, processed 253,482 status messages, and incurred 0 faults. These results are highly encouraging and future work is looking into longer duration testing as part of the STP-H5 flight experiment.

  12. Spacelab software development and integration concepts study report, volume 1

    NASA Technical Reports Server (NTRS)

    Rose, P. L.; Willis, B. G.

    1973-01-01

    The proposed software guidelines to be followed by the European Space Research Organization in the development of software for the Spacelab being developed for use as a payload for the space shuttle are documented. Concepts, techniques, and tools needed to assure the success of a programming project are defined as they relate to operation of the data management subsystem, support of experiments and space applications, use with ground support equipment, and for integration testing.

  13. Software system design for the non-null digital Moiré interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin

    2016-11-01

    Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.

  14. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  15. Automation of checkout for the shuttle operations era

    NASA Technical Reports Server (NTRS)

    Anderson, J. A.; Hendrickson, K. O.

    1985-01-01

    The Space Shuttle checkout is different from its Apollo predecessor. The complexity of the hardware, the shortened turnaround time, and the software that performs ground checkout are outlined. Generating new techniques and standards for software development and the management structure to control it are implemented. The utilization of computer systems for vehicle testing is high lighted.

  16. Improved Ant Algorithms for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi

    2014-01-01

    Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391

  17. Performance evaluation of the RITG148+ set of TomoTherapy quality assurance tools using RTQA2 radiochromic film.

    PubMed

    Lobb, Eric C

    2016-07-08

    Version 6.3 of the RITG148+ software package offers eight automated analysis routines for quality assurance of the TomoTherapy platform. A performance evaluation of each routine was performed in order to compare RITG148+ results with traditionally accepted analysis techniques and verify that simulated changes in machine parameters are correctly identified by the software. Reference films were exposed according to AAPM TG-148 methodology for each routine and the RITG148+ results were compared with either alternative software analysis techniques or manual analysis techniques in order to assess baseline agreement. Changes in machine performance were simulated through translational and rotational adjustments to subsequently irradiated films, and these films were analyzed to verify that the applied changes were accurately detected by each of the RITG148+ routines. For the Hounsfield unit routine, an assessment of the "Frame Averaging" functionality and the effects of phantom roll on the routine results are presented. All RITG148+ routines reported acceptable baseline results consistent with alternative analysis techniques, with 9 of the 11 baseline test results showing agreement of 0.1mm/0.1° or better. Simulated changes were correctly identified by the RITG148+ routines within approximately 0.2 mm/0.2° with the exception of the Field Centervs. Jaw Setting routine, which was found to have limited accuracy in cases where field centers were not aligned for all jaw settings due to inaccurate autorotation of the film during analysis. The performance of the RITG148+ software package was found to be acceptable for introduction into our clinical environment as an automated alternative to traditional analysis techniques for routine TomoTherapy quality assurance testing.

  18. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software in Young People with Down Syndrome.

    PubMed

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Rey-Abella, Ferran; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2016-05-01

    People with Down syndrome present skeletal abnormalities in their feet that can be analyzed by commonly used gold standard indices (the Hernández-Corvo index, the Chippaux-Smirak index, the Staheli arch index, and the Clarke angle) based on footprint measurements. The use of Photoshop CS5 software (Adobe Systems Software Ireland Ltd, Dublin, Ireland) to measure footprints has been validated in the general population. The present study aimed to assess the reliability and validity of this footprint assessment technique in the population with Down syndrome. Using optical podography and photography, 44 footprints from 22 patients with Down syndrome (11 men [mean ± SD age, 23.82 ± 3.12 years] and 11 women [mean ± SD age, 24.82 ± 6.81 years]) were recorded in a static bipedal standing position. A blinded observer performed the measurements using a validated manual method three times during the 4-month study, with 2 months between measurements. Test-retest was used to check the reliability of the Photoshop CS5 software measurements. Validity and reliability were obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed very good values for the Photoshop CS5 method (ICC, 0.982-0.995). Validity testing also found no differences between the techniques (ICC, 0.988-0.999). The Photoshop CS5 software method is reliable and valid for the study of footprints in young people with Down syndrome.

  19. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    PubMed Central

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software. PMID:28827977

  20. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  1. Software safety - A user's practical perspective

    NASA Technical Reports Server (NTRS)

    Dunn, William R.; Corliss, Lloyd D.

    1990-01-01

    Software safety assurance philosophy and practices at the NASA Ames are discussed. It is shown that, to be safe, software must be error-free. Software developments on two digital flight control systems and two ground facility systems are examined, including the overall system and software organization and function, the software-safety issues, and their resolution. The effectiveness of safety assurance methods is discussed, including conventional life-cycle practices, verification and validation testing, software safety analysis, and formal design methods. It is concluded (1) that a practical software safety technology does not yet exist, (2) that it is unlikely that a set of general-purpose analytical techniques can be developed for proving that software is safe, and (3) that successful software safety-assurance practices will have to take into account the detailed design processes employed and show that the software will execute correctly under all possible conditions.

  2. Continuous integration for concurrent MOOSE framework and application development on GitHub

    DOE PAGES

    Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; ...

    2015-11-20

    For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less

  3. Continuous integration for concurrent MOOSE framework and application development on GitHub

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.

    For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less

  4. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  5. Expert system verification and validation study. Delivery 3A and 3B: Trip summaries

    NASA Technical Reports Server (NTRS)

    French, Scott

    1991-01-01

    Key results are documented from attending the 4th workshop on verification, validation, and testing. The most interesting part of the workshop was when representatives from the U.S., Japan, and Europe presented surveys of VV&T within their respective regions. Another interesting part focused on current efforts to define industry standards for artificial intelligence and how that might affect approaches to VV&T of expert systems. The next part of the workshop focused on VV&T methods of applying mathematical techniques to verification of rule bases and techniques for capturing information relating to the process of developing software. The final part focused on software tools. A summary is also presented of the EPRI conference on 'Methodologies, Tools, and Standards for Cost Effective Reliable Software Verification and Validation. The conference was divided into discussion sessions on the following issues: development process, automated tools, software reliability, methods, standards, and cost/benefit considerations.

  6. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  7. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  8. Designing for Change: Minimizing the Impact of Changing Requirements in the Later Stages of a Spaceflight Software Project

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette

    1998-01-01

    In the traditional 'waterfall' model of the software project life cycle, the Requirements Phase ends and flows into the Design Phase, which ends and flows into the Development Phase. Unfortunately, the process rarely, if ever, works so smoothly in practice. Instead, software developers often receive new requirements, or modifications to the original requirements, well after the earlier project phases have been completed. In particular, projects with shorter than ideal schedules are highly susceptible to frequent requirements changes, as the software requirements analysis phase is often forced to begin before the overall system requirements and top-level design are complete. This results in later modifications to the software requirements, even though the software design and development phases may be complete. Requirements changes received in the later stages of a software project inevitably lead to modification of existing developed software. Presented here is a series of software design techniques that can greatly reduce the impact of last-minute requirements changes. These techniques were successfully used to add built-in flexibility to two complex software systems in which the requirements were expected to (and did) change frequently. These large, real-time systems were developed at NASA Langley Research Center (LaRC) to test and control the Lidar In-Space Technology Experiment (LITE) instrument which flew aboard the space shuttle Discovery as the primary payload on the STS-64 mission.

  9. Creating and Testing Simulation Software

    NASA Technical Reports Server (NTRS)

    Heinich, Christina M.

    2013-01-01

    The goal of this project is to learn about the software development process, specifically the process to test and fix components of the software. The paper will cover the techniques of testing code, and the benefits of using one style of testing over another. It will also discuss the overall software design and development lifecycle, and how code testing plays an integral role in it. Coding is notorious for always needing to be debugged due to coding errors or faulty program design. Writing tests either before or during program creation that cover all aspects of the code provide a relatively easy way to locate and fix errors, which will in turn decrease the necessity to fix a program after it is released for common use. The backdrop for this paper is the Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI), a project whose goal is to simulate a launch using simulated models of the ground systems and the connections between them and the control room. The simulations will be used for training and to ensure that all possible outcomes and complications are prepared for before the actual launch day. The code being tested is the Programmable Logic Controller Interface (PLCIF) code, the component responsible for transferring the information from the models to the model Programmable Logic Controllers (PLCs), basic computers that are used for very simple tasks.

  10. Post-test navigation data analysis techniques for the shuttle ALT

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Postflight test analysis data processing techniques for shuttle approach and landing tests (ALT) navigation data are defined. Postfight test processor requirements are described along with operational and design requirements, data input requirements, and software test requirements. The postflight test data processing is described based on the natural test sequence: quick-look analysis, postflight navigation processing, and error isolation processing. Emphasis is placed on the tradeoffs that must remain open and subject to analysis until final definition is achieved in the shuttle data processing system and the overall ALT plan. A development plan for the implementation of the ALT postflight test navigation data processing system is presented. Conclusions are presented.

  11. Modifications to Langley 0.3-m TCT adaptive wall software for heavy gas test medium, phase 1 studies

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1992-01-01

    The scheme for two-dimensional wall adaptation with sulfur hexafluoride (SF6) as test gas in the NASA Langley Research Center 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is presented. A unified version of the wall adaptation software has been developed to function in a dual gas operation mode (nitrogen or SF6). The feature of ideal gas calculations for nitrogen operation is retained. For SF6 operation, real gas properties have been computed using the departure function technique. Installation of the software on the 0.3-m TCT ModComp-A computer and preliminary validation with nitrogen operation were found to be satisfactory. Further validation and improvements to the software will be undertaken when the 0.3-m TCT is ready for operation with SF6 gas.

  12. The Design and Realization of Net Testing System on Campus Network

    ERIC Educational Resources Information Center

    Ren, Zhanying; Liu, Shijie

    2005-01-01

    According to the requirement of modern teaching theory and technology, based on software engineering, database theory, the technique of net information security and system integration, a net testing system on local network was designed and realized. The system benefits for dividing of testing & teaching and settles the problems of random…

  13. Volumetric Analysis of Alveolar Bone Defect Using Three-Dimensional-Printed Models Versus Computer-Aided Engineering.

    PubMed

    Du, Fengzhou; Li, Binghang; Yin, Ningbei; Cao, Yilin; Wang, Yongqian

    2017-03-01

    Knowing the volume of a graft is essential in repairing alveolar bone defects. This study investigates the 2 advanced preoperative volume measurement methods: three-dimensional (3D) printing and computer-aided engineering (CAE). Ten unilateral alveolar cleft patients were enrolled in this study. Their computed tomographic data were sent to 3D printing and CAE software. A simulated graft was used on the 3D-printed model, and the graft volume was measured by water displacement. The volume calculated by CAE software used mirror-reverses technique. The authors compared the actual volumes of the simulated grafts with the CAE software-derived volumes. The average volume of the simulated bone grafts by 3D-printed models was 1.52 mL, higher than the mean volume of 1.47 calculated by CAE software. The difference between the 2 volumes was from -0.18 to 0.42 mL. The paired Student t test showed no statistically significant difference between the volumes derived from the 2 methods. This study demonstrated that the mirror-reversed technique by CAE software is as accurate as the simulated operation on 3D-printed models in unilateral alveolar cleft patients. These findings further validate the use of 3D printing and CAE technique in alveolar defect repairing.

  14. Parallel Fortran-MPI software for numerical inversion of the Laplace transform and its application to oscillatory water levels in groundwater environments

    USGS Publications Warehouse

    Zhan, X.

    2005-01-01

    A parallel Fortran-MPI (Message Passing Interface) software for numerical inversion of the Laplace transform based on a Fourier series method is developed to meet the need of solving intensive computational problems involving oscillatory water level's response to hydraulic tests in a groundwater environment. The software is a parallel version of ACM (The Association for Computing Machinery) Transactions on Mathematical Software (TOMS) Algorithm 796. Running 38 test examples indicated that implementation of MPI techniques with distributed memory architecture speedups the processing and improves the efficiency. Applications to oscillatory water levels in a well during aquifer tests are presented to illustrate how this package can be applied to solve complicated environmental problems involved in differential and integral equations. The package is free and is easy to use for people with little or no previous experience in using MPI but who wish to get off to a quick start in parallel computing. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Computer-Aided Design for Built-In-Test (CADBIT) - Software Specification. Volume 3

    DTIC Science & Technology

    1989-10-01

    CADD COMAN WIDO IO-CNURET MSL PPLYING~ TET ATEN Figur 3-13- TUTORIA FIGUR PLCMI IN CAD-NVIOMENT ON BOAR SEFTST- 1"os-rnenu, long-tur d nnnih que- list...have software package for reliability calculation A-8 LIBRARY ELEMENT DATA SHE T’" BIT TECHNIQUE: ON-BOARD ROM CATEGORY: L’ONG TUTORIA PAGE ,5 of 14

  16. Pilot Study of an Open-source Image Analysis Software for Automated Screening of Conventional Cervical Smears.

    PubMed

    Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal

    2018-01-01

    The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.

  17. Software Template for Instruction in Mathematics

    NASA Technical Reports Server (NTRS)

    Shelton, Robert O.; Moebes, Travis A.; Beall, Anna

    2005-01-01

    Intelligent Math Tutor (IMT) is a software system that serves as a template for creating software for teaching mathematics. IMT can be easily connected to artificial-intelligence software and other analysis software through input and output of files. IMT provides an easy-to-use interface for generating courses that include tests that contain both multiple-choice and fill-in-the-blank questions, and enables tracking of test scores. IMT makes it easy to generate software for Web-based courses or to manufacture compact disks containing executable course software. IMT also can function as a Web-based application program, with features that run quickly on the Web, while retaining the intelligence of a high-level language application program with many graphics. IMT can be used to write application programs in text, graphics, and/or sound, so that the programs can be tailored to the needs of most handicapped persons. The course software generated by IMT follows a "back to basics" approach of teaching mathematics by inducing the student to apply creative mathematical techniques in the process of learning. Students are thereby made to discover mathematical fundamentals and thereby come to understand mathematics more deeply than they could through simple memorization.

  18. Moving Target Techniques: Leveraging Uncertainty for CyberDefense

    DTIC Science & Technology

    2015-12-15

    cyberattacks is a continual struggle for system managers. Attackers often need only find one vulnerability (a flaw or bug that an attacker can exploit...additional parsing code itself could have security-relevant software bugs . Dynamic  Network   Techniques in the dynamic network domain change the...evaluation of MT techniques can benefit from a variety of evaluation approaches, including abstract analysis, modeling and simulation, test bed

  19. Testing Web Applications with Mutation Analysis

    ERIC Educational Resources Information Center

    Praphamontripong, Upsorn

    2017-01-01

    Web application software uses new technologies that have novel methods for integration and state maintenance that amount to new control flow mechanisms and new variables scoping. While modern web development technologies enhance the capabilities of web applications, they introduce challenges that current testing techniques do not adequately test…

  20. Development of a Software Safety Process and a Case Study of Its Use

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1996-01-01

    Research in the year covered by this reporting period has been primarily directed toward: continued development of mock-ups of computer screens for operator of a digital reactor control system; development of a reactor simulation to permit testing of various elements of the control system; formal specification of user interfaces; fault-tree analysis including software; evaluation of formal verification techniques; and continued development of a software documentation system. Technical results relating to this grant and the remainder of the principal investigator's research program are contained in various reports and papers.

  1. A Change Impact Analysis to Characterize Evolving Program Behaviors

    NASA Technical Reports Server (NTRS)

    Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua

    2012-01-01

    Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks

  2. Automation of Flight Software Regression Testing

    NASA Technical Reports Server (NTRS)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add automation, and the ability of the harness and cases to be executed continually. This test concept is an approach that can be adapted to support other projects.

  3. Fault Tree Analysis Application for Safety and Reliability

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    Many commercial software tools exist for fault tree analysis (FTA), an accepted method for mitigating risk in systems. The method embedded in the tools identifies a root as use in system components, but when software is identified as a root cause, it does not build trees into the software component. No commercial software tools have been built specifically for development and analysis of software fault trees. Research indicates that the methods of FTA could be applied to software, but the method is not practical without automated tool support. With appropriate automated tool support, software fault tree analysis (SFTA) may be a practical technique for identifying the underlying cause of software faults that may lead to critical system failures. We strive to demonstrate that existing commercial tools for FTA can be adapted for use with SFTA, and that applied to a safety-critical system, SFTA can be used to identify serious potential problems long before integrator and system testing.

  4. Assessing Requirements Quality through Requirements Coverage

    NASA Technical Reports Server (NTRS)

    Rajan, Ajitha; Heimdahl, Mats; Woodham, Kurt

    2008-01-01

    In model-based development, the development effort is centered around a formal description of the proposed software system the model. This model is derived from some high-level requirements describing the expected behavior of the software. For validation and verification purposes, this model can then be subjected to various types of analysis, for example, completeness and consistency analysis [6], model checking [3], theorem proving [1], and test-case generation [4, 7]. This development paradigm is making rapid inroads in certain industries, e.g., automotive, avionics, space applications, and medical technology. This shift towards model-based development naturally leads to changes in the verification and validation (V&V) process. The model validation problem determining that the model accurately captures the customer's high-level requirements has received little attention and the sufficiency of the validation activities has been largely determined through ad-hoc methods. Since the model serves as the central artifact, its correctness with respect to the users needs is absolutely crucial. In our investigation, we attempt to answer the following two questions with respect to validation (1) Are the requirements sufficiently defined for the system? and (2) How well does the model implement the behaviors specified by the requirements? The second question can be addressed using formal verification. Nevertheless, the size and complexity of many industrial systems make formal verification infeasible even if we have a formal model and formalized requirements. Thus, presently, there is no objective way of answering these two questions. To this end, we propose an approach based on testing that, when given a set of formal requirements, explores the relationship between requirements-based structural test-adequacy coverage and model-based structural test-adequacy coverage. The proposed technique uses requirements coverage metrics defined in [9] on formal high-level software requirements and existing model coverage metrics such as the Modified Condition and Decision Coverage (MC/DC) used when testing highly critical software in the avionics industry [8]. Our work is related to Chockler et al. [2], but we base our work on traditional testing techniques as opposed to verification techniques.

  5. Benchmarking the ATLAS software through the Kit Validation engine

    NASA Astrophysics Data System (ADS)

    De Salvo, Alessandro; Brasolin, Franco

    2010-04-01

    The measurement of the experiment software performance is a very important metric in order to choose the most effective resources to be used and to discover the bottlenecks of the code implementation. In this work we present the benchmark techniques used to measure the ATLAS software performance through the ATLAS offline testing engine Kit Validation and the online portal Global Kit Validation. The performance measurements, the data collection, the online analysis and display of the results will be presented. The results of the measurement on different platforms and architectures will be shown, giving a full report on the CPU power and memory consumption of the Monte Carlo generation, simulation, digitization and reconstruction of the most CPU-intensive channels. The impact of the multi-core computing on the ATLAS software performance will also be presented, comparing the behavior of different architectures when increasing the number of concurrent processes. The benchmark techniques described in this paper have been used in the HEPiX group since the beginning of 2008 to help defining the performance metrics for the High Energy Physics applications, based on the real experiment software.

  6. A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Moore, Ashley

    2005-01-01

    The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.

  7. Application of interactive computer graphics in wind-tunnel dynamic model testing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Hammond, C. E.

    1975-01-01

    The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed.

  8. NASA Software Documentation Standard

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as "Standard") is designed to support the documentation of all software developed for NASA; its goal is to provide a framework and model for recording the essential information needed throughout the development life cycle and maintenance of a software system. The NASA Software Documentation Standard can be applied to the documentation of all NASA software. The Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. The basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  9. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  10. Software Reliability 2002

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    In FY01 we learned that hardware reliability models need substantial changes to account for differences in software, thus making software reliability measurements more effective, accurate, and easier to apply. These reliability models are generally based on familiar distributions or parametric methods. An obvious question is 'What new statistical and probability models can be developed using non-parametric and distribution-free methods instead of the traditional parametric method?" Two approaches to software reliability engineering appear somewhat promising. The first study, begin in FY01, is based in hardware reliability, a very well established science that has many aspects that can be applied to software. This research effort has investigated mathematical aspects of hardware reliability and has identified those applicable to software. Currently the research effort is applying and testing these approaches to software reliability measurement, These parametric models require much project data that may be difficult to apply and interpret. Projects at GSFC are often complex in both technology and schedules. Assessing and estimating reliability of the final system is extremely difficult when various subsystems are tested and completed long before others. Parametric and distribution free techniques may offer a new and accurate way of modeling failure time and other project data to provide earlier and more accurate estimates of system reliability.

  11. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  12. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  13. Performance assessment techniques for Doppler radar physiological sensors.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2009-01-01

    This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.

  14. Intelligent fault management for the Space Station active thermal control system

    NASA Technical Reports Server (NTRS)

    Hill, Tim; Faltisco, Robert M.

    1992-01-01

    The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.

  15. Top down, bottom up structured programming and program structuring

    NASA Technical Reports Server (NTRS)

    Hamilton, M.; Zeldin, S.

    1972-01-01

    New design and programming techniques for shuttle software. Based on previous Apollo experience, recommendations are made to apply top-down structured programming techniques to shuttle software. New software verification techniques for large software systems are recommended. HAL, the higher order language selected for the shuttle flight code, is discussed and found to be adequate for implementing these techniques. Recommendations are made to apply the workable combination of top-down, bottom-up methods in the management of shuttle software. Program structuring is discussed relevant to both programming and management techniques.

  16. Virtual Exercise Training Software System

    NASA Technical Reports Server (NTRS)

    Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.

    2018-01-01

    The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.

  17. TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks

    NASA Astrophysics Data System (ADS)

    Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.

    2018-01-01

    In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.

  18. Testing Product Generation in Software Product Lines Using Pairwise for Features Coverage

    NASA Astrophysics Data System (ADS)

    Pérez Lamancha, Beatriz; Polo Usaola, Macario

    A Software Product Lines (SPL) is "a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way". Variability is a central concept that permits the generation of different products of the family by reusing core assets. It is captured through features which, for a SPL, define its scope. Features are represented in a feature model, which is later used to generate the products from the line. From the testing point of view, testing all the possible combinations in feature models is not practical because: (1) the number of possible combinations (i.e., combinations of features for composing products) may be untreatable, and (2) some combinations may contain incompatible features. Thus, this paper resolves the problem by the implementation of combinatorial testing techniques adapted to the SPL context.

  19. Oscillating-Flow Regenerator Test Rig: Hardware and Theory With Derived Correlations for Screens and Felts

    NASA Technical Reports Server (NTRS)

    Gedeon, D.; Wood, J. G.

    1996-01-01

    A number of wire mesh and metal felt test samples, with a range of porosities, yield generic correlations for friction factor, Nusselt number, enhanced axial conduction ratio, and overall heat flux ratio. This information is directed primarily toward stirling cycle regenerator modelers, but will be of use to anyone seeking to better model fluid flow through these porous materials. Behind these results lies an oscillating-flow test rig, which measures pumping dissipation and thermal energy transport in sample matrices, and several stages of data-reduction software, which correlate instantaneous values for the above dimensionless groups. Within the software, theoretical model reduces instantaneous quantifies from cycle-averaged measurables using standard parameter estimation techniques.

  20. Automatic Detection of Previously-Unseen Application States for Deployment Environment Testing and Analysis

    PubMed Central

    Murphy, Christian; Vaughan, Moses; Ilahi, Waseem; Kaiser, Gail

    2010-01-01

    For large, complex software systems, it is typically impossible in terms of time and cost to reliably test the application in all possible execution states and configurations before releasing it into production. One proposed way of addressing this problem has been to continue testing and analysis of the application in the field, after it has been deployed. A practical limitation of many such automated approaches is the potentially high performance overhead incurred by the necessary instrumentation. However, it may be possible to reduce this overhead by selecting test cases and performing analysis only in previously-unseen application states, thus reducing the number of redundant tests and analyses that are run. Solutions for fault detection, model checking, security testing, and fault localization in deployed software may all benefit from a technique that ignores application states that have already been tested or explored. In this paper, we present a solution that ensures that deployment environment tests are only executed in states that the application has not previously encountered. In addition to discussing our implementation, we present the results of an empirical study that demonstrates its effectiveness, and explain how the new approach can be generalized to assist other automated testing and analysis techniques intended for the deployment environment. PMID:21197140

  1. Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.

    2012-01-01

    This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the software package can be used to verify that the underlying requirements have been met.

  2. Data flow modeling techniques

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  3. Digital Image Correlation from Commercial to FOS Software: a Mature Technique for Full-Field Displacement Measurements

    NASA Astrophysics Data System (ADS)

    Belloni, V.; Ravanelli, R.; Nascetti, A.; Di Rita, M.; Mattei, D.; Crespi, M.

    2018-05-01

    In the last few decades, there has been a growing interest in studying non-contact methods for full-field displacement and strain measurement. Among such techniques, Digital Image Correlation (DIC) has received particular attention, thanks to its ability to provide these information by comparing digital images of a sample surface before and after deformation. The method is now commonly adopted in the field of civil, mechanical and aerospace engineering and different companies and some research groups implemented 2D and 3D DIC software. In this work a review on DIC software status is given at first. Moreover, a free and open source 2D DIC software is presented, named py2DIC and developed in Python at the Geodesy and Geomatics Division of DICEA of the University of Rome "La Sapienza"; its potentialities were evaluated by processing the images captured during tensile tests performed in the Structural Engineering Lab of the University of Rome "La Sapienza" and comparing them to those obtained using the commercial software Vic-2D developed by Correlated Solutions Inc, USA. The agreement of these results at one hundredth of millimetre level demonstrate the possibility to use this open source software as a valuable 2D DIC tool to measure full-field displacements on the investigated sample surface.

  4. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  5. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  6. Automation is an Effective Way to Improve Quality of Verification (Calibration) of Measuring Instruments

    NASA Astrophysics Data System (ADS)

    Golobokov, M.; Danilevich, S.

    2018-04-01

    In order to assess calibration reliability and automate such assessment, procedures for data collection and simulation study of thermal imager calibration procedure have been elaborated. The existing calibration techniques do not always provide high reliability. A new method for analyzing the existing calibration techniques and developing new efficient ones has been suggested and tested. A type of software has been studied that allows generating instrument calibration reports automatically, monitoring their proper configuration, processing measurement results and assessing instrument validity. The use of such software allows reducing man-hours spent on finalization of calibration data 2 to 5 times and eliminating a whole set of typical operator errors.

  7. The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8

    NASA Astrophysics Data System (ADS)

    Bancheri, Marialaura; Serafin, Francesco; Bottazzi, Michele; Abera, Wuletawu; Formetta, Giuseppe; Rigon, Riccardo

    2018-06-01

    This work presents a software package for the interpolation of climatological variables, such as temperature and precipitation, using kriging techniques. The purposes of the paper are (1) to present a geostatistical software that is easy to use and easy to plug in to a hydrological model; (2) to provide a practical example of an accurately designed software from the perspective of reproducible research; and (3) to demonstrate the goodness of the results of the software and so have a reliable alternative to other, more traditional tools. A total of 11 types of theoretical semivariograms and four types of kriging were implemented and gathered into Object Modeling System-compliant components. The package provides real-time optimization for semivariogram and kriging parameters. The software was tested using a year's worth of hourly temperature readings and a rain storm event (11 h) recorded in 2008 and retrieved from 97 meteorological stations in the Isarco River basin, Italy. For both the variables, good interpolation results were obtained and then compared to the results from the R package gstat.

  8. Design and implementation of a compliant robot with force feedback and strategy planning software

    NASA Technical Reports Server (NTRS)

    Premack, T.; Strempek, F. M.; Solis, L. A.; Brodd, S. S.; Cutler, E. P.; Purves, L. R.

    1984-01-01

    Force-feedback robotics techniques are being developed for automated precision assembly and servicing of NASA space flight equipment. Design and implementation of a prototype robot which provides compliance and monitors forces is in progress. Computer software to specify assembly steps and makes force feedback adjustments during assembly are coded and tested for three generically different precision mating problems. A model program demonstrates that a suitably autonomous robot can plan its own strategy.

  9. Scalability and Validation of Big Data Bioinformatics Software.

    PubMed

    Yang, Andrian; Troup, Michael; Ho, Joshua W K

    2017-01-01

    This review examines two important aspects that are central to modern big data bioinformatics analysis - software scalability and validity. We argue that not only are the issues of scalability and validation common to all big data bioinformatics analyses, they can be tackled by conceptually related methodological approaches, namely divide-and-conquer (scalability) and multiple executions (validation). Scalability is defined as the ability for a program to scale based on workload. It has always been an important consideration when developing bioinformatics algorithms and programs. Nonetheless the surge of volume and variety of biological and biomedical data has posed new challenges. We discuss how modern cloud computing and big data programming frameworks such as MapReduce and Spark are being used to effectively implement divide-and-conquer in a distributed computing environment. Validation of software is another important issue in big data bioinformatics that is often ignored. Software validation is the process of determining whether the program under test fulfils the task for which it was designed. Determining the correctness of the computational output of big data bioinformatics software is especially difficult due to the large input space and complex algorithms involved. We discuss how state-of-the-art software testing techniques that are based on the idea of multiple executions, such as metamorphic testing, can be used to implement an effective bioinformatics quality assurance strategy. We hope this review will raise awareness of these critical issues in bioinformatics.

  10. Increasing the reliability of ecological models using modern software engineering techniques

    Treesearch

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  11. Evaluation of acoustic tomography for tree decay detection

    Treesearch

    Shanquing Liang; Xiping Wang; Janice Wiedenbeck; Zhiyong Cai; Feng Fu

    2008-01-01

    In this study, the acoustic tomography technique was used to detect internal decay in high value black cherry (Prunus seratina) trees. Two-dimensional images of the cross sections of the tree samples were constructed using PiCUS Q70 software. The trees were felled following the field test, and a disc from each testing elevation was subsequently cut...

  12. Software engineering for ESO's VLT project

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    1994-12-01

    This paper reports on the experience at the European Southern Observatory on the application of software engineering techniques to a 200 man-year control software project for the Very Large Telescope (VLT). This shall provide astronomers, before the end of the century, with one of the most powerful telescopes in the world. From the definition of the general model, described in the software management plan, specific activities have been and will be defined: standards for documents and for code development, design approach using a CASE tool, the process of reviewing both documentation and code, quality assurance, test strategy, etc. The initial choices, the current implementation and the future planned activities are presented and, where feedback is already available, pros and cons are discussed.

  13. On testing VLSI chips for the big Viterbi decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.

    1989-01-01

    A general technique that can be used in testing very large scale integrated (VLSI) chips for the Big Viterbi Decoder (BVD) system is described. The test technique is divided into functional testing and fault-coverage testing. The purpose of functional testing is to verify that the design works functionally. Functional test vectors are converted from outputs of software simulations which simulate the BVD functionally. Fault-coverage testing is used to detect and, in some cases, to locate faulty components caused by bad fabrication. This type of testing is useful in screening out bad chips. Finally, design for testability, which is included in the BVD VLSI chip design, is described in considerable detail. Both the observability and controllability of a VLSI chip are greatly enhanced by including the design for the testability feature.

  14. VLBI Analysis with the Multi-Technique Software GEOSAT

    NASA Technical Reports Server (NTRS)

    Kierulf, Halfdan Pascal; Andersen, Per-Helge; Boeckmann, Sarah; Kristiansen, Oddgeir

    2010-01-01

    GEOSAT is a multi-technique geodetic analysis software developed at Forsvarets Forsknings Institutt (Norwegian defense research establishment). The Norwegian Mapping Authority has now installed the software and has, together with Forsvarets Forsknings Institutt, adapted the software to deliver datum-free normal equation systems in SINEX format. The goal is to be accepted as an IVS Associate Analysis Center and to provide contributions to the IVS EOP combination on a routine basis. GEOSAT is based on an upper diagonal factorized Kalman filter which allows estimation of time variable parameters like the troposphere and clocks as stochastic parameters. The tropospheric delays in various directions are mapped to tropospheric zenith delay using ray-tracing. Meteorological data from ECMWF with a resolution of six hours is used to perform the ray-tracing which depends both on elevation and azimuth. Other models are following the IERS and IVS conventions. The Norwegian Mapping Authority has submitted test SINEX files produced with GEOSAT to IVS. The results have been compared with the existing IVS combined products. In this paper the outcome of these comparisons is presented.

  15. A Photometric Technique for Determining Fluid Concentration using Consumer-Grade Hardware

    NASA Technical Reports Server (NTRS)

    Leslie, F.; Ramachandran, N.

    1999-01-01

    In support of a separate study to produce an exponential concentration gradient in a magnetic fluid, a noninvasive technique for determining, species concentration from off-the-shelf hardware has been developed. The approach uses a backlighted fluid test cell photographed with a commercial digital camcorder. Because the light extinction coefficient is wavelength dependent, tests were conducted to determine the best filter color to use, although some guidance was also provided using an absorption spectrophotometer. With the appropriate filter in place, the provide attenuation of the light passing, through the test cell was captured by the camcorder. The digital image was analyzed for intensity using, software from Scion Image Corp. downloaded from the Internet. The analysis provides a two-dimensional array of concentration with an average error of 0.0095 ml/ml. This technique is superior to invasive techniques, which require extraction of a sample that disturbs the concentration distribution in the test cell. Refinements of this technique using a true monochromatic laser light Source are also discussed.

  16. Phase Field Fracture Mechanics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Brett Anthony

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  17. Thermography based prescreening software tool for veterinary clinics

    NASA Astrophysics Data System (ADS)

    Dahal, Rohini; Umbaugh, Scott E.; Mishra, Deependra; Lama, Norsang; Alvandipour, Mehrdad; Umbaugh, David; Marino, Dominic J.; Sackman, Joseph

    2017-05-01

    Under development is a clinical software tool which can be used in the veterinary clinics as a prescreening tool for these pathologies: anterior cruciate ligament (ACL) disease, bone cancer and feline hyperthyroidism. Currently, veterinary clinical practice uses several imaging techniques including radiology, computed tomography (CT), and magnetic resonance imaging (MRI). But, harmful radiation involved during imaging, expensive equipment setup, excessive time consumption and the need for a cooperative patient during imaging, are major drawbacks of these techniques. In veterinary procedures, it is very difficult for animals to remain still for the time periods necessary for standard imaging without resorting to sedation - which creates another set of complexities. Therefore, clinical application software integrated with a thermal imaging system and the algorithms with high sensitivity and specificity for these pathologies, can address the major drawbacks of the existing imaging techniques. A graphical user interface (GUI) has been created to allow ease of use for the clinical technician. The technician inputs an image, enters patient information, and selects the camera view associated with the image and the pathology to be diagnosed. The software will classify the image using an optimized classification algorithm that has been developed through thousands of experiments. Optimal image features are extracted and the feature vector is then used in conjunction with the stored image database for classification. Classification success rates as high as 88% for bone cancer, 75% for ACL and 90% for feline hyperthyroidism have been achieved. The software is currently undergoing preliminary clinical testing.

  18. On-board processing for telecommunications satellites

    NASA Technical Reports Server (NTRS)

    Nuspl, P. P.; Dong, G.

    1991-01-01

    In this decade, communications satellite systems will probably face dramatic challenges from alternative transmission means. To balance and overcome such competition, and to prepare for new requirements, INTELSAT has developed several on-board processing techniques, including Satellite-Switched TDMA (SS-TDMA), Satellite-Switched FDMA (SS-FDMA), several Modulators/Demodulators (Modem), a Multicarrier Multiplexer and Demodulator MCDD), an International Business Service (IBS)/Intermediate Data Rate (IDR) BaseBand Processor (BBP), etc. Some proof-of-concept hardware and software were developed, and tested recently in the INTELSAT Technical Laboratories. These techniques and some test results are discussed.

  19. Practical experience with test-driven development during commissioning of the multi-star AO system ARGOS

    NASA Astrophysics Data System (ADS)

    Kulas, M.; Borelli, Jose Luis; Gässler, Wolfgang; Peter, Diethard; Rabien, Sebastian; Orban de Xivry, Gilles; Busoni, Lorenzo; Bonaglia, Marco; Mazzoni, Tommaso; Rahmer, Gustavo

    2014-07-01

    Commissioning time for an instrument at an observatory is precious, especially the night time. Whenever astronomers come up with a software feature request or point out a software defect, the software engineers have the task to find a solution and implement it as fast as possible. In this project phase, the software engineers work under time pressure and stress to deliver a functional instrument control software (ICS). The shortness of development time during commissioning is a constraint for software engineering teams and applies to the ARGOS project as well. The goal of the ARGOS (Advanced Rayleigh guided Ground layer adaptive Optics System) project is the upgrade of the Large Binocular Telescope (LBT) with an adaptive optics (AO) system consisting of six Rayleigh laser guide stars and wavefront sensors. For developing the ICS, we used the technique Test- Driven Development (TDD) whose main rule demands that the programmer writes test code before production code. Thereby, TDD can yield a software system, that grows without defects and eases maintenance. Having applied TDD in a calm and relaxed environment like office and laboratory, the ARGOS team has profited from the benefits of TDD. Before the commissioning, we were worried that the time pressure in that tough project phase would force us to drop TDD because we would spend more time writing test code than it would be worth. Despite this concern at the beginning, we could keep TDD most of the time also in this project phase This report describes the practical application and performance of TDD including its benefits, limitations and problems during the ARGOS commissioning. Furthermore, it covers our experience with pair programming and continuous integration at the telescope.

  20. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  1. A Software Engineering Environment for the Navy.

    DTIC Science & Technology

    1982-03-31

    Engineering Pr.cess . - 55 ?art II: Description of A Software Engineering Env.Lonnmeut 1. Data Base ........................................ 7 -3 L.I...Methodology to Tool 1-54 2.2.2.2-6 Flow of Management: Activity to Methodology to Tool 21- 55 2.2.2.2-7 Pipelining for Activity-Specific Tools 11-56 A.1.1-1 A...testing techniques. 2.2. 2 Methodciogies and Tools: Correctness Analysis Pai e T- 4Metboioioo ies aews - Pev2.ews Jeicrmine the in ernai ’ Qolc .. ness and

  2. Time-Reversal Based Range Extension Technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2008-04-16

    Zhen (Edward) Hu Peng (Peter) Zhang Yu Song Amanpreet Singh Saini Corey Cooke April 16, 2006 Department of Electrical and Computer Engineering Center...and RF frequency agility is the most challenging issue for spectrum sensing. The radio under development is an ultra-wideband software -defined radio...PC USB programming cable and accom- panying PC software as well as download test vectors to the waveform memory module, as shown in Figure 3.25,3I

  3. Software safety

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy

    1987-01-01

    Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary: special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful.

  4. Survey of Software Assurance Techniques for Highly Reliable Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2004-01-01

    This document provides a survey of software assurance techniques for highly reliable systems including a discussion of relevant safety standards for various industries in the United States and Europe, as well as examples of methods used during software development projects. It contains one section for each industry surveyed: Aerospace, Defense, Nuclear Power, Medical Devices and Transportation. Each section provides an overview of applicable standards and examples of a mission or software development project, software assurance techniques used and reliability achieved.

  5. The Empirical Investigation of Perspective-Based Reading

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Green, Scott; Laitenberger, Oliver; Shull, Forrest; Sorumgard, Sivert; Zelkowitz, Marvin V.

    1995-01-01

    We consider reading techniques a fundamental means of achieving high quality software. Due to lack of research in this area, we are experimenting with the application and comparison of various reading techniques. This paper deals with our experiences with Perspective Based Reading (PBR) a particular reading technique for requirement documents. The goal of PBR is to provide operation scenarios where members of a review team read a document from a particular perspective (eg., tester, developer, user). Our assumption is that the combination of different perspective provides better coverage of the document than the same number of readers using their usual technique. To test the efficacy of PBR, we conducted two runs of a controlled experiment in the environment of NASA GSFC Software Engineering Laboratory (SEL), using developers from the environment. The subjects read two types of documents, one generic in nature and the other from the NASA Domain, using two reading techniques, PBR and their usual technique. The results from these experiment as well as the experimental design, are presented and analyzed. When there is a statistically significant distinction, PBR performs better than the subjects' usual technique. However, PBR appears to be more effective on the generic documents than on the NASA documents.

  6. Rapid access to information resources in clinical biochemistry: medical applications of Personal Digital Assistants (PDA).

    PubMed

    Serdar, Muhittin A; Turan, Mustafa; Cihan, Murat

    2008-06-01

    Laboratory specialists currently need to access scientific-based information at anytime and anywhere. A considerable period of time and too much effort are required to access this information through existing accumulated data. Personal digital assistants (PDA) are supposed to provide an effective solution with commercial software for this problem. In this study, 11 commercial software products (UpToDate, ePocrates, Inforetrive, Pepid, eMedicine, FIRST Consult, and 5 laboratory e-books released by Skyscape and/or Isilo) were selected and the benefits of their use were evaluated by seven laboratory specialists. The assessment of the software was performed based on the number of the tests included, the software content of detailed information for each test-like process, method, interpretation of results, reference ranges, critical values, interferences, equations, pathophysiology, supplementary technical details such as sample collection principles, and additional information such as linked references, evidence-based data, test cost, etc. In terms of technique, the following items are considered: the amount of memory required to run the software, the graphical user interface, which is a user-friendly instrument, and the frequency of new and/or up-date releases. There is still no perfect program, as we have anticipated. Interpretation of laboratory results may require software with an integrated program. However, methodological data are mostly not included in the software evaluated. It seems that these shortcomings will be fixed in the near future, and PDAs and relevant medical applications will also become indispensable for all physicians including laboratory specialists in the field of training/education and in patient care.

  7. Fault-tolerant software - Experiment with the sift operating system. [Software Implemented Fault Tolerance computer

    NASA Technical Reports Server (NTRS)

    Brunelle, J. E.; Eckhardt, D. E., Jr.

    1985-01-01

    Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.

  8. Advanced program development management software system. Software description and user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The objectives of this project were to apply emerging techniques and tools from the computer science discipline of paperless management to the activities of the Space Transportation and Exploration Office (PT01) in Marshall Space Flight Center (MSFC) Program Development, thereby enhancing the productivity of the workforce, the quality of the data products, and the collection, dissemination, and storage of information. The approach used to accomplish the objectives emphasized the utilization of finished form (off-the-shelf) software products to the greatest extent possible without impacting the performance of the end product, to pursue developments when necessary in the rapid prototyping environment to provide a mechanism for frequent feedback from the users, and to provide a full range of user support functions during the development process to promote testing of the software.

  9. Capturing a failure of an ASIC in-situ, using infrared radiometry and image processing software

    NASA Technical Reports Server (NTRS)

    Ruiz, Ronald P.

    2003-01-01

    Failures in electronic devices can sometimes be tricky to locate-especially if they are buried inside radiation-shielded containers designed to work in outer space. Such was the case with a malfunctioning ASIC (Application Specific Integrated Circuit) that was drawing excessive power at a specific temperature during temperature cycle testing. To analyze the failure, infrared radiometry (thermography) was used in combination with image processing software to locate precisely where the power was being dissipated at the moment the failure took place. The IR imaging software was used to make the image of the target and background, appear as unity. As testing proceeded and the failure mode was reached, temperature changes revealed the precise location of the fault. The results gave the design engineers the information they needed to fix the problem. This paper describes the techniques and equipment used to accomplish this failure analysis.

  10. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains.

    PubMed

    Cejnar, Pavel; Kuckova, Stepanka; Prochazka, Ales; Karamonova, Ludmila; Svobodova, Barbora

    2018-06-15

    Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  12. Software Tool Issues

    NASA Astrophysics Data System (ADS)

    Hennell, Michael

    This chapter relies on experience with tool development gained over the last thirty years. It shows that there are a large number of techniques that contribute to any successful project, and that formality is always the key: a modern software test tool is based on a firm mathematical foundation. After a brief introduction, Section 2 recalls and extends the terminology of Chapter 1. Section 3 discusses the the design of different sorts of static and dynamic analysis tools. Nine important issues to be taken into consideration when evaluating such tools are presented in Section 4. Section 5 investigates the interplay between testing and proof. In Section 6, we call for developers to take their own medicine and verify their tools. Finally, we conclude in Section 7 with a summary of our main messages, emphasising the important role of testing.

  13. Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1999-01-01

    System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.

  14. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  15. Testing technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

  16. Applying the metro map to software development management

    NASA Astrophysics Data System (ADS)

    Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción

    2010-01-01

    This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.

  17. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    NASA Technical Reports Server (NTRS)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  18. Open core control software for surgical robots.

    PubMed

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.

  19. Do High Dynamic Range threatments improve the results of Structure from Motion approaches in Geomorphology?

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando

    2015-04-01

    In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).

  20. [The planning of resource support of secondary medical care in hospital].

    PubMed

    Kungurov, N V; Zil'berberg, N V

    2010-01-01

    The Ural Institute of dermatovenerology and immunopathology developed and implemented the software concerning the personalized total recording of medical services and pharmaceuticals. The Institute also presents such software as listing of medical services, software module of calculation of financial costs of implementing full standards of secondary medical care in case of chronic dermatopathy, reference book of standards of direct specific costs on laboratory and physiotherapy services, reference book of pharmaceuticals, testing systems and consumables. The unified information system of management recording is a good technique to substantiate the costs of the implementation of standards of medical care, including high-tech care with taking into account the results of total calculation of provided medical services.

  1. Use of symbolic computation in robotics education

    NASA Technical Reports Server (NTRS)

    Vira, Naren; Tunstel, Edward

    1992-01-01

    An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.

  2. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  3. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  4. A Survey of UML Based Regression Testing

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad; Nadeem, Aamer

    Regression testing is the process of ensuring software quality by analyzing whether changed parts behave as intended, and unchanged parts are not affected by the modifications. Since it is a costly process, a lot of techniques are proposed in the research literature that suggest testers how to build regression test suite from existing test suite with minimum cost. In this paper, we discuss the advantages and drawbacks of using UML diagrams for regression testing and analyze that UML model helps in identifying changes for regression test selection effectively. We survey the existing UML based regression testing techniques and provide an analysis matrix to give a quick insight into prominent features of the literature work. We discuss the open research issues like managing and reducing the size of regression test suite, prioritization of the test cases that would be helpful during strict schedule and resources that remain to be addressed for UML based regression testing.

  5. Error analysis and system optimization of non-null aspheric testing system

    NASA Astrophysics Data System (ADS)

    Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo

    2010-10-01

    A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.

  6. Design and Testing of Space Telemetry SCA Waveform

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  7. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.

  8. Software-Enabled Project Management Techniques and Their Relationship to the Triple Constraints

    ERIC Educational Resources Information Center

    Elleh, Festus U.

    2013-01-01

    This study investigated the relationship between software-enabled project management techniques and the triple constraints (time, cost, and scope). There was the dearth of academic literature that focused on the relationship between software-enabled project management techniques and the triple constraints (time, cost, and scope). Based on the gap…

  9. Adaptive Educational Software by Applying Reinforcement Learning

    ERIC Educational Resources Information Center

    Bennane, Abdellah

    2013-01-01

    The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt…

  10. A general software reliability process simulation technique

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1991-01-01

    The structure and rationale of the generalized software reliability process, together with the design and implementation of a computer program that simulates this process are described. Given assumed parameters of a particular project, the users of this program are able to generate simulated status timelines of work products, numbers of injected anomalies, and the progress of testing, fault isolation, repair, validation, and retest. Such timelines are useful in comparison with actual timeline data, for validating the project input parameters, and for providing data for researchers in reliability prediction modeling.

  11. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  12. Clinical software development for the Web: lessons learned from the BOADICEA project

    PubMed Central

    2012-01-01

    Background In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. Results We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web Application version 1 was released for general use in November 2007. By May 2010, we had > 1200 registered users based in the UK, USA, Canada, South America, Europe, Africa, Middle East, SE Asia, Australia and New Zealand. Conclusions We found that an evolutionary software process was effective when we developed the BOADICEA Web Application. The key clinical software development issues identified during the BOADICEA Web Application project were: software reliability, Web security, clinical data protection and user feedback. PMID:22490389

  13. Clinical software development for the Web: lessons learned from the BOADICEA project.

    PubMed

    Cunningham, Alex P; Antoniou, Antonis C; Easton, Douglas F

    2012-04-10

    In the past 20 years, society has witnessed the following landmark scientific advances: (i) the sequencing of the human genome, (ii) the distribution of software by the open source movement, and (iii) the invention of the World Wide Web. Together, these advances have provided a new impetus for clinical software development: developers now translate the products of human genomic research into clinical software tools; they use open-source programs to build them; and they use the Web to deliver them. Whilst this open-source component-based approach has undoubtedly made clinical software development easier, clinical software projects are still hampered by problems that traditionally accompany the software process. This study describes the development of the BOADICEA Web Application, a computer program used by clinical geneticists to assess risks to patients with a family history of breast and ovarian cancer. The key challenge of the BOADICEA Web Application project was to deliver a program that was safe, secure and easy for healthcare professionals to use. We focus on the software process, problems faced, and lessons learned. Our key objectives are: (i) to highlight key clinical software development issues; (ii) to demonstrate how software engineering tools and techniques can facilitate clinical software development for the benefit of individuals who lack software engineering expertise; and (iii) to provide a clinical software development case report that can be used as a basis for discussion at the start of future projects. We developed the BOADICEA Web Application using an evolutionary software process. Our approach to Web implementation was conservative and we used conventional software engineering tools and techniques. The principal software development activities were: requirements, design, implementation, testing, documentation and maintenance. The BOADICEA Web Application has now been widely adopted by clinical geneticists and researchers. BOADICEA Web Application version 1 was released for general use in November 2007. By May 2010, we had > 1200 registered users based in the UK, USA, Canada, South America, Europe, Africa, Middle East, SE Asia, Australia and New Zealand. We found that an evolutionary software process was effective when we developed the BOADICEA Web Application. The key clinical software development issues identified during the BOADICEA Web Application project were: software reliability, Web security, clinical data protection and user feedback.

  14. The Promise of Open Educational Resources

    ERIC Educational Resources Information Center

    Smith, Marshall S.; Casserly, Catherine M.

    2006-01-01

    Open educational resources (OER) include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to either support access to knowledge, or have an impact on teaching, learning, and research. At the heart of the OER movement is the simple and powerful idea that the…

  15. Evaluation of a Multicolor, Single-Tube Technique To Enumerate Lymphocyte Subpopulations▿

    PubMed Central

    Colombo, F.; Cattaneo, A.; Lopa, R.; Portararo, P.; Rebulla, P.; Porretti, L.

    2008-01-01

    To evaluate the fully automated FACSCanto software, we compared lymphocyte subpopulation counts obtained using three-color FACSCalibur-CELLQuest and six-color FACSCanto-FACSCanto software techniques. High correlations were observed between data obtained with these techniques. Our study indicated that FACSCanto clinical software is accurate and sensitive in single-platform lymphocyte immunophenotyping. PMID:18448621

  16. Test Driven Development of a Parameterized Ice Sheet Component

    NASA Astrophysics Data System (ADS)

    Clune, T.

    2011-12-01

    Test driven development (TDD) is a software development methodology that offers many advantages over traditional approaches including reduced development and maintenance costs, improved reliability, and superior design quality. Although TDD is widely accepted in many software communities, the suitability to scientific software is largely undemonstrated and warrants a degree of skepticism. Indeed, numerical algorithms pose several challenges to unit testing in general, and TDD in particular. Among these challenges are the need to have simple, non-redundant closed-form expressions to compare against the results obtained from the implementation as well as realistic error estimates. The necessity for serial and parallel performance raises additional concerns for many scientific applicaitons. In previous work I demonstrated that TDD performed well for the development of a relatively simple numerical model that simulates the growth of snowflakes, but the results were anecdotal and of limited relevance to far more complex software components typical of climate models. This investigation has now been extended by successfully applying TDD to the implementation of a substantial portion of a new parameterized ice sheet component within a full climate model. After a brief introduction to TDD, I will present techniques that address some of the obstacles encountered with numerical algorithms. I will conclude with some quantitative and qualitative comparisons against climate components developed in a more traditional manner.

  17. Translating expert system rules into Ada code with validation and verification

    NASA Technical Reports Server (NTRS)

    Becker, Lee; Duckworth, R. James; Green, Peter; Michalson, Bill; Gosselin, Dave; Nainani, Krishan; Pease, Adam

    1991-01-01

    The purpose of this ongoing research and development program is to develop software tools which enable the rapid development, upgrading, and maintenance of embedded real-time artificial intelligence systems. The goals of this phase of the research were to investigate the feasibility of developing software tools which automatically translate expert system rules into Ada code and develop methods for performing validation and verification testing of the resultant expert system. A prototype system was demonstrated which automatically translated rules from an Air Force expert system was demonstrated which detected errors in the execution of the resultant system. The method and prototype tools for converting AI representations into Ada code by converting the rules into Ada code modules and then linking them with an Activation Framework based run-time environment to form an executable load module are discussed. This method is based upon the use of Evidence Flow Graphs which are a data flow representation for intelligent systems. The development of prototype test generation and evaluation software which was used to test the resultant code is discussed. This testing was performed automatically using Monte-Carlo techniques based upon a constraint based description of the required performance for the system.

  18. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  19. A comparison of profilometer and AutoCAD software techniques in evaluation of implant angulation in vitro.

    PubMed

    Assunção, Wirley Gonçalves; Gomes, Erica Alves; Tabata, Lucas Fernando; Gennari-Filho, Humberto

    2008-01-01

    The aim of this study was to compare 2 different methods of assessment of implants at different inclinations (90 degrees and 65 degrees)--with a profilometer and AutoCAD software. Impressions (n = 5) of a metal matrix containing 2 implants, 1 at 90 degrees to the surface and 1 at 65 degrees to the surface, were obtained with square impression copings joined together with dental floss splinting covered with autopolymerizing acrylic resin, an open custom tray, and vinyl polysiloxane impression material. Measurement of the angles (in degrees) of the implant analogs were assessed by the same blinded operator with a profilometer and through analysis of digitized images by AutoCAD software. For each implant analog, 3 readings were performed with each method. The results were subjected to a nonparametric Kruskal-Wallis test, with P < or = .05 considered significant. For implants perpendicular to the horizontal surface of the specimen (90 degrees), there were no significant differences between the mean measurements obtained with the profilometer (90.04 degrees) and AutoCAD (89.95 degrees; P = .9142). In the analyses of the angled implants at 65 degrees in relation to the horizontal surface of the specimen, significant differences were observed (P = .0472) between the mean readings with the profilometer (65.73 degrees) and AutoCAD (66.25 degrees). The degrees of accuracy of implant angulation recording vary among the techniques available and may vary depending on the angle of the implant. Further investigation is needed to determine the best test conditions and the best measuring technique for determination of the angle of the implant in vitro.

  20. Investigation of cloud properties and atmospheric stability with MODIS

    NASA Technical Reports Server (NTRS)

    Menzel, P.; Ackerman, S.; Moeller, C.; Gumley, L.; Strabala, K.; Frey, R.; Prins, E.; LaPorte, D.; Lynch, M.

    1996-01-01

    The last half year was spent in preparing Version 1 software for delivery, and culminated in transfer of the Level 2 cloud mask production software to the SDST in April. A simulated MODIS test data set with good radiometric integrity was produced using MAS data for a clear ocean scene. ER-2 flight support and MAS data processing were provided by CIMSS personnel during the Apr-May 96 SUCCESS field campaign in Salina, Kansas. Improvements have been made in the absolute calibration of the MAS, including better characterization of the spectral response for all 50 channels. Plans were laid out for validating and testing the MODIS calibration techniques; these plans were further refined during a UW calibration meeting with MCST.

  1. Infusing Reliability Techniques into Software Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  2. Virtual Diagnostics Interface: Real Time Comparison of Experimental Data and CFD Predictions for a NASA Ares I-Like Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2007-01-01

    Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.

  3. Infusing Software Assurance Research Techniques into Use

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; DiVito, Ben; Feather, Martin S.; Hinchey, Michael; Markosian, Lawrence; Trevino, Luis C.

    2006-01-01

    Research in the software engineering community continues to lead to new development techniques that encompass processes, methods and tools. However, a number of obstacles impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may benefit them, and cannot afford to risk time and effort evaluating and trying one out while there remains uncertainty about whether it will work for them. Researchers cannot readily identify the practitioners whose problems would be amenable to their techniques, and, lacking feedback from practical applications, are hard-pressed to gauge the where and in what ways to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team established by NASA s Software Engineering Initiative to overcome these obstacles. .

  4. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  5. FY 2002 Report on Software Visualization Techniques for IV and V

    NASA Technical Reports Server (NTRS)

    Fotta, Michael E.

    2002-01-01

    One of the major challenges software engineers often face in performing IV&V is developing an understanding of a system created by a development team they have not been part of. As budgets shrink and software increases in complexity, this challenge will become even greater as these software engineers face increased time and resource constraints. This research will determine which current aspects of providing this understanding (e.g., code inspections, use of control graphs, use of adjacency matrices, requirements traceability) are critical to the performing IV&V and amenable to visualization techniques. We will then develop state-of-the-art software visualization techniques to facilitate the use of these aspects to understand software and perform IV&V.

  6. A CMMI-based approach for medical software project life cycle study.

    PubMed

    Chen, Jui-Jen; Su, Wu-Chen; Wang, Pei-Wen; Yen, Hung-Chi

    2013-01-01

    In terms of medical techniques, Taiwan has gained international recognition in recent years. However, the medical information system industry in Taiwan is still at a developing stage compared with the software industries in other nations. In addition, systematic development processes are indispensable elements of software development. They can help developers increase their productivity and efficiency and also avoid unnecessary risks arising during the development process. Thus, this paper presents an application of Light-Weight Capability Maturity Model Integration (LW-CMMI) to Chang Gung Medical Research Project (CMRP) in the Nuclear medicine field. This application was intended to integrate user requirements, system design and testing of software development processes into three layers (Domain, Concept and Instance) model. Then, expressing in structural System Modeling Language (SysML) diagrams and converts part of the manual effort necessary for project management maintenance into computational effort, for example: (semi-) automatic delivery of traceability management. In this application, it supports establishing artifacts of "requirement specification document", "project execution plan document", "system design document" and "system test document", and can deliver a prototype of lightweight project management tool on the Nuclear Medicine software project. The results of this application can be a reference for other medical institutions in developing medical information systems and support of project management to achieve the aim of patient safety.

  7. Programmable, automated transistor test system

    NASA Technical Reports Server (NTRS)

    Truong, L. V.; Sundburg, G. R.

    1986-01-01

    A programmable, automated transistor test system was built to supply experimental data on new and advanced power semiconductors. The data will be used for analytical models and by engineers in designing space and aircraft electric power systems. A pulsed power technique was used at low duty cycles in a nondestructive test to examine the dynamic switching characteristic curves of power transistors in the 500 to 1000 V, 10 to 100 A range. Data collection, manipulation, storage, and output are operator interactive but are guided and controlled by the system software.

  8. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  9. A Secure and Robust Approach to Software Tamper Resistance

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep; Hiser, Jason D.; Davidson, Jack W.

    Software tamper-resistance mechanisms have increasingly assumed significance as a technique to prevent unintended uses of software. Closely related to anti-tampering techniques are obfuscation techniques, which make code difficult to understand or analyze and therefore, challenging to modify meaningfully. This paper describes a secure and robust approach to software tamper resistance and obfuscation using process-level virtualization. The proposed techniques involve novel uses of software check summing guards and encryption to protect an application. In particular, a virtual machine (VM) is assembled with the application at software build time such that the application cannot run without the VM. The VM provides just-in-time decryption of the program and dynamism for the application's code. The application's code is used to protect the VM to ensure a level of circular protection. Finally, to prevent the attacker from obtaining an analyzable snapshot of the code, the VM periodically discards all decrypted code. We describe a prototype implementation of these techniques and evaluate the run-time performance of applications using our system. We also discuss how our system provides stronger protection against tampering attacks than previously described tamper-resistance approaches.

  10. A Flexible and Non-instrusive Approach for Computing Complex Structural Coverage Metrics

    NASA Technical Reports Server (NTRS)

    Whalen, Michael W.; Person, Suzette J.; Rungta, Neha; Staats, Matt; Grijincu, Daniela

    2015-01-01

    Software analysis tools and techniques often leverage structural code coverage information to reason about the dynamic behavior of software. Existing techniques instrument the code with the required structural obligations and then monitor the execution of the compiled code to report coverage. Instrumentation based approaches often incur considerable runtime overhead for complex structural coverage metrics such as Modified Condition/Decision (MC/DC). Code instrumentation, in general, has to be approached with great care to ensure it does not modify the behavior of the original code. Furthermore, instrumented code cannot be used in conjunction with other analyses that reason about the structure and semantics of the code under test. In this work, we introduce a non-intrusive preprocessing approach for computing structural coverage information. It uses a static partial evaluation of the decisions in the source code and a source-to-bytecode mapping to generate the information necessary to efficiently track structural coverage metrics during execution. Our technique is flexible; the results of the preprocessing can be used by a variety of coverage-driven software analysis tasks, including automated analyses that are not possible for instrumented code. Experimental results in the context of symbolic execution show the efficiency and flexibility of our nonintrusive approach for computing code coverage information

  11. Statistical Analysis of an Infrared Thermography Inspection of Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2011-01-01

    Each piece of flight hardware being used on the shuttle must be analyzed and pass NASA requirements before the shuttle is ready for launch. One tool used to detect cracks that lie within flight hardware is Infrared Flash Thermography. This is a non-destructive testing technique which uses an intense flash of light to heat up the surface of a material after which an Infrared camera is used to record the cooling of the material. Since cracks within the material obstruct the natural heat flow through the material, they are visible when viewing the data from the Infrared camera. We used Ecotherm, a software program, to collect data pertaining to the delaminations and analyzed the data using Ecotherm and University of Dayton Log Logistic Probability of Detection (POD) Software. The goal was to reproduce the statistical analysis produced by the University of Dayton software, by using scatter plots, log transforms, and residuals to test the assumption of normality for the residuals.

  12. Adaptation of a software development methodology to the implementation of a large-scale data acquisition and control system. [for Deep Space Network

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Westmoreland, P. T.

    1983-01-01

    A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.

  13. Toward an integrated software platform for systems pharmacology

    PubMed Central

    Ghosh, Samik; Matsuoka, Yukiko; Asai, Yoshiyuki; Hsin, Kun-Yi; Kitano, Hiroaki

    2013-01-01

    Understanding complex biological systems requires the extensive support of computational tools. This is particularly true for systems pharmacology, which aims to understand the action of drugs and their interactions in a systems context. Computational models play an important role as they can be viewed as an explicit representation of biological hypotheses to be tested. A series of software and data resources are used for model development, verification and exploration of the possible behaviors of biological systems using the model that may not be possible or not cost effective by experiments. Software platforms play a dominant role in creativity and productivity support and have transformed many industries, techniques that can be applied to biology as well. Establishing an integrated software platform will be the next important step in the field. © 2013 The Authors. Biopharmaceutics & Drug Disposition published by John Wiley & Sons, Ltd. PMID:24150748

  14. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.

  15. A Novel Rules Based Approach for Estimating Software Birthmark

    PubMed Central

    Binti Alias, Norma; Anwar, Sajid

    2015-01-01

    Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark. PMID:25945363

  16. Techniques for development of safety-related software for surgical robots.

    PubMed

    Varley, P

    1999-12-01

    Regulatory bodies require evidence that software controlling potentially hazardous devices is developed to good manufacturing practices. Effective techniques used in other industries assume long timescales and high staffing levels and can be unsuitable for use without adaptation in developing electronic healthcare devices. This paper discusses a set of techniques used in practice to develop software for a particular innovative medical product, an endoscopic camera manipulator. These techniques include identification of potential hazards and tracing their mitigating factors through the project lifecycle.

  17. MNE Scan: Software for real-time processing of electrophysiological data.

    PubMed

    Esch, Lorenz; Sun, Limin; Klüber, Viktor; Lew, Seok; Baumgarten, Daniel; Grant, P Ellen; Okada, Yoshio; Haueisen, Jens; Hämäläinen, Matti S; Dinh, Christoph

    2018-06-01

    Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive techniques to study the electrophysiological activity of the human brain. Thus, they are well suited for real-time monitoring and analysis of neuronal activity. Real-time MEG/EEG data processing allows adjustment of the stimuli to the subject's responses for optimizing the acquired information especially by providing dynamically changing displays to enable neurofeedback. We introduce MNE Scan, an acquisition and real-time analysis software based on the multipurpose software library MNE-CPP. MNE Scan allows the development and application of acquisition and novel real-time processing methods in both research and clinical studies. The MNE Scan development follows a strict software engineering process to enable approvals required for clinical software. We tested the performance of MNE Scan in several device-independent use cases, including, a clinical epilepsy study, real-time source estimation, and Brain Computer Interface (BCI) application. Compared to existing tools we propose a modular software considering clinical software requirements expected by certification authorities. At the same time the software is extendable and freely accessible. We conclude that MNE Scan is the first step in creating a device-independent open-source software to facilitate the transition from basic neuroscience research to both applied sciences and clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging.

    PubMed

    Bonekamp, S; Ghosh, P; Crawford, S; Solga, S F; Horska, A; Brancati, F L; Diehl, A M; Smith, S; Clark, J M

    2008-01-01

    To examine five available software packages for the assessment of abdominal adipose tissue with magnetic resonance imaging, compare their features and assess the reliability of measurement results. Feature evaluation and test-retest reliability of softwares (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision) used in manual, semi-automated or automated segmentation of abdominal adipose tissue. A random sample of 15 obese adults with type 2 diabetes. Axial T1-weighted spin echo images centered at vertebral bodies of L2-L3 were acquired at 1.5 T. Five software packages were evaluated (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision), comparing manual, semi-automated and automated segmentation approaches. Images were segmented into cross-sectional area (CSA), and the areas of visceral (VAT) and subcutaneous adipose tissue (SAT). Ease of learning and use and the design of the graphical user interface (GUI) were rated. Intra-observer accuracy and agreement between the software packages were calculated using intra-class correlation. Intra-class correlation coefficient was used to obtain test-retest reliability. Three of the five evaluated programs offered a semi-automated technique to segment the images based on histogram values or a user-defined threshold. One software package allowed manual delineation only. One fully automated program demonstrated the drawbacks of uncritical automated processing. The semi-automated approaches reduced variability and measurement error, and improved reproducibility. There was no significant difference in the intra-observer agreement in SAT and CSA. The VAT measurements showed significantly lower test-retest reliability. There were some differences between the software packages in qualitative aspects, such as user friendliness. Four out of five packages provided essentially the same results with respect to the inter- and intra-rater reproducibility. Our results using SliceOmatic, Analyze or NIHImage were comparable and could be used interchangeably. Newly developed fully automated approaches should be compared to one of the examined software packages.

  19. Application of an integrated multi-criteria decision making AHP-TOPSIS methodology for ETL software selection.

    PubMed

    Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik

    2016-01-01

    Actually, a set of ETL software (Extract, Transform and Load) is available to constitute a major investment market. Each ETL uses its own techniques for extracting, transforming and loading data into data warehouse, which makes the task of evaluating ETL software very difficult. However, choosing the right software of ETL is critical to the success or failure of any Business Intelligence project. As there are many impacting factors in the selection of ETL software, the same process is considered as a complex multi-criteria decision making (MCDM) problem. In this study, an application of decision-making methodology that employs the two well-known MCDM techniques, namely Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods is designed. In this respect, the aim of using AHP is to analyze the structure of the ETL software selection problem and obtain weights of the selected criteria. Then, TOPSIS technique is used to calculate the alternatives' ratings. An example is given to illustrate the proposed methodology. Finally, a software prototype for demonstrating both methods is implemented.

  20. Density-based empirical likelihood procedures for testing symmetry of data distributions and K-sample comparisons.

    PubMed

    Vexler, Albert; Tanajian, Hovig; Hutson, Alan D

    In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.

  1. Multi-frame image processing with panning cameras and moving subjects

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Humphrey, John; Curt, Petersen; Kelmelis, Eric

    2014-06-01

    Imaging scenarios commonly involve erratic, unpredictable camera behavior or subjects that are prone to movement, complicating multi-frame image processing techniques. To address these issues, we developed three techniques that can be applied to multi-frame image processing algorithms in order to mitigate the adverse effects observed when cameras are panning or subjects within the scene are moving. We provide a detailed overview of the techniques and discuss the applicability of each to various movement types. In addition to this, we evaluated algorithm efficacy with demonstrated benefits using field test video, which has been processed using our commercially available surveillance product. Our results show that algorithm efficacy is significantly improved in common scenarios, expanding our software's operational scope. Our methods introduce little computational burden, enabling their use in real-time and low-power solutions, and are appropriate for long observation periods. Our test cases focus on imaging through turbulence, a common use case for multi-frame techniques. We present results of a field study designed to test the efficacy of these techniques under expanded use cases.

  2. An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.

    PubMed

    Saccomani, Maria Pia

    2011-08-01

    Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.

  3. Study on a novel laser target detection system based on software radio technique

    NASA Astrophysics Data System (ADS)

    Song, Song; Deng, Jia-hao; Wang, Xue-tian; Gao, Zhen; Sun, Ji; Sun, Zhi-hui

    2008-12-01

    This paper presents that software radio technique is applied to laser target detection system with the pseudo-random code modulation. Based on the theory of software radio, the basic framework of the system, hardware platform, and the implementation of the software system are detailed. Also, the block diagram of the system, DSP circuit, block diagram of the pseudo-random code generator, and soft flow diagram of signal processing are designed. Experimental results have shown that the application of software radio technique provides a novel method to realize the modularization, miniaturization and intelligence of the laser target detection system, and the upgrade and improvement of the system will become simpler, more convenient, and cheaper.

  4. Software Health Management: A Short Review of Challenges and Existing Techniques

    NASA Technical Reports Server (NTRS)

    Pipatsrisawat, Knot; Darwiche, Adnan; Mengshoel, Ole J.; Schumann, Johann

    2009-01-01

    Modern spacecraft (as well as most other complex mechanisms like aircraft, automobiles, and chemical plants) rely more and more on software, to a point where software failures have caused severe accidents and loss of missions. Software failures during a manned mission can cause loss of life, so there are severe requirements to make the software as safe and reliable as possible. Typically, verification and validation (V&V) has the task of making sure that all software errors are found before the software is deployed and that it always conforms to the requirements. Experience, however, shows that this gold standard of error-free software cannot be reached in practice. Even if the software alone is free of glitches, its interoperation with the hardware (e.g., with sensors or actuators) can cause problems. Unexpected operational conditions or changes in the environment may ultimately cause a software system to fail. Is there a way to surmount this problem? In most modern aircraft and many automobiles, hardware such as central electrical, mechanical, and hydraulic components are monitored by IVHM (Integrated Vehicle Health Management) systems. These systems can recognize, isolate, and identify faults and failures, both those that already occurred as well as imminent ones. With the help of diagnostics and prognostics, appropriate mitigation strategies can be selected (replacement or repair, switch to redundant systems, etc.). In this short paper, we discuss some challenges and promising techniques for software health management (SWHM). In particular, we identify unique challenges for preventing software failure in systems which involve both software and hardware components. We then present our classifications of techniques related to SWHM. These classifications are performed based on dimensions of interest to both developers and users of the techniques, and hopefully provide a map for dealing with software faults and failures.

  5. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  6. Use of software tools in the development of real time software systems

    NASA Technical Reports Server (NTRS)

    Garvey, R. C.

    1981-01-01

    The transformation of a preexisting software system into a larger and more versatile system with different mission requirements is discussed. The history of this transformation is used to illustrate the use of structured real time programming techniques and tools to produce maintainable and somewhat transportable systems. The predecessor system is a single ground diagnostic system; its purpose is to exercise a computer controlled hardware set prior to its deployment in its functional environment, as well as test the equipment set by supplying certain well known stimulas. The successor system (FTE) is required to perform certain testing and control functions while this hardware set is in its functional environment. Both systems must deal with heavy user input/output loads and a new I/O requirement is included in the design of the FTF system. Human factors are enhanced by adding an improved console interface and special function keyboard handler. The additional features require the inclusion of much new software to the original set from which FTF was developed. As a result, it is necessary to split the system into a duel programming configuration with high rates of interground communications. A generalized information routing mechanism is used to support this configuration.

  7. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  8. ACTS: from ATLAS software towards a common track reconstruction software

    NASA Astrophysics Data System (ADS)

    Gumpert, C.; Salzburger, A.; Kiehn, M.; Hrdinka, J.; Calace, N.; ATLAS Collaboration

    2017-10-01

    Reconstruction of charged particles’ trajectories is a crucial task for most particle physics experiments. The high instantaneous luminosity achieved at the LHC leads to a high number of proton-proton collisions per bunch crossing, which has put the track reconstruction software of the LHC experiments through a thorough test. Preserving track reconstruction performance under increasingly difficult experimental conditions, while keeping the usage of computational resources at a reasonable level, is an inherent problem for many HEP experiments. Exploiting concurrent algorithms and using multivariate techniques for track identification are the primary strategies to achieve that goal. Starting from current ATLAS software, the ACTS project aims to encapsulate track reconstruction software into a generic, framework- and experiment-independent software package. It provides a set of high-level algorithms and data structures for performing track reconstruction tasks as well as fast track simulation. The software is developed with special emphasis on thread-safety to support parallel execution of the code and data structures are optimised for vectorisation to speed up linear algebra operations. The implementation is agnostic to the details of the detection technologies and magnetic field configuration which makes it applicable to many different experiments.

  9. Using multi-attribute decision-making approaches in the selection of a hospital management system.

    PubMed

    Arasteh, Mohammad Ali; Shamshirband, Shahaboddin; Yee, Por Lip

    2018-01-01

    The most appropriate organizational software is always a real challenge for managers, especially, the IT directors. The illustration of the term "enterprise software selection", is to purchase, create, or order a software that; first, is best adapted to require of the organization; and second, has suitable price and technical support. Specifying selection criteria and ranking them, is the primary prerequisite for this action. This article provides a method to evaluate, rank, and compare the available enterprise software for choosing the apt one. The prior mentioned method is constituted of three-stage processes. First, the method identifies the organizational requires and assesses them. Second, it selects the best method throughout three possibilities; indoor-production, buying software, and ordering special software for the native use. Third, the method evaluates, compares and ranks the alternative software. The third process uses different methods of multi attribute decision making (MADM), and compares the consequent results. Based on different characteristics of the problem; several methods had been tested, namely, Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Elimination and Choice Expressing Reality (ELECTURE), and easy weight method. After all, we propose the most practical method for same problems.

  10. Open core control software for surgical robots

    PubMed Central

    Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B.; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-01-01

    Object In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge “intelligent surgical robot” will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are “home-made” in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. Materials and methods In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a “force guide” for supporting operators to perform precise manipulation by using a master–slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. Results The Open Core Control software was implemented on a surgical master–slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a “force guide” on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. Conclusion In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement “General Principles of Software Validation” or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field. PMID:20033506

  11. The NASA Software Research Infusion Initiative: Successful Technology Transfer for Software Assurance

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Pressburger, Thomas; Markosian, Lawrence; Feather, Martin S.

    2006-01-01

    New processes, methods and tools are constantly appearing in the field of software engineering. Many of these augur great potential in improving software development processes, resulting in higher quality software with greater levels of assurance. However, there are a number of obstacles that impede their infusion into software development practices. These are the recurring obstacles common to many forms of research. Practitioners cannot readily identify the emerging techniques that may most benefit them, and cannot afford to risk time and effort in evaluating and experimenting with them while there is still uncertainty about whether they will have payoff in this particular context. Similarly, researchers cannot readily identify those practitioners whose problems would be amenable to their techniques and lack the feedback from practical applications necessary to help them to evolve their techniques to make them more likely to be successful. This paper describes an ongoing effort conducted by a software engineering research infusion team, and the NASA Research Infusion Initiative, established by NASA s Software Engineering Initiative, to overcome these obstacles.

  12. Application of newly developed Fluoro-QC software for image quality evaluation in cardiac X-ray systems.

    PubMed

    Oliveira, M; Lopez, G; Geambastiani, P; Ubeda, C

    2018-05-01

    A quality assurance (QA) program is a valuable tool for the continuous production of optimal quality images. The aim of this paper is to assess a newly developed automatic computer software for image quality (IR) evaluation in fluoroscopy X-ray systems. Test object images were acquired using one fluoroscopy system, Siemens Axiom Artis model (Siemens AG, Medical Solutions Erlangen, Germany). The software was developed as an ImageJ plugin. Two image quality parameters were assessed: high-contrast spatial resolution (HCSR) and signal-to-noise ratio (SNR). The time between manual and automatic image quality assessment procedures were compared. The paired t-test was used to assess the data. p Values of less than 0.05 were considered significant. The Fluoro-QC software generated faster IQ evaluation results (mean = 0.31 ± 0.08 min) than manual procedure (mean = 4.68 ± 0.09 min). The mean difference between techniques was 4.36 min. Discrepancies were identified in the region of interest (ROI) areas drawn manually with evidence of user dependence. The new software presented the results of two tests (HCSR = 3.06, SNR = 5.17) and also collected information from the DICOM header. Significant differences were not identified between manual and automatic measures of SNR (p value = 0.22) and HCRS (p value = 0.46). The Fluoro-QC software is a feasible, fast and free to use method for evaluating imaging quality parameters on fluoroscopy systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  13. NASA/MSFC ground experiment for large space structure control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Seltzer, S. M.; Tollison, D. K.

    1984-01-01

    Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that LSS test article has the characteristics common to all LSS.

  14. Automatic Nanodesign Using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash (Technical Monitor)

    1998-01-01

    Many problems associated with the development of nanotechnology require custom designed molecules. We use genetic graph software, a new development, to automatically evolve molecules of interest when only the requirements are known. Genetic graph software designs molecules, and potentially nanoelectronic circuits, given a fitness function that determines which of two molecules is better. A set of molecules, the first generation, is generated at random then tested with the fitness function, Subsequent generations are created by randomly choosing two parent molecules with a bias towards high scoring molecules, tearing each molecules in two at random, and mating parts from the mother and father to create two children. This procedure is repeated until a satisfactory molecule is found. An atom pair similarity test is currently used as the fitness function to evolve molecules similar to existing pharmaceuticals.

  15. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    NASA Astrophysics Data System (ADS)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  16. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  17. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  18. Periorbital Biometric Measurements using ImageJ Software: Standardisation of Technique and Assessment Of Intra- and Interobserver Variability

    PubMed Central

    Rajyalakshmi, R.; Prakash, Winston D.; Ali, Mohammad Javed; Naik, Milind N.

    2017-01-01

    Purpose: To assess the reliability and repeatability of periorbital biometric measurements using ImageJ software and to assess if the horizontal visible iris diameter (HVID) serves as a reliable scale for facial measurements. Methods: This study was a prospective, single-blind, comparative study. Two clinicians performed 12 periorbital measurements on 100 standardised face photographs. Each individual’s HVID was determined by Orbscan IIz and used as a scale for measurements using ImageJ software. All measurements were repeated using the ‘average’ HVID of the study population as a measurement scale. Intraclass correlation coefficient (ICC) and Pearson product-moment coefficient were used as statistical tests to analyse the data. Results: The range of ICC for intra- and interobserver variability was 0.79–0.99 and 0.86–0.99, respectively. Test-retest reliability ranged from 0.66–1.0 to 0.77–0.98, respectively. When average HVID of the study population was used as scale, ICC ranged from 0.83 to 0.99, and the test-retest reliability ranged from 0.83 to 0.96 and the measurements correlated well with recordings done with individual Orbscan HVID measurements. Conclusion: Periorbital biometric measurements using ImageJ software are reproducible and repeatable. Average HVID of the population as measured by Orbscan is a reliable scale for facial measurements. PMID:29403183

  19. Adaptive wall research with two- and three-dimensional models in low speed and transonic tunnels

    NASA Technical Reports Server (NTRS)

    Lewis, M. C.; Neal, G.; Goodyer, M. J.

    1988-01-01

    This paper summarises recent research at the University of Southampton into adaptive wall technology and outlines the direction of current efforts. The work is aimed at developing techniques for use in test sections where the top and bottom walls may be adjusted in single curvature. Wall streamlining eliminates, as far as experimentally possible, the top and bottom wall interference in low speed and transonic aerofoil testing. A streamlining technique has been developed for low speeds which allows the testing of swept wing panels in low interference environments. At higher speeds, a comparison of several two-dimensional transonic streamlining algorithms has been made and a technique for streamlining with a choked test section has also been developed. Three-dimensional work has mainly concentrated on tests of sidewall mounted half-wings and the development of the software packages required to assess interference and to adjust the flexible walls. It has been demonstrated that two-dimensional wall adaptation can significantly modify the level of wall interference around relatively large three-dimensional models. The residual interferences are small and are probably amenable to standard post-test correction methods. Tests on a calibrated wing-body model are planned in the near future to further validate the proposed streamlining technique.

  20. Design Features of Pedagogically-Sound Software in Mathematics.

    ERIC Educational Resources Information Center

    Haase, Howard; And Others

    Weaknesses in educational software currently available in the domain of mathematics are discussed. A technique that was used for the design and production of mathematics software aimed at improving problem-solving skills which combines sound pedagogy and innovative programming is presented. To illustrate the design portion of this technique, a…

  1. DEIVA: a web application for interactive visual analysis of differential gene expression profiles.

    PubMed

    Harshbarger, Jayson; Kratz, Anton; Carninci, Piero

    2017-01-07

    Differential gene expression (DGE) analysis is a technique to identify statistically significant differences in RNA abundance for genes or arbitrary features between different biological states. The result of a DGE test is typically further analyzed using statistical software, spreadsheets or custom ad hoc algorithms. We identified a need for a web-based system to share DGE statistical test results, and locate and identify genes in DGE statistical test results with a very low barrier of entry. We have developed DEIVA, a free and open source, browser-based single page application (SPA) with a strong emphasis on being user friendly that enables locating and identifying single or multiple genes in an immediate, interactive, and intuitive manner. By design, DEIVA scales with very large numbers of users and datasets. Compared to existing software, DEIVA offers a unique combination of design decisions that enable inspection and analysis of DGE statistical test results with an emphasis on ease of use.

  2. Development and verification testing of automation and robotics for assembly of space structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1993-01-01

    A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.

  3. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth.

    PubMed

    Bedini, Rossella; Pecci, Raffaella; Notarangelo, Gianluca; Zuppante, Francesca; Persico, Salvatore; Di Carlo, Fabio

    2012-01-01

    In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.

  4. A Modular GIS-Based Software Architecture for Model Parameter Estimation using the Method of Anchored Distributions (MAD)

    NASA Astrophysics Data System (ADS)

    Ames, D. P.; Osorio-Murillo, C.; Over, M. W.; Rubin, Y.

    2012-12-01

    The Method of Anchored Distributions (MAD) is an inverse modeling technique that is well-suited for estimation of spatially varying parameter fields using limited observations and Bayesian methods. This presentation will discuss the design, development, and testing of a free software implementation of the MAD technique using the open source DotSpatial geographic information system (GIS) framework, R statistical software, and the MODFLOW groundwater model. This new tool, dubbed MAD-GIS, is built using a modular architecture that supports the integration of external analytical tools and models for key computational processes including a forward model (e.g. MODFLOW, HYDRUS) and geostatistical analysis (e.g. R, GSLIB). The GIS-based graphical user interface provides a relatively simple way for new users of the technique to prepare the spatial domain, to identify observation and anchor points, to perform the MAD analysis using a selected forward model, and to view results. MAD-GIS uses the Managed Extensibility Framework (MEF) provided by the Microsoft .NET programming platform to support integration of different modeling and analytical tools at run-time through a custom "driver." Each driver establishes a connection with external programs through a programming interface, which provides the elements for communicating with core MAD software. This presentation gives an example of adapting the MODFLOW to serve as the external forward model in MAD-GIS for inferring the distribution functions of key MODFLOW parameters. Additional drivers for other models are being developed and it is expected that the open source nature of the project will engender the development of additional model drivers by 3rd party scientists.

  5. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.

    2016-11-01

    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  6. An Axial-Torsional, Thermomechanical Fatigue Testing Technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1995-01-01

    A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.

  7. CSE database: extended annotations and new recommendations for ECG software testing.

    PubMed

    Smíšek, Radovan; Maršánová, Lucie; Němcová, Andrea; Vítek, Martin; Kozumplík, Jiří; Nováková, Marie

    2017-08-01

    Nowadays, cardiovascular diseases represent the most common cause of death in western countries. Among various examination techniques, electrocardiography (ECG) is still a highly valuable tool used for the diagnosis of many cardiovascular disorders. In order to diagnose a person based on ECG, cardiologists can use automatic diagnostic algorithms. Research in this area is still necessary. In order to compare various algorithms correctly, it is necessary to test them on standard annotated databases, such as the Common Standards for Quantitative Electrocardiography (CSE) database. According to Scopus, the CSE database is the second most cited standard database. There were two main objectives in this work. First, new diagnoses were added to the CSE database, which extended its original annotations. Second, new recommendations for diagnostic software quality estimation were established. The ECG recordings were diagnosed by five new cardiologists independently, and in total, 59 different diagnoses were found. Such a large number of diagnoses is unique, even in terms of standard databases. Based on the cardiologists' diagnoses, a four-round consensus (4R consensus) was established. Such a 4R consensus means a correct final diagnosis, which should ideally be the output of any tested classification software. The accuracy of the cardiologists' diagnoses compared with the 4R consensus was the basis for the establishment of accuracy recommendations. The accuracy was determined in terms of sensitivity = 79.20-86.81%, positive predictive value = 79.10-87.11%, and the Jaccard coefficient = 72.21-81.14%, respectively. Within these ranges, the accuracy of the software is comparable with the accuracy of cardiologists. The accuracy quantification of the correct classification is unique. Diagnostic software developers can objectively evaluate the success of their algorithm and promote its further development. The annotations and recommendations proposed in this work will allow for faster development and testing of classification software. As a result, this might facilitate cardiologists' work and lead to faster diagnoses and earlier treatment.

  8. Graphical Technique to Support the Teaching/Learning Process of Software Process Reference Models

    NASA Astrophysics Data System (ADS)

    Espinosa-Curiel, Ismael Edrein; Rodríguez-Jacobo, Josefina; Fernández-Zepeda, José Alberto

    In this paper, we propose a set of diagrams to visualize software process reference models (PRM). The diagrams, called dimods, are the combination of some visual and process modeling techniques such as rich pictures, mind maps, IDEF and RAD diagrams. We show the use of this technique by designing a set of dimods for the Mexican Software Industry Process Model (MoProSoft). Additionally, we perform an evaluation of the usefulness of dimods. The result of the evaluation shows that dimods may be a support tool that facilitates the understanding, memorization, and learning of software PRMs in both, software development organizations and universities. The results also show that dimods may have advantages over the traditional description methods for these types of models.

  9. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  10. Low Cost Coherent Doppler Lidar Data Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Koch, Grady J.

    2003-01-01

    The work described in this paper details the development of a low-cost, short-development time data acquisition and processing system for a coherent Doppler lidar. This was done using common laboratory equipment and a small software investment. This system provides near real-time wind profile measurements. Coding flexibility created a very useful test bed for new techniques.

  11. A guide to onboard checkout. Volume 1: Guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.

  12. Errata: Response Analysis and Error Diagnosis Tools.

    ERIC Educational Resources Information Center

    Hart, Robert S.

    This guide to ERRATA, a set of HyperCard-based tools for response analysis and error diagnosis in language testing, is intended as a user manual and general reference and designed to be used with the software (not included here). It has three parts. The first is a brief survey of computational techniques available for dealing with student test…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellors, R J

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impactmore » active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.« less

  14. An algorithm for deriving core magnetic field models from the Swarm data set

    NASA Astrophysics Data System (ADS)

    Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko

    2013-11-01

    In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.

  15. Generating Test Templates via Automated Theorem Proving

    NASA Technical Reports Server (NTRS)

    Kancherla, Mani Prasad

    1997-01-01

    Testing can be used during the software development process to maintain fidelity between evolving specifications, program designs, and code implementations. We use a form of specification-based testing that employs the use of an automated theorem prover to generate test templates. A similar approach was developed using a model checker on state-intensive systems. This method applies to systems with functional rather than state-based behaviors. This approach allows for the use of incomplete specifications to aid in generation of tests for potential failure cases. We illustrate the technique on the cannonical triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.

  16. Assessment of ICount software, a precise and fast egg counting tool for the mosquito vector Aedes aegypti.

    PubMed

    Gaburro, Julie; Duchemin, Jean-Bernard; Paradkar, Prasad N; Nahavandi, Saeid; Bhatti, Asim

    2016-11-18

    Widespread in the tropics, the mosquito Aedes aegypti is an important vector of many viruses, posing a significant threat to human health. Vector monitoring often requires fecundity estimation by counting eggs laid by female mosquitoes. Traditionally, manual data analyses have been used but this requires a lot of effort and is the methods are prone to errors. An easy tool to assess the number of eggs laid would facilitate experimentation and vector control operations. This study introduces a built-in software called ICount allowing automatic egg counting of the mosquito vector, Aedes aegypti. ICount egg estimation compared to manual counting is statistically equivalent, making the software effective for automatic and semi-automatic data analysis. This technique also allows rapid analysis compared to manual methods. Finally, the software has been used to assess p-cresol oviposition choices under laboratory conditions in order to test the system with different egg densities. ICount is a powerful tool for fast and precise egg count analysis, freeing experimenters from manual data processing. Software access is free and its user-friendly interface allows easy use by non-experts. Its efficiency has been tested in our laboratory with oviposition dual choices of Aedes aegypti females. The next step will be the development of a mobile application, based on the ICount platform, for vector monitoring surveys in the field.

  17. SU-E-T-106: Development of a Collision Prediction Algorithm for Determining Problematic Geometry for SBRT Treatments Using a Stereotactic Body Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagar, M; Friesen, S; Mannarino, E

    2014-06-01

    Purpose: Collision between the gantry and the couch or patient during Radiotherapy is not a common concern for conventional RT (static fields or arc). With the increase in the application of stereotactic planning techniques to the body, collisions have become a greater concern. Non-coplanar beam geometry is desirable in stereotatic treatments in order to achieve sharp gradients and a high conformality. Non-coplanar geometry is less intuitive in the body and often requires an iterative process of planning and dry runs to guarantee deliverability. Methods: Purpose written software was developed in order to predict the likelihood of collision between the headmore » of the gantry and the couch, patient or stereotatic body frame. Using the DICOM plan and structures set, exported by the treatment planning system, this software is able to predict the possibility of a collision. Given the plan's isocenter, treatment geometry and exterior contours, the software is able to determine if a particular beam/arc is clinically deliverable or if collision is imminent. Results: The software was tested on real world treatment plans with untreatable beam geometry. Both static non-coplanar and VMAT plans were tested. Of these, the collision prediction software could identify all as having potentially problematic geometry. Re-plans of the same cases were also tested and validated as deliverable. Conclusion: This software is capable of giving good initial indication of deliverability for treatment plans that utilize complex geometry (SBRT) or have lateral isocenters. This software is not intended to replace the standard pre-treatment QA dry run. The effectiveness is limited to those portions of the patient and immobilization devices that have been included in the simulation CT and contoured in the planning system. It will however aid the planner in reducing the iterations required to create complex treatment geometries necessary to achieve ideal conformality and organ sparing.« less

  18. Advanced Software V&V for Civil Aviation and Autonomy

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.

    2017-01-01

    With the advances in high-computing platform (e.g., advanced graphical processing units or multi-core processors), computationally-intensive software techniques such as the ones used in artificial intelligence or formal methods have provided us with an opportunity to further increase safety in the aviation industry. Some of these techniques have facilitated building safety at design time, like in aircraft engines or software verification and validation, and others can introduce safety benefits during operations as long as we adapt our processes. In this talk, I will present how NASA is taking advantage of these new software techniques to build in safety at design time through advanced software verification and validation, which can be applied earlier and earlier in the design life cycle and thus help also reduce the cost of aviation assurance. I will then show how run-time techniques (such as runtime assurance or data analytics) offer us a chance to catch even more complex problems, even in the face of changing and unpredictable environments. These new techniques will be extremely useful as our aviation systems become more complex and more autonomous.

  19. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  20. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  1. Determination of fiber volume in graphite/epoxy materials using computer image analysis

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.

  2. Masonry structures built with fictile tubules: Experimental and numerical analyses

    NASA Astrophysics Data System (ADS)

    Tiberti, Simone; Scuro, Carmelo; Codispoti, Rosamaria; Olivito, Renato S.; Milani, Gabriele

    2017-11-01

    Masonry structures with fictile tubules were a distinctive building technique of the Mediterranean area. This technique dates back to Roman and early Christian times, used to build vaulted constructions and domes with various geometrical forms by virtue of their modular structure. In the present work, experimental tests were carried out to identify the mechanical properties of hollow clay fictile tubules and a possible reinforcing technique for existing buildings employing such elements. The experimental results were then validated by devising and analyzing numerical models with the FE software Abaqus, also aimed at investigating the structural behavior of an arch via linear and nonlinear static analyses.

  3. AOFlagger: RFI Software

    NASA Astrophysics Data System (ADS)

    Offringa, A. R.

    2010-10-01

    The RFI software presented here can automatically flag data and can be used to analyze the data in a measurement. The purpose of flagging is to mark samples that are affected by interfering sources such as radio stations, airplanes, electrical fences or other transmitting interferers. The tools in the package are meant for offline use. The software package contains a graphical interface ("rfigui") that can be used to visualize a measurement set and analyze mitigation techniques. It also contains a console flagger ("rficonsole") that can execute a script of mitigation functions without the overhead of a graphical environment. All tools were written in C++. The software has been tested extensively on low radio frequencies (150 MHz or lower) produced by the WSRT and LOFAR telescopes. LOFAR is the Low Frequency Array that is built in and around the Netherlands. Higher frequencies should work as well. Some of the methods implemented are the SumThreshold, the VarThreshold and the singular value decomposition (SVD) method. Included also are several surface fitting algorithms. The software is published under the GNU General Public License version 3.

  4. Application of neural networks to software quality modeling of a very large telecommunications system.

    PubMed

    Khoshgoftaar, T M; Allen, E B; Hudepohl, J P; Aud, S J

    1997-01-01

    Society relies on telecommunications to such an extent that telecommunications software must have high reliability. Enhanced measurement for early risk assessment of latent defects (EMERALD) is a joint project of Nortel and Bell Canada for improving the reliability of telecommunications software products. This paper reports a case study of neural-network modeling techniques developed for the EMERALD system. The resulting neural network is currently in the prototype testing phase at Nortel. Neural-network models can be used to identify fault-prone modules for extra attention early in development, and thus reduce the risk of operational problems with those modules. We modeled a subset of modules representing over seven million lines of code from a very large telecommunications software system. The set consisted of those modules reused with changes from the previous release. The dependent variable was membership in the class of fault-prone modules. The independent variables were principal components of nine measures of software design attributes. We compared the neural-network model with a nonparametric discriminant model and found the neural-network model had better predictive accuracy.

  5. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.

  6. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.

  7. 3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography.

    PubMed

    Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M

    2017-05-01

    With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.

  8. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlesinger, Adam M.

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  9. Soft Decision Analyzer

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  10. Software Defined GPS API: Development and Implementation of GPS Correlator Architectures Using MATLAB with Focus on SDR Implementations

    DTIC Science & Technology

    2014-05-18

    intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques...with the intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved...intention of offering improved software libraries for GNSS signal acquisition. It has been the team mission to implement new and improved techniques to

  11. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  12. Development of advanced avionics systems applicable to terminal-configured vehicles

    NASA Technical Reports Server (NTRS)

    Heimbold, R. L.; Lee, H. P.; Leffler, M. F.

    1980-01-01

    A technique to add the time constraint to the automatic descent feature of the existing L-1011 aircraft Flight Management System (FMS) was developed. Software modifications were incorporated in the FMS computer program and the results checked by lab simulation and on a series of eleven test flights. An arrival time dispersion (2 sigma) of 19 seconds was achieved. The 4 D descent technique can be integrated with the time-based metering method of air traffic control. Substantial reductions in delays at today's busy airports should result.

  13. Rule groupings: An approach towards verification of expert systems

    NASA Technical Reports Server (NTRS)

    Mehrotra, Mala

    1991-01-01

    Knowledge-based expert systems are playing an increasingly important role in NASA space and aircraft systems. However, many of NASA's software applications are life- or mission-critical and knowledge-based systems do not lend themselves to the traditional verification and validation techniques for highly reliable software. Rule-based systems lack the control abstractions found in procedural languages. Hence, it is difficult to verify or maintain such systems. Our goal is to automatically structure a rule-based system into a set of rule-groups having a well-defined interface to other rule-groups. Once a rule base is decomposed into such 'firewalled' units, studying the interactions between rules would become more tractable. Verification-aid tools can then be developed to test the behavior of each such rule-group. Furthermore, the interactions between rule-groups can be studied in a manner similar to integration testing. Such efforts will go a long way towards increasing our confidence in the expert-system software. Our research efforts address the feasibility of automating the identification of rule groups, in order to decompose the rule base into a number of meaningful units.

  14. A labview-based GUI for the measurement of otoacoustic emissions.

    PubMed

    Wu, Ye; McNamara, D M; Ziarani, A K

    2006-01-01

    This paper presents the outcome of a software development project aimed at creating a stand-alone user-friendly signal processing algorithm for the estimation of distortion product otoacoustic emission (OAE) signals. OAE testing is one of the most commonly used methods of first screening of newborns' hearing. Most of the currently available commercial devices rely upon averaging long strings of data and subsequent discrete Fourier analysis to estimate low level OAE signals from within the background noise in the presence of the strong stimuli. The main shortcoming of the presently employed technology is the need for long measurement time and its low noise immunity. The result of the software development project presented here is a graphical user interface (GUI) module that implements a recently introduced adaptive technique of OAE signal estimation. This software module is easy to use and is freely disseminated on the Internet for the use of the hearing research community. This GUI module allows loading of the a priori recorded OAE signals into the workspace, and provides the user with interactive instructions for the OAE signal estimation. Moreover, the user can generate simulated OAE signals to objectively evaluate the performance capability of the implemented signal processing technique.

  15. Using Combined SFTA and SFMECA Techniques for Space Critical Software

    NASA Astrophysics Data System (ADS)

    Nicodemos, F. G.; Lahoz, C. H. N.; Abdala, M. A. D.; Saotome, O.

    2012-01-01

    This work addresses the combined Software Fault Tree Analysis (SFTA) and Software Failure Modes, Effects and Criticality Analysis (SFMECA) techniques applied to space critical software of satellite launch vehicles. The combined approach is under research as part of the Verification and Validation (V&V) efforts to increase software dependability and as future application in other projects under development at Instituto de Aeronáutica e Espaço (IAE). The applicability of such approach was conducted on system software specification and applied to a case study based on the Brazilian Satellite Launcher (VLS). The main goal is to identify possible failure causes and obtain compensating provisions that lead to inclusion of new functional and non-functional system software requirements.

  16. Machine-assisted verification of latent fingerprints: first results for nondestructive contact-less optical acquisition techniques with a CWL sensor

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.

  17. A toolbox and record for scientific models

    NASA Technical Reports Server (NTRS)

    Ellman, Thomas

    1994-01-01

    Computational science presents a host of challenges for the field of knowledge-based software design. Scientific computation models are difficult to construct. Models constructed by one scientist are easily misapplied by other scientists to problems for which they are not well-suited. Finally, models constructed by one scientist are difficult for others to modify or extend to handle new types of problems. Construction of scientific models actually involves much more than the mechanics of building a single computational model. In the course of developing a model, a scientist will often test a candidate model against experimental data or against a priori expectations. Test results often lead to revisions of the model and a consequent need for additional testing. During a single model development session, a scientist typically examines a whole series of alternative models, each using different simplifying assumptions or modeling techniques. A useful scientific software design tool must support these aspects of the model development process as well. In particular, it should propose and carry out tests of candidate models. It should analyze test results and identify models and parts of models that must be changed. It should determine what types of changes can potentially cure a given negative test result. It should organize candidate models, test data, and test results into a coherent record of the development process. Finally, it should exploit the development record for two purposes: (1) automatically determining the applicability of a scientific model to a given problem; (2) supporting revision of a scientific model to handle a new type of problem. Existing knowledge-based software design tools must be extended in order to provide these facilities.

  18. Software development for the analysis of heartbeat sounds with LabVIEW in diagnosis of cardiovascular disease.

    PubMed

    Topal, Taner; Polat, Hüseyin; Güler, Inan

    2008-10-01

    In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  19. FPGA-Based Efficient Hardware/Software Co-Design for Industrial Systems with Consideration of Output Selection

    NASA Astrophysics Data System (ADS)

    Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.

    2016-05-01

    This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.

  20. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  1. Do Over or Make Do? Climate Models as a Software Development Challenge (Invited)

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.

    2010-12-01

    We present the results of a comparative study of the software engineering culture and practices at four different earth system modeling centers: the UK Met Office Hadley Centre, the National Center for Atmospheric Research (NCAR), The Max-Planck-Institut für Meteorologie (MPI-M), and the Institut Pierre Simon Laplace (IPSL). The study investigated the software tools and techniques used at each center to assess their effectiveness. We also investigated how differences in the organizational structures, collaborative relationships, and technical infrastructures constrain the software development and affect software quality. Specific questions for the study included 1) Verification and Validation - What techniques are used to ensure that the code matches the scientists’ understanding of what it should do? How effective are these are at eliminating errors of correctness and errors of understanding? 2) Coordination - How are the contributions from across the modeling community coordinated? For coupled models, how are the differences in the priorities of different, overlapping communities of users addressed? 3) Division of responsibility - How are the responsibilities for coding, verification, and coordination distributed between different roles (scientific, engineering, support) in the organization? 4) Planning and release processes - How do modelers decide on priorities for model development, how do they decide which changes to tackle in a particular release of the model? 5) Debugging - How do scientists debug the models, what types of bugs do they find in their code, and how they find them? The results show that each center has evolved a set of model development practices that are tailored to their needs and organizational constraints. These practices emphasize scientific validity, but tend to neglect other software qualities, and all the centers struggle frequently with software problems. The testing processes are effective at removing software errors prior to release, but the code is hard to understand and hard to change. Software errors and model configuration problems are common during model development, and appear to have a serious impact on scientific productivity. These problems have grown dramatically in recent years with the growth in size and complexity of earth system models. Much of the success in obtaining valid simulations from the models depends on the scientists developing their own code, experimenting with alternatives, running frequent full system tests, and exploring patterns in the results. Blind application of generic software engineering processes is unlikely to work well. Instead, each center needs to lean how to balance the need for better coordination through a more disciplined approach with the freedom to explore, and the value of having scientists work directly with the code. This suggests that each center can learn a lot from comparing their practices with others, but that each might need to develop a different set of best practices.

  2. Selecting a software development methodology. [of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1981-01-01

    The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.

  3. Introduction to Flight Test Engineering (Introduction aux techniques des essais en vol)

    DTIC Science & Technology

    2005-07-01

    or aircraft parameters • Calculations in the frequency domain ( Fast Fourier Transform) • Data analysis with dedicated software for: • Signal...density Fast Fourier Transform Transfer function analysis Frequency response analysis Etc. PRESENTATION Color/black & white Display screen...envelope by operating the airplane at increasing ranges - representing increasing risk - of engine operation, airspeeds both fast and slow, altitude

  4. Forensic Analysis of Digital Image Tampering

    DTIC Science & Technology

    2004-12-01

    analysis of when each method fails, which Chapter 4 discusses. Finally, a test image containing an invisible watermark using LSB steganography is...2.2 – Example of invisible watermark using Steganography Software F5 ............. 8 Figure 2.3 – Example of copy-move image forgery [12...Figure 3.11 – Algorithm for JPEG Block Technique ....................................................... 54 Figure 3.12 – “Forged” Image with Result

  5. Modeling Antimicrobial Activity of Clorox(R) Using an Agar-Diffusion Test: A New Twist On an Old Experiment.

    ERIC Educational Resources Information Center

    Mitchell, James K.; Carter, William E.

    2000-01-01

    Describes using a computer statistical software package called Minitab to model the sensitivity of several microbes to the disinfectant NaOCl (Clorox') using the Kirby-Bauer technique. Each group of students collects data from one microbe, conducts regression analyses, then chooses the best-fit model based on the highest r-values obtained.…

  6. Viewing the Reviewing: An Observational Study of the Use of an Interactive Digital Video To Help Teach the Concepts of Design Inspection Reviews.

    ERIC Educational Resources Information Center

    Love, Matthew

    "Design Inspection Reviews" are structured meetings in which participants follow certain rules of procedure and behavior when conducting detailed readings of design plans to identify errors and misunderstandings. The technique is widely used in the software engineering industry, where it is demonstrably more effective than testing at…

  7. Using Software Testing Techniques for Efficient Handling of Programming Exercises in an e-Learning Platform

    ERIC Educational Resources Information Center

    Schwieren, Joachim; Vossen, Gottfried; Westerkamp, Peter

    2006-01-01

    e-Learning has become a major field of interest in recent years, and multiple approaches and solutions have been developed. A typical form of e-learning application comprises exercise submission and assessment systems that allow students to work on assignments whenever and where they want (i.e., dislocated, asynchronous work). In basic computer…

  8. Software Engineering Education Directory

    DTIC Science & Technology

    1990-04-01

    and Engineering (CMSC 735) Codes: GPEV2 * Textiooks: IEEE Tutoria on Models and Metrics for Software Management and Engameeing by Basi, Victor R...Software Engineering (Comp 227) Codes: GPRY5 Textbooks: IEEE Tutoria on Software Design Techniques by Freeman, Peter and Wasserman, Anthony 1. Software

  9. RT-Syn: A real-time software system generator

    NASA Technical Reports Server (NTRS)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  10. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software.

    PubMed

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2015-05-01

    Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed high values (ICC, 0.98-0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99-1). The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.

  11. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  12. ISWHM: Tools and Techniques for Software and System Health Management

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Mengshoel, Ole J.; Darwiche, Adnan

    2010-01-01

    This presentation presents status and results of research on Software Health Management done within the NRA "ISWHM: Tools and Techniques for Software and System Health Management." Topics include: Ingredients of a Guidance, Navigation, and Control System (GN and C); Selected GN and C Testbed example; Health Management of major ingredients; ISWHM testbed architecture; and Conclusions and next Steps.

  13. Software system safety

    NASA Technical Reports Server (NTRS)

    Uber, James G.

    1988-01-01

    Software itself is not hazardous, but since software and hardware share common interfaces there is an opportunity for software to create hazards. Further, these software systems are complex, and proven methods for the design, analysis, and measurement of software safety are not yet available. Some past software failures, future NASA software trends, software engineering methods, and tools and techniques for various software safety analyses are reviewed. Recommendations to NASA are made based on this review.

  14. Development of a New VLBI Data Analysis Software

    NASA Technical Reports Server (NTRS)

    Bolotin, Sergei; Gipson, John M.; MacMillan, Daniel S.

    2010-01-01

    We present an overview of a new VLBI analysis software under development at NASA GSFC. The new software will replace CALC/SOLVE and many related utility programs. It will have the capabilities of the current system as well as incorporate new models and data analysis techniques. In this paper we give a conceptual overview of the new software. We formulate the main goals of the software. The software should be flexible and modular to implement models and estimation techniques that currently exist or will appear in future. On the other hand it should be reliable and possess production quality for processing standard VLBI sessions. Also, it needs to be capable of processing observations from a fully deployed network of VLBI2010 stations in a reasonable time. We describe the software development process and outline the software architecture.

  15. An implementation and performance measurement of the progressive retry technique

    NASA Technical Reports Server (NTRS)

    Suri, Gaurav; Huang, Yennun; Wang, Yi-Min; Fuchs, W. Kent; Kintala, Chandra

    1995-01-01

    This paper describes a recovery technique called progressive retry for bypassing software faults in message-passing applications. The technique is implemented as reusable modules to provide application-level software fault tolerance. The paper describes the implementation of the technique and presents results from the application of progressive retry to two telecommunications systems. the results presented show that the technique is helpful in reducing the total recovery time for message-passing applications.

  16. A Framework of the Use of Information in Software Testing

    ERIC Educational Resources Information Center

    Kaveh, Payman

    2010-01-01

    With the increasing role that software systems play in our daily lives, software quality has become extremely important. Software quality is impacted by the efficiency of the software testing process. There are a growing number of software testing methodologies, models, and initiatives to satisfy the need to improve software quality. The main…

  17. Stereo vision techniques for telescience

    NASA Astrophysics Data System (ADS)

    Hewett, S.

    1990-02-01

    The Botanic Experiment is one of the pilot experiments in the Telescience Test Bed program at the ESTEC research and technology center of the European Space Agency. The aim of the Telescience Test Bed is to develop the techniques required by an experimenter using a ground based work station for remote control, monitoring, and modification of an experiment operating on a space platform. The purpose of the Botanic Experiment is to examine the growth of seedlings under various illumination conditions with a video camera from a number of viewpoints throughout the duration of the experiment. This paper describes the Botanic Experiment and the points addressed in developing a stereo vision software package to extract quantitative information about the seedlings from the recorded video images.

  18. A study of software standards used in the avionics industry

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.

    1994-01-01

    Within the past decade, software has become an increasingly common element in computing systems. In particular, the role of software used in the aerospace industry, especially in life- or safety-critical applications, is rapidly expanding. This intensifies the need to use effective techniques for achieving and verifying the reliability of avionics software. Although certain software development processes and techniques are mandated by government regulating agencies, no one methodology has been shown to consistently produce reliable software. The knowledge base for designing reliable software simply has not reached the maturity of its hardware counterpart. In an effort to increase our understanding of software, the Langley Research Center conducted a series of experiments over 15 years with the goal of understanding why and how software fails. As part of this program, the effectiveness of current industry standards for the development of avionics is being investigated. This study involves the generation of a controlled environment to conduct scientific experiments on software processes.

  19. Data collection and analysis software development for rotor dynamics testing in spin laboratory

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Arble, Daniel; Woike, Mark

    2017-04-01

    Gas turbine engine components undergo high rotational loading another complex environmental conditions. Such operating environment leads these components to experience damages and cracks that can cause catastrophic failure during flights. There are traditional crack detections and health monitoring methodologies currently being used which rely on periodic routine maintenances, nondestructive inspections that often times involve engine and components dis-assemblies. These methods do not also offer adequate information about the faults, especially, if these faults at subsurface or not clearly evident. At NASA Glenn research center, the rotor dynamics laboratory is presently involved in developing newer techniques that are highly dependent on sensor technology to enable health monitoring and prediction of damage and cracks in rotor disks. These approaches are noninvasive and relatively economical. Spin tests are performed using a subscale test article mimicking turbine rotor disk undergoing rotational load. Non-contact instruments such as capacitive and microwave sensors are used to measure the blade tip gap displacement and blade vibrations characteristics in an attempt develop a physics based model to assess/predict the faults in the rotor disk. Data collection is a major component in this experimental-analytical procedure and as a result, an upgrade to an older version of the data acquisition software which is based on LabVIEW program has been implemented to support efficiently running tests and analyze the results. Outcomes obtained from the tests data and related experimental and analytical rotor dynamics modeling including key features of the updated software are presented and discussed.

  20. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  1. NanoDesign: Concepts and Software for a Nanotechnology Based on Functionalized Fullerenes

    NASA Technical Reports Server (NTRS)

    Globus, Al; Jaffe, Richard; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Eric Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. While attractive, diamonoid nanotechnology is not physically accessible with straightforward extensions of current laboratory techniques. We propose a nanotechnology based on functionalized fullerenes and investigate carbon nanotube based gears with teeth added via a benzyne reaction known to occur with C60. The gears are single-walled carbon nanotubes with appended coenzyme groups for teeth. Fullerenes are in widespread laboratory use and can be functionalized in many ways. Companion papers computationally demonstrate the properties of these gears (they appear to work) and the accessibility of the benzyne/nanotube reaction. This paper describes the molecular design techniques and rationale as well as the software that implements these design techniques. The software is a set of persistent C++ objects controlled by TCL command scripts. The c++/tcl interface is automatically generated by a software system called tcl_c++ developed by the author and described here. The objects keep track of different portions of the molecular machinery to allow different simulation techniques and boundary conditions to be applied as appropriate. This capability has been required to demonstrate (computationally) our gear's feasibility. A new distributed software architecture featuring a WWW universal client, CORBA distributed objects, and agent software is under consideration. The software architecture is intended to eventually enable a widely disbursed group to develop complex simulated molecular machines.

  2. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  3. Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach

    NASA Astrophysics Data System (ADS)

    Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios

    A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.

  4. Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol

    NASA Technical Reports Server (NTRS)

    Whiteside, B. N.; Schotland, R. M.

    1993-01-01

    This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.

  5. Techniques for improving the accuracy of cyrogenic temperature measurement in ground test programs

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Fabik, Richard H.

    1993-01-01

    The performance of a sensor is often evaluated by determining to what degree of accuracy a measurement can be made using this sensor. The absolute accuracy of a sensor is an important parameter considered when choosing the type of sensor to use in research experiments. Tests were performed to improve the accuracy of cryogenic temperature measurements by calibration of the temperature sensors when installed in their experimental operating environment. The calibration information was then used to correct for temperature sensor measurement errors by adjusting the data acquisition system software. This paper describes a method to improve the accuracy of cryogenic temperature measurements using corrections in the data acquisition system software such that the uncertainty of an individual temperature sensor is improved from plus or minus 0.90 deg R to plus or minus 0.20 deg R over a specified range.

  6. Software platform for rapid prototyping of NIRS brain computer interfacing techniques.

    PubMed

    Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A

    2008-01-01

    This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.

  7. Development of an Expert System for Representing Procedural Knowledge

    NASA Technical Reports Server (NTRS)

    Georgeff, Michael P.; Lansky, Amy L.

    1985-01-01

    A high level of automation is of paramount importance in most space operations. It is critical for unmanned missions and greatly increases the effectiveness of manned missions. However, although many functions can be automated by using advanced engineering techniques, others require complex reasoning, sensing, and manipulatory capabilities that go beyond this technology. Automation of fault diagnosis and malfunction handling is a case in point. The military have long been interested in this problem, and have developed automatic test equipment to aid in the maintenance of complex military hardware. These systems are all based on conventional software and engineering techniques. However, the effectiveness of such test equipment is severely limited. The equipment is inflexible and unresponsive to the skill level of the technicians using it. The diagnostic procedures cannot be matched to the exigencies of the current situation nor can they cope with reconfiguration or modification of the items under test. The diagnosis cannot be guided by useful advice from technicians and, when a fault cannot be isolated, no explanation is given as to the cause of failure. Because these systems perform a prescribed sequence of tests, they cannot utilize knowledge of a particular situation to focus attention on more likely trouble spots. Consequently, real-time performance is highly unsatisfactory. Furthermore, the cost of developing test software is substantial and time to maturation is excessive. Significant advances in artificial intelligence (AI) have recently led to the development of powerful and flexible reasoning systems, known as expert or knowledge-based systems. We have devised a powerful and theoretically sound scheme for representing and reasoning about procedural knowledge.

  8. Software Engineering Guidebook

    NASA Technical Reports Server (NTRS)

    Connell, John; Wenneson, Greg

    1993-01-01

    The Software Engineering Guidebook describes SEPG (Software Engineering Process Group) supported processes and techniques for engineering quality software in NASA environments. Three process models are supported: structured, object-oriented, and evolutionary rapid-prototyping. The guidebook covers software life-cycles, engineering, assurance, and configuration management. The guidebook is written for managers and engineers who manage, develop, enhance, and/or maintain software under the Computer Software Services Contract.

  9. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.

  10. Development of multichannel analyzer using sound card ADC for nuclear spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Maslina Mohd; Yussup, Nolida; Lombigit, Lojius

    This paper describes the development of Multi-Channel Analyzer (MCA) using sound card analogue to digital converter (ADC) for nuclear spectroscopy system. The system was divided into a hardware module and a software module. Hardware module consist of detector NaI (Tl) 2” by 2”, Pulse Shaping Amplifier (PSA) and a build in ADC chip from readily available in any computers’ sound system. The software module is divided into two parts which are a pre-processing of raw digital input and the development of the MCA software. Band-pass filter and baseline stabilization and correction were implemented for the pre-processing. For the MCA development,more » the pulse height analysis method was used to process the signal before displaying it using histogram technique. The development and tested result for using the sound card as an MCA are discussed.« less

  11. Integrated Assessment and Improvement of the Quality Assurance System for the Cosworth Casting Process

    NASA Astrophysics Data System (ADS)

    Yousif, Dilon

    The purpose of this study was to improve the Quality Assurance (QA) System at the Nemak Windsor Aluminum Plant (WAP). The project used Six Sigma method based on Define, Measure, Analyze, Improve, and Control (DMAIC). Analysis of in process melt at WAP was based on chemical, thermal, and mechanical testing. The control limits for the W319 Al Alloy were statistically recalculated using the composition measured under stable conditions. The "Chemistry Viewer" software was developed for statistical analysis of alloy composition. This software features the Silicon Equivalency (SiBQ) developed by the IRC. The Melt Sampling Device (MSD) was designed and evaluated at WAP to overcome traditional sampling limitations. The Thermal Analysis "Filters" software was developed for cooling curve analysis of the 3XX Al Alloy(s) using IRC techniques. The impact of low melting point impurities on the start of melting was evaluated using the Universal Metallurgical Simulator and Analyzer (UMSA).

  12. Evaluation criteria for software classification inventories, accuracies, and maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.

  13. Software techniques for a distributed real-time processing system. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Lesh, F.; Lecoq, P.

    1976-01-01

    The paper describes software techniques developed for the Unified Data System (UDS), a distributed processor network for control and data handling onboard a planetary spacecraft. These techniques include a structured language for specifying the programs contained in each module, and a small executive program in each module which performs scheduling and implements the module task.

  14. Implementation, reliability, and feasibility test of an Open-Source PACS.

    PubMed

    Valeri, Gianluca; Zuccaccia, Matteo; Badaloni, Andrea; Ciriaci, Damiano; La Riccia, Luigi; Mazzoni, Giovanni; Maggi, Stefania; Giovagnoni, Andrea

    2015-12-01

    To implement a hardware and software system able to perform the major functions of an Open-Source PACS, and to analyze it in a simulated real-world environment. A small home network was implemented, and the Open-Source operating system Ubuntu 11.10 was installed in a laptop containing the Dcm4chee suite with the software devices needed. The Open-Source PACS implemented is compatible with Linux OS, Microsoft OS, and Mac OS X; furthermore, it was used with operating systems that guarantee the operation in portable devices (smartphone, tablet) Android and iOS. An OSS PACS is useful for making tutorials and workshops on post-processing techniques for educational and training purposes.

  15. Accurate Estimation of Solvation Free Energy Using Polynomial Fitting Techniques

    PubMed Central

    Shyu, Conrad; Ytreberg, F. Marty

    2010-01-01

    This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem 30: 2297–2304, 2009). In this report we introduce polynomial and spline interpolation techniques. Two systems with analytically solvable relative free energies are used to test the accuracy of the interpolation approach. We also use both interpolation and regression methods to determine a small molecule solvation free energy. Our simulations show that, using such polynomial techniques and non-equidistant λ values, the solvation free energy can be estimated with high accuracy without using soft-core scaling and separate simulations for Lennard-Jones and partial charges. The results from our study suggest these polynomial techniques, especially with use of non-equidistant λ values, improve the accuracy for ΔF estimates without demanding additional simulations. We also provide general guidelines for use of polynomial fitting to estimate free energy. To allow researchers to immediately utilize these methods, free software and documentation is provided via http://www.phys.uidaho.edu/ytreberg/software. PMID:20623657

  16. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1208 is proposed...

  17. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Software Unit Testing for Digital Computer Software... revised regulatory guide (RG), revision 1 of RG 1.171, ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This RG endorses American National Standards...

  18. Software use cases to elicit the software requirements analysis within the ASTRI project

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.

  19. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques.

    PubMed

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.

  20. Antibiogramj: A tool for analysing images from disk diffusion tests.

    PubMed

    Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M

    2017-05-01

    Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Leveraging Existing Mission Tools in a Re-Usable, Component-Based Software Environment

    NASA Technical Reports Server (NTRS)

    Greene, Kevin; Grenander, Sven; Kurien, James; z,s (fshir. z[orttr); z,scer; O'Reilly, Taifun

    2006-01-01

    Emerging methods in component-based software development offer significant advantages but may seem incompatible with existing mission operations applications. In this paper we relate our positive experiences integrating existing mission applications into component-based tools we are delivering to three missions. In most operations environments, a number of software applications have been integrated together to form the mission operations software. In contrast, with component-based software development chunks of related functionality and data structures, referred to as components, can be individually delivered, integrated and re-used. With the advent of powerful tools for managing component-based development, complex software systems can potentially see significant benefits in ease of integration, testability and reusability from these techniques. These benefits motivate us to ask how component-based development techniques can be relevant in a mission operations environment, where there is significant investment in software tools that are not component-based and may not be written in languages for which component-based tools even exist. Trusted and complex software tools for sequencing, validation, navigation, and other vital functions cannot simply be re-written or abandoned in order to gain the advantages offered by emerging component-based software techniques. Thus some middle ground must be found. We have faced exactly this issue, and have found several solutions. Ensemble is an open platform for development, integration, and deployment of mission operations software that we are developing. Ensemble itself is an extension of an open source, component-based software development platform called Eclipse. Due to the advantages of component-based development, we have been able to vary rapidly develop mission operations tools for three surface missions by mixing and matching from a common set of mission operation components. We have also had to determine how to integrate existing mission applications for sequence development, sequence validation, and high level activity planning, and other functions into a component-based environment. For each of these, we used a somewhat different technique based upon the structure and usage of the existing application.

  2. Computer assisted analysis of auroral images obtained from high altitude polar satellites

    NASA Technical Reports Server (NTRS)

    Samadani, Ramin; Flynn, Michael

    1993-01-01

    Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.

  3. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Designing application software in wide area network settings

    NASA Technical Reports Server (NTRS)

    Makpangou, Mesaac; Birman, Ken

    1990-01-01

    Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described.

  5. Software Aids for radiologists: Part 1, Useful Photoshop skills.

    PubMed

    Gross, Joel A; Thapa, Mahesh M

    2012-12-01

    The purpose of this review is to describe the use of several essential techniques and tools in Adobe Photoshop image-editing software. The techniques shown expand on those previously described in the radiologic literature. Radiologists, especially those with minimal experience with image-editing software, can quickly apply a few essential Photoshop tools to minimize the frustration that can result from attempting to navigate a complex user interface.

  6. Advanced Automation for Ion Trap Mass Spectrometry-New Opportunities for Real-Time Autonomous Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, C. M.; Salmonson, J. D.; Yost, R. A.; Griffin, T. P.; Yates, N. A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    The utility of MS/MS for both target compound analysis and the structure elucidation of unknowns has been described in a number of references. A broader acceptance of this technique has not yet been realized as it requires large, complex, and costly instrumentation which has not been competitive with more conventional techniques. Recent advancements in ion trap mass spectrometry promise to change this situation. Although the ion trap's small size, sensitivity, and ability to perform multiple stages of mass spectrometry have made it eminently suitable for on-line, real-time monitoring applications, advance automation techniques are required to make these capabilities more accessible to non-experts. Towards this end we have developed custom software for the design and implementation of MS/MS experiments. This software allows the user to take full advantage of the ion trap's versatility with respect to ionization techniques, scan proxies, and ion accumulation/ejection methods. Additionally, expert system software has been developed for autonomous target compound analysis. This software has been linked to ion trap control software and a commercial data system to bring all of the steps in the analysis cycle under control of the expert system. These software development efforts and their utilization for a number of trace analysis applications will be described.

  7. Software Dependability and Safety Evaluations ESA's Initiative

    NASA Astrophysics Data System (ADS)

    Hernek, M.

    ESA has allocated funds for an initiative to evaluate Dependability and Safety methods of Software. The objectives of this initiative are; · More extensive validation of Safety and Dependability techniques for Software · Provide valuable results to improve the quality of the Software thus promoting the application of Dependability and Safety methods and techniques. ESA space systems are being developed according to defined PA requirement specifications. These requirements may be implemented through various design concepts, e.g. redundancy, diversity etc. varying from project to project. Analysis methods (FMECA. FTA, HA, etc) are frequently used during requirements analysis and design activities to assure the correct implementation of system PA requirements. The criticality level of failures, functions and systems is determined and by doing that the critical sub-systems are identified, on which dependability and safety techniques are to be applied during development. Proper performance of the software development requires the development of a technical specification for the products at the beginning of the life cycle. Such technical specification comprises both functional and non-functional requirements. These non-functional requirements address characteristics of the product such as quality, dependability, safety and maintainability. Software in space systems is more and more used in critical functions. Also the trend towards more frequent use of COTS and reusable components pose new difficulties in terms of assuring reliable and safe systems. Because of this, its dependability and safety must be carefully analysed. ESA identified and documented techniques, methods and procedures to ensure that software dependability and safety requirements are specified and taken into account during the design and development of a software system and to verify/validate that the implemented software systems comply with these requirements [R1].

  8. Dtest Testing Software

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Cameron, Jonathan M.; Myint, Steven

    2013-01-01

    This software runs a suite of arbitrary software tests spanning various software languages and types of tests (unit level, system level, or file comparison tests). The dtest utility can be set to automate periodic testing of large suites of software, as well as running individual tests. It supports distributing multiple tests over multiple CPU cores, if available. The dtest tool is a utility program (written in Python) that scans through a directory (and its subdirectories) and finds all directories that match a certain pattern and then executes any tests in that directory as described in simple configuration files.

  9. Vehicle System Management Modeling in UML for Ares I

    NASA Technical Reports Server (NTRS)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  10. An empirical comparison of a dynamic software testability metric to static cyclomatic complexity

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.

    1993-01-01

    This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.

  11. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures

    PubMed Central

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-01-01

    Aims and Objectives: The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. Materials and Methods: A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Results: Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions (P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant (P < 0.001). Conclusions: Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems. PMID:28713763

  12. Evaluation of Three Different Processing Techniques in the Fabrication of Complete Dentures.

    PubMed

    Chintalacheruvu, Vamsi Krishna; Balraj, Rajasekaran Uttukuli; Putchala, Lavanya Sireesha; Pachalla, Sreelekha

    2017-06-01

    The objective of the present study is to compare the effectiveness of three different processing techniques and to find out the accuracy of processing techniques through number of occlusal interferences and increase in vertical dimension after denture processing. A cross-sectional study was conducted on a sample of 18 patients indicated for complete denture fabrication was selected for the study and they were divided into three subgroups. Three processing techniques, compression molding and injection molding using prepolymerized resin and unpolymerized resin, were used to fabricate dentures for each of the groups. After processing, laboratory-remounted dentures were evaluated for number of occlusal interferences in centric and eccentric relations and change in vertical dimension through vertical pin rise in articulator. Data were analyzed using statistical test ANOVA and SPSS software version 19.0 by IBM was used. Data obtained from three groups were subjected to one-way ANOVA test. After ANOVA test, results with significant variations were subjected to post hoc test. Number of occlusal interferences with compression molding technique was reported to be more in both centric and eccentric positions as compared to the two injection molding techniques with statistical significance in centric, protrusive, right lateral nonworking, and left lateral working positions ( P < 0.05). Mean vertical pin rise (0.52 mm) was reported to more in compression molding technique as compared to injection molding techniques, which is statistically significant ( P < 0.001). Within the limitations of this study, injection molding techniques exhibited less processing errors as compared to compression molding technique with statistical significance. There was no statistically significant difference in processing errors reported within two injection molding systems.

  13. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  14. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  15. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  16. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  17. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  18. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  19. Real-time Implementation of the Waveloc Technique for Monitoring Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Langet, N.; Michelini, A.

    2013-12-01

    Monitoring regions with high swarm-type seismicity (e.g. volcanoes, certain tectonic regions) is a challenge for the traditional pick-associate-locate type algorithms that form the basis of most seismicity monitoring software. Over the past few years, new approaches that avoid the association phase by direct migration of some characteristic function of the recorded seismograms have started to be implemented, and have shown great promise (see related abstract on the Waveloc method applied to Piton de la Fournaise volcano). Implementing such methods in real-time is an essential step in proving their usefulness and robustness in swarm-monitoring situations. Here we describe the work in progress on adapting the Waveloc migration technique to real-time operation. The resulting software package, RT-Waveloc, is currently in the prototype stage, and we hope to have a version that can be distributed to the scientific community for beta-testing within a year. The development of RT-Waveloc is financed by the EU NERA project.

  20. Feedback-Driven Dynamic Invariant Discovery

    NASA Technical Reports Server (NTRS)

    Zhang, Lingming; Yang, Guowei; Rungta, Neha S.; Person, Suzette; Khurshid, Sarfraz

    2014-01-01

    Program invariants can help software developers identify program properties that must be preserved as the software evolves, however, formulating correct invariants can be challenging. In this work, we introduce iDiscovery, a technique which leverages symbolic execution to improve the quality of dynamically discovered invariants computed by Daikon. Candidate invariants generated by Daikon are synthesized into assertions and instrumented onto the program. The instrumented code is executed symbolically to generate new test cases that are fed back to Daikon to help further re ne the set of candidate invariants. This feedback loop is executed until a x-point is reached. To mitigate the cost of symbolic execution, we present optimizations to prune the symbolic state space and to reduce the complexity of the generated path conditions. We also leverage recent advances in constraint solution reuse techniques to avoid computing results for the same constraints across iterations. Experimental results show that iDiscovery converges to a set of higher quality invariants compared to the initial set of candidate invariants in a small number of iterations.

  1. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  2. Static and Dynamic Verification of Critical Software for Space Applications

    NASA Astrophysics Data System (ADS)

    Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.

    Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA, and the Xception tool for fault-injection. Keywords: Verification &Validation, RAMS, Onboard software, SFMEA, STA, Fault-injection 1 This work is being performed under the project STADY Applied Static And Dynamic Verification Of Critical Software, ESA/ESTEC Contract Nr. 15751/02/NL/LvH.

  3. Risk-Informed Safety Assurance and Probabilistic Assessment of Mission-Critical Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Guarro, Sergio B.

    2010-01-01

    This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.

  4. Software Process Assessment (SPA)

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda H.; Sheppard, Sylvia B.; Butler, Scott A.

    1994-01-01

    NASA's environment mirrors the changes taking place in the nation at large, i.e. workers are being asked to do more work with fewer resources. For software developers at NASA's Goddard Space Flight Center (GSFC), the effects of this change are that we must continue to produce quality code that is maintainable and reusable, but we must learn to produce it more efficiently and less expensively. To accomplish this goal, the Data Systems Technology Division (DSTD) at GSFC is trying a variety of both proven and state-of-the-art techniques for software development (e.g., object-oriented design, prototyping, designing for reuse, etc.). In order to evaluate the effectiveness of these techniques, the Software Process Assessment (SPA) program was initiated. SPA was begun under the assumption that the effects of different software development processes, techniques, and tools, on the resulting product must be evaluated in an objective manner in order to assess any benefits that may have accrued. SPA involves the collection and analysis of software product and process data. These data include metrics such as effort, code changes, size, complexity, and code readability. This paper describes the SPA data collection and analysis methodology and presents examples of benefits realized thus far by DSTD's software developers and managers.

  5. Hera: Using NASA Astronomy Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mitchell, S.; Pence, W. D.

    2006-12-01

    Hera is a free internet-based tool that provides students access to both analysis software and data for studying astronomical objects such as black holes, binary star systems, supernovae, and galaxies. Students use a subset of the same software, and experience the same analysis process, that an astronomer follows in analyzing data obtained from an orbiting satellite observatory. Hera is accompanied by a web-based tutorial which steps students through the science background, procedures for accessing the data, and using the Hera software. The web pages include a lesson plan in which students explore data from a binary star system containing a normal star and a black hole. The objective of the lesson is for students to use plotting, estimation, and statistical techniques to determine the orbital period. Students may then apply these techniques to a number of data sets and draw conclusions on the natures of the systems (for example, students discover that one system is an eclipsing binary). The web page tutorial is self-guided and contains a number of exercises; students can work independently or in groups. Hera has been use with high school students and in introductory astronomy classes in community colleges. This poster describes Hera and its web-based tutorial. We outline the underlying software architecture, the development process, and its testing and classroom applications. We also describe the benefits to students in developing skills which extend basic science and math concepts into real applications.

  6. Data reduction analysis and application technique development for atmospheric trace gas constituents derived from remote sensors on satellite or airborne platforms

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1981-01-01

    The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.

  7. OSM-Classic : An optical imaging technique for accurately determining strain

    NASA Astrophysics Data System (ADS)

    Aldrich, Daniel R.; Ayranci, Cagri; Nobes, David S.

    OSM-Classic is a program designed in MATLAB® to provide a method of accurately determining strain in a test sample using an optical imaging technique. Measuring strain for the mechanical characterization of materials is most commonly performed with extensometers, LVDT (linear variable differential transistors), and strain gauges; however, these strain measurement methods suffer from their fragile nature and it is not particularly easy to attach these devices to the material for testing. To alleviate these potential problems, an optical approach that does not require contact with the specimen can be implemented to measure the strain. OSM-Classic is a software that interrogates a series of images to determine elongation in a test sample and hence, strain of the specimen. It was designed to provide a graphical user interface that includes image processing with a dynamic region of interest. Additionally, the stain is calculated directly while providing active feedback during the processing.

  8. Accounting for Uncertainties in Strengths of SiC MEMS Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.

    2007-01-01

    A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.

  9. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  10. Simulation Testing of Embedded Flight Software

    NASA Technical Reports Server (NTRS)

    Shahabuddin, Mohammad; Reinholtz, William

    2004-01-01

    Virtual Real Time (VRT) is a computer program for testing embedded flight software by computational simulation in a workstation, in contradistinction to testing it in its target central processing unit (CPU). The disadvantages of testing in the target CPU include the need for an expensive test bed, the necessity for testers and programmers to take turns using the test bed, and the lack of software tools for debugging in a real-time environment. By virtue of its architecture, most of the flight software of the type in question is amenable to development and testing on workstations, for which there is an abundance of commercially available debugging and analysis software tools. Unfortunately, the timing of a workstation differs from that of a target CPU in a test bed. VRT, in conjunction with closed-loop simulation software, provides a capability for executing embedded flight software on a workstation in a close-to-real-time environment. A scale factor is used to convert between execution time in VRT on a workstation and execution on a target CPU. VRT includes high-resolution operating- system timers that enable the synchronization of flight software with simulation software and ground software, all running on different workstations.

  11. Study of fault-tolerant software technology

    NASA Technical Reports Server (NTRS)

    Slivinski, T.; Broglio, C.; Wild, C.; Goldberg, J.; Levitt, K.; Hitt, E.; Webb, J.

    1984-01-01

    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance.

  12. Experimental software engineering: Seventeen years of lessons in the SEL

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank E.

    1992-01-01

    Seven key principles developed by the Software Engineering Laboratory (SEL) at the Goddard Space Flight Center (GSFC) of the National Aeronautics and Space Administration (NASA) are described. For the past 17 years, the SEL has been experimentally analyzing the development of production software as varying techniques and methodologies are applied in this one environment. The SEL has collected, archived, and studied detailed measures from more than 100 flight dynamics projects, thereby gaining significant insight into the effectiveness of numerous software techniques, as well as extensive experience in the overall effectiveness of 'Experimental Software Engineering'. This experience has helped formulate follow-on studies in the SEL, and it has helped other software organizations better understand just what can be accomplished and what cannot be accomplished through experimentation.

  13. Neural net diagnostics for VLSI test

    NASA Technical Reports Server (NTRS)

    Lin, T.; Tseng, H.; Wu, A.; Dogan, N.; Meador, J.

    1990-01-01

    This paper discusses the application of neural network pattern analysis algorithms to the IC fault diagnosis problem. A fault diagnostic is a decision rule combining what is known about an ideal circuit test response with information about how it is distorted by fabrication variations and measurement noise. The rule is used to detect fault existence in fabricated circuits using real test equipment. Traditional statistical techniques may be used to achieve this goal, but they can employ unrealistic a priori assumptions about measurement data. Our approach to this problem employs an adaptive pattern analysis technique based on feedforward neural networks. During training, a feedforward network automatically captures unknown sample distributions. This is important because distributions arising from the nonlinear effects of process variation can be more complex than is typically assumed. A feedforward network is also able to extract measurement features which contribute significantly to making a correct decision. Traditional feature extraction techniques employ matrix manipulations which can be particularly costly for large measurement vectors. In this paper we discuss a software system which we are developing that uses this approach. We also provide a simple example illustrating the use of the technique for fault detection in an operational amplifier.

  14. New Results in Software Model Checking and Analysis

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2010-01-01

    This introductory article surveys new techniques, supported by automated tools, for the analysis of software to ensure reliability and safety. Special focus is on model checking techniques. The article also introduces the five papers that are enclosed in this special journal volume.

  15. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1980-01-01

    The column normalizing technique was used to adjust the data for variations in the amplitude of the signal due to look angle effects with respect to solar zenith angle along the scan lines (i.e., across columns). Evaluation of the data set containing the geometric and radiometric adjustments, indicates that the data set should be satisfactory for further processing and analysis. Software was developed for degrading the spatial resolution of the aircraft data to produce a total of four data sets for further analysis. The quality of LANDSAT 2 CCT data for the test site is good for channels four, five, and six. Channel seven was not present on the tape. The data received were reformatted and analysis of the test site area was initiated.

  16. NASA software specification and evaluation system design, part 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A survey and analysis of the existing methods, tools and techniques employed in the development of software are presented along with recommendations for the construction of reliable software. Functional designs for software specification language, and the data base verifier are presented.

  17. Identifying biologically relevant differences between metagenomic communities.

    PubMed

    Parks, Donovan H; Beiko, Robert G

    2010-03-15

    Metagenomics is the study of genetic material recovered directly from environmental samples. Taxonomic and functional differences between metagenomic samples can highlight the influence of ecological factors on patterns of microbial life in a wide range of habitats. Statistical hypothesis tests can help us distinguish ecological influences from sampling artifacts, but knowledge of only the P-value from a statistical hypothesis test is insufficient to make inferences about biological relevance. Current reporting practices for pairwise comparative metagenomics are inadequate, and better tools are needed for comparative metagenomic analysis. We have developed a new software package, STAMP, for comparative metagenomics that supports best practices in analysis and reporting. Examination of a pair of iron mine metagenomes demonstrates that deeper biological insights can be gained using statistical techniques available in our software. An analysis of the functional potential of 'Candidatus Accumulibacter phosphatis' in two enhanced biological phosphorus removal metagenomes identified several subsystems that differ between the A.phosphatis stains in these related communities, including phosphate metabolism, secretion and metal transport. Python source code and binaries are freely available from our website at http://kiwi.cs.dal.ca/Software/STAMP CONTACT: beiko@cs.dal.ca Supplementary data are available at Bioinformatics online.

  18. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  19. Measuring fish and their physical habitats: Versatile 2D and 3D video techniques with user-friendly software

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.

    2017-01-01

    Applications of video in fisheries research range from simple biodiversity surveys to three-dimensional (3D) measurement of complex swimming, schooling, feeding, and territorial behaviors. However, researchers lack a transparently developed, easy-to-use, general purpose tool for 3D video measurement and event logging. Thus, we developed a new measurement system, with freely available, user-friendly software, easily obtained hardware, and flexible underlying mathematical methods capable of high precision and accuracy. The software, VidSync, allows users to efficiently record, organize, and navigate complex 2D or 3D measurements of fish and their physical habitats. Laboratory tests showed submillimetre accuracy in length measurements of 50.8 mm targets at close range, with increasing errors (mostly <1%) at longer range and for longer targets. A field test on juvenile Chinook salmon (Oncorhynchus tshawytscha) feeding behavior in Alaska streams found that individuals within aggregations avoided the immediate proximity of their competitors, out to a distance of 1.0 to 2.9 body lengths. This system makes 3D video measurement a practical tool for laboratory and field studies of aquatic or terrestrial animal behavior and ecology.

  20. A toolbox for developing bioinformatics software

    PubMed Central

    Potrzebowski, Wojciech; Puton, Tomasz; Rother, Magdalena; Wywial, Ewa; Bujnicki, Janusz M.

    2012-01-01

    Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers. PMID:21803787

  1. MMX-I: data-processing software for multimodal X-ray imaging and tomography.

    PubMed

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-05-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  2. Application of AI methods to aircraft guidance and control

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Mcmanus, John W.

    1988-01-01

    A research program for integrating artificial intelligence (AI) techniques with tools and methods used for aircraft flight control system design, development, and implementation is discussed. The application of the AI methods for the development and implementation of the logic software which operates with the control mode panel (CMP) of an aircraft is presented. The CMP is the pilot control panel for the automatic flight control system of a commercial-type research aircraft of Langley Research Center's Advanced Transport Operating Systems (ATOPS) program. A mouse-driven color-display emulation of the CMP, which was developed with AI methods and used to test the AI software logic implementation, is discussed. The operation of the CMP was enhanced with the addition of a display which was quickly developed with AI methods. The display advises the pilot of conditions not satisfied when a mode does not arm or engage. The implementation of the CMP software logic has shown that the time required to develop, implement, and modify software systems can be significantly reduced with the use of the AI methods.

  3. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  4. Feasibility of Close-Range Photogrammetric Models for Geographic Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Luke; /Rice U.

    2011-06-22

    The objective of this project was to determine the feasibility of using close-range architectural photogrammetry as an alternative three dimensional modeling technique in order to place the digital models in a geographic information system (GIS) at SLAC. With the available equipment and Australis photogrammetry software, the creation of full and accurate models of an example building, Building 281 on SLAC campus, was attempted. After conducting several equipment tests to determine the precision achievable, a complete photogrammetric survey was attempted. The dimensions of the resulting models were then compared against the true dimensions of the building. A complete building model wasmore » not evidenced to be obtainable using the current equipment and software. This failure was likely attributable to the limits of the software rather than the precision of the physical equipment. However, partial models of the building were shown to be accurate and determined to still be usable in a GIS. With further development of the photogrammetric software and survey procedure, the desired generation of a complete three dimensional model is likely still feasible.« less

  5. A comparison of time-shared vs. batch development of space software

    NASA Technical Reports Server (NTRS)

    Forthofer, M.

    1977-01-01

    In connection with a study regarding the ground support software development for the Space Shuttle, an investigation was conducted concerning the most suitable software development techniques to be employed. A time-sharing 'trial period' was used to determine whether or not time-sharing would be a cost-effective software development technique for the Ground Based Shuttle system. It was found that time-sharing substantially improved job turnaround and programmer access to the computer for the representative group of ground support programmers. Moreover, this improvement resulted in an estimated saving of over fifty programmer days during the trial period.

  6. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  7. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  8. A quantitative comparison of corrective and perfective maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Joel; Cain, James

    1994-01-01

    This paper presents a quantitative comparison of corrective and perfective software maintenance activities. The comparison utilizes basic data collected throughout the maintenance process. The data collected are extensive and allow the impact of both types of maintenance to be quantitatively evaluated and compared. Basic statistical techniques test relationships between and among process and product data. The results show interesting similarities and important differences in both process and product characteristics.

  9. Genetic Algorithms and Their Application to the Protein Folding Problem

    DTIC Science & Technology

    1993-12-01

    and symbolic methods, random methods such as Monte Carlo simulation and simulated annealing, distance geometry, and molecular dynamics. Many of these...calculated energies with those obtained using the molecular simulation software package called CHARMm. 10 9) Test both the simple and parallel simpie genetic...homology-based, and simplification techniques. 3.21 Molecular Dynamics. Perhaps the most natural approach is to actually simulate the folding process. This

  10. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  11. Towards a balanced software team formation based on Belbin team role using fuzzy technique

    NASA Astrophysics Data System (ADS)

    Omar, Mazni; Hasan, Bikhtiyar; Ahmad, Mazida; Yasin, Azman; Baharom, Fauziah; Mohd, Haslina; Darus, Norida Muhd

    2016-08-01

    In software engineering (SE), team roles play significant impact in determining the project success. To ensure the optimal outcome of the project the team is working on, it is essential to ensure that the team members are assigned to the right role with the right characteristics. One of the prevalent team roles is Belbin team role. A successful team must have a balance of team roles. Thus, this study demonstrates steps taken to determine balance of software team formation based on Belbin team role using fuzzy technique. Fuzzy technique was chosen because it allows analyzing of imprecise data and classifying selected criteria. In this study, two roles in Belbin team role, which are Shaper (Sh) and Plant (Pl) were chosen to assign the specific role in software team. Results show that the technique is able to be used for determining the balance of team roles. Future works will focus on the validation of the proposed method by using empirical data in industrial setting.

  12. BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.

    2018-01-01

    Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.

  13. Software reliability models for fault-tolerant avionics computers and related topics

    NASA Technical Reports Server (NTRS)

    Miller, Douglas R.

    1987-01-01

    Software reliability research is briefly described. General research topics are reliability growth models, quality of software reliability prediction, the complete monotonicity property of reliability growth, conceptual modelling of software failure behavior, assurance of ultrahigh reliability, and analysis techniques for fault-tolerant systems.

  14. Educational Software Acquisition for Microcomputers.

    ERIC Educational Resources Information Center

    Erikson, Warren; Turban, Efraim

    1985-01-01

    Examination of issues involved in acquiring appropriate microcomputer software for higher education focuses on the following points: developing your own software; finding commercially available software; using published evaluations; pre-purchase testing; customizing and adapting commercial software; post-purchase testing; and software use. A…

  15. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    PubMed

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  16. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less

  17. Simulation verification techniques study. Subsystem simulation validation techniques

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1974-01-01

    Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.

  18. A Role-Playing Game for a Software Engineering Lab: Developing a Product Line

    ERIC Educational Resources Information Center

    Zuppiroli, Sara; Ciancarini, Paolo; Gabbrielli, Maurizio

    2012-01-01

    Software product line development refers to software engineering practices and techniques for creating families of similar software systems from a basic set of reusable components, called shared assets. Teaching how to deal with software product lines in a university lab course is a challenging task, because there are several practical issues that…

  19. A Quantitative Analysis of Open Source Software's Acceptability as Production-Quality Code

    ERIC Educational Resources Information Center

    Fischer, Michael

    2011-01-01

    The difficulty in writing defect-free software has been long acknowledged both by academia and industry. A constant battle occurs as developers seek to craft software that works within aggressive business schedules and deadlines. Many tools and techniques are used in attempt to manage these software projects. Software metrics are a tool that has…

  20. Practical Methods for Estimating Software Systems Fault Content and Location

    NASA Technical Reports Server (NTRS)

    Nikora, A.; Schneidewind, N.; Munson, J.

    1999-01-01

    Over the past several years, we have developed techniques to discriminate between fault-prone software modules and those that are not, to estimate a software system's residual fault content, to identify those portions of a software system having the highest estimated number of faults, and to estimate the effects of requirements changes on software quality.

  1. Evolution of the ATLAS Nightly Build System

    NASA Astrophysics Data System (ADS)

    Undrus, A.

    2012-12-01

    The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.

  2. V and V of ISHM Software for Space Exploration

    NASA Technical Reports Server (NTRS)

    Markosian, Lawrence; Feather, Martin, S.; Brinza, David; Figueroa, F.

    2005-01-01

    NASA has established a far-reaching and long-term program for robotic and manned exploration of the solar system, beginning with missions to the moon and Mars. The Crew Transportation System (CTS), a key system for space exploration, imposes four requirements' that ISHM addresses. These requirements have a wide range of implications for V&V and certification of ISHM. There is a range of time-criticality for ISHM actions, from prognostication, which is often (but not always) non-time-critical, to time-critical state estimation and system management under off-nominal emergency conditions. These are externally imposed requirements on ISHM that are subject to V&V. - In addition, a range of techniques are needed to implement an ISHM. The approaches to ISHM are described elsewhere. These approaches range from well-understood algorithms for low-level data analysis, validation and reporting, to AI techniques for state estimation and planning. The range of techniques, and specifically the use of AI techniques such as reasoning under uncertainty and mission planning (and re-planning), implies that several V&V approaches may be required. Depending on the ISHM architecture, traditional testing approaches may be adequate for some ISHM functionality. The AI-based approaches to reasoning under uncertainty, model-based reasoning, and planning share characteristics typical of other complex software systems, but they also have characteristics that set them apart and challenge standard V&V techniques. The range of possible solutions to the overall ISHM problem impose internal challenges to V&V. The V&V challenges increase when hard real-time constraints are imposed for time-critical functionality. For example, there is an external requirement that impending catastrophic failure of the Launch Vehicle (LV) at launch time be detected and life-saving action be taken within two seconds. In this paper we outline the challenges for ISHM V&V, existing approaches and analogs in other software application areas, and possible new approaches to the V&V challenges for space exploration ISHM.

  3. Deep learning with convolutional neural network in radiology.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  4. Ground Penetrating Radar technique for railway track characterization in Portugal

    NASA Astrophysics Data System (ADS)

    De Chiara, Francesca; Fontul, Simona; Fortunato, Eduardo; D'Andrea, Antonio

    2013-04-01

    Maintenance actions are significant for transport infrastructures but, today, costs have to be necessary limited. A proper quality control since the construction phase is a key factor for a long life cycle and for a good economy policy. For this reason, suitable techniques have to be chosen and non-destructive tests represent an efficient solution, as they allow to evaluate infrastructure characteristics in a continuous or quasi-continuous way, saving time and costs, enabling to make changes if tests results do not comply with the project requirements. Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry and they cannot be detected by the common monitoring procedures, namely the measurements of track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. Therefore, it represents a reliable technique to assess track geometry problems and consequently to improve maintenance planning. In Portugal, rail inspection is performed with Plasser & Theurer EM120 equipment and recently 400 MHz IDS antennas were installed on it. GPR tests were performed on the Portuguese rail network and, as case study in this paper, a renewed track was considered. The aim was to detect, along the track, changes of the layers in terms of both thicknesses and materials characteristics by using specific software, Railwaydoctor. Different test campaigns were studied in order to determine and compare the materials dielectric constants that can be influenced by water content values, due to measurements performed in different seasons.

  5. Experiments in fault tolerant software reliability

    NASA Technical Reports Server (NTRS)

    Mcallister, David F.; Vouk, Mladen A.

    1989-01-01

    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.

  6. A methodology for testing fault-tolerant software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    A methodology for testing fault tolerant software is presented. There are problems associated with testing fault tolerant software because many errors are masked or corrected by voters, limiter, or automatic channel synchronization. This methodology illustrates how the same strategies used for testing fault tolerant hardware can be applied to testing fault tolerant software. For example, one strategy used in testing fault tolerant hardware is to disable the redundancy during testing. A similar testing strategy is proposed for software, namely, to move the major emphasis on testing earlier in the development cycle (before the redundancy is in place) thus reducing the possibility that undetected errors will be masked when limiters and voters are added.

  7. Bayesian methods in reliability

    NASA Astrophysics Data System (ADS)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  8. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  9. A computerized self-compensating system for ultrasonic inspection of airplane structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komsky, I.N.; Achenbach, J.D.; Hagemaier, D.

    1993-12-31

    Application of a self-compensating technique for ultrasonic inspection of airplane structures makes it possible not only to detect cracks in the different layers of joints but also to obtain information on crack sizes. A prototype computerized ultrasonic system, which utilizes the self-compensating method, has been developed for non-destructive inspection of multilayered airplane structures with in-between sealants, such as bolted joints in tail connections. Industrial applications of the system would require deployment of commercially available portable modules for data acquisition and processing. A portable ultrasonic flaw detector EPOCH II manual scanners and HandiScan, and SQL and FCS software modules form themore » PC-based TestPro system have been selected for initial tests. A pair of contact angle-beam transducers were used to generate shear waves in the material. Both hardware and software components of the system have been modified for the application in conjunction with the self-compensating technique. The system has bene tested on two calibration specimens with artificial flaws of different sizes in internal layers of multilayered structures. Ultrasonic signals transmitted through and reflected from the artificial flaws have bene discriminated and characterized using multiple time domain amplitude gates. Then the ratios of the reflection and transmission coefficients, R/T, were calculated for several positions of the transducers. Inspection of measured R/T curves shows it is difficult to visually associate curve shapes with corresponding flaw sizes and orientation. Hence for online classification of these curve shapes, application of an adaptive signal classifier was considered. Several different types and configurations of the classifiers, including a neural network, have been tested. Test results showed that improved performance of the classifier can be achieved by combination of a back-propagation neural network with a signal pre-processing module.« less

  10. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon

    Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  11. A high order approach to flight software development and testing

    NASA Technical Reports Server (NTRS)

    Steinbacher, J.

    1981-01-01

    The use of a software development facility is discussed as a means of producing a reliable and maintainable ECS software system, and as a means of providing efficient use of the ECS hardware test facility. Principles applied to software design are given, including modularity, abstraction, hiding, and uniformity. The general objectives of each phase of the software life cycle are also given, including testing, maintenance, code development, and requirement specifications. Software development facility tools are summarized, and tool deficiencies recognized in the code development and testing phases are considered. Due to limited lab resources, the functional simulation capabilities may be indispensable in the testing phase.

  12. Two-step web-mining approach to study geology/geophysics-related open-source software projects

    NASA Astrophysics Data System (ADS)

    Behrends, Knut; Conze, Ronald

    2013-04-01

    Geology/geophysics is a highly interdisciplinary science, overlapping with, for instance, physics, biology and chemistry. In today's software-intensive work environments, geoscientists often encounter new open-source software from scientific fields that are only remotely related to the own field of expertise. We show how web-mining techniques can help to carry out systematic discovery and evaluation of such software. In a first step, we downloaded ~500 abstracts (each consisting of ~1 kb UTF-8 text) from agu-fm12.abstractcentral.com. This web site hosts the abstracts of all publications presented at AGU Fall Meeting 2012, the world's largest annual geology/geophysics conference. All abstracts belonged to the category "Earth and Space Science Informatics", an interdisciplinary label cross-cutting many disciplines such as "deep biosphere", "atmospheric research", and "mineral physics". Each publication was represented by a highly structured record with ~20 short data attributes, the largest authorship-record being the unstructured "abstract" field. We processed texts of the abstracts with the statistics software "R" to calculate a corpus and a term-document matrix. Using R package "tm", we applied text-mining techniques to filter data and develop hypotheses about software-development activities happening in various geology/geophysics fields. Analyzing the term-document matrix with basic techniques (e.g., word frequencies, co-occurences, weighting) as well as more complex methods (clustering, classification) several key pieces of information were extracted. For example, text-mining can be used to identify scientists who are also developers of open-source scientific software, and the names of their programming projects and codes can also be identified. In a second step, based on the intermediate results found by processing the conference-abstracts, any new hypotheses can be tested in another webmining subproject: by merging the dataset with open data from github.com and stackoverflow.com. These popular, developer-centric websites have powerful application-programmer interfaces, and follow an open-data policy. In this regard, these sites offer a web-accessible reservoir of information that can be tapped to study questions such as: which open source software projects are eminent in the various geoscience fields? What are the most popular programming languages? How are they trending? Are there any interesting temporal patterns in committer activities? How large are programming teams and how do they change over time? What free software packages exist in the vast realms of related fields? Does the software from these fields have capabilities that might still be useful to me as a researcher, or can help me perform my work better? Are there any open-source projects that might be commercially interesting? This evaluation strategy reveals programming projects that tend to be new. As many important legacy codes are not hosted on open-source code-repositories, the presented search method might overlook some older projects.

  13. MMX-I: data-processing software for multimodal X-ray imaging and tomography

    PubMed Central

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-01-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159

  14. Advanced software techniques for data management systems. Volume 1: Study of software aspects of the phase B space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1972-01-01

    An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.

  15. Working Notes from the 1992 AAAI Workshop on Automating Software Design. Theme: Domain Specific Software Design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M. (Editor); Barstow, David; Lowry, Michael R.; Tong, Christopher H.

    1992-01-01

    The goal of this workshop is to identify different architectural approaches to building domain-specific software design systems and to explore issues unique to domain-specific (vs. general-purpose) software design. Some general issues that cut across the particular software design domain include: (1) knowledge representation, acquisition, and maintenance; (2) specialized software design techniques; and (3) user interaction and user interface.

  16. Self-assembling software generator

    DOEpatents

    Bouchard, Ann M [Albuquerque, NM; Osbourn, Gordon C [Albuquerque, NM

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  17. Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique.

    PubMed

    Santoro, Margherita; Jarjoura, Karim; Cangialosi, Thomas J

    2006-03-01

    The purpose of the study was to evaluate the accuracy of cephalometric measurements obtained with digital tracing software compared with equivalent hand-traced measurements. In the sandwich technique, a storage phosphor plate and a conventional radiographic film are placed in the same cassette and exposed simultaneously. The method eliminates positioning errors and potential differences associated with multiple radiographic exposures that affected previous studies. It was used to ensure the equivalence of the digital images to the hard copy radiographs. Cephalometric measurements instead of landmarks were the focus of this investigation in order to acquire data with direct clinical applications. The sample consisted of digital and analog radiographic images from 47 patients after orthodontic treatment. Nine cephalometric landmarks were identified and 13 measurements calculated by 1 operator, both manually and with digital tracing software. Measurement error was assessed for each method by duplicating measurements of 25 randomly selected radiographs and by using Pearson's correlation coefficient. A paired t test was used to detect differences between the manual and digital methods. An overall greater variability in the digital cephalometric measurements was found. Differences between the 2 methods for SNA, ANB, S-Go:N-Me, U1/L1, L1-GoGn, and N-ANS:ANS-Me were statistically significant (P < .05). However, only the U1/L1 and S-Go:N-Me measurements showed differences greater than 2 SE (P < .0001). The 2 tracing methods provide similar clinical results; therefore, efficient digital cephalometric software can be reliably chosen as a routine diagnostic tool. The user-friendly sandwich technique was effective as an option for interoffice communications.

  18. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images.

    PubMed

    Wu, Allison Chia-Yi; Rifkin, Scott A

    2015-03-27

    Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological processes. However, fluorescence microscopy images are often noisy, and it can be difficult to distinguish a fluorescently labeled single molecule from background speckle. We present a computational pipeline to distinguish the true signal of fluorescently labeled molecules from background fluorescence and noise. We test our technique using the challenging case of wide-field, epifluorescence microscope image stacks from single molecule fluorescence in situ experiments on nematode embryos where there can be substantial out-of-focus light and structured noise. The software recognizes and classifies individual mRNA spots by measuring several features of local intensity maxima and classifying them with a supervised random forest classifier. A key innovation of this software is that, by estimating the probability that each local maximum is a true spot in a statistically principled way, it makes it possible to estimate the error introduced by image classification. This can be used to assess the quality of the data and to estimate a confidence interval for the molecule count estimate, all of which are important for quantitative interpretations of the results of single-molecule experiments. The software classifies spots in these images well, with >95% AUROC on realistic artificial data and outperforms other commonly used techniques on challenging real data. Its interval estimates provide a unique measure of the quality of an image and confidence in the classification.

  19. MATTS- A Step Towards Model Based Testing

    NASA Astrophysics Data System (ADS)

    Herpel, H.-J.; Willich, G.; Li, J.; Xie, J.; Johansen, B.; Kvinnesland, K.; Krueger, S.; Barrios, P.

    2016-08-01

    In this paper we describe a Model Based approach to testing of on-board software and compare it with traditional validation strategy currently applied to satellite software. The major problems that software engineering will face over at least the next two decades are increasing application complexity driven by the need for autonomy and serious application robustness. In other words, how do we actually get to declare success when trying to build applications one or two orders of magnitude more complex than today's applications. To solve the problems addressed above the software engineering process has to be improved at least for two aspects: 1) Software design and 2) Software testing. The software design process has to evolve towards model-based approaches with extensive use of code generators. Today, testing is an essential, but time and resource consuming activity in the software development process. Generating a short, but effective test suite usually requires a lot of manual work and expert knowledge. In a model-based process, among other subtasks, test construction and test execution can also be partially automated. The basic idea behind the presented study was to start from a formal model (e.g. State Machines), generate abstract test cases which are then converted to concrete executable test cases (input and expected output pairs). The generated concrete test cases were applied to an on-board software. Results were collected and evaluated wrt. applicability, cost-efficiency, effectiveness at fault finding, and scalability.

  20. Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study.

    PubMed

    Duan, Yuanyuan; Gonzalez, Jorge A; Kulkarni, Pratim A; Nagy, William W; Griggs, Jason A

    2018-06-16

    To validate the fatigue lifetime of a reduced-diameter dental implant system predicted by three-dimensional finite element analysis (FEA) by testing physical implant specimens using an accelerated lifetime testing (ALT) strategy with the apparatus specified by ISO 14801. A commercially-available reduced-diameter titanium dental implant system (Straumann Standard Plus NN) was digitized using a micro-CT scanner. Axial slices were processed using an interactive medical image processing software (Mimics) to create 3D models. FEA analysis was performed in ABAQUS, and fatigue lifetime was predicted using fe-safe ® software. The same implant specimens (n=15) were tested at a frequency of 2Hz on load frames using apparatus specified by ISO 14801 and ALT. Multiple step-stress load profiles with various aggressiveness were used to improve testing efficiency. Fatigue lifetime statistics of physical specimens were estimated in a reliability analysis software (ALTA PRO). Fractured specimens were examined using SEM with fractographic technique to determine the failure mode. FEA predicted lifetime was within the 95% confidence interval of lifetime estimated by experimental results, which suggested that FEA prediction was accurate for this implant system. The highest probability of failure was located at the root of the implant body screw thread adjacent to the simulated bone level, which also agreed with the failure origin in physical specimens. Fatigue lifetime predictions based on finite element modeling could yield similar results in lieu of physical testing, allowing the use of virtual testing in the early stages of future research projects on implant fatigue. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  1. The cost of software fault tolerance

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1982-01-01

    The proposed use of software fault tolerance techniques as a means of reducing software costs in avionics and as a means of addressing the issue of system unreliability due to faults in software is examined. A model is developed to provide a view of the relationships among cost, redundancy, and reliability which suggests strategies for software development and maintenance which are not conventional.

  2. Software-Based Safety Systems in Space - Learning from other Domains

    NASA Astrophysics Data System (ADS)

    Klicker, M.; Putzer, H.

    2012-01-01

    Increasing complexity and new emerging capabilities for manned and unmanned missions have been the hallmark of the past decades of space exploration. One of the drivers in this process was the ever increasing use of software and software-intensive systems to implement system functions necessary to the capabilities needed. The course of technological evolution suggests that this development will continue well into the future with a number of challenges for the safety community some of which shall be discussed in this paper. The current state of the art reveals a number of problems with developing and assessing safety critical software which explains the reluctance of the space community to rely on software-based safety measures to mitigate hazards. Among others, usually lack of trustworthy evidence of software integrity in all foreseeable situations and the difficulties to integrate software in the traditional safety analysis framework are cited. Experience from other domains and recent developments in modern software development methodologies and verification techniques are analysed for the suitability for space systems and an avionics architectural framework (see STANAG 4626) for the implementation of safety critical software is proposed. This is shown to create among other features the possibility of numerous degradation modes enhancing overall system safety and interoperability of computerized space systems. It also potentially simplifies international cooperation on a technical level by introducing a higher degree of compatibility. As software safety cannot be tested or argued into a system in hindsight, the development process and especially the architecture chosen are essential to establish safety properties for the software used to implement safety functions. The core of the safety argument revolves around the separation of different functions and software modules from each other by minimal coupling of functions and credible separation mechanisms in the architecture combined with rigorous development methodologies for the software itself.

  3. Space shuttle orbiter avionics software: Post review report for the entry FACI (First Article Configuration Inspection). [including orbital flight tests integrated system

    NASA Technical Reports Server (NTRS)

    Markos, H.

    1978-01-01

    Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.

  4. State-of-the-art Hydrology Education: Development of Windows-based and Web-based Interactive Teaching-Learning Software

    NASA Astrophysics Data System (ADS)

    Chu, X.

    2011-12-01

    This study, funded by the NSF CAREER program, focuses on developing new methods to quantify microtopography-controlled overland flow processes and integrating the cutting-edge hydrologic research with all-level education and outreach activities. To achieve the educational goal, an interactive teaching-learning software package has been developed. This software, with enhanced visualization capabilities, integrates the new modeling techniques, computer-guided learning processes, and education-oriented tools in a user-friendly interface. Both Windows-based and web-based versions have been developed. The software is specially designed for three major user levels: elementary level (Level 1: K-12 and outreach education), medium level (Level 2: undergraduate education), and advanced level (Level 3: graduate education). Depending on the levels, users are guided to different educational systems. Each system consists of a series of mini "libraries" featured with movies, pictures, and documentation that cover fundamental theories, varying scale experiments, and computer modeling of overland flow generation, surface runoff, and infiltration processes. Testing and practical use of this educational software in undergraduate and graduate teaching demonstrate its effectiveness to promote students' learning and interest in hydrologic sciences. This educational software also has been used as a hydrologic demonstration tool for K-12 students and Native American students through the Nurturing American Tribal Undergraduate Research Education (NATURE) program and Science, Technology, Engineering and Mathematics (STEM) outreach activities.

  5. Software-assisted small bowel motility analysis using free-breathing MRI: feasibility study.

    PubMed

    Bickelhaupt, Sebastian; Froehlich, Johannes M; Cattin, Roger; Raible, Stephan; Bouquet, Hanspeter; Bill, Urs; Patak, Michael A

    2014-01-01

    To validate a software prototype allowing for small bowel motility analysis in free breathing by comparing it to manual measurements. In all, 25 patients (15 male, 10 female; mean age 39 years) were included in this Institutional Review Board-approved, retrospective study. Magnetic resonance imaging (MRI) was performed on a 1.5T system after standardized preparation acquiring motility sequences in free breathing over 69-84 seconds. Small bowel motility was analyzed manually and with the software. Functional parameters, measurement time, and reproducibility were compared using the coefficient of variance and paired Student's t-test. Correlation was analyzed using Pearson's correlation coefficient and linear regression. The 25 segments were analyzed twice both by hand and using the software with automatic breathing correction. All assessed parameters significantly correlated between the methods (P < 0.01), but the scattering of repeated measurements was significantly (P < 0.01) lower using the software (3.90%, standard deviation [SD] ± 5.69) than manual examinations (9.77%, SD ± 11.08). The time needed was significantly less (P < 0.001) with the software (4.52 minutes, SD ± 1.58) compared to manual measurement, lasting 17.48 minutes for manual (SD ± 1.75 minutes). The use of the software proves reliable and faster small bowel motility measurements in free-breathing MRI compared to manual analyses. The new technique allows for analyses of prolonged sequences acquired in free breathing, improving the informative value of the examinations by amplifying the evaluable data. Copyright © 2013 Wiley Periodicals, Inc.

  6. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing.

    PubMed

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-04-27

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  7. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    PubMed Central

    Wang, Yudan; Wen, Guojun; Chen, Han

    2017-01-01

    The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445

  8. Costs of genetic testing: Supporting Brazilian Public Policies for the incorporating of molecular diagnostic technologies

    PubMed Central

    Schlatter, Rosane Paixão; Matte, Ursula; Polanczyk, Carisi Anne; Koehler-Santos, Patrícia; Ashton-Prolla, Patricia

    2015-01-01

    This study identifies and describes the operating costs associated with the molecular diagnosis of diseases, such as hereditary cancer. To approximate the costs associated with these tests, data informed by Standard Operating Procedures for various techniques was collected from hospital software and a survey of market prices. Costs were established for four scenarios of capacity utilization to represent the possibility of suboptimal use in research laboratories. Cost description was based on a single site. The results show that only one technique was not impacted by rising costs due to underutilized capacity. Several common techniques were considerably more expensive at 30% capacity, including polymerase chain reaction (180%), microsatellite instability analysis (181%), gene rearrangement analysis by multiplex ligation probe amplification (412%), non-labeled sequencing (173%), and quantitation of nucleic acids (169%). These findings should be relevant for the definition of public policies and suggest that investment of public funds in the establishment of centralized diagnostic research centers would reduce costs to the Public Health System. PMID:26500437

  9. Assessment of mass detection performance in contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Carton, Ann-Katherine; de Carvalho, Pablo M.; Li, Zhijin; Dromain, Clarisse; Muller, Serge

    2015-03-01

    We address the detectability of contrast-agent enhancing masses for contrast-agent enhanced spectral mammography (CESM), a dual-energy technique providing functional projection images of breast tissue perfusion and vascularity using simulated CESM images. First, the realism of simulated CESM images from anthropomorphic breast software phantoms generated with a software X-ray imaging platform was validated. Breast texture was characterized by power-law coefficients calculated in data sets of real clinical and simulated images. We also performed a 2-alternative forced choice (2-AFC) psychophysical experiment whereby simulated and real images were presented side-by-side to an experienced radiologist to test if real images could be distinguished from the simulated images. It was found that texture in our simulated CESM images has a fairly realistic appearance. Next, the relative performance of human readers and previously developed mathematical observers was assessed for the detection of iodine-enhancing mass lesions containing different contrast agent concentrations. A four alternative-forced-choice (4 AFC) task was designed; the task for the model and human observer was to detect which one of the four simulated DE recombined images contained an iodineenhancing mass. Our results showed that the NPW and NPWE models largely outperform human performance. After introduction of an internal noise component, both observers approached human performance. The CHO observer performs slightly worse than the average human observer. There is still work to be done in improving model observers as predictors of human-observer performance. Larger trials could also improve our test statistics. We hope that in the future, this framework of software breast phantoms, virtual image acquisition and processing, and mathematical observers can be beneficial to optimize CESM imaging techniques.

  10. Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories

    NASA Astrophysics Data System (ADS)

    Ojaghi, Mobin; Martínez, Ignacio Lamata; Dietz, Matt S.; Williams, Martin S.; Blakeborough, Anthony; Crewe, Adam J.; Taylor, Colin A.; Madabhushi, S. P. Gopal; Haigh, Stuart K.

    2018-01-01

    Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented.

  11. Validation of a semi-automatic protocol for the assessment of the tear meniscus central area based on open-source software

    NASA Astrophysics Data System (ADS)

    Pena-Verdeal, Hugo; Garcia-Resua, Carlos; Yebra-Pimentel, Eva; Giraldez, Maria J.

    2017-08-01

    Purpose: Different lower tear meniscus parameters can be clinical assessed on dry eye diagnosis. The aim of this study was to propose and analyse the variability of a semi-automatic method for measuring lower tear meniscus central area (TMCA) by using open source software. Material and methods: On a group of 105 subjects, one video of the lower tear meniscus after fluorescein instillation was generated by a digital camera attached to a slit-lamp. A short light beam (3x5 mm) with moderate illumination in the central portion of the meniscus (6 o'clock) was used. Images were extracted from each video by a masked observer. By using an open source software based on Java (NIH ImageJ), a further observer measured in a masked and randomized order the TMCA in the short light beam illuminated area by two methods: (1) manual method, where TMCA images was "manually" measured; (2) semi-automatic method, where TMCA images were transformed in an 8-bit-binary image, then holes inside this shape were filled and on the isolated shape, the area size was obtained. Finally, both measurements, manual and semi-automatic, were compared. Results: Paired t-test showed no statistical difference between both techniques results (p = 0.102). Pearson correlation between techniques show a significant positive near to perfect correlation (r = 0.99; p < 0.001). Conclusions: This study showed a useful tool to objectively measure the frontal central area of the meniscus in photography by free open source software.

  12. Program Analysis Techniques for Efficient Software Model Checking

    DTIC Science & Technology

    2011-02-28

    MIT Press, 1986. [29] D. Marinov, A . Andoni, D. Daniliuc, S . Khurshid, and M . Rinard. An evaluation of exhaustive testing for data structures...such as reading, writing, creating, or deleting a file or a directory) on a file system state s , it uses its analyses to identify other file system...ples of Programming Languages (POPL), January 2003. [6] C. Boyapati and M . Rinard. A parameterized type system for race-free Java programs. In

  13. New media applications and their potential for the advancement of public perceptions of archaeoastronomy and for the testing of archaeoastronomical hypotheses.

    NASA Astrophysics Data System (ADS)

    MacDonald, J.

    This paper looks at the use of astronomical programmes and the development of new media modeling techniques as a means to better understand archaeoastronomy. The paper also suggests that these new methods and technologies are a means of furthering the public perceptions of archaeoastronomy and the important role that 'astronomy' played in the history and development of human culture. This discussion is rooted in a computer simulation of Stonehenge and its land and skyscape. The integration of the astronomy software allows viewing horizon astronomical lignments in relation to digitally recreated Neolithic/Early Bronze Age (EBA) monumental architecture. This work shows how modern virtual modelling techniques can be a tool for testing archaeoastronomical hypotheses, as well as a demonstrative tool for teaching and promoting archaeoastronomy in mainstream media.

  14. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  15. Investigation of Phototriangulation Accuracy with Using of Various Techniques Laboratory and Field Calibration

    NASA Astrophysics Data System (ADS)

    Chibunichev, A. G.; Kurkov, V. M.; Smirnov, A. V.; Govorov, A. V.; Mikhalin, V. A.

    2016-10-01

    Nowadays, aerial survey technology using aerial systems based on unmanned aerial vehicles (UAVs) becomes more popular. UAVs physically can not carry professional aerocameras. Consumer digital cameras are used instead. Such cameras usually have rolling, lamellar or global shutter. Quite often manufacturers and users of such aerial systems do not use camera calibration. In this case self-calibration techniques are used. However such approach is not confirmed by extensive theoretical and practical research. In this paper we compare results of phototriangulation based on laboratory, test-field or self-calibration. For investigations we use Zaoksky test area as an experimental field provided dense network of target and natural control points. Racurs PHOTOMOD and Agisoft PhotoScan software were used in evaluation. The results of investigations, conclusions and practical recommendations are presented in this article.

  16. A Single-Block TRL Test Fixture for the Cryogenic Characterization of Planar Microwave Components

    NASA Technical Reports Server (NTRS)

    Mejia, M.; Creason, A. S.; Toncich, S. S.; Ebihara, B. T.; Miranda, F. A.

    1996-01-01

    The High-Temperature-Superconductivity (HTS) group of the RF Technology Branch, Space Electronics Division, is actively involved in the fabrication and cryogenic characterization of planar microwave components for space applications. This process requires fast, reliable, and accurate measurement techniques not readily available. A new calibration standard/test fixture that enhances the integrity and reliability of the component characterization process has been developed. The fixture consists of 50 omega thru, reflect, delay, and device under test gold lines etched onto a 254 microns (0.010 in) thick alumina substrate. The Thru-Reflect-Line (TRL) fixture was tested at room temperature using a 30 omega, 7.62 mm (300 mil) long, gold line as a known standard. Good agreement between the experimental data and the data modelled using Sonnet's em(C) software was obtained for both the return (S(sub 11)) and insertion (S( 21)) losses. A gold two-pole bandpass filter with a 7.3 GHz center frequency was used as our Device Under Test (DUT), and the results compared with those obtained using a Short-Open-Load-Thru (SOLT) calibration technique.

  17. Software design as a problem in learning theory (a research overview)

    NASA Technical Reports Server (NTRS)

    Fass, Leona F.

    1992-01-01

    Our interest in automating software design has come out of our research in automated reasoning, inductive inference, learnability, and algebraic machine theory. We have investigated these areas extensively, in connection with specific problems of language representation, acquisition, processing, and design. In the case of formal context-free (CF) languages we established existence of finite learnable models ('behavioral realizations') and procedures for constructing them effectively. We also determined techniques for automatic construction of the models, inductively inferring them from finite examples of how they should 'behave'. These results were obtainable due to appropriate representation of domain knowledge, and constraints on the domain that the representation defined. It was when we sought to generalize our results, and adapt or apply them, that we began investigating the possibility of determining similar procedures for constructing correct software. Discussions with other researchers led us to examine testing and verification processes, as they are related to inference, and due to their considerable importance in correct software design. Motivating papers by other researchers, led us to examine these processes in some depth. Here we present our approach to those software design issues raised by other researchers, within our own theoretical context. We describe our results, relative to those of the other researchers, and conclude that they do not compare unfavorably.

  18. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  19. Expert system verification and validation study: ES V/V Workshop

    NASA Technical Reports Server (NTRS)

    French, Scott; Hamilton, David

    1992-01-01

    The primary purpose of this document is to build a foundation for applying principles of verification and validation (V&V) of expert systems. To achieve this, some V&V as applied to conventionally implemented software is required. Part one will discuss the background of V&V from the perspective of (1) what is V&V of software and (2) V&V's role in developing software. Part one will also overview some common analysis techniques that are applied when performing V&V of software. All of these materials will be presented based on the assumption that the reader has little or no background in V&V or in developing procedural software. The primary purpose of part two is to explain the major techniques that have been developed for V&V of expert systems.

  20. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  1. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    PubMed

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  2. SLS Flight Software Testing: Using a Modified Agile Software Testing Approach

    NASA Technical Reports Server (NTRS)

    Bolton, Albanie T.

    2016-01-01

    NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner. Through agile testing, there has been increased value through individuals and interactions over processes and tools, improved customer collaboration, and improved responsiveness to changes through controlled planning. The presentation will describe agile testing methodology as taken with the SLS FSW Test and Verification team at Marshall Space Flight Center.

  3. Overview of software development at the parabolic dish test site

    NASA Technical Reports Server (NTRS)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  4. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  5. AADL and Model-based Engineering

    DTIC Science & Technology

    2014-10-20

    and MBE Feiler, Oct 20, 2014 © 2014 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems ...D eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency...confusion Hardware Engineer Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software

  6. Pre-operative segmentation of neck CT datasets for the planning of neck dissections

    NASA Astrophysics Data System (ADS)

    Cordes, Jeanette; Dornheim, Jana; Preim, Bernhard; Hertel, Ilka; Strauss, Gero

    2006-03-01

    For the pre-operative segmentation of CT neck datasets, we developed the software assistant NeckVision. The relevant anatomical structures for neck dissection planning can be segmented and the resulting patient-specific 3D-models are visualized afterwards in another software system for intervention planning. As a first step, we examined the appropriateness of elementary segmentation techniques based on gray values and contour information to extract the structures in the neck region from CT data. Region growing, interactive watershed transformation and live-wire are employed for segmentation of different target structures. It is also examined, which of the segmentation tasks can be automated. Based on this analysis, the software assistant NeckVision was developed to optimally support the workflow of image analysis for clinicians. The usability of NeckVision was tested within a first evaluation with four otorhinolaryngologists from the university hospital of Leipzig, four computer scientists from the university of Magdeburg and two laymen in both fields.

  7. Optical analysis of electro-optical systems by MTF calculus

    NASA Astrophysics Data System (ADS)

    Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari

    2011-08-01

    One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.

  8. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  9. Educational Software: A Developer's Perspective.

    ERIC Educational Resources Information Center

    Armstrong, Timothy C.; Loane, Russell F.

    1994-01-01

    Examines the current status and short-term future of computer software development in higher education. Topics discussed include educational advantages of software; current program development techniques, including object oriented programming; and market trends, including IBM versus Macintosh and multimedia programs. (LRW)

  10. Platform-independent software for medical image processing on the Internet

    NASA Astrophysics Data System (ADS)

    Mancuso, Michael E.; Pathak, Sayan D.; Kim, Yongmin

    1997-05-01

    We have developed a software tool for image processing over the Internet. The tool is a general purpose, easy to use, flexible, platform independent image processing software package with functions most commonly used in medical image processing.It provides for processing of medical images located wither remotely on the Internet or locally. The software was written in Java - the new programming language developed by Sun Microsystems. It was compiled and tested using Microsoft's Visual Java 1.0 and Microsoft's Just in Time Compiler 1.00.6211. The software is simple and easy to use. In order to use the tool, the user needs to download the software from our site before he/she runs it using any Java interpreter, such as those supplied by Sun, Symantec, Borland or Microsoft. Future versions of the operating systems supplied by Sun, Microsoft, Apple, IBM, and others will include Java interpreters. The software is then able to access and process any image on the iNternet or on the local computer. Using a 512 X 512 X 8-bit image, a 3 X 3 convolution took 0.88 seconds on an Intel Pentium Pro PC running at 200 MHz with 64 Mbytes of memory. A window/level operation took 0.38 seconds while a 3 X 3 median filter took 0.71 seconds. These performance numbers demonstrate the feasibility of using this software interactively on desktop computes. Our software tool supports various image processing techniques commonly used in medical image processing and can run without the need of any specialized hardware. It can become an easily accessible resource over the Internet to promote the learning and of understanding image processing algorithms. Also, it could facilitate sharing of medical image databases and collaboration amongst researchers and clinicians, regardless of location.

  11. Designing Test Suites for Software Interactions Testing

    DTIC Science & Technology

    2004-01-01

    the annual cost of insufficient software testing methods and tools in the United States is between 22.2 to 59.5 billion US dollars [13, 14]. This study...10 (2004), 1–29. [21] Cheng, C., Dumitrescu, A., and Schroeder , P. Generating small com- binatorial test suites to cover input-output relationships... Proceedings of the Conference on the Future of Software Engineering (May 2000), pp. 61 – 72. [51] Hartman, A. Software and hardware testing using

  12. A Critical Appraisal of Techniques, Software Packages, and Standards for Quantitative Proteomic Analysis

    PubMed Central

    Lawless, Craig; Hubbard, Simon J.; Fan, Jun; Bessant, Conrad; Hermjakob, Henning; Jones, Andrew R.

    2012-01-01

    Abstract New methods for performing quantitative proteome analyses based on differential labeling protocols or label-free techniques are reported in the literature on an almost monthly basis. In parallel, a correspondingly vast number of software tools for the analysis of quantitative proteomics data has also been described in the literature and produced by private companies. In this article we focus on the review of some of the most popular techniques in the field and present a critical appraisal of several software packages available to process and analyze the data produced. We also describe the importance of community standards to support the wide range of software, which may assist researchers in the analysis of data using different platforms and protocols. It is intended that this review will serve bench scientists both as a useful reference and a guide to the selection and use of different pipelines to perform quantitative proteomics data analysis. We have produced a web-based tool (http://www.proteosuite.org/?q=other_resources) to help researchers find appropriate software for their local instrumentation, available file formats, and quantitative methodology. PMID:22804616

  13. An empirical evaluation of software quality assurance practices and challenges in a developing country: a comparison of Nigeria and Turkey.

    PubMed

    Sowunmi, Olaperi Yeside; Misra, Sanjay; Fernandez-Sanz, Luis; Crawford, Broderick; Soto, Ricardo

    2016-01-01

    The importance of quality assurance in the software development process cannot be overemphasized because its adoption results in high reliability and easy maintenance of the software system and other software products. Software quality assurance includes different activities such as quality control, quality management, quality standards, quality planning, process standardization and improvement amongst others. The aim of this work is to further investigate the software quality assurance practices of practitioners in Nigeria. While our previous work covered areas on quality planning, adherence to standardized processes and the inherent challenges, this work has been extended to include quality control, software process improvement and international quality standard organization membership. It also makes comparison based on a similar study carried out in Turkey. The goal is to generate more robust findings that can properly support decision making by the software community. The qualitative research approach, specifically, the use of questionnaire research instruments was applied to acquire data from software practitioners. In addition to the previous results, it was observed that quality assurance practices are quite neglected and this can be the cause of low patronage. Moreover, software practitioners are neither aware of international standards organizations or the required process improvement techniques; as such their claimed standards are not aligned to those of accredited bodies, and are only limited to their local experience and knowledge, which makes it questionable. The comparison with Turkey also yielded similar findings, making the results typical of developing countries. The research instrument used was tested for internal consistency using the Cronbach's alpha, and it was proved reliable. For the software industry in developing countries to grow strong and be a viable source of external revenue, software assurance practices have to be taken seriously because its effect is evident in the final product. Moreover, quality frameworks and tools which require minimum time and cost are highly needed in these countries.

  14. [Study of the appearance difference of lower complete denture between functional and anatomic impression techniques].

    PubMed

    Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping

    2012-04-01

    To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.

  15. Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, Thomas; Jong, Jen-Yi

    1986-01-01

    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory.

  16. MER : from landing to six wheels on Mars ... twice

    NASA Technical Reports Server (NTRS)

    Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris

    2005-01-01

    Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.

  17. ETICS: the international software engineering service for the grid

    NASA Astrophysics Data System (ADS)

    Meglio, A. D.; Bégin, M.-E.; Couvares, P.; Ronchieri, E.; Takacs, E.

    2008-07-01

    The ETICS system is a distributed software configuration, build and test system designed to fulfil the needs of improving the quality, reliability and interoperability of distributed software in general and grid software in particular. The ETICS project is a consortium of five partners (CERN, INFN, Engineering Ingegneria Informatica, 4D Soft and the University of Wisconsin-Madison). The ETICS service consists of a build and test job execution system based on the Metronome software and an integrated set of web services and software engineering tools to design, maintain and control build and test scenarios. The ETICS system allows taking into account complex dependencies among applications and middleware components and provides a rich environment to perform static and dynamic analysis of the software and execute deployment, system and interoperability tests. This paper gives an overview of the system architecture and functionality set and then describes how the EC-funded EGEE, DILIGENT and OMII-Europe projects are using the software engineering services to build, validate and distribute their software. Finally a number of significant use and test cases will be described to show how ETICS can be used in particular to perform interoperability tests of grid middleware using the grid itself.

  18. Comparative evaluation of diode laser ablation and surgical stripping technique for gingival depigmentation: A clinical and immunohistochemical study.

    PubMed

    Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji

    2017-01-01

    There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t -test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation.

  19. Comparative evaluation of diode laser ablation and surgical stripping technique for gingival depigmentation: A clinical and immunohistochemical study

    PubMed Central

    Bakutra, Gaurav; Shankarapillai, Rajesh; Mathur, Lalit; Manohar, Balaji

    2017-01-01

    Introduction: There are various treatment modalities to remove the black patches of melanin pigmentation. The aim of the study is to clinically compare the diode laser ablation and surgical stripping technique for gingival depigmentation and to evaluate their effect on the histological changes in melanocyte activity. Materials and Methods: A total of 40 sites of 20 patients with bilateral melanin hyperpigmentation were treated with the surgical stripping and diode laser ablation technique. Change in Hedin index score, change in area of pigmentation using image analyzing software, pain perception, patient preference of treatment were recorded. All 40 sites were selected for immunohistochemical analysis using HMB-45 immunohistochemical marker. Results: At 12 months post-operative visit, in all sites, repigmentation was observed with different grades of Hedin index. Paired t-test, analysis of variance, and Chi-square tests were used for statistical analysis. Repigmentation in surgical stripping is significantly lesser compared to laser ablation. Lesser numbers of melanocytes were found on immunohistological examination at 12 months postoperatively. Comparison for patient preference and pain indices give statistically significant values for diode laser techniques. Conclusion: Gingival hyperpigmentation is effectively managed by diode laser ablation technique and surgical stripping method. In this study, surgical stripping technique found to be better compared to diode laser ablation. PMID:28539864

  20. "Test" is a Four Letter Word

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G M

    2005-05-03

    For a number of years I had the pleasure of teaching Testing Seminars all over the world and meeting and learning from others in our field. Over a twelve year period, I always asked the following questions to Software Developers, Test Engineers, and Managers who took my two or three day seminar on Software Testing: 'When was the first time you heard the word test'? 'Where were you when you first heard the word test'? 'Who said the word test'? 'How did the word test make you feel'? Most of the thousands of responses were similar to 'It was mymore » third grade teacher at school, and I felt nervous and afraid'. Now there were a few exceptions like 'It was my third grade teacher, and I was happy and excited to show how smart I was'. But by and large, my informal survey found that 'testing' is a word to which most people attach negative meanings, based on its historical context. So why is this important to those of us in the software development business? Because I have found that a preponderance of software developers do not get real excited about hearing that the software they just wrote is going to be 'tested' by the Test Group. Typical reactions I have heard over the years run from: 'I'm sure there is nothing wrong with the software, so go ahead and test it, better you find defects than our customers'. to these extremes: 'There is no need to test my software because there is nothing wrong with it'. 'You are not qualified to test my software because you don't know as much as I do about it'. 'If any Test Engineers come into our office again to test our software we will throw them through the third floor window'. So why is there such a strong negative reaction to testing? It is primitive. It goes back to grade school for many of us. It is a negative word that congers up negative emotions. In other words, 'test' is a four letter word. How many of us associate 'Joy' with 'Test'? Not many. It is hard for most of us to reprogram associations learned at an early age. So what can we do about it (short of hypnotic therapy for software developers)? Well one concept I have used (and still use) is to not call testing 'testing'. Call it something else. Ever wonder why most of the Independent Software Testing groups are called Software Quality Assurance groups? Now you know. Software Quality Assurance is not such a negatively charged phrase, even though Software Quality Assurance is much more than simply testing. It was a real blessing when the concept of Validation and Verification came about for software. Now I define Validation to mean assuring that the product produced does the right thing (usually what the customer wants it to do), and verification means that the product was built the right way (in accordance with some good design principles and practices). So I have deliberately called the System Test Group the Verification and Validation Group, or V&V Group, as a way of avoiding the negative image problem. I remember once having a conversation with a developer colleague who said, in the heat of battle, that it was fine to V&V his code, just don't test it! Once again V&V includes many things besides testing, but it just doesn't sound like an onerous thing to do to software. In my current job, working at a highly regarded national laboratory with world renowned physicists, I have again encountered the negativity about testing software. Except here they don't take kindly to Software Quality Assurance or Software Verification and Validation either. After all, software is just a trivial tool to automate algorithms that implement physics models. Testing, SQA, and V&V take time and get in the way of completing ground breaking science experiments. So I have again had to change the name of software testing to something less negative in the physics world. I found (the hard way) that if I requested more time to do software experimentation, the physicist's resistance melted. And so the conversation continues, 'We have time to run more software experiments. Just don't waste any time testing the software'! In case the concept of not calling testing 'testing' appeals to you, and there may be an opportunity for you to take the sting out of the name at your place of employment, I have compiled a table of things that testing could be called besides 'testing'. Of course we can embellish this by adding some good sounding prefixes and suffixes also. To come up with alternate names for testing, pick a word from columns A, B, and C in the table below. For instance Unified Acceptance Trials (A2,B7,C3) or Tailored Observational Demonstration (A6,B5,C5) or Agile Criteria Scoring (A3,B8,C8) or Rapid Requirement Proof (A1,B9,C7) or Satisfaction Assurance (B10,C1). You can probably think of some additional combinations appropriate for your industry.« less

  1. A computer-guided minimally-invasive technique for orthodontic forced eruption of impacted canines.

    PubMed

    BERTELè, Matteo; Minniti, Paola P; Dalessandri, Domenico; Bonetti, Stefano; Visconti, Luca; Paganelli, Corrado

    2016-06-01

    The aim of this study was to develop a computer-guided minimally-invasive protocol for the surgical application of an orthodontic traction during the forced eruption of an impacted canine. 3Diagnosys® software was used to evaluate impacted canines position and to plan the surgical access, taking into account soft and hard tissues thickness, orthodontic traction path and presence of possible obstacles. Geomagic® software was used for reverse engineering and RhinocerosTM software was employed as three-dimensional modeller in preparing individualized surgical guides. Surgical access was gained flapless through the use of a mucosal punch for soft tissues, followed by a trephine bur with a pre-adjusted stop for bone path creation. A diamond bur mounted on SONICflex® 2003/L handpiece was used to prepare a 2-mm-deep calibrated hole into the canine enamel where a titanium screw connected with a stainless steel ligature was screwed. In-vitro pull-out tests, radiological and SEM analysis were realized in order to investigate screw stability and position. In two out of ten samples the screw was removed after the application of a 1-kg pull-out force. Radiological and SEM analysis demonstrated that all the screws were inserted into the enamel without affecting dentine integrity. This computer-guided minimally-invasive technique allowed a precise and reliable positioning of screws utilized during the orthodontic traction of impacted canines.

  2. Network Meta-Analysis Using R: A Review of Currently Available Automated Packages

    PubMed Central

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA) – a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously – has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA. PMID:25541687

  3. Network meta-analysis using R: a review of currently available automated packages.

    PubMed

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA)--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  4. Remote software upload techniques in future vehicles and their performance analysis

    NASA Astrophysics Data System (ADS)

    Hossain, Irina

    Updating software in vehicle Electronic Control Units (ECUs) will become a mandatory requirement for a variety of reasons, for examples, to update/fix functionality of an existing system, add new functionality, remove software bugs and to cope up with ITS infrastructure. Software modules of advanced vehicles can be updated using Remote Software Upload (RSU) technique. The RSU employs infrastructure-based wireless communication technique where the software supplier sends the software to the targeted vehicle via a roadside Base Station (BS). However, security is critically important in RSU to avoid any disasters due to malfunctions of the vehicle or to protect the proprietary algorithms from hackers, competitors or people with malicious intent. In this thesis, a mechanism of secure software upload in advanced vehicles is presented which employs mutual authentication of the software provider and the vehicle using a pre-shared authentication key before sending the software. The software packets are sent encrypted with a secret key along with the Message Digest (MD). In order to increase the security level, it is proposed the vehicle to receive more than one copy of the software along with the MD in each copy. The vehicle will install the new software only when it receives more than one identical copies of the software. In order to validate the proposition, analytical expressions of average number of packet transmissions for successful software update is determined. Different cases are investigated depending on the vehicle's buffer size and verification methods. The analytical and simulation results show that it is sufficient to send two copies of the software to the vehicle to thwart any security attack while uploading the software. The above mentioned unicast method for RSU is suitable when software needs to be uploaded to a single vehicle. Since multicasting is the most efficient method of group communication, updating software in an ECU of a large number of vehicles could benefit from it. However, like the unicast RSU, the security requirements of multicast communication, i.e., authenticity, confidentiality and integrity of the software transmitted and access control of the group members is challenging. In this thesis, an infrastructure-based mobile multicasting for RSU in vehicle ECUs is proposed where an ECU receives the software from a remote software distribution center using the road side BSs as gateways. The Vehicular Software Distribution Network (VSDN) is divided into small regions administered by a Regional Group Manager (RGM). Two multicast Group Key Management (GKM) techniques are proposed based on the degree of trust on the BSs named Fully-trusted (FT) and Semi-trusted (ST) systems. Analytical models are developed to find the multicast session establishment latency and handover latency for these two protocols. The average latency to perform mutual authentication of the software vendor and a vehicle, and to send the multicast session key by the software provider during multicast session initialization, and the handoff latency during multicast session is calculated. Analytical and simulation results show that the link establishment latency per vehicle of our proposed schemes is in the range of few seconds and the ST system requires few ms higher time than the FT system. The handoff latency is also in the range of few seconds and in some cases ST system requires less handoff time than the FT system. Thus, it is possible to build an efficient GKM protocol without putting too much trust on the BSs.

  5. Quantitative evaluation of skeletal muscle defects in second harmonic generation images.

    PubMed

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  6. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    NASA Astrophysics Data System (ADS)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  7. Simulating the WFIRST coronagraph integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Rizzo, Maxime J.; Groff, Tyler D.; Zimmermann, Neil T.; Gong, Qian; Mandell, Avi M.; Saxena, Prabal; McElwain, Michael W.; Roberge, Aki; Krist, John; Riggs, A. J. Eldorado; Cady, Eric J.; Mejia Prada, Camilo; Brandt, Timothy; Douglas, Ewan; Cahoy, Kerri

    2017-09-01

    A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.

  8. Software attribute visualization for high integrity software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-03-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification.

  9. Detecting barely visible impact damages of honeycomb and laminate CFRP using digital shearography

    NASA Astrophysics Data System (ADS)

    Burkov, Mikhail; Lyubutin, Pavel; Byakov, Anton; Panin, Sergey

    2017-12-01

    The paper deals with testing of the developed shearographic device and signal processing software applied for nondestructive testing/evaluation (NDT/E) of carbon fiber reinforced polymers (CFRP). There were 4 types of test specimens: laminate CFRP, honeycomb CFRP, laminate CFRP with the channel stiffener, and laminate CFRP bolted with the aluminum plate. All the specimens were subjected to impact loading using the drop weight technique according to the ASTM D7136 standard in order to produce barely visible impact damages (BVID). The obtained shearograms easily reveal BVIDs as nonuniformities in strain fields. The results are analyzed and discussed in view of the sensitivity of shearography to delamination and debonding.

  10. Applying Hypertext Structures to Software Documentation.

    ERIC Educational Resources Information Center

    French, James C.; And Others

    1997-01-01

    Describes a prototype system for software documentation management called SLEUTH (Software Literacy Enhancing Usefulness to Humans) being developed at the University of Virginia. Highlights include information retrieval techniques, hypertext links that are installed automatically, a WAIS (Wide Area Information Server) search engine, user…

  11. Trends in data processing of comprehensive two-dimensional chromatography: state of the art.

    PubMed

    Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2012-12-01

    The operation of advanced chromatographic systems, namely comprehensive two-dimensional (2D) chromatography coupled to multidimensional detectors, allows achieving a great deal of data that need special care to be processed in order to characterize and quantify as much as possible the analytes under study. The aim of this review is to identify the main trends, research needs and gaps on the techniques for data processing of multidimensional data sets obtained from comprehensive 2D chromatography. The following topics have been identified as the most promising for new developments in the near future: data acquisition and handling, peak detection and quantification, measurement of overlapping of 2D peaks, and data analysis software for 2D chromatography. The rational supporting most of the data processing techniques is based on the generalization of one-dimensional (1D) chromatography although algorithms, such as the inverted watershed algorithm, use the 2D chromatographic data as such. However, for processing more complex N-way data there is a need for using more sophisticated techniques. Apart from using other concepts from 1D chromatography, which have not been tested for 2D chromatography, there is still room for new improvements and developments in algorithms and software for dealing with 2D comprehensive chromatographic data. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. An ultra-low-voltage electronic implementation of inertial neuron model with nonmonotonous Liao's activation function.

    PubMed

    Kant, Nasir Ali; Dar, Mohamad Rafiq; Khanday, Farooq Ahmad

    2015-01-01

    The output of every neuron in neural network is specified by the employed activation function (AF) and therefore forms the heart of neural networks. As far as the design of artificial neural networks (ANNs) is concerned, hardware approach is preferred over software one because it promises the full utilization of the application potential of ANNs. Therefore, besides some arithmetic blocks, designing AF in hardware is the most important for designing ANN. While attempting to design the AF in hardware, the designs should be compatible with the modern Very Large Scale Integration (VLSI) design techniques. In this regard, the implemented designs should: only be in Metal Oxide Semiconductor (MOS) technology in order to be compatible with the digital designs, provide electronic tunability feature, and be able to operate at ultra-low voltage. Companding is one of the promising circuit design techniques for achieving these goals. In this paper, 0.5 V design of Liao's AF using sinh-domain technique is introduced. Furthermore, the function is tested by implementing inertial neuron model. The performance of the AF and inertial neuron model have been evaluated through simulation results, using the PSPICE software with the MOS transistor models provided by the 0.18-μm Taiwan Semiconductor Manufacturer Complementary Metal Oxide Semiconductor (TSM CMOS) process.

  13. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  14. Path generation algorithm for UML graphic modeling of aerospace test software

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  15. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  16. Ultrasonic interface level analyzer shop test procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAEHR, T.W.

    1999-05-24

    The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less

  17. In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques

    PubMed Central

    Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi

    2017-01-01

    Purpose The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Materials and methods Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). Results The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). Conclusion The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator. PMID:28636642

  18. Component Prioritization Schema for Achieving Maximum Time and Cost Benefits from Software Testing

    NASA Astrophysics Data System (ADS)

    Srivastava, Praveen Ranjan; Pareek, Deepak

    Software testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets its required results. Defining the end of software testing represents crucial features of any software development project. A premature release will involve risks like undetected bugs, cost of fixing faults later, and discontented customers. Any software organization would want to achieve maximum possible benefits from software testing with minimum resources. Testing time and cost need to be optimized for achieving a competitive edge in the market. In this paper, we propose a schema, called the Component Prioritization Schema (CPS), to achieve an effective and uniform prioritization of the software components. This schema serves as an extension to the Non Homogenous Poisson Process based Cumulative Priority Model. We also introduce an approach for handling time-intensive versus cost-intensive projects.

  19. Space station software reliability analysis based on failures observed during testing at the multisystem integration facility

    NASA Technical Reports Server (NTRS)

    Tamayo, Tak Chai

    1987-01-01

    Quality of software not only is vital to the successful operation of the space station, it is also an important factor in establishing testing requirements, time needed for software verification and integration as well as launching schedules for the space station. Defense of management decisions can be greatly strengthened by combining engineering judgments with statistical analysis. Unlike hardware, software has the characteristics of no wearout and costly redundancies, thus making traditional statistical analysis not suitable in evaluating reliability of software. A statistical model was developed to provide a representation of the number as well as types of failures occur during software testing and verification. From this model, quantitative measure of software reliability based on failure history during testing are derived. Criteria to terminate testing based on reliability objectives and methods to estimate the expected number of fixings required are also presented.

  20. Statistics of software vulnerability detection in certification testing

    NASA Astrophysics Data System (ADS)

    Barabanov, A. V.; Markov, A. S.; Tsirlov, V. L.

    2018-05-01

    The paper discusses practical aspects of introduction of the methods to detect software vulnerability in the day-to-day activities of the accredited testing laboratory. It presents the approval results of the vulnerability detection methods as part of the study of the open source software and the software that is a test object of the certification tests under information security requirements, including software for communication networks. Results of the study showing the allocation of identified vulnerabilities by types of attacks, country of origin, programming languages used in the development, methods for detecting vulnerability, etc. are given. The experience of foreign information security certification systems related to the detection of certified software vulnerabilities is analyzed. The main conclusion based on the study is the need to implement practices for developing secure software in the development life cycle processes. The conclusions and recommendations for the testing laboratories on the implementation of the vulnerability analysis methods are laid down.

  1. Integrated testing and verification system for research flight software

    NASA Technical Reports Server (NTRS)

    Taylor, R. N.

    1979-01-01

    The MUST (Multipurpose User-oriented Software Technology) program is being developed to cut the cost of producing research flight software through a system of software support tools. An integrated verification and testing capability was designed as part of MUST. Documentation, verification and test options are provided with special attention on real-time, multiprocessing issues. The needs of the entire software production cycle were considered, with effective management and reduced lifecycle costs as foremost goals.

  2. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  3. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  4. Computer Aided Instruction (CAI) for the Shipboard Nontactical ADP Program (SNAP). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.D.; Hammons, C.E.; Hume, R.

    Oak Ridge National Laboratory is developing a prototype computer aided instruction package for the Navy Management Systems Support Office. This report discusses the background of the project and the progress to date including a description of the software design, problems encountered, solutions found, and recommendations. The objective of this project is to provide a prototype that will enhance training and can be used as a shipboard refresher and retraining tool. The prototype system will be installed onboard ships where Navy personnel will have ready access to the training. The subsequent testing and evaluation of the prototype could provide the basismore » for a Navy-wide effort to implement computer aided instruction. The work to date has followed a rigorous structured analysis methodology based on the Yourdon/DeMarco techniques. A set of data flow diagrams and a data dictionary are included in the appendices. The problems encountered revolve around requirements to use existing hardware, software, and programmer capabilities for development, implementation, and maintenance of the instructional software. Solutions have been developed which will allow the software to exist in the given environment and still provide advanced features not available in commercial courses.« less

  5. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  6. Athena X-IFU event reconstruction software: SIRENA

    NASA Astrophysics Data System (ADS)

    Ceballos, Maria Teresa; Cobo, Beatriz; Peille, Philippe; Wilms, Joern; Brand, Thorsten; Dauser, Thomas; Bandler, Simon; Smith, Stephen

    2015-09-01

    This contribution describes the status and technical details of the SIRENA package, the software currently in development to perform the on board event energy reconstruction for the Athena calorimeter X-IFU. This on board processing will be done in the X-IFU DRE unit and it will consist in an initial triggering of event pulses followed by an analysis (with the SIRENA package) to determine the energy content of such events.The current algorithm used by SIRENA is the optimal filtering technique (also used by ASTRO-H processor) although some other algorithms are also being tested.Here we present these studies and some preliminary results about the energy resolution of the instrument based on simulations done with the SIXTE simulator (http://www.sternwarte.uni-erlangen.de/research/sixte/) in which SIRENA is integrated.

  7. New tool to assemble repetitive regions using next-generation sequencing data

    NASA Astrophysics Data System (ADS)

    Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz

    2017-08-01

    The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.

  8. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Nelson, Austin A; Prabakar, Kumaraguru

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time simulators and test PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a ruin & reconstruct methodology that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-timemore » digital testing platform. Smart PV inverters were added to the realtime model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the feeders could be analyzed.« less

  9. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digitalmore » testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.« less

  10. Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2016-01-01

    The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.

  11. Integrating Text-to-Speech Software into Pedagogically Sound Teaching and Learning Scenarios

    ERIC Educational Resources Information Center

    Rughooputh, S. D. D. V.; Santally, M. I.

    2009-01-01

    This paper presents a new technique of delivery of classes--an instructional technique which will no doubt revolutionize the teaching and learning, whether for on-campus, blended or online modules. This is based on the simple task of instructionally incorporating text-to-speech software embedded in the lecture slides that will simulate exactly the…

  12. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  13. Systems Security Engineering

    DTIC Science & Technology

    2010-08-22

    Commission (IEC). “Information technology — Security techniques — Code of practice for information security management ( ISO /IEC 27002 ...Information technology — Security techniques — Information security management systems —Requirements ( ISO /IEC 27002 ),”, “Information technology — Security...was a draft ISO standard on Systems and software engineering, Systems and software assurance [18]. Created by systems engineers for systems

  14. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.

    PubMed

    Diwaker, Chander; Tomar, Pradeep; Poonia, Ramesh C; Singh, Vijander

    2018-04-10

    A lot of models have been made for predicting software reliability. The reliability models are restricted to using particular types of methodologies and restricted number of parameters. There are a number of techniques and methodologies that may be used for reliability prediction. There is need to focus on parameters consideration while estimating reliability. The reliability of a system may increase or decreases depending on the selection of different parameters used. Thus there is need to identify factors that heavily affecting the reliability of the system. In present days, reusability is mostly used in the various area of research. Reusability is the basis of Component-Based System (CBS). The cost, time and human skill can be saved using Component-Based Software Engineering (CBSE) concepts. CBSE metrics may be used to assess those techniques which are more suitable for estimating system reliability. Soft computing is used for small as well as large-scale problems where it is difficult to find accurate results due to uncertainty or randomness. Several possibilities are available to apply soft computing techniques in medicine related problems. Clinical science of medicine using fuzzy-logic, neural network methodology significantly while basic science of medicine using neural-networks-genetic algorithm most frequently and preferably. There is unavoidable interest shown by medical scientists to use the various soft computing methodologies in genetics, physiology, radiology, cardiology and neurology discipline. CBSE boost users to reuse the past and existing software for making new products to provide quality with a saving of time, memory space, and money. This paper focused on assessment of commonly used soft computing technique like Genetic Algorithm (GA), Neural-Network (NN), Fuzzy Logic, Support Vector Machine (SVM), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC). This paper presents working of soft computing techniques and assessment of soft computing techniques to predict reliability. The parameter considered while estimating and prediction of reliability are also discussed. This study can be used in estimation and prediction of the reliability of various instruments used in the medical system, software engineering, computer engineering and mechanical engineering also. These concepts can be applied to both software and hardware, to predict the reliability using CBSE.

  15. Modeling and managing risk early in software development

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.

    1993-01-01

    In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.

  16. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Format validation software testing... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying...

  17. The Design of Software for Three-Phase Induction Motor Test System

    NASA Astrophysics Data System (ADS)

    Haixiang, Xu; Fengqi, Wu; Jiai, Xue

    2017-11-01

    The design and development of control system software is important to three-phase induction motor test equipment, which needs to be completely familiar with the test process and the control procedure of test equipment. In this paper, the software is developed according to the national standard (GB/T1032-2005) about three-phase induction motor test method by VB language. The control system and data analysis software and the implement about motor test system are described individually, which has the advantages of high automation and high accuracy.

  18. Automated ILA design for synchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.

  19. Modal Analysis of Space-rocket Equipment Components

    NASA Astrophysics Data System (ADS)

    Igolkin, A. A.; Safin, A. I.; Prokofiev, A. B.

    2018-01-01

    In order to prevent vibration damage an analysis of natural frequencies and mode shapes of elements of rocket and space technology should be developed. This paper discusses technique of modal analysis on the example of the carrier platform. Modal analysis was performed by using mathematical modeling and laser vibrometer. Experimental data was clarified by using Test.Lab software. As a result of modal analysis amplitude-frequency response of carrier platform was obtained and the parameters of the elasticity was clarified.

  20. A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds

    PubMed Central

    Sawicki, Piotr

    2018-01-01

    The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011. PMID:29509679

  1. A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds.

    PubMed

    Gabara, Grzegorz; Sawicki, Piotr

    2018-03-06

    The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011.

  2. Airborne laser scanning for forest health status assessment and radiative transfer modelling

    NASA Astrophysics Data System (ADS)

    Novotny, Jan; Zemek, Frantisek; Pikl, Miroslav; Janoutova, Ruzena

    2013-04-01

    Structural parameters of forest stands/ecosystems are an important complementary source of information to spectral signatures obtained from airborne imaging spectroscopy when quantitative assessment of forest stands are in the focus, such as estimation of forest biomass, biochemical properties (e.g. chlorophyll /water content), etc. The parameterization of radiative transfer (RT) models used in latter case requires three-dimensional spatial distribution of green foliage and woody biomass. Airborne LiDAR data acquired over forest sites bears these kinds of 3D information. The main objective of the study was to compare the results from several approaches to interpolation of digital elevation model (DEM) and digital surface model (DSM). We worked with airborne LiDAR data with different density (TopEye Mk II 1,064nm instrument, 1-5 points/m2) acquired over the Norway spruce forests situated in the Beskydy Mountains, the Czech Republic. Three different interpolation algorithms with increasing complexity were tested: i/Nearest neighbour approach implemented in the BCAL software package (Idaho Univ.); ii/Averaging and linear interpolation techniques used in the OPALS software (Vienna Univ. of Technology); iii/Active contour technique implemented in the TreeVis software (Univ. of Freiburg). We defined two spatial resolutions for the resulting coupled raster DEMs and DSMs outputs: 0.4 m and 1 m, calculated by each algorithm. The grids correspond to the same spatial resolutions of hyperspectral imagery data for which the DEMs were used in a/geometrical correction and b/building a complex tree models for radiative transfer modelling. We applied two types of analyses when comparing between results from the different interpolations/raster resolution: 1/calculated DEM or DSM between themselves; 2/comparison with field data: DEM with measurements from referential GPS, DSM - field tree alometric measurements, where tree height was calculated as DSM-DEM. The results of the analyses show that: 1/averaging techniques tend to underestimate the tree height and the generated surface does not follow the first LiDAR echoes both for 1 m and 0.4 m pixel size; 2/we did not find any significant difference between tree heights calculated by nearest neighbour algorithm and the active contour technique for 1 m pixel output but the difference increased with finer resolution (0.4 m); 3/the accuracy of the DEMs calculated by tested algorithms is similar.

  3. CATS, continuous automated testing of seismological, hydroacoustic, and infrasound (SHI) processing software.

    NASA Astrophysics Data System (ADS)

    Brouwer, Albert; Brown, David; Tomuta, Elena

    2017-04-01

    To detect nuclear explosions, waveform data from over 240 SHI stations world-wide flows into the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), located in Vienna, Austria. A complex pipeline of software applications processes this data in numerous ways to form event hypotheses. The software codebase comprises over 2 million lines of code, reflects decades of development, and is subject to frequent enhancement and revision. Since processing must run continuously and reliably, software changes are subjected to thorough testing before being put into production. To overcome the limitations and cost of manual testing, the Continuous Automated Testing System (CATS) has been created. CATS provides an isolated replica of the IDC processing environment, and is able to build and test different versions of the pipeline software directly from code repositories that are placed under strict configuration control. Test jobs are scheduled automatically when code repository commits are made. Regressions are reported. We present the CATS design choices and test methods. Particular attention is paid to how the system accommodates the individual testing of strongly interacting software components that lack test instrumentation.

  4. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  5. Symbolically Modeling Concurrent MCAPI Executions

    NASA Technical Reports Server (NTRS)

    Fischer, Topher; Mercer, Eric; Rungta, Neha

    2011-01-01

    Improper use of Inter-Process Communication (IPC) within concurrent systems often creates data races which can lead to bugs that are challenging to discover. Techniques that use Satisfiability Modulo Theories (SMT) problems to symbolically model possible executions of concurrent software have recently been proposed for use in the formal verification of software. In this work we describe a new technique for modeling executions of concurrent software that use a message passing API called MCAPI. Our technique uses an execution trace to create an SMT problem that symbolically models all possible concurrent executions and follows the same sequence of conditional branch outcomes as the provided execution trace. We check if there exists a satisfying assignment to the SMT problem with respect to specific safety properties. If such an assignment exists, it provides the conditions that lead to the violation of the property. We show how our method models behaviors of MCAPI applications that are ignored in previously published techniques.

  6. A low-cost PC-based telemetry data-reduction system

    NASA Astrophysics Data System (ADS)

    Simms, D. A.; Butterfield, C. P.

    1990-04-01

    The Solar Energy Research Institute's (SERI) Wind Research Branch is using Pulse Code Modulation (PCM) telemetry data-acquisition systems to study horizontal-axis wind turbines. PCM telemetry systems are used in test installations that require accurate multiple-channel measurements taken from a variety of different locations. SERI has found them ideal for use in tests requiring concurrent acquisition of data-reduction system to facilitate quick, in-the-field multiple-channel data analysis. Called the PC-PCM System, it consists of two basic components. First, AT-compatible hardware boards are used for decoding and combining PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for the DOS operating system was developed to simplify data-acquisition control and management. The software provides a quick, easy-to-use interface between the PC and PCM data streams. Called the Quick-Look Data Management Program, it is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. This paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data. Also discussed are problems and techniques associated with PC-based telemetry data acquisition, processing, and real-time display.

  7. Mobile lidar system for monitoring of gaseous pollutants in atmosphere over industrial and urban area

    NASA Astrophysics Data System (ADS)

    Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.

    1999-01-01

    The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.

  8. Development of a software safety process and a case study of its use

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1993-01-01

    The goal of this research is to continue the development of a comprehensive approach to software safety and to evaluate the approach with a case study. The case study is a major part of the project, and it involves the analysis of a specific safety-critical system from the medical equipment domain. The particular application being used was selected because of the availability of a suitable candidate system. We consider the results to be generally applicable and in no way particularly limited by the domain. The research is concentrating on issues raised by the specification and verification phases of the software lifecycle since they are central to our previously-developed rigorous definitions of software safety. The theoretical research is based on our framework of definitions for software safety. In the area of specification, the main topics being investigated are the development of techniques for building system fault trees that correctly incorporate software issues and the development of rigorous techniques for the preparation of software safety specifications. The research results are documented. Another area of theoretical investigation is the development of verification methods tailored to the characteristics of safety requirements. Verification of the correct implementation of the safety specification is central to the goal of establishing safe software. The empirical component of this research is focusing on a case study in order to provide detailed characterizations of the issues as they appear in practice, and to provide a testbed for the evaluation of various existing and new theoretical results, tools, and techniques. The Magnetic Stereotaxis System is summarized.

  9. Sustaining Software-Intensive Systems

    DTIC Science & Technology

    2006-05-01

    2.2 Multi- Service Operational Test and Evaluation .......................................4 2.3 Stable Software Baseline...or equivalent document • completed Multi- Service Operational Test and Evaluation (MOT&E) for the potential production software package (or OT&E if...not multi- service ) • stable software production baseline • complete and current software documentation • Authority to Operate (ATO) for an

  10. Dose Estimating Application Software Modification: Additional Function of a Size-Specific Effective Dose Calculator and Auto Exposure Control.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Shouichi; Matsunaga, Yuta; Haba, Tomonobu; Kawaguchi, Ai; Daioku, Tomihiko; Toyama, Hiroshi; Kato, Ryoichi

    2017-05-01

    Adequate dose management during computed tomography is important. In the present study, the dosimetric application software ImPACT was added to a functional calculator of the size-specific dose estimate and was part of the scan settings for the auto exposure control (AEC) technique. This study aimed to assess the practicality and accuracy of the modified ImPACT software for dose estimation. We compared the conversion factors identified by the software with the values reported by the American Association of Physicists in Medicine Task Group 204, and we noted similar results. Moreover, doses were calculated with the AEC technique and a fixed-tube current of 200 mA for the chest-pelvis region. The modified ImPACT software could estimate each organ dose, which was based on the modulated tube current. The ability to perform beneficial modifications indicates the flexibility of the ImPACT software. The ImPACT software can be further modified for estimation of other doses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Are the expected benefits of requirements reuse hampered by distance? An experiment.

    PubMed

    Carrillo de Gea, Juan M; Nicolás, Joaquín; Fernández-Alemán, José L; Toval, Ambrosio; Idri, Ali

    2016-01-01

    Software development processes are often performed by distributed teams which may be separated by great distances. Global software development (GSD) has undergone a significant growth in recent years. The challenges concerning GSD are especially relevant to requirements engineering (RE). Stakeholders need to share a common ground, but there are many difficulties as regards the potentially variable interpretation of the requirements in different contexts. We posit that the application of requirements reuse techniques could alleviate this problem through the diminution of the number of requirements open to misinterpretation. This paper presents a reuse-based approach with which to address RE in GSD, with special emphasis on specification techniques, namely parameterised requirements and traceability relationships. An experiment was carried out with the participation of 29 university students enrolled on a Computer Science and Engineering course. Two main scenarios that represented co-localisation and distribution in software development were portrayed by participants from Spain and Morocco. The global teams achieved a slightly better performance than the co-located teams as regards effectiveness , which could be a result of the worse productivity of the global teams in comparison to the co-located teams. Subjective perceptions were generally more positive in the case of the distributed teams ( difficulty , speed and understanding ), with the exception of quality . A theoretical model has been proposed as an evaluation framework with which to analyse, from the point of view of the factor of distance, the effect of requirements specification techniques on a set of performance and perception-based variables. The experiment utilised a new internationalisation requirements catalogue. None of the differences found between co-located and distributed teams were significant according to the outcome of our statistical tests. The well-known benefits of requirements reuse in traditional co-located projects could, therefore, also be expected in GSD projects.

  12. Dynamic visualization techniques for high consequence software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollock, G.M.

    1998-02-01

    This report documents a prototype tool developed to investigate the use of visualization and virtual reality technologies for improving software surety confidence. The tool is utilized within the execution phase of the software life cycle. It provides a capability to monitor an executing program against prespecified requirements constraints provided in a program written in the requirements specification language SAGE. The resulting Software Attribute Visual Analysis Tool (SAVAnT) also provides a technique to assess the completeness of a software specification. The prototype tool is described along with the requirements constraint language after a brief literature review is presented. Examples of howmore » the tool can be used are also presented. In conclusion, the most significant advantage of this tool is to provide a first step in evaluating specification completeness, and to provide a more productive method for program comprehension and debugging. The expected payoff is increased software surety confidence, increased program comprehension, and reduced development and debugging time.« less

  13. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    PubMed Central

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  14. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  15. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  16. 77 FR 50720 - Test Documentation for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Test Documentation for Digital Computer Software...) is issuing for public comment draft regulatory guide (DG), DG-1207, ``Test Documentation for Digital... practices for test documentation for software and computer systems as described in the Institute of...

  17. Integrated Environment for Development and Assurance

    DTIC Science & Technology

    2015-01-26

    Jan 26, 2015 © 2015 Carnegie Mellon University We Rely on Software for Safe Aircraft Operation Embedded software systems introduce a new class of...eveloper Compute Platform Runtime Architecture Application Software Embedded SW System Engineer Data Stream Characteristics Latency jitter affects...Why do system level failures still occur despite fault tolerance techniques being deployed in systems ? Embedded software system as major source of

  18. Automated design of genomic Southern blot probes

    PubMed Central

    2010-01-01

    Background Sothern blotting is a DNA analysis technique that has found widespread application in molecular biology. It has been used for gene discovery and mapping and has diagnostic and forensic applications, including mutation detection in patient samples and DNA fingerprinting in criminal investigations. Southern blotting has been employed as the definitive method for detecting transgene integration, and successful homologous recombination in gene targeting experiments. The technique employs a labeled DNA probe to detect a specific DNA sequence in a complex DNA sample that has been separated by restriction-digest and gel electrophoresis. Critically for the technique to succeed the probe must be unique to the target locus so as not to cross-hybridize to other endogenous DNA within the sample. Investigators routinely employ a manual approach to probe design. A genome browser is used to extract DNA sequence from the locus of interest, which is searched against the target genome using a BLAST-like tool. Ideally a single perfect match is obtained to the target, with little cross-reactivity caused by homologous DNA sequence present in the genome and/or repetitive and low-complexity elements in the candidate probe. This is a labor intensive process often requiring several attempts to find a suitable probe for laboratory testing. Results We have written an informatic pipeline to automatically design genomic Sothern blot probes that specifically attempts to optimize the resultant probe, employing a brute-force strategy of generating many candidate probes of acceptable length in the user-specified design window, searching all against the target genome, then scoring and ranking the candidates by uniqueness and repetitive DNA element content. Using these in silico measures we can automatically design probes that we predict to perform as well, or better, than our previous manual designs, while considerably reducing design time. We went on to experimentally validate a number of these automated designs by Southern blotting. The majority of probes we tested performed well confirming our in silico prediction methodology and the general usefulness of the software for automated genomic Southern probe design. Conclusions Software and supplementary information are freely available at: http://www.genes2cognition.org/software/southern_blot PMID:20113467

  19. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  20. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su P.; Kaznatcheev K.; Wang, Y.

    In a previous paper, the University of Arizona (UA) has developed a measurement technique called: Software Configurable Optical Test System (SCOTS) based on the principle of reflection deflectometry. In this paper, we present results of this very efficient optical metrology method applied to the metrology of X-ray mirrors. We used this technique to measure surface slope errors with precision and accuracy better than 100 nrad (rms) and {approx}200 nrad (rms), respectively, with a lateral resolution of few mm or less. We present results of the calibration of the metrology systems, discuss their accuracy and address the precision in measuring amore » spherical mirror.« less

Top