Sample records for software validation infrastructure

  1. The ATLAS Simulation Infrastructure

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-09-25

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less

  2. ibex: An open infrastructure software platform to facilitate collaborative work in radiomics

    PubMed Central

    Zhang, Lifei; Fried, David V.; Fave, Xenia J.; Hunter, Luke A.; Court, Laurence E.

    2015-01-01

    Purpose: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (ibex), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. Methods: The ibex software package was developed using the matlab and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, ibex is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, ibex provides an integrated development environment on top of matlab and c/c++, so users are not limited to its built-in functions. In the ibex developer studio, users can plug in, debug, and test new algorithms, extending ibex’s functionality. ibex also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the ibex workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Results: Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the ibex software to be intuitive, powerful, and easy to use. ibex can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone ibex and ibex’s source code can be downloaded. Conclusions: The authors successfully implemented ibex, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation. PMID:25735289

  3. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.

    PubMed

    Zhang, Lifei; Fried, David V; Fave, Xenia J; Hunter, Luke A; Yang, Jinzhong; Court, Laurence E

    2015-03-01

    Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the IBEX software to be intuitive, powerful, and easy to use. IBEX can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone IBEX and IBEX's source code can be downloaded. The authors successfully implemented IBEX, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation.

  4. High-throughput neuroimaging-genetics computational infrastructure

    PubMed Central

    Dinov, Ivo D.; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D.; Franco, Joseph; Toga, Arthur W.

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer's and Parkinson's data, we provide several examples of translational applications using this infrastructure1. PMID:24795619

  5. MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems.

    PubMed

    Ding, Bo; Wang, Huaimin; Fan, Zedong; Zhang, Pengfei; Liu, Hui

    A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a novel robot software infrastructure, micROS-drt, which supports real-time and scalable data distribution. The solution is based on a loosely coupled data publish-subscribe model with the ability to support various time-related constraints. And to realize this model, a mature data distribution standard, the data distribution service for real-time systems (DDS), is adopted as the foundation of the transport layer of this software infrastructure. By elaborately adapting and encapsulating the capability of the underlying DDS middleware, micROS-drt can meet the requirement of real-time and scalable data distribution in distributed robotic systems. Evaluation results in terms of scalability, latency jitter and transport priority as well as the experiment on real robots validate the effectiveness of this work.

  6. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  7. Exploring Convergent Evolution to Provide a Foundation for Protein Engineering

    DTIC Science & Technology

    2009-02-26

    information if it does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. RETORT DATE (DD-MM-YYYY...the DivergentSet and MotifCluster Algorithms Using support from this grant, we developed two software packages that provide key infrastructure for...software package we developed, MotifCluster," provides a novel way of detecting distantly related homologs, one of the key aims of the proposal. Unlike

  8. Protection of Mobile Agents Execution Using a Modified Self-Validating Branch-Based Software Watermarking with External Sentinel

    NASA Astrophysics Data System (ADS)

    Tomàs-Buliart, Joan; Fernández, Marcel; Soriano, Miguel

    Critical infrastructures are usually controlled by software entities. To monitor the well-function of these entities, a solution based in the use of mobile agents is proposed. Some proposals to detect modifications of mobile agents, as digital signature of code, exist but they are oriented to protect software against modification or to verify that an agent have been executed correctly. The aim of our proposal is to guarantee that the software is being executed correctly by a non trusted host. The way proposed to achieve this objective is by the improvement of the Self-Validating Branch-Based Software Watermarking by Myles et al.. The proposed modification is the incorporation of an external element called sentinel which controls branch targets. This technique applied in mobile agents can guarantee the correct operation of an agent or, at least, can detect suspicious behaviours of a malicious host during the execution of the agent instead of detecting when the execution of the agent have finished.

  9. A Modular Repository-based Infrastructure for Simulation Model Storage and Execution Support in the Context of In Silico Oncology and In Silico Medicine.

    PubMed

    Christodoulou, Nikolaos A; Tousert, Nikolaos E; Georgiadi, Eleni Ch; Argyri, Katerina D; Misichroni, Fay D; Stamatakos, Georgios S

    2016-01-01

    The plethora of available disease prediction models and the ongoing process of their application into clinical practice - following their clinical validation - have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work. In addition, the end users should be provided with all the necessary interfaces for model execution and effortless result retrieval. We therefore propose a software infrastructure, based on a tool, model and data repository that handles the storage of models and pertinent execution-related data, along with functionalities for execution management, communication with third-party applications, user-friendly interfaces to access and use the infrastructure with minimal effort and basic security features.

  10. A Modular Repository-based Infrastructure for Simulation Model Storage and Execution Support in the Context of In Silico Oncology and In Silico Medicine

    PubMed Central

    Christodoulou, Nikolaos A.; Tousert, Nikolaos E.; Georgiadi, Eleni Ch.; Argyri, Katerina D.; Misichroni, Fay D.; Stamatakos, Georgios S.

    2016-01-01

    The plethora of available disease prediction models and the ongoing process of their application into clinical practice – following their clinical validation – have created new needs regarding their efficient handling and exploitation. Consolidation of software implementations, descriptive information, and supportive tools in a single place, offering persistent storage as well as proper management of execution results, is a priority, especially with respect to the needs of large healthcare providers. At the same time, modelers should be able to access these storage facilities under special rights, in order to upgrade and maintain their work. In addition, the end users should be provided with all the necessary interfaces for model execution and effortless result retrieval. We therefore propose a software infrastructure, based on a tool, model and data repository that handles the storage of models and pertinent execution-related data, along with functionalities for execution management, communication with third-party applications, user-friendly interfaces to access and use the infrastructure with minimal effort and basic security features. PMID:27812280

  11. Proceedings Second Annual Cyber Security and Information Infrastructure Research Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, Frederick T; Krings, Axel; Yoo, Seong-Moo

    2006-01-01

    The workshop theme is Cyber Security: Beyond the Maginot Line Recently the FBI reported that computer crime has skyrocketed costing over $67 billion in 2005 alone and affecting 2.8M+ businesses and organizations. Attack sophistication is unprecedented along with availability of open source concomitant tools. Private, academic, and public sectors invest significant resources in cyber security. Industry primarily performs cyber security research as an investment in future products and services. While the public sector also funds cyber security R&D, the majority of this activity focuses on the specific mission(s) of the funding agency. Thus, broad areas of cyber security remain neglectedmore » or underdeveloped. Consequently, this workshop endeavors to explore issues involving cyber security and related technologies toward strengthening such areas and enabling the development of new tools and methods for securing our information infrastructure critical assets. We aim to assemble new ideas and proposals about robust models on which we can build the architecture of a secure cyberspace including but not limited to: * Knowledge discovery and management * Critical infrastructure protection * De-obfuscating tools for the validation and verification of tamper-proofed software * Computer network defense technologies * Scalable information assurance strategies * Assessment-driven design for trust * Security metrics and testing methodologies * Validation of security and survivability properties * Threat assessment and risk analysis * Early accurate detection of the insider threat * Security hardened sensor networks and ubiquitous computing environments * Mobile software authentication protocols * A new "model" of the threat to replace the "Maginot Line" model and more . . .« less

  12. Open-Source Software in Computational Research: A Case Study

    DOE PAGES

    Syamlal, Madhava; O'Brien, Thomas J.; Benyahia, Sofiane; ...

    2008-01-01

    A case study of open-source (OS) development of the computational research software MFIX, used for multiphase computational fluid dynamics simulations, is presented here. The verification and validation steps required for constructing modern computational software and the advantages of OS development in those steps are discussed. The infrastructure used for enabling the OS development of MFIX is described. The impact of OS development on computational research and education in gas-solids flow, as well as the dissemination of information to other areas such as geophysical and volcanology research, is demonstrated. This study shows that the advantages of OS development were realized inmore » the case of MFIX: verification by many users, which enhances software quality; the use of software as a means for accumulating and exchanging information; the facilitation of peer review of the results of computational research.« less

  13. SIMSAT: An object oriented architecture for real-time satellite simulation

    NASA Technical Reports Server (NTRS)

    Williams, Adam P.

    1993-01-01

    Real-time satellite simulators are vital tools in the support of satellite missions. They are used in the testing of ground control systems, the training of operators, the validation of operational procedures, and the development of contingency plans. The simulators must provide high-fidelity modeling of the satellite, which requires detailed system information, much of which is not available until relatively near launch. The short time-scales and resulting high productivity required of such simulator developments culminates in the need for a reusable infrastructure which can be used as a basis for each simulator. This paper describes a major new simulation infrastructure package, the Software Infrastructure for Modelling Satellites (SIMSAT). It outlines the object oriented design methodology used, describes the resulting design, and discusses the advantages and disadvantages experienced in applying the methodology.

  14. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102

  15. SeaBIRD: A Flexible and Intuitive Planetary Datamining Infrastructure

    NASA Astrophysics Data System (ADS)

    Politi, R.; Capaccioni, F.; Giardino, M.; Fonte, S.; Capria, M. T.; Turrini, D.; De Sanctis, M. C.; Piccioni, G.

    2018-04-01

    Description of SeaBIRD (Searchable and Browsable Infrastructure for Repository of Data), a software and hardware infrastructure for multi-mission planetary datamining, with web-based GUI and API set for the integration in users' software.

  16. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  17. The Other Infrastructure: Distance Education's Digital Plant.

    ERIC Educational Resources Information Center

    Boettcher, Judith V.; Kumar, M. S. Vijay

    2000-01-01

    Suggests a new infrastructure--the digital plant--for supporting flexible Web campus environments. Describes four categories which make up the infrastructure: personal communication tools and applications; network of networks for the Web campus; dedicated servers and software applications; software applications and services from external…

  18. Are Earth System model software engineering practices fit for purpose? A case study.

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Johns, T. C.

    2009-04-01

    We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.

  19. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  20. Software Engineering Infrastructure in a Large Virtual Campus

    ERIC Educational Resources Information Center

    Cristobal, Jesus; Merino, Jorge; Navarro, Antonio; Peralta, Miguel; Roldan, Yolanda; Silveira, Rosa Maria

    2011-01-01

    Purpose: The design, construction and deployment of a large virtual campus are a complex issue. Present virtual campuses are made of several software applications that complement e-learning platforms. In order to develop and maintain such virtual campuses, a complex software engineering infrastructure is needed. This paper aims to analyse the…

  1. Flight Software Development for the CHEOPS Instrument with the CORDET Framework

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Ottensamer, R.; Pasetti, A.

    2015-09-01

    CHEOPS is an ESA S-class mission dedicated to the precise measurement of radii of already known exoplanets using ultra-high precision photometry. The instrument flight software controlling the instrument and handling the science data is developed by the University of Vienna using the CORDET Framework offered by P&P Software GmbH. The CORDET Framework provides a generic software infrastructure for PUS-based applications. This paper describes how the framework is used for the CHEOPS application software to provide a consistent solution for to the communication and control services, event handling and FDIR procedures. This approach is innovative in four respects: (a) it is a true third-party reuse; (b) re-use is done at specification, validation and code level; (c) the re-usable assets and their qualification data package are entirely open-source; (d) re-use is based on call-back with the application developer providing functions which are called by the reusable architecture. File names missing from here on out (I tried to mimic the files names from before.)

  2. Creating an open environment software infrastructure

    NASA Technical Reports Server (NTRS)

    Jipping, Michael J.

    1992-01-01

    As the development of complex computer hardware accelerates at increasing rates, the ability of software to keep pace is essential. The development of software design tools, however, is falling behind the development of hardware for several reasons, the most prominent of which is the lack of a software infrastructure to provide an integrated environment for all parts of a software system. The research was undertaken to provide a basis for answering this problem by investigating the requirements of open environments.

  3. ATLAS software stack on ARM64

    NASA Astrophysics Data System (ADS)

    Smith, Joshua Wyatt; Stewart, Graeme A.; Seuster, Rolf; Quadt, Arnulf; ATLAS Collaboration

    2017-10-01

    This paper reports on the port of the ATLAS software stack onto new prototype ARM64 servers. This included building the “external” packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adjustments. A few additional modifications were needed to account for the different operating system, Ubuntu instead of Scientific Linux 6 / CentOS7. Selected results from the validation of the physics outputs on these ARM 64-bit servers will be shown. CPU, memory and IO intensive benchmarks using ATLAS specific environment and infrastructure have been performed, with a particular emphasis on the performance vs. energy consumption.

  4. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    NASA Technical Reports Server (NTRS)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  5. Network Security Validation Using Game Theory

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  6. Software and hardware infrastructure for research in electrophysiology

    PubMed Central

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Řondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Štěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software. PMID:24639646

  7. Software and hardware infrastructure for research in electrophysiology.

    PubMed

    Mouček, Roman; Ježek, Petr; Vařeka, Lukáš; Rondík, Tomáš; Brůha, Petr; Papež, Václav; Mautner, Pavel; Novotný, Jiří; Prokop, Tomáš; Stěbeták, Jan

    2014-01-01

    As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

  8. Scalable collaborative risk management technology for complex critical systems

    NASA Technical Reports Server (NTRS)

    Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.

    2004-01-01

    We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.

  9. Requirements Engineering in Building Climate Science Software

    NASA Astrophysics Data System (ADS)

    Batcheller, Archer L.

    Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling Framework assists modeling applications, the Earth System Grid distributes data via a web portal, and the NCAR (National Center for Atmospheric Research) Command Language is used to convert, analyze and visualize data. Document analysis, observation, and interviews were used to investigate the requirements-related work. The first research question is about how and why stakeholders engage in a project, and what they do for the project. Two key findings arise. First, user counts are a vital measure of project success, which makes adoption important and makes counting tricky and political. Second, despite the importance of quantities of users, a few particular "power users" develop a relationship with the software developers and play a special role in providing feedback to the software team and integrating the system into user practice. The second research question focuses on how project objectives are articulated and how they are put into practice. The team seeks to both build a software system according to product requirements but also to conduct their work according to process requirements such as user support. Support provides essential communication between users and developers that assists with refining and identifying requirements for the software. It also helps users to learn and apply the software to their real needs. User support is a vital activity for scientific software teams aspiring to create infrastructure. The third research question is about how change in scientific practice and knowledge leads to changes in the software, and vice versa. The "thickness" of a layer of software infrastructure impacts whether the software team or users have control and responsibility for making changes in response to new scientific ideas. Thick infrastructure provides more functionality for users, but gives them less control of it. The stability of infrastructure trades off against the responsiveness that the infrastructure can have to user needs.

  10. A cyber infrastructure for the SKA Telescope Manager

    NASA Astrophysics Data System (ADS)

    Barbosa, Domingos; Barraca, João. P.; Carvalho, Bruno; Maia, Dalmiro; Gupta, Yashwant; Natarajan, Swaminathan; Le Roux, Gerhard; Swart, Paul

    2016-07-01

    The Square Kilometre Array Telescope Manager (SKA TM) will be responsible for assisting the SKA Operations and Observation Management, carrying out System diagnosis and collecting Monitoring and Control data from the SKA subsystems and components. To provide adequate compute resources, scalability, operation continuity and high availability, as well as strict Quality of Service, the TM cyber-infrastructure (embodied in the Local Infrastructure - LINFRA) consists of COTS hardware and infrastructural software (for example: server monitoring software, host operating system, virtualization software, device firmware), providing a specially tailored Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) solution. The TM infrastructure provides services in the form of computational power, software defined networking, power, storage abstractions, and high level, state of the art IaaS and PaaS management interfaces. This cyber platform will be tailored to each of the two SKA Phase 1 telescopes (SKA_MID in South Africa and SKA_LOW in Australia) instances, each presenting different computational and storage infrastructures and conditioned by location. This cyber platform will provide a compute model enabling TM to manage the deployment and execution of its multiple components (observation scheduler, proposal submission tools, MandC components, Forensic tools and several Databases, etc). In this sense, the TM LINFRA is primarily focused towards the provision of isolated instances, mostly resorting to virtualization technologies, while defaulting to bare hardware if specifically required due to performance, security, availability, or other requirement.

  11. LHCb Build and Deployment Infrastructure for run 2

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.

    2015-12-01

    After the successful run 1 of the LHC, the LHCb Core software team has taken advantage of the long shutdown to consolidate and improve its build and deployment infrastructure. Several of the related projects have already been presented like the build system using Jenkins, as well as the LHCb Performance and Regression testing infrastructure. Some components are completely new, like the Software Configuration Database (using the Graph DB Neo4j), or the new packaging installation using RPM packages. Furthermore all those parts are integrated to allow easier and quicker releases of the LHCb Software stack, therefore reducing the risk of operational errors. Integration and Regression tests are also now easier to implement, allowing to improve further the software checks.

  12. Software Quality Control at Belle II

    NASA Astrophysics Data System (ADS)

    Ritter, M.; Kuhr, T.; Hauth, T.; Gebard, T.; Kristof, M.; Pulvermacher, C.; Belle Software Group, II

    2017-10-01

    Over the last seven years the software stack of the next generation B factory experiment Belle II has grown to over one million lines of C++ and Python code, counting only the part included in offline software releases. There are several thousand commits to the central repository by about 100 individual developers per year. To keep a coherent software stack of high quality that it can be sustained and used efficiently for data acquisition, simulation, reconstruction, and analysis over the lifetime of the Belle II experiment is a challenge. A set of tools is employed to monitor the quality of the software and provide fast feedback to the developers. They are integrated in a machinery that is controlled by a buildbot master and automates the quality checks. The tools include different compilers, cppcheck, the clang static analyzer, valgrind memcheck, doxygen, a geometry overlap checker, a check for missing or extra library links, unit tests, steering file level tests, a sophisticated high-level validation suite, and an issue tracker. The technological development infrastructure is complemented by organizational means to coordinate the development.

  13. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    PubMed

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

  14. Rearchitecting IT: Simplify. Simplify

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    Simplifying and securing an IT infrastructure is not easy. It frequently requires rethinking years of hardware and software investments, and a gradual migration to modern systems. Even so, writes the author, universities can take six practical steps to success: (1) Audit software infrastructure; (2) Evaluate current applications; (3) Centralize…

  15. Modernized build and test infrastructure for control software at ESO: highly flexible building, testing, and automatic quality practices for telescope control software

    NASA Astrophysics Data System (ADS)

    Pellegrin, F.; Jeram, B.; Haucke, J.; Feyrin, S.

    2016-07-01

    The paper describes the introduction of a new automatized build and test infrastructure, based on the open-source software Jenkins1, into the ESO Very Large Telescope control software to replace the preexisting in-house solution. A brief introduction to software quality practices is given, a description of the previous solution, the limitations of it and new upcoming requirements. Modifications required to adapt the new system are described, how these were implemented to current software and the results obtained. An overview on how the new system may be used in future projects is also presented.

  16. Atomic and Molecular Databases, VAMDC (Virtual Atomic and Molecular Data Centre)

    NASA Astrophysics Data System (ADS)

    Dubernet, Marie-Lise; Zwölf, Carlo Maria; Moreau, Nicolas; Awa Ba, Yaya; VAMDC Consortium

    2015-08-01

    The "Virtual Atomic and Molecular Data Centre Consortium",(VAMDC Consortium, http://www.vamdc.eu) is a Consortium bound by an Memorandum of Understanding aiming at ensuring the sustainability of the VAMDC e-infrastructure. The current VAMDC e-infrastructure inter-connects about 30 atomic and molecular databases with the number of connected databases increasing every year: some databases are well-known databases such as CDMS, JPL, HITRAN, VALD,.., other databases have been created since the start of VAMDC. About 90% of our databases are used for astrophysical applications. The data can be queried, retrieved, visualized in a single format from a general portal (http://portal.vamdc.eu) and VAMDC is also developing standalone tools in order to retrieve and handle the data. VAMDC provides software and support in order to include databases within the VAMDC e-infrastructure. One current feature of VAMDC is the constrained environnement of description of data that ensures a higher quality for distribution of data; a future feature is the link of VAMDC with evaluation/validation groups. The talk will present the VAMDC Consortium and the VAMDC e infrastructure with its underlying technology, its services, its science use cases and its etension towards other communities than the academic research community.

  17. Remote software upload techniques in future vehicles and their performance analysis

    NASA Astrophysics Data System (ADS)

    Hossain, Irina

    Updating software in vehicle Electronic Control Units (ECUs) will become a mandatory requirement for a variety of reasons, for examples, to update/fix functionality of an existing system, add new functionality, remove software bugs and to cope up with ITS infrastructure. Software modules of advanced vehicles can be updated using Remote Software Upload (RSU) technique. The RSU employs infrastructure-based wireless communication technique where the software supplier sends the software to the targeted vehicle via a roadside Base Station (BS). However, security is critically important in RSU to avoid any disasters due to malfunctions of the vehicle or to protect the proprietary algorithms from hackers, competitors or people with malicious intent. In this thesis, a mechanism of secure software upload in advanced vehicles is presented which employs mutual authentication of the software provider and the vehicle using a pre-shared authentication key before sending the software. The software packets are sent encrypted with a secret key along with the Message Digest (MD). In order to increase the security level, it is proposed the vehicle to receive more than one copy of the software along with the MD in each copy. The vehicle will install the new software only when it receives more than one identical copies of the software. In order to validate the proposition, analytical expressions of average number of packet transmissions for successful software update is determined. Different cases are investigated depending on the vehicle's buffer size and verification methods. The analytical and simulation results show that it is sufficient to send two copies of the software to the vehicle to thwart any security attack while uploading the software. The above mentioned unicast method for RSU is suitable when software needs to be uploaded to a single vehicle. Since multicasting is the most efficient method of group communication, updating software in an ECU of a large number of vehicles could benefit from it. However, like the unicast RSU, the security requirements of multicast communication, i.e., authenticity, confidentiality and integrity of the software transmitted and access control of the group members is challenging. In this thesis, an infrastructure-based mobile multicasting for RSU in vehicle ECUs is proposed where an ECU receives the software from a remote software distribution center using the road side BSs as gateways. The Vehicular Software Distribution Network (VSDN) is divided into small regions administered by a Regional Group Manager (RGM). Two multicast Group Key Management (GKM) techniques are proposed based on the degree of trust on the BSs named Fully-trusted (FT) and Semi-trusted (ST) systems. Analytical models are developed to find the multicast session establishment latency and handover latency for these two protocols. The average latency to perform mutual authentication of the software vendor and a vehicle, and to send the multicast session key by the software provider during multicast session initialization, and the handoff latency during multicast session is calculated. Analytical and simulation results show that the link establishment latency per vehicle of our proposed schemes is in the range of few seconds and the ST system requires few ms higher time than the FT system. The handoff latency is also in the range of few seconds and in some cases ST system requires less handoff time than the FT system. Thus, it is possible to build an efficient GKM protocol without putting too much trust on the BSs.

  18. First use of LHC Run 3 Conditions Database infrastructure for auxiliary data files in ATLAS

    NASA Astrophysics Data System (ADS)

    Aperio Bella, L.; Barberis, D.; Buttinger, W.; Formica, A.; Gallas, E. J.; Rinaldi, L.; Rybkin, G.; ATLAS Collaboration

    2017-10-01

    Processing of the large amount of data produced by the ATLAS experiment requires fast and reliable access to what we call Auxiliary Data Files (ADF). These files, produced by Combined Performance, Trigger and Physics groups, contain conditions, calibrations, and other derived data used by the ATLAS software. In ATLAS this data has, thus far for historical reasons, been collected and accessed outside the ATLAS Conditions Database infrastructure and related software. For this reason, along with the fact that ADF are effectively read by the software as binary objects, this class of data appears ideal for testing the proposed Run 3 conditions data infrastructure now in development. This paper describes this implementation as well as the lessons learned in exploring and refining the new infrastructure with the potential for deployment during Run 2.

  19. LCG/AA build infrastructure

    NASA Astrophysics Data System (ADS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-12-01

    The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  20. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  1. Inventory on the dietary assessment tools available and needed in africa: a prerequisite for setting up a common methodological research infrastructure for nutritional surveillance, research, and prevention of diet-related non-communicable diseases.

    PubMed

    Pisa, Pedro T; Landais, Edwige; Margetts, Barrie; Vorster, Hester H; Friedenreich, Christine M; Huybrechts, Inge; Martin-Prevel, Yves; Branca, Francesco; Lee, Warren T K; Leclercq, Catherine; Jerling, Johann; Zotor, Francis; Amuna, Paul; Al Jawaldeh, Ayoub; Aderibigbe, Olaide Ruth; Amoussa, Waliou Hounkpatin; Anderson, Cheryl A M; Aounallah-Skhiri, Hajer; Atek, Madjid; Benhura, Chakare; Chifamba, Jephat; Covic, Namukolo; Dary, Omar; Delisle, Hélène; El Ati, Jalila; El Hamdouchi, Asmaa; El Rhazi, Karima; Faber, Mieke; Kalimbira, Alexander; Korkalo, Liisa; Kruger, Annamarie; Ledo, James; Machiweni, Tatenda; Mahachi, Carol; Mathe, Nonsikelelo; Mokori, Alex; Mouquet-Rivier, Claire; Mutie, Catherine; Nashandi, Hilde Liisa; Norris, Shane A; Onabanjo, Oluseye Olusegun; Rambeloson, Zo; Saha, Foudjo Brice U; Ubaoji, Kingsley Ikechukwu; Zaghloul, Sahar; Slimani, Nadia

    2018-01-02

    To carry out an inventory on the availability, challenges, and needs of dietary assessment (DA) methods in Africa as a pre-requisite to provide evidence, and set directions (strategies) for implementing common dietary methods and support web-research infrastructure across countries. The inventory was performed within the framework of the "Africa's Study on Physical Activity and Dietary Assessment Methods" (AS-PADAM) project. It involves international institutional and African networks. An inventory questionnaire was developed and disseminated through the networks. Eighteen countries responded to the dietary inventory questionnaire. Various DA tools were reported in Africa; 24-Hour Dietary Recall and Food Frequency Questionnaire were the most commonly used tools. Few tools were validated and tested for reliability. Face-to-face interview was the common method of administration. No computerized software or other new (web) technologies were reported. No tools were standardized across countries. The lack of comparable DA methods across represented countries is a major obstacle to implement comprehensive and joint nutrition-related programmes for surveillance, programme evaluation, research, and prevention. There is a need to develop new or adapt existing DA methods across countries by employing related research infrastructure that has been validated and standardized in other settings, with the view to standardizing methods for wider use.

  2. A near miss: the importance of context in a public health informatics project in a New Zealand case study.

    PubMed

    Wells, Stewart; Bullen, Chris

    2008-01-01

    This article describes the near failure of an information technology (IT) system designed to support a government-funded, primary care-based hepatitis B screening program in New Zealand. Qualitative methods were used to collect data and construct an explanatory model. Multiple incorrect assumptions were made about participants, primary care workflows and IT capacity, software vendor user knowledge, and the health IT infrastructure. Political factors delayed system development and it was implemented untested, almost failing. An intensive rescue strategy included system modifications, relaxation of data validity rules, close engagement with software vendors, and provision of intensive on-site user support. This case study demonstrates that consideration of the social, political, technological, and health care contexts is important for successful implementation of public health informatics projects.

  3. A Simple Technique for Securing Data at Rest Stored in a Computing Cloud

    NASA Astrophysics Data System (ADS)

    Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai

    "Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.

  4. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.

  5. An Overview of the Distributed Space Exploration Simulation (DSES) Project

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.

    2007-01-01

    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.

  6. Open source software projects of the caBIG In Vivo Imaging Workspace Software special interest group.

    PubMed

    Prior, Fred W; Erickson, Bradley J; Tarbox, Lawrence

    2007-11-01

    The Cancer Bioinformatics Grid (caBIG) program was created by the National Cancer Institute to facilitate sharing of IT infrastructure, data, and applications among the National Cancer Institute-sponsored cancer research centers. The program was launched in February 2004 and now links more than 50 cancer centers. In April 2005, the In Vivo Imaging Workspace was added to promote the use of imaging in cancer clinical trials. At the inaugural meeting, four special interest groups (SIGs) were established. The Software SIG was charged with identifying projects that focus on open-source software for image visualization and analysis. To date, two projects have been defined by the Software SIG. The eXtensible Imaging Platform project has produced a rapid application development environment that researchers may use to create targeted workflows customized for specific research projects. The Algorithm Validation Tools project will provide a set of tools and data structures that will be used to capture measurement information and associated needed to allow a gold standard to be defined for the given database against which change analysis algorithms can be tested. Through these and future efforts, the caBIG In Vivo Imaging Workspace Software SIG endeavors to advance imaging informatics and provide new open-source software tools to advance cancer research.

  7. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  8. The Contribution for Improving GNSS Data and Derived Products for Solid Earth Sciences Promoted by EPOS-IP

    NASA Astrophysics Data System (ADS)

    Fernandes, R. M. S.; Bos, M. S.; Bruyninx, C.; Crocker, P.; Dousa, J.; Walpersdorf, A.; Socquet, A.; Avallone, A.; Ganas, A.; Ionescu, C.; Kenyeres, A.; Ofeigsson, B.; Ozener, H.; Vergnolle, M.; Lidberg, M.; Liwosz, T.; Soehne, W.; Bezdeka, P.; Cardoso, R.; Cotte, N.; Couto, R.; D'Agostino, N.; Deprez, A.; Fabian, A.; Gonçalves, H.; Féres, L.; Legrand, J.; Menut, J. L.; Nastase, E.; Ngo, K. M.; Sigurðarson, F.; Vaclavovic, P.

    2017-12-01

    The GNSS working group part of the EPOS-IP (European Plate Observing System - Implementation Phase) project oversees the implementation of services focused on GNSS data and derived products for the use of the geo-sciences community. The objective is to serve essentially the Solid Earth community, but other scientific and technical communities will also be able the benefit of the efforts being carried out to access the data (and derived products) of the European Geodetic Infrastructures. The geodetic component of EPOS is dealing essentially with implementing an e-infrastructure to store and disseminate continuous GNSS data (and derived solutions) from existing Research Infrastructures and new dedicated services. Present efforts are on developing an integrated software package, called GLASS, that will permit to disseminate quality controlled data (using special tools) in a seamless way from dozens of Geodetic Research Infrastructures in Europe. Conceptually, GLASS can be used in a single Research Infrastructure or in hundreds cooperative ones. We present and discuss the status of the implementation of these services, including also the generation of products - time-series, velocity fields and strain rate fields. In concrete, we will present the results of the current validation phase of these services and we will discuss in detail the technical and cooperative efforts being implemented. EPOS-IP is a project funded by the ESFRI European Union.

  9. FOSS Tools for Research Infrastructures - A Success Story?

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a success story.

  10. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  11. Infrastructure for quality transformation: measurement and reporting in veterans administration intensive care units.

    PubMed

    Render, Marta L; Freyberg, Ron W; Hasselbeck, Rachael; Hofer, Timothy P; Sales, Anne E; Deddens, James; Levesque, Odette; Almenoff, Peter L

    2011-06-01

    BACKGROUND Veterans Health Administration (VA) intensive care units (ICUs) develop an infrastructure for quality improvement using information technology and recruiting leadership. METHODS Setting Participation by the 183 ICUs in the quality improvement program is required. Infrastructure includes measurement (electronic data extraction, analysis), quarterly web-based reporting and implementation support of evidence-based practices. Leaders prioritise measures based on quality improvement objectives. The electronic extraction is validated manually against the medical record, selecting hospitals whose data elements and measures fall at the extremes (10th, 90th percentile). results are depicted in graphic, narrative and tabular reports benchmarked by type and complexity of ICU. RESULTS The VA admits 103 689±1156 ICU patients/year. Variation in electronic business practices, data location and normal range of some laboratory tests affects data quality. A data management website captures data elements important to ICU performance and not available electronically. A dashboard manages the data overload (quarterly reports ranged 106-299 pages). More than 85% of ICU directors and nurse managers review their reports. Leadership interest is sustained by including ICU targets in executive performance contracts, identification of local improvement opportunities with analytic software, and focused reviews. CONCLUSION Lessons relevant to non-VA institutions include the: (1) need for ongoing data validation, (2) essential involvement of leadership at multiple levels, (3) supplementation of electronic data when key elements are absent, (4) utility of a good but not perfect electronic indicator to move practice while improving data elements and (5) value of a dashboard.

  12. Software Reuse Methods to Improve Technological Infrastructure for e-Science

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2011-01-01

    Social computing has the potential to contribute to scientific research. Ongoing developments in information and communications technology improve capabilities for enabling scientific research, including research fostered by social computing capabilities. The recent emergence of e-Science practices has demonstrated the benefits from improvements in the technological infrastructure, or cyber-infrastructure, that has been developed to support science. Cloud computing is one example of this e-Science trend. Our own work in the area of software reuse offers methods that can be used to improve new technological development, including cloud computing capabilities, to support scientific research practices. In this paper, we focus on software reuse and its potential to contribute to the development and evaluation of information systems and related services designed to support new capabilities for conducting scientific research.

  13. Building the European Seismological Research Infrastructure: results from 4 years NERIES EC project

    NASA Astrophysics Data System (ADS)

    van Eck, T.; Giardini, D.

    2010-12-01

    The EC Research Infrastructure (RI) project, Network of Research Infrastructures for European Seismology (NERIES), implemented a comprehensive European integrated RI for earthquake seismological data that is scalable and sustainable. NERIES opened a significant amount of additional seismological data, integrated different distributed data archives, implemented and produced advanced analysis tools and advanced software packages and tools. A single seismic data portal provides a single access point and overview for European seismological data available for the earth science research community. Additional data access tools and sites have been implemented to meet user and robustness requirements, notably those at the EMSC and ORFEUS. The datasets compiled in NERIES and available through the portal include among others: - The expanded Virtual European Broadband Seismic Network (VEBSN) with real-time access to more then 500 stations from > 53 observatories. This data is continuously monitored, quality controlled and archived in the European Integrated Distributed waveform Archive (EIDA). - A unique integration of acceleration datasets from seven networks in seven European or associated countries centrally accessible in a homogeneous format, thus forming the core comprehensive European acceleration database. Standardized parameter analysis and actual software are included in the database. - A Distributed Archive of Historical Earthquake Data (AHEAD) for research purposes, containing among others a comprehensive European Macroseismic Database and Earthquake Catalogue (1000 - 1963, M ≥5.8), including analysis tools. - Data from 3 one year OBS deployments at three sites, Atlantic, Ionian and Ligurian Sea within the general SEED format, thus creating the core integrated data base for ocean, sea and land based seismological observatories. Tools to facilitate analysis and data mining of the RI datasets are: - A comprehensive set of European seismological velocity reference model including a standardized model description with several visualisation tools currently adapted on a global scale. - An integrated approach to seismic hazard modelling and forecasting, a community accepted forecasting testing and model validation approach and the core hazard portal developed along the same technologies as the NERIES data portal. - Implemented homogeneous shakemap estimation tools at several large European observatories and a complementary new loss estimation software tool. - A comprehensive set of new techniques for geotechnical site characterization with relevant software packages documented and maintained (www.geopsy.org). - A set of software packages for data mining, data reduction, data exchange and information management in seismology as research and observatory analysis tools NERIES has a long-term impact and is coordinated with related US initiatives IRIS and EarthScope. The follow-up EC project of NERIES, NERA (2010 - 2014), is funded and will integrate the seismological and the earthquake engineering infrastructures. NERIES further provided the proof of concept for the ESFRI2008 initiative: the European Plate Observing System (EPOS). Its preparatory phase (2010 - 2014) is also funded by the EC.

  14. Quantitative Analysis of the Educational Infrastructure in Colombia Through the Use of a Georeferencing Software and Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Cala Estupiñan, Jose Luis; María González Bernal, Lina; Ponz Tienda, Jose Luis; Gutierrez Bucheli, Laura Andrea; Alejandro Arboleda, Carlos

    2017-10-01

    The distribution policies of the national budget have been showing an increasing trend of the investment in education infrastructure. This is the reason that makes it necessary to identify the territories with the greatest number of facilities (such as schools, colleges, universities and libraries) and those lacking this type of infrastructure, in order to know where a possible government intervention is required. This work is not intended to give a judgment on the qualitative state of the national infrastructure. It focuses, in terms of infrastructure, on Colombia’s quantitative status of the educational sector, by identifying the territories with more facilities, such as schools, colleges, universities and public libraries. To do this a quantitative index will be created to identify if the coverage of educational infrastructure at departmental level is enough, by taking into account not only the number of facilities, but also the population and the area of influence each one has. The above study is framed within a project of the University of the Andes called “visible Infrastructure”. The index is obtained through a hierarchical analytical process (AHP) and subsequently a linear equation that reflects the variables investigated. The validation of this index is performed through correlations and regressions of social, economic and cultural indicators determined by official entities. All the information on which the analysis is based is official and public. With the end of the armed conflict, it is necessary to focus the planning of public policies to heal the social gaps that the most vulnerable population needs.

  15. Toolkit of Available EPA Green Infrastructure Modeling Software. National Stormwater Calculator

    EPA Science Inventory

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementat...

  16. Software reconfigurable processor technologies: the key to long-life infrastructure for future space missions

    NASA Technical Reports Server (NTRS)

    Srinivasan, J.; Farrington, A.; Gray, A.

    2001-01-01

    They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.

  17. Solving the Software Legacy Problem with RISA

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Gabriel, C.

    2012-09-01

    Nowadays hardware and system infrastructure evolve on time scales much shorter than the typical duration of space astronomy missions. Data processing software capabilities have to evolve to preserve the scientific return during the entire experiment life time. Software preservation is a key issue that has to be tackled before the end of the project to keep the data usable over many years. We present RISA (Remote Interface to Science Analysis) as a solution to decouple data processing software and infrastructure life-cycles, using JAVA applications and web-services wrappers to existing software. This architecture employs embedded SAS in virtual machines assuring a homogeneous job execution environment. We will also present the first studies to reactivate the data processing software of the EXOSAT mission, the first ESA X-ray astronomy mission launched in 1983, using the generic RISA approach.

  18. Testing as a Service with HammerCloud

    NASA Astrophysics Data System (ADS)

    Medrano Llamas, Ramón; Barrand, Quentin; Elmsheuser, Johannes; Legger, Federica; Sciacca, Gianfranco; Sciabà, Andrea; van der Ster, Daniel

    2014-06-01

    HammerCloud was designed and born under the needs of the grid community to test the resources and automate operations from a user perspective. The recent developments in the IT space propose a shift to the software defined data centres, in which every layer of the infrastructure can be offered as a service. Testing and monitoring is an integral part of the development, validation and operations of big systems, like the grid. This area is not escaping the paradigm shift and we are starting to perceive as natural the Testing as a Service (TaaS) offerings, which allow testing any infrastructure service, such as the Infrastructure as a Service (IaaS) platforms being deployed in many grid sites, both from the functional and stressing perspectives. This work will review the recent developments in HammerCloud and its evolution to a TaaS conception, in particular its deployment on the Agile Infrastructure platform at CERN and the testing of many IaaS providers across Europe in the context of experiment requirements. The first section will review the architectural changes that a service running in the cloud needs, such an orchestration service or new storage requirements in order to provide functional and stress testing. The second section will review the first tests of infrastructure providers on the perspective of the challenges discovered from the architectural point of view. Finally, the third section will evaluate future requirements of scalability and features to increase testing productivity.

  19. Standard requirements for GCP-compliant data management in multinational clinical trials.

    PubMed

    Ohmann, Christian; Kuchinke, Wolfgang; Canham, Steve; Lauritsen, Jens; Salas, Nader; Schade-Brittinger, Carmen; Wittenberg, Michael; McPherson, Gladys; McCourt, John; Gueyffier, Francois; Lorimer, Andrea; Torres, Ferràn

    2011-03-22

    A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff. The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres.

  20. caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oster, S.; Langella, S.; Hastings, S.

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: .« less

  1. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  2. Online catalog access and distribution of remotely sensed information

    NASA Astrophysics Data System (ADS)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  3. Integration and validation of a data grid software

    NASA Astrophysics Data System (ADS)

    Carenton-Madiec, Nicolas; Berger, Katharina; Cofino, Antonio

    2014-05-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) is a software infrastructure for the management, dissemination, and analysis of model output and observational data. The ESGF grid is composed with several types of nodes which have different roles. About 40 data nodes host model outputs and datasets using thredds catalogs. About 25 compute nodes offer remote visualization and analysis tools. About 15 index nodes crawl data nodes catalogs and implement faceted and federated search in a web interface. About 15 Identity providers nodes manage accounts, authentication and authorization. Here we will present an actual size test federation spread across different institutes in different countries and a python test suite that were started in December 2013. The first objective of the test suite is to provide a simple tool that helps to test and validate a single data node and its closest index, compute and identity provider peer. The next objective will be to run this test suite on every data node of the federation and therefore test and validate every single node of the whole federation. The suite already implements nosetests, requests, myproxy-logon, subprocess, selenium and fabric python libraries in order to test both web front ends, back ends and security services. The goal of this project is to improve the quality of deliverable in a small developers team context. Developers are widely spread around the world working collaboratively and without hierarchy. This kind of working organization context en-lighted the need of a federated integration test and validation process.

  4. National Intelligent Transportation Infrastructure Initiative

    DOT National Transportation Integrated Search

    1997-09-19

    This report gives an overview of the National Intelligent Transportation Infrastructure Initiative (NITI). NITI refers to the integrated electronics, communications, and hardware and software elements that are available to support Intelligent Transpo...

  5. The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable

    PubMed Central

    2016-01-01

    Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome. PMID:27051515

  6. The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable.

    PubMed

    Nickerson, David; Atalag, Koray; de Bono, Bernard; Geiger, Jörg; Goble, Carole; Hollmann, Susanne; Lonien, Joachim; Müller, Wolfgang; Regierer, Babette; Stanford, Natalie J; Golebiewski, Martin; Hunter, Peter

    2016-04-06

    Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome.

  7. Evolution of user analysis on the grid in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.; ATLAS Collaboration

    2017-10-01

    More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, and system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Typical user workflows on the grid, and their associated metrics, are discussed. Measurements of user job performance and typical requirements are also shown.

  8. Production Maintenance Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Gabler, David Skinner

    2005-11-01

    PMI is a XML framework for formulating tests of software and software environments which operate in a relatively push button manner, i.e., can be automated, and that provide results that are readily consumable/publishable via RSS. Insofar as possible the tests are carried out in manner congruent with real usage. PMI drives shell scripts via a perl program which is charge of timing, validating each test, and controlling the flow through sets of tests. Testing in PMI is built up hierarchically. A suite of tests may start by testing basic functionalities (file system is writable, compiler is found and functions, shellmore » environment behaves as expected, etc.) and work up to large more complicated activities (execution of parallel code, file transfers, etc.) At each step in this hierarchy a failure leads to generation of a text message or RSS that can be tagged as to who should be notified of the failure. There are two functionalities that PMI has been directed at. 1) regular and automated testing of multi user environments and 2) version-wise testing of new software releases prior to their deployment in a production mode.« less

  9. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less

  10. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  11. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  12. Managing Critical Infrastructures C.I.M. Suite

    ScienceCinema

    Dudenhoeffer, Donald

    2018-05-23

    See how a new software package developed by INL researchers could help protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  13. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  14. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  15. Science of Security Lablet - Scalability and Usability

    DTIC Science & Technology

    2014-12-16

    mobile computing [19]. However, the high-level infrastructure design and our own implementation (both described throughout this paper) can easily...critical and infrastructural systems demands high levels of sophistication in the technical aspects of cybersecurity, software and hardware design...Forget, S. Komanduri, Alessandro Acquisti, Nicolas Christin, Lorrie Cranor, Rahul Telang. "Security Behavior Observatory: Infrastructure for Long-term

  16. Software and the future of programming languages.

    PubMed

    Aho, Alfred V

    2004-02-27

    Although software is the key enabler of the global information infrastructure, the amount and extent of software in use in the world today are not widely understood, nor are the programming languages and paradigms that have been used to create the software. The vast size of the embedded base of existing software and the increasing costs of software maintenance, poor security, and limited functionality are posing significant challenges for the software R&D community.

  17. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  18. VRE4EIC: A Reference Architecture and Components for Research Access

    NASA Astrophysics Data System (ADS)

    Bailo, Daniele; Jeffery, Keith G.; Atakan, Kuvvet; Harrison, Matt

    2017-04-01

    VRE4EIC (www. Vre4eic.eu) is a EC H2020 project with the objective of providing a reference architecture and components for a VRE (Virtual Research Environment). SGs (Science gateways) in North America and VLs (Virtual Laboratories) in Australasia are similar - but significantly different - concepts. A VRE provides not only access to ICT services, data, software components and equipment but also provides a collaborative working environment for cooperation and supports the research lifecycle from idea to publication. Europe has a large number of RIs (Research infrastructures); the major ones are coordinated and planned through the ESFRI (European Strategy Forum on Research Infrastructures) roadmap. Most RIs - such as EPOS - provide a user interface portal function, ranging from (1) a simple list of assets (such as services, datasets, software components, workflows, equipment, experts.. although many provide only information about data) with URLs upon which the user can click to download; (2) to an end-user facility for constructing queries to find relevant assets and subsets of them more-or-less integrated as a downloaded combined dataset; (3) in a few cases - for constructing workflows to achieve the scientific objective. The portal has the scope of the individual RI. The aim of VRE4EIC is to provide a reference architecture, software components and a prototype implementation VRE which allows user access and all the portal functions (and more) not only to an individual RI - such as EPOS - but across RIs thus encouraging multidisciplinary research. Two RIs: EPOS and ENVRIplus (itself spanning 21 RIs) are represented within the project as requirements stakeholders , validators of the architecture and evaluators of the prototype system developed. The characterisation of many more RIs - and their requirements - has been done to ensure wide applicability. The virtualisation across RIs is achieved by using a rich metadata catalog based on CERIF (Common European Research Information Format: a EU Recommendation to Member States and supported, developed and promoted by euroCRIS www.eurocris.org ). The VRE4EIC catalog system harvests from individual RI catalogs (with conversion since they use many different metadata formats) to give the user of VRE4IC a 'canonical view' over the RIs and their assets. The VRE4IC user interface provides portal functions for each and all RIs but also a workflow construction facility. The project expects the RIs to use middleware developed in other projects to facilitate workflow deployment across the eIs (e-Infrastructures) such as GEANT, EUDAT, EGI, OpenAIRE and will itself use the same mechanisms. After 15 months of the project we have validated the requirements from the RIs, defined the architecture and started work on the metadata mapping and conversion. The intention is to have the prototype at M24 for evaluation by the RI partners (and some external Ris) leading to a refined architecture and software stack for production use after M36.

  19. Cloud flexibility using DIRAC interware

    NASA Astrophysics Data System (ADS)

    Fernandez Albor, Víctor; Seco Miguelez, Marcos; Fernandez Pena, Tomas; Mendez Muñoz, Victor; Saborido Silva, Juan Jose; Graciani Diaz, Ricardo

    2014-06-01

    Communities of different locations are running their computing jobs on dedicated infrastructures without the need to worry about software, hardware or even the site where their programs are going to be executed. Nevertheless, this usually implies that they are restricted to use certain types or versions of an Operating System because either their software needs an definite version of a system library or a specific platform is required by the collaboration to which they belong. On this scenario, if a data center wants to service software to incompatible communities, it has to split its physical resources among those communities. This splitting will inevitably lead to an underuse of resources because the data centers are bound to have periods where one or more of its subclusters are idle. It is, in this situation, where Cloud Computing provides the flexibility and reduction in computational cost that data centers are searching for. This paper describes a set of realistic tests that we ran on one of such implementations. The test comprise software from three different HEP communities (Auger, LHCb and QCD phenomelogists) and the Parsec Benchmark Suite running on one or more of three Linux flavors (SL5, Ubuntu 10.04 and Fedora 13). The implemented infrastructure has, at the cloud level, CloudStack that manages the virtual machines (VM) and the hosts on which they run, and, at the user level, the DIRAC framework along with a VM extension that will submit, monitorize and keep track of the user jobs and also requests CloudStack to start or stop the necessary VM's. In this infrastructure, the community software is distributed via the CernVM-FS, which has been proven to be a reliable and scalable software distribution system. With the resulting infrastructure, users are allowed to send their jobs transparently to the Data Center. The main purpose of this system is the creation of flexible cluster, multiplatform with an scalable method for software distribution for several VOs. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine, which is transparent to the user.

  20. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  1. An Introduction to Flight Software Development: FSW Today, FSW 2010

    NASA Technical Reports Server (NTRS)

    Gouvela, John

    2004-01-01

    Experience and knowledge gained from ongoing maintenance of Space Shuttle Flight Software and new development projects including Cockpit Avionics Upgrade are applied to projected needs of the National Space Exploration Vision through Spiral 2. Lessons learned from these current activities are applied to create a sustainable, reliable model for development of critical software to support Project Constellation. This presentation introduces the technologies, methodologies, and infrastructure needed to produce and sustain high quality software. It will propose what is needed to support a Vision for Space Exploration that places demands on the innovation and productivity needed to support future space exploration. The technologies in use today within FSW development include tools that provide requirements tracking, integrated change management, modeling and simulation software. Specific challenges that have been met include the introduction and integration of Commercial Off the Shelf (COTS) Real Time Operating System for critical functions. Though technology prediction has proved to be imprecise, Project Constellation requirements will need continued integration of new technology with evolving methodologies and changing project infrastructure. Targets for continued technology investment are integrated health monitoring and management, self healing software, standard payload interfaces, autonomous operation, and improvements in training. Emulation of the target hardware will also allow significant streamlining of development and testing. The methodologies in use today for FSW development are object oriented UML design, iterative development using independent components, as well as rapid prototyping . In addition, Lean Six Sigma and CMMI play a critical role in the quality and efficiency of the workforce processes. Over the next six years, we expect these methodologies to merge with other improvements into a consolidated office culture with all processes being guided by automated office assistants. The infrastructure in use today includes strict software development and configuration management procedures, including strong control of resource management and critical skills coverage. This will evolve to a fully integrated staff organization with efficient and effective communication throughout all levels guided by a Mission-Systems Architecture framework with focus on risk management and attention toward inevitable product obsolescence. This infrastructure of computing equipment, software and processes will itself be subject to technological change and need for management of change and improvement,

  2. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  3. Perspectives in understanding open access to research data - infrastructure and technology challenges

    NASA Astrophysics Data System (ADS)

    Bigagli, Lorenzo; Sondervan, Jeroen

    2014-05-01

    The Policy RECommendations for Open Access to Research Data in Europe (RECODE) project, started in February 2013 with a duration of two years, has the objective to identify a series of targeted and over-arching policy recommendations for Open Access to European research data, based on existing good practice and addressing such hindering factors as stakeholder fragmentation, technical and infrastructural issues, ethical and legal issues, and financial and institutional policies. In this work we focus on the technical and infrastructural aspect, where by "infrastructure" we mean the technological assets (hardware and software), the human resources, and all the policies, processes, procedures and training for managing and supporting its continuous operation and evolution. The context targeted by RECODE includes heterogeneous networks, initiatives, projects and communities that are fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries. Many of these organizations are already addressing key technical and infrastructural barriers to Open Access to research data. Such barriers may include: lack of automatic mechanisms for policy enforcement, lack of metadata and data models supporting open access, obsolescence of infrastructures, scarce awareness about new technological solutions, lack of training and/or expertise on IT and semantics aspects. However, these organizations are often heterogeneous and fragmented by discipline, geography, stakeholder category (publishers, academics, repositories, etc.) as well as other boundaries, and often work in isolation, or with limited contact with one another. RECODE has addressed these challenges, and the possible solutions to mitigate them, engaging all the identified stakeholders in a number of ways, including an online questionnaire, case studies interviews, literature review, a workshop. The conclusions have been validated by the RECODE Advisory Board and will contribute to shape the RECODE policy guidelines for Open Access to Research Data. In the work, we report on the identified technological and infrastructural issues, classified according to the barriers of heterogeneity, sustainability, volume, quality, and security.

  4. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.

  5. Characterizing Crowd Participation and Productivity of Foldit Through Web Scraping

    DTIC Science & Technology

    2016-03-01

    Berkeley Open Infrastructure for Network Computing CDF Cumulative Distribution Function CPU Central Processing Unit CSSG Crowdsourced Serious Game...computers at once can create a similar capacity. According to Anderson [6], principal investigator for the Berkeley Open Infrastructure for Network...extraterrestrial life. From this project, a software-based distributed computing platform called the Berkeley Open Infrastructure for Network Computing

  6. The Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.

    2007-01-01

    The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.

  7. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  8. Frequency Agile Transceiver for Advanced Vehicle Data Links

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Macias, Filiberto; Cornelius, Harold

    2009-01-01

    Emerging and next-generation test instrumentation increasingly relies on network communication to manage complex and dynamic test scenarios, particularly for uninhabited autonomous systems. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. Frequency agility is one characteristic of reconfigurable radios that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate a promising chipset that performs conversion of RF signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit, programmable for any frequency band between 1 MHz and 6 GHz.

  9. Do Over or Make Do? Climate Models as a Software Development Challenge (Invited)

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.

    2010-12-01

    We present the results of a comparative study of the software engineering culture and practices at four different earth system modeling centers: the UK Met Office Hadley Centre, the National Center for Atmospheric Research (NCAR), The Max-Planck-Institut für Meteorologie (MPI-M), and the Institut Pierre Simon Laplace (IPSL). The study investigated the software tools and techniques used at each center to assess their effectiveness. We also investigated how differences in the organizational structures, collaborative relationships, and technical infrastructures constrain the software development and affect software quality. Specific questions for the study included 1) Verification and Validation - What techniques are used to ensure that the code matches the scientists’ understanding of what it should do? How effective are these are at eliminating errors of correctness and errors of understanding? 2) Coordination - How are the contributions from across the modeling community coordinated? For coupled models, how are the differences in the priorities of different, overlapping communities of users addressed? 3) Division of responsibility - How are the responsibilities for coding, verification, and coordination distributed between different roles (scientific, engineering, support) in the organization? 4) Planning and release processes - How do modelers decide on priorities for model development, how do they decide which changes to tackle in a particular release of the model? 5) Debugging - How do scientists debug the models, what types of bugs do they find in their code, and how they find them? The results show that each center has evolved a set of model development practices that are tailored to their needs and organizational constraints. These practices emphasize scientific validity, but tend to neglect other software qualities, and all the centers struggle frequently with software problems. The testing processes are effective at removing software errors prior to release, but the code is hard to understand and hard to change. Software errors and model configuration problems are common during model development, and appear to have a serious impact on scientific productivity. These problems have grown dramatically in recent years with the growth in size and complexity of earth system models. Much of the success in obtaining valid simulations from the models depends on the scientists developing their own code, experimenting with alternatives, running frequent full system tests, and exploring patterns in the results. Blind application of generic software engineering processes is unlikely to work well. Instead, each center needs to lean how to balance the need for better coordination through a more disciplined approach with the freedom to explore, and the value of having scientists work directly with the code. This suggests that each center can learn a lot from comparing their practices with others, but that each might need to develop a different set of best practices.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foucar, James G.; Salinger, Andrew G.; Deakin, Michael

    CIME is the software infrastructure for configuring, building, running, and testing an Earth system model. It can be developed and tested as stand-alone software, but its main role is to be integrating into the CESM and ACME Earth system models.

  11. 17 CFR 39.18 - System safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...

  12. 17 CFR 39.18 - System safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...

  13. 17 CFR 39.18 - System safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...

  14. Cloud computing approaches to accelerate drug discovery value chain.

    PubMed

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  15. Standard requirements for GCP-compliant data management in multinational clinical trials

    PubMed Central

    2011-01-01

    Background A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. Methods International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. Results The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff. Conclusions The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres. PMID:21426576

  16. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  17. The Next Generation of Lab and Classroom Computing - The Silver Lining

    DTIC Science & Technology

    2016-12-01

    desktop infrastructure (VDI) solution, as well as the computing solutions at three universities, was selected as the basis for comparison. The research... infrastructure , VDI, hardware cost, software cost, manpower, availability, cloud computing, private cloud, bring your own device, BYOD, thin client...virtual desktop infrastructure (VDI) solution, as well as the computing solutions at three universities, was selected as the basis for comparison. The

  18. Space Telecommunications Radio System (STRS) Compliance Testing

    NASA Technical Reports Server (NTRS)

    Handler, Louis M.

    2011-01-01

    The Space Telecommunications Radio System (STRS) defines an open architecture for software defined radios. This document describes the testing methodology to aid in determining the degree of compliance to the STRS architecture. Non-compliances are reported to the software and hardware developers as well as the NASA project manager so that any non-compliances may be fixed or waivers issued. Since the software developers may be divided into those that provide the operating environment including the operating system and STRS infrastructure (OE) and those that supply the waveform applications, the tests are divided accordingly. The static tests are also divided by the availability of an automated tool that determines whether the source code and configuration files contain the appropriate items. Thus, there are six separate step-by-step test procedures described as well as the corresponding requirements that they test. The six types of STRS compliance tests are: STRS application automated testing, STRS infrastructure automated testing, STRS infrastructure testing by compiling WFCCN with the infrastructure, STRS configuration file testing, STRS application manual code testing, and STRS infrastructure manual code testing. Examples of the input and output of the scripts are shown in the appendices as well as more specific information about what to configure and test in WFCCN for non-compliance. In addition, each STRS requirement is listed and the type of testing briefly described. Attached is also a set of guidelines on what to look for in addition to the requirements to aid in the document review process.

  19. Extensible Infrastructure for Browsing and Searching Abstracted Spacecraft Data

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Crockett, Thomas M.; Joswig, Joseph C.; Torres, Recaredo J.; Norris, Jeffrey S.; Fox, Jason M.; Powell, Mark W.; Mittman, David S.; Abramyan, Lucy; Shams, Khawaja S.; hide

    2009-01-01

    A computer program has been developed to provide a common interface for all space mission data, and allows different types of data to be displayed in the same context. This software provides an infrastructure for representing any type of mission data.

  20. Initial implementation of a comparative data analysis ontology.

    PubMed

    Prosdocimi, Francisco; Chisham, Brandon; Pontelli, Enrico; Thompson, Julie D; Stoltzfus, Arlin

    2009-07-03

    Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: "Operational Taxonomic Units" (OTUs), representing the entities to be compared; "character-state data" representing the observations compared among OTUs; "phylogenetic tree", representing the historical path of evolution among the entities; and "transitions", the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  1. dCache, towards Federated Identities & Anonymized Delegation

    NASA Astrophysics Data System (ADS)

    Ashish, A.; Millar, AP; Mkrtchyan, T.; Fuhrmann, P.; Behrmann, G.; Sahakyan, M.; Adeyemi, O. S.; Starek, J.; Litvintsev, D.; Rossi, A.

    2017-10-01

    For over a decade, dCache has relied on the authentication and authorization infrastructure (AAI) offered by VOMS, Kerberos, Xrootd etc. Although the established infrastructure has worked well and provided sufficient security, the implementation of procedures and the underlying software is often seen as a burden, especially by smaller communities trying to adopt existing HEP software stacks [1]. Moreover, scientists are increasingly dependent on service portals for data access [2]. In this paper, we describe how federated identity management systems can facilitate the transition from traditional AAI infrastructure to novel solutions like OpenID Connect. We investigate the advantages offered by OpenID Connect in regards to ‘delegation of authentication’ and ‘credential delegation for offline access’. Additionally, we demonstrate how macaroons can provide a more fine-granular authorization mechanism that supports anonymized delegation.

  2. HPC Software Stack Testing Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Cormac

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  3. Software architecture standard for simulation virtual machine, version 2.0

    NASA Technical Reports Server (NTRS)

    Sturtevant, Robert; Wessale, William

    1994-01-01

    The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort involved in the real-time software maintenance and sustaining engineering. The Software Architecture Standard defines the infrastructure which all the simulation models are built from. SVM was developed for and used in the Space Station Verification and Training Facility.

  4. Contingency theoretic methodology for agent-based web-oriented manufacturing systems

    NASA Astrophysics Data System (ADS)

    Durrett, John R.; Burnell, Lisa J.; Priest, John W.

    2000-12-01

    The development of distributed, agent-based, web-oriented, N-tier Information Systems (IS) must be supported by a design methodology capable of responding to the convergence of shifts in business process design, organizational structure, computing, and telecommunications infrastructures. We introduce a contingency theoretic model for the use of open, ubiquitous software infrastructure in the design of flexible organizational IS. Our basic premise is that developers should change in the way they view the software design process from a view toward the solution of a problem to one of the dynamic creation of teams of software components. We postulate that developing effective, efficient, flexible, component-based distributed software requires reconceptualizing the current development model. The basic concepts of distributed software design are merged with the environment-causes-structure relationship from contingency theory; the task-uncertainty of organizational- information-processing relationships from information processing theory; and the concept of inter-process dependencies from coordination theory. Software processes are considered as employees, groups of processes as software teams, and distributed systems as software organizations. Design techniques already used in the design of flexible business processes and well researched in the domain of the organizational sciences are presented. Guidelines that can be utilized in the creation of component-based distributed software will be discussed.

  5. The Five 'R's' for Developing Trusted Software Frameworks to increase confidence in, and maximise reuse of, Open Source Software.

    NASA Astrophysics Data System (ADS)

    Fraser, Ryan; Gross, Lutz; Wyborn, Lesley; Evans, Ben; Klump, Jens

    2015-04-01

    Recent investments in HPC, cloud and Petascale data stores, have dramatically increased the scale and resolution that earth science challenges can now be tackled. These new infrastructures are highly parallelised and to fully utilise them and access the large volumes of earth science data now available, a new approach to software stack engineering needs to be developed. The size, complexity and cost of the new infrastructures mean any software deployed has to be reliable, trusted and reusable. Increasingly software is available via open source repositories, but these usually only enable code to be discovered and downloaded. As a user it is hard for a scientist to judge the suitability and quality of individual codes: rarely is there information on how and where codes can be run, what the critical dependencies are, and in particular, on the version requirements and licensing of the underlying software stack. A trusted software framework is proposed to enable reliable software to be discovered, accessed and then deployed on multiple hardware environments. More specifically, this framework will enable those who generate the software, and those who fund the development of software, to gain credit for the effort, IP, time and dollars spent, and facilitate quantification of the impact of individual codes. For scientific users, the framework delivers reviewed and benchmarked scientific software with mechanisms to reproduce results. The trusted framework will have five separate, but connected components: Register, Review, Reference, Run, and Repeat. 1) The Register component will facilitate discovery of relevant software from multiple open source code repositories. The registration process of the code should include information about licensing, hardware environments it can be run on, define appropriate validation (testing) procedures and list the critical dependencies. 2) The Review component is targeting on the verification of the software typically against a set of benchmark cases. This will be achieved by linking the code in the software framework to peer review forums such as Mozilla Science or appropriate Journals (e.g. Geoscientific Model Development Journal) to assist users to know which codes to trust. 3) Referencing will be accomplished by linking the Software Framework to groups such as Figshare or ImpactStory that help disseminate and measure the impact of scientific research, including program code. 4) The Run component will draw on information supplied in the registration process, benchmark cases described in the review and relevant information to instantiate the scientific code on the selected environment. 5) The Repeat component will tap into existing Provenance Workflow engines that will automatically capture information that relate to a particular run of that software, including identification of all input and output artefacts, and all elements and transactions within that workflow. The proposed trusted software framework will enable users to rapidly discover and access reliable code, reduce the time to deploy it and greatly facilitate sharing, reuse and reinstallation of code. Properly designed it could enable an ability to scale out to massively parallel systems and be accessed nationally/ internationally for multiple use cases, including Supercomputer centres, cloud facilities, and local computers.

  6. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    PubMed

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

  7. Experiments Toward the Application of Multi-Robot Systems to Disaster-Relief Scenarios

    DTIC Science & Technology

    2015-09-01

    responsibility is assessment, such as dislocated populations, degree of property damage, and remaining communications infrastructure . These are all...specific problems: evaluating of damage to infrastructure in the environment, e.g., traversability of roads; and localizing particular targets of interest...regarding hardware and software infrastructure are driven by the need for these systems to “survive the field” and allow for reliable evaluation of autonomy

  8. caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research

    PubMed Central

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909

  9. caGrid 1.0: an enterprise Grid infrastructure for biomedical research.

    PubMed

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2008-01-01

    To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.

  10. Auscope: Australian Earth Science Information Infrastructure using Free and Open Source Software

    NASA Astrophysics Data System (ADS)

    Woodcock, R.; Cox, S. J.; Fraser, R.; Wyborn, L. A.

    2013-12-01

    Since 2005 the Australian Government has supported a series of initiatives providing researchers with access to major research facilities and information networks necessary for world-class research. Starting with the National Collaborative Research Infrastructure Strategy (NCRIS) the Australian earth science community established an integrated national geoscience infrastructure system called AuScope. AuScope is now in operation, providing a number of components to assist in understanding the structure and evolution of the Australian continent. These include the acquisition of subsurface imaging , earth composition and age analysis, a virtual drill core library, geological process simulation, and a high resolution geospatial reference framework. To draw together information from across the earth science community in academia, industry and government, AuScope includes a nationally distributed information infrastructure. Free and Open Source Software (FOSS) has been a significant enabler in building the AuScope community and providing a range of interoperable services for accessing data and scientific software. A number of FOSS components have been created, adopted or upgraded to create a coherent, OGC compliant Spatial Information Services Stack (SISS). SISS is now deployed at all Australian Geological Surveys, many Universities and the CSIRO. Comprising a set of OGC catalogue and data services, and augmented with new vocabulary and identifier services, the SISS provides a comprehensive package for organisations to contribute their data to the AuScope network. This packaging and a variety of software testing and documentation activities enabled greater trust and notably reduced barriers to adoption. FOSS selection was important, not only for technical capability and robustness, but also for appropriate licensing and community models to ensure sustainability of the infrastructure in the long term. Government agencies were sensitive to these issues and AuScope's careful selection has been rewarded by adoption. In some cases the features provided by the SISS solution are now significantly in advance of COTS offerings which will create expectations that can be passed back from users to their preferred vendors. Using FOSS, AuScope has addressed the challenge of data exchange across organisations nationally. The data standards (e.g. GeosciML) and platforms that underpin AuScope provide important new datasets and multi-agency links independent of underlying software and hardware differences. AuScope has created an infrastructure, a platform of technologies and the opportunity for new ways of working with and integrating disparate data at much lower cost. Research activities are now exploiting the information infrastructure to create virtual laboratories for research ranging from geophysics through water and the environment. Once again the AuScope community is making heavy use of FOSS to provide access to processing software and Cloud computing and HPC. The successful use of FOSS by AuScope, and the efforts made to ensure it is suitable for adoption, have resulted in the SISS being selected as a reference implementation for a number of Australian Government initiatives beyond AuScope in environmental information and bioregional assessments.

  11. Globus Quick Start Guide. Globus Software Version 1.1

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Globus Project is a community effort, led by Argonne National Laboratory and the University of Southern California's Information Sciences Institute. Globus is developing the basic software infrastructure for computations that integrate geographically distributed computational and information resources.

  12. The Role of Free/Libre and Open Source Software in Learning Health Systems.

    PubMed

    Paton, C; Karopka, T

    2017-08-01

    Objective: To give an overview of the role of Free/Libre and Open Source Software (FLOSS) in the context of secondary use of patient data to enable Learning Health Systems (LHSs). Methods: We conducted an environmental scan of the academic and grey literature utilising the MedFLOSS database of open source systems in healthcare to inform a discussion of the role of open source in developing LHSs that reuse patient data for research and quality improvement. Results: A wide range of FLOSS is identified that contributes to the information technology (IT) infrastructure of LHSs including operating systems, databases, frameworks, interoperability software, and mobile and web apps. The recent literature around the development and use of key clinical data management tools is also reviewed. Conclusions: FLOSS already plays a critical role in modern health IT infrastructure for the collection, storage, and analysis of patient data. The nature of FLOSS systems to be collaborative, modular, and modifiable may make open source approaches appropriate for building the digital infrastructure for a LHS. Georg Thieme Verlag KG Stuttgart.

  13. Validation of Medical Tourism Service Quality Questionnaire (MTSQQ) for Iranian Hospitals.

    PubMed

    Qolipour, Mohammad; Torabipour, Amin; Khiavi, Farzad Faraji; Malehi, Amal Saki

    2017-03-01

    Assessing service quality is one of the basic requirements to develop the medical tourism industry. There is no valid and reliable tool to measure service quality of medical tourism. This study aimed to determine the reliability and validity of a Persian version of medical tourism service quality questionnaire for Iranian hospitals. To validate the medical tourism service quality questionnaire (MTSQQ), a cross-sectional study was conducted on 250 Iraqi patients referred to hospitals in Ahvaz (Iran) from 2015. To design a questionnaire and determine its content validity, the Delphi Technique (3 rounds) with the participation of 20 medical tourism experts was used. Construct validity of the questionnaire was assessed through exploratory and confirmatory factor analysis. Reliability was assessed using Cronbach's alpha coefficient. Data were analyzed by Excel 2007, SPSS version18, and Lisrel l8.0 software. The content validity of the questionnaire with CVI=0.775 was confirmed. According to exploratory factor analysis, the MTSQQ included 31 items and 8 dimensions (tangibility, reliability, responsiveness, assurance, empathy, exchange and travel facilities, technical and infrastructure facilities and safety and security). Construct validity of the questionnaire was confirmed, based on the goodness of fit quantities of model (RMSEA=0.032, CFI= 0.98, GFI=0.88). Cronbach's alpha coefficient was 0.837 and 0.919 for expectation and perception questionnaire. The results of the study showed that the medical tourism SERVQUAL questionnaire with 31 items and 8 dimensions was a valid and reliable tool to measure service quality of medical tourism in Iranian hospitals.

  14. Waggle: A Framework for Intelligent Attentive Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.

    2014-12-01

    Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.

  15. A Research Agenda for Service-Oriented Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems

    DTIC Science & Technology

    2010-03-01

    service consumers, and infrastructure. Techniques from any iterative and incremental software development methodology followed by the organiza- tion... Service -Oriented Architecture Environment (CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008. http://www.sei.cmu.edu...Integrating Legacy Software into a Service Oriented Architecture.” Proceedings of the 10th European Conference on Software Maintenance (CSMR 2006). Bari

  16. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    PubMed

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  17. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem

    PubMed Central

    2012-01-01

    This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications. PMID:22870956

  18. Implications of Responsive Space on the Flight Software Architecture

    NASA Technical Reports Server (NTRS)

    Wilmot, Jonathan

    2006-01-01

    The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.

  19. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  20. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology.

    PubMed

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E; Troein, Carl; Millar, Andrew J; Goryanin, Igor; Gilmore, Stephen

    2013-03-01

    Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI's use of standard data formats. All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials.

  1. PGP repository: a plant phenomics and genomics data publication infrastructure

    PubMed Central

    Arend, Daniel; Junker, Astrid; Scholz, Uwe; Schüler, Danuta; Wylie, Juliane; Lange, Matthias

    2016-01-01

    Plant genomics and phenomics represents the most promising tools for accelerating yield gains and overcoming emerging crop productivity bottlenecks. However, accessing this wealth of plant diversity requires the characterization of this material using state-of-the-art genomic, phenomic and molecular technologies and the release of subsequent research data via a long-term stable, open-access portal. Although several international consortia and public resource centres offer services for plant research data management, valuable digital assets remains unpublished and thus inaccessible to the scientific community. Recently, the Leibniz Institute of Plant Genetics and Crop Plant Research and the German Plant Phenotyping Network have jointly initiated the Plant Genomics and Phenomics Research Data Repository (PGP) as infrastructure to comprehensively publish plant research data. This covers in particular cross-domain datasets that are not being published in central repositories because of its volume or unsupported data scope, like image collections from plant phenotyping and microscopy, unfinished genomes, genotyping data, visualizations of morphological plant models, data from mass spectrometry as well as software and documents. The repository is hosted at Leibniz Institute of Plant Genetics and Crop Plant Research using e!DAL as software infrastructure and a Hierarchical Storage Management System as data archival backend. A novel developed data submission tool was made available for the consortium that features a high level of automation to lower the barriers of data publication. After an internal review process, data are published as citable digital object identifiers and a core set of technical metadata is registered at DataCite. The used e!DAL-embedded Web frontend generates for each dataset a landing page and supports an interactive exploration. PGP is registered as research data repository at BioSharing.org, re3data.org and OpenAIRE as valid EU Horizon 2020 open data archive. Above features, the programmatic interface and the support of standard metadata formats, enable PGP to fulfil the FAIR data principles—findable, accessible, interoperable, reusable. Database URL: http://edal.ipk-gatersleben.de/repos/pgp/ PMID:27087305

  2. Toward a digital library strategy for a National Information Infrastructure

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry

    1993-01-01

    Bills currently before the House and Senate would give support to the development of a National Information Infrastructure, in which digital libraries and storage systems would be an important part. A simple model is offered to show the relationship of storage systems, software, and standards to the overall information infrastructure. Some elements of a national strategy for digital libraries are proposed, based on the mission of the nonprofit National Storage System Foundation.

  3. Maintaining Enterprise Resiliency via Kaleidoscopic Adaption and Transformation of Software Services (MEERKATS)

    DTIC Science & Technology

    2016-04-01

    infrastructure . The work is motivated by the fact that today’s clouds are very static, uniform, and predictable, allowing attackers who identify a...vulnerability in one of the services or infrastructure components to spread their effect to other, mission-critical services. Our goal is to integrate into...clouds by elevating continuous change, evolution, and misinformation as first-rate design principles of the cloud’s infrastructure . Our work is

  4. CrossTalk: The Journal of Defense Software Engineering. Volume 27, Number 5, September/October 2014

    DTIC Science & Technology

    2014-10-01

    CMSP Infrastructure . 24. CMSP Infrastructure sends message via broadcast to mobile devices in the designated area(s). 25. Mobile device users... infrastructure could potentially threaten our way of life. Given the swiftness of technological change, it is excusable that organizations might...system, which is diagramed in Fig. 1, would expand these op- tions to mobile devices. FEMA established the message struc- ture and the approvals needed to

  5. Electronic Business Transaction Infrastructure Analysis Using Petri Nets and Simulation

    ERIC Educational Resources Information Center

    Feller, Andrew Lee

    2010-01-01

    Rapid growth in eBusiness has made industry and commerce increasingly dependent on the hardware and software infrastructure that enables high-volume transaction processing across the Internet. Large transaction volumes at major industrial-firm data centers rely on robust transaction protocols and adequately provisioned hardware capacity to ensure…

  6. DEVELOP MULTI-STRESSOR, OPEN ARCHITECTURE MODELING FRAMEWORK FOR ECOLOGICAL EXPOSURE FROM SITE TO WATERSHED SCALE

    EPA Science Inventory

    A number of multimedia modeling frameworks are currently being developed. The Multimedia Integrated Modeling System (MIMS) is one of these frameworks. A framework should be seen as more of a multimedia modeling infrastructure than a single software system. This infrastructure do...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Jay J.; Bonior, Jason D.; Evans, Philip G.

    Securely transferring timing information in the electrical grid is a critical component of securing the nation's infrastructure from cyber attacks. One solution to this problem is to use quantum information to securely transfer the timing information across sites. This software provides such an infrastructure using a standard Java webserver that pulls the quantum information from associated hardware.

  8. How to Purchase, Set Up, & Safeguard a CD-ROM Network.

    ERIC Educational Resources Information Center

    Almquist, Arne J.

    1996-01-01

    Presents an overview of the hardware and software required to network CD-ROMs in schools. Topics include network infrastructures, networking software, file server-based systems, CD-ROM servers, vendors of network components, workstations, network utilities, and network management. (LRW)

  9. NASA-evolving to Ada: Five-year plan. A plan for implementing recommendations made by the Ada and software management assessment working group

    NASA Technical Reports Server (NTRS)

    1989-01-01

    At their March 1988 meeting, members of the National Aeronautics and Space Administration (NASA) Information Resources Management (IRM) Council expressed concern that NASA may not have the infrastructure necessary to support the use of Ada for major NASA software projects. Members also observed that the agency has no coordinated strategy for applying its experiences with Ada to subsequent projects (Hinners, 27 June 1988). To deal with these problems, the IRM Council chair appointed an intercenter Ada and Software Management Assessment Working Group (ASMAWG). They prepared a report (McGarry et al., March 1989) entitled, 'Ada and Software Management in NASA: Findings and Recommendations'. That report presented a series of recommendations intended to enable NASA to develop better software at lower cost through the use of Ada and other state-of-the-art software engineering technologies. The purpose here is to describe the steps (called objectives) by which this goal may be achieved, to identify the NASA officials or organizations responsible for carrying out the steps, and to define a schedule for doing so. This document sets forth four goals: adopt agency-wide software standards and policies; use Ada as the programming language for all mission software; establish an infrastructure to support software engineering, including the use of Ada, and to leverage the agency's software experience; and build the agency's knowledge base in Ada and software engineering. A schedule for achieving the objectives and goals is given.

  10. 45 CFR 153.350 - Risk adjustment data validation standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... implementation of any risk adjustment software and ensure proper validation of a statistically valid sample of... respect to implementation of risk adjustment software or as a result of data validation conducted pursuant... implementation of risk adjustment software or data validation. ...

  11. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottler, Gary

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  12. Lean and Efficient Software: Whole-Program Optimization of Executables

    DTIC Science & Technology

    2013-01-03

    staffing for the project  Implementing the necessary infrastructure ( testing, performance evaluation, needed support software, bug and issue...in the SOW The result of the planning discussions is shown in the milestone table (section 6). In addition, we selected appropriate engineering

  13. Sharing the Code.

    ERIC Educational Resources Information Center

    Olsen, Florence

    2003-01-01

    Colleges and universities are beginning to consider collaborating on open-source-code projects as a way to meet critical software and computing needs. Points out the attractive features of noncommercial open-source software and describes some examples in use now, especially for the creation of Web infrastructure. (SLD)

  14. Using neural networks in software repositories

    NASA Technical Reports Server (NTRS)

    Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.

    1992-01-01

    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.

  15. The Computational Infrastructure for Geodynamics: An Example of Software Curation and Citation in the Geodynamics Community

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Kellogg, L. H.

    2017-12-01

    Curation of software promotes discoverability and accessibility and works hand in hand with scholarly citation to ascribe value to, and provide recognition for software development. To meet this challenge, the Computational Infrastructure for Geodynamics (CIG) maintains a community repository built on custom and open tools to promote discovery, access, identification, credit, and provenance of research software for the geodynamics community. CIG (geodynamics.org) originated from recognition of the tremendous effort required to develop sound software and the need to reduce duplication of effort and to sustain community codes. CIG curates software across 6 domains and has developed and follows software best practices that include establishing test cases, documentation, and a citable publication for each software package. CIG software landing web pages provide access to current and past releases; many are also accessible through the CIG community repository on github. CIG has now developed abc - attribution builder for citation to enable software users to give credit to software developers. abc uses zenodo as an archive and as the mechanism to obtain a unique identifier (DOI) for scientific software. To assemble the metadata, we searched the software's documentation and research publications and then requested the primary developers to verify. In this process, we have learned that each development community approaches software attribution differently. The metadata gathered is based on guidelines established by groups such as FORCE11 and OntoSoft. The rollout of abc is gradual as developers are forward-looking, rarely willing to go back and archive prior releases in zenodo. Going forward all actively developed packages will utilize the zenodo and github integration to automate the archival process when a new release is issued. How to handle legacy software, multi-authored libraries, and assigning roles to software remain open issues.

  16. Sunderland Software City: An Innovative Approach to Knowledge Exchange in the North East of England

    ERIC Educational Resources Information Center

    Hall, Lynne; Irons, Alastair; MacIntyre, John; Sellers, Charles; Smith, Peter

    2010-01-01

    This paper presents a collaborative initiative within the North East of England which aims to grow and sustain a software industry, based on the strengths of regional players, including in particular the local university. The project Sunderland Software City has the ambitious aim of developing the people, the infrastructure and the business and…

  17. Architecting Service-Oriented Systems

    DTIC Science & Technology

    2011-08-01

    Abstract Service orientation is an approach to software systems development that has become a popular way to implement distributed, loosely coupled...runtime. The later you defer binding the more flexibility service providers and service consumers have to develop their software systems independently...Enterprise Service Bus An Enterprise Service Bus (ESB) is a software pattern that can be part of a SOA infrastructure and acts as an intermediary

  18. Testing in Service-Oriented Environments

    DTIC Science & Technology

    2010-03-01

    software releases (versions, service packs, vulnerability patches) for one com- mon ESB during the 13-month period from January 1, 2008 through...impact on quality of service : Unlike traditional software compo- nents, a single instance of a web service can be used by multiple consumers. Since the...distributed, with heterogeneous hardware and software (SOA infrastructure, services , operating systems, and databases). Because of cost and security, it

  19. Multi-Level Data-Security and Data-Protection in a Distributed Search Infrastructure for Digital Medical Samples.

    PubMed

    Witt, Michael; Krefting, Dagmar

    2016-01-01

    Human sample data is stored in biobanks with software managing digital derived sample data. When these stand-alone components are connected and a search infrastructure is employed users become able to collect required research data from different data sources. Data protection, patient rights, data heterogeneity and access control are major challenges for such an infrastructure. This dissertation will investigate concepts for a multi-level security architecture to comply with these requirements.

  20. Implementing the European Neutron Monitor Service for the ESA SSA Program

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Papaioannou, A.; Souvatzoglou, G.; Dimitroulakos, J.; Paschalis, P.; Gerontidou, M.; Sarlanis, Ch.

    2013-09-01

    Ground level enhancements (GLEs) are observed as significant intensity increases at neutron monitor measurements, followed by an intense solar flare and/or a very energetic coronal mass ejection. Due to their space weather impact it is crucial to establish a real-time operational system that would be in place to issue reliable and timely GLE Alerts. Such a Neutron Monitor Service that will be made available via the Space Weather Portal operated by the European Space Agency (ESA), under the Space Situational Awareness (SSA) Program, is currently under development. The ESA Neutron Monitor Service will provide two products: a web interface providing data from multiple Neutron Monitor stations as well as an upgraded GLE Alert. Both services are now under testing and validation and will probably enter to an operational phase next year. The core of this Neutron Monitor Service is the GLE Alert software, and therefore, the main goal of this research effort is to upgrade the existing GLE Alert software and to minimize the probability of false alarms. The ESA Neutron Monitor Service is building upon the infrastructure made available with the implementation of the High-Resolution Neutron Monitor Database (NMDB). In this work the structure of the ESA Neutron Monitor Service, the core of the novel GLE Alert Service and its validation results will be presented and further discussed.

  1. Use of a hardware token for Grid authentication by the MICE data distribution framework

    NASA Astrophysics Data System (ADS)

    Nebrensky, JJ; Martyniak, J.

    2017-10-01

    The international Muon Ionization Cooling Experiment (MICE) is designed to demonstrate the principle of muon ionisation cooling for the first time. Data distribution and archiving, batch reprocessing, and simulation are all carried out using the EGI Grid infrastructure, in particular the facilities provided by GridPP in the UK. To prevent interference - especially accidental data deletion - these activities are separated by different VOMS roles. Data acquisition, in particular, can involve 24/7 operation for a number of weeks and so for moving the data out of the MICE Local Control Room at the experiment a valid, VOMS-enabled, Grid proxy must be made available continuously over that time. The MICE "Data Mover" agent is now using a robot certificate stored on a hardware token (Feitian ePass2003) from which a cron job generates a “plain” proxy to which the VOMS authorisation extensions are added in a separate transaction. A valid short-lifetime proxy is thus continuously available to the Data Mover process. The Feitian ePass2003 was chosen because it was both significantly cheaper and easier to actually purchase than the token commonly referred to in the community at that time; however there was no software support for the hardware. This paper describes the software packages, process and commands used to deploy the token into production.

  2. Social network of PESCA (Open Source Platform for eHealth).

    PubMed

    Sanchez, Carlos L; Romero-Cuevas, Miguel; Lopez, Diego M; Lorca, Julio; Alcazar, Francisco J; Ruiz, Sergio; Mercado, Carmen; Garcia-Fortea, Pedro

    2008-01-01

    Information and Communication Technologies (ICTs) are revolutionizing how healthcare systems deliver top-quality care to citizens. In this way, Open Source Software (OSS) has demonstrated to be an important strategy to spread ICTs use. Several human and technological barriers in adopting OSS for healthcare have been identified. Human barriers include user acceptance, limited support, technical skillfulness, awareness, resistance to change, etc., while Technological barriers embrace need for open standards, heterogeneous OSS developed without normalization and metrics, lack of initiatives to evaluate existing health OSS and need for quality control and functional validation. The goals of PESCA project are to create a platform of interoperable modules to evaluate, classify and validate good practices in health OSS. Furthermore, a normalization platform will provide interoperable solutions in the fields of healthcare services, health surveillance, health literature, and health education, knowledge and research. Within the platform, the first goal to achieve is the setup of the collaborative work infrastructure. The platform is being organized as a Social Network which works to evaluate five scopes of every existing open source tools for eHealth: Open Source Software, Quality, Pedagogical, Security and privacy and Internationalization/I18N. In the meantime, the knowledge collected from the networking will configure a Good Practice Repository on eHealth promoting the effective use of ICT on behalf of the citizen's health.

  3. Three-Dimensional Space to Assess Cloud Interoperability

    DTIC Science & Technology

    2013-03-01

    12 1. Portability and Mobility ...collection of network-enabled services that guarantees to provide a scalable, easy accessible, reliable, and personalized computing infrastructure , based on...are used in research to describe cloud models, such as SaaS (Software as a Service), PaaS (Platform as a service), IaaS ( Infrastructure as a Service

  4. Cloud Computing in Support of Applied Learning: A Baseline Study of Infrastructure Design at Southern Polytechnic State University

    ERIC Educational Resources Information Center

    Conn, Samuel S.; Reichgelt, Han

    2013-01-01

    Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…

  5. InterMine Webservices for Phytozome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph; Hayes, David; Goodstein, David

    2014-01-10

    A data warehousing framework for biological information provides a useful infrastructure for providers and users of genomic data. For providers, the infrastructure give them a consistent mechanism for extracting raw data. While for the users, the web services supported by the software allows them to make either simple and common, or complex and unique, queries of the data

  6. Multiuser Collaboration with Networked Mobile Devices

    NASA Technical Reports Server (NTRS)

    Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.

    2006-01-01

    In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application-independent middleware that maintains the states, sessions, and interactions of individual users of the software applications, (4) an application programming interface to enable tight integration of applications and the middleware. The infrastructure is able to support any software applications running under the Windows or Unix platforms. The resulting technologies not only are applicable to NASA mission operations, but also useful in other situations such as design reviews, brainstorming sessions, and business meetings, as they can benefit from having the participants concurrently interact with the software applications (e.g., presentation applications and CAD design tools) to illustrate their ideas and provide inputs.

  7. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  8. Teacher-Pedagogy Approach for Sustainable Proficiency

    ERIC Educational Resources Information Center

    Nath, Baiju K.; Balan, Meera

    2010-01-01

    Quality concerns of an institution shall be explained in terms of hardware and software. The hardware comprises of building and other infrastructural facilities and software involves teachers, students and administrative staff. Various agencies such as National Council for Educational Research & Training (NCERT), National Council for Teacher…

  9. Security Isn't Just for Techies Anymore

    ERIC Educational Resources Information Center

    Mills, Lane B.

    2004-01-01

    School district networks are particularly difficult to protect given the diverse types of users, software, equipment and connections that most school districts provide. Vulnerabilities to the security of school district's technology infrastructure can relate to users, data, software, hardware and transmission. This article discusses different…

  10. HiCAT Software Infrastructure: Safe hardware control with object oriented Python

    NASA Astrophysics Data System (ADS)

    Moriarty, Christopher; Brooks, Keira; Soummer, Remi

    2018-01-01

    High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.

  11. Community-driven computational biology with Debian Linux.

    PubMed

    Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles

    2010-12-21

    The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.

  12. Collaboration and decision making tools for mobile groups

    NASA Astrophysics Data System (ADS)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  13. Hadoop distributed batch processing for Gaia: a success story

    NASA Astrophysics Data System (ADS)

    Riello, Marco

    2015-12-01

    The DPAC Cambridge Data Processing Centre (DPCI) is responsible for the photometric calibration of the Gaia data including the low resolution spectra. The large data volume produced by Gaia (~26 billion transits/year), the complexity of its data stream and the self-calibrating approach pose unique challenges for scalability, reliability and robustness of both the software pipelines and the operations infrastructure. DPCI has been the first in DPAC to realise the potential of Hadoop and Map/Reduce and to adopt them as the core technologies for its infrastructure. This has proven a winning choice allowing DPCI unmatched processing throughput and reliability within DPAC to the point that other DPCs have started following our footsteps. In this talk we will present the software infrastructure developed to build the distributed and scalable batch data processing system that is currently used in production at DPCI and the excellent results in terms of performance of the system.

  14. Cafe: A Generic Configurable Customizable Composite Cloud Application Framework

    NASA Astrophysics Data System (ADS)

    Mietzner, Ralph; Unger, Tobias; Leymann, Frank

    In this paper we present Cafe (Composite Application Framework) an approach to describe configurable composite service-oriented applications and to automatically provision them across different providers. Cafe enables independent software vendors to describe their composite service-oriented applications and the components that are used to assemble them. Components can be internal to the application or external and can be deployed in any of the delivery models present in the cloud. The components are annotated with requirements for the infrastructure they later need to be run on. Providers on the other hand advertise their infrastructure services by describing them as infrastructure capabilities. The separation of software vendors and providers enables end users and providers to follow a best-of-breed strategy by combining arbitrary applications with arbitrary providers. We show how such applications can be automatically provisioned and present an architecture and a prototype that implements the concepts.

  15. Software Infrastructure for Computer-aided Drug Discovery and Development, a Practical Example with Guidelines.

    PubMed

    Moretti, Loris; Sartori, Luca

    2016-09-01

    In the field of Computer-Aided Drug Discovery and Development (CADDD) the proper software infrastructure is essential for everyday investigations. The creation of such an environment should be carefully planned and implemented with certain features in order to be productive and efficient. Here we describe a solution to integrate standard computational services into a functional unit that empowers modelling applications for drug discovery. This system allows users with various level of expertise to run in silico experiments automatically and without the burden of file formatting for different software, managing the actual computation, keeping track of the activities and graphical rendering of the structural outcomes. To showcase the potential of this approach, performances of five different docking programs on an Hiv-1 protease test set are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. HyRAM V1.0 User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina M.; Zumwalt, Hannah Ruth; Clark, Andrew Jordan

    2016-03-01

    Hydrogen Risk Assessment Models (HyRAM) is a prototype software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards, including thermal effects from jet fires and thermal pressure effects from deflagration. HyRAM version 1.0 incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of various aspects of gaseous hydrogen releasemore » and flame physics. This document provides an example of how to use HyRAM to conduct analysis of a fueling facility. This document will guide users through the software and how to enter and edit certain inputs that are specific to the user-defined facility. Description of the methodology and models contained in HyRAM is provided in [1]. This User’s Guide is intended to capture the main features of HyRAM version 1.0 (any HyRAM version numbered as 1.0.X.XXX). This user guide was created with HyRAM 1.0.1.798. Due to ongoing software development activities, newer versions of HyRAM may have differences from this guide.« less

  17. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case, economic factors were evaluated and a preliminary cost-benefit analysis was performed.

  18. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    NASA Technical Reports Server (NTRS)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  19. Status report of the SRT radiotelescope control software: the DISCOS project

    NASA Astrophysics Data System (ADS)

    Orlati, A.; Bartolini, M.; Buttu, M.; Fara, A.; Migoni, C.; Poppi, S.; Righini, S.

    2016-08-01

    The Sardinia Radio Telescope (SRT) is a 64-m fully-steerable radio telescope. It is provided with an active surface to correct for gravitational deformations, allowing observations from 300 MHz to 100 GHz. At present, three receivers are available: a coaxial LP-band receiver (305-410 MHz and 1.5-1.8 GHz), a C-band receiver (5.7-7.7 GHz) and a 7-feed K-band receiver (18-26.5 GHz). Several back-ends are also available in order to perform the different data acquisition and analysis procedures requested by scientific projects. The design and development of the SRT control software started in 2004, and now belongs to a wider project called DISCOS (Development of the Italian Single-dish COntrol System), which provides a common infrastructure to the three Italian radio telescopes (Medicina, Noto and SRT dishes). DISCOS is based on the Alma Common Software (ACS) framework, and currently consists of more than 500k lines of code. It is organized in a common core and three specific product lines, one for each telescope. Recent developments, carried out after the conclusion of the technical commissioning of the instrument (October 2013), consisted in the addition of several new features in many parts of the observing pipeline, spanning from the motion control to the digital back-ends for data acquisition and data formatting; we brie y describe such improvements. More importantly, in the last two years we have supported the astronomical validation of the SRT radio telescope, leading to the opening of the first public call for proposals in late 2015. During this period, while assisting both the engineering and the scientific staff, we massively employed the control software and were able to test all of its features: in this process we received our first feedback from the users and we could verify how the system performed in a real-life scenario, drawing the first conclusions about the overall system stability and performance. We examine how the system behaves in terms of network load and system load, how it reacts to failures and errors, and what components and services seem to be the most critical parts of our architecture, showing how the ACS framework impacts on these aspects. Moreover, the exposure to public utilization has highlighted the major flaws in our development and software management process, which had to be tuned and improved in order to achieve faster release cycles in response to user feedback, and safer deploy operations. In this regard we show how the introduction of testing practices, along with continuous integration, helped us to meet higher quality standards. Having identified the most critical aspects of our software, we conclude showing our intentions for the future development of DISCOS, both in terms of software features and software infrastructures.

  20. The CARMEN software as a service infrastructure.

    PubMed

    Weeks, Michael; Jessop, Mark; Fletcher, Martyn; Hodge, Victoria; Jackson, Tom; Austin, Jim

    2013-01-28

    The CARMEN platform allows neuroscientists to share data, metadata, services and workflows, and to execute these services and workflows remotely via a Web portal. This paper describes how we implemented a service-based infrastructure into the CARMEN Virtual Laboratory. A Software as a Service framework was developed to allow generic new and legacy code to be deployed as services on a heterogeneous execution framework. Users can submit analysis code typically written in Matlab, Python, C/C++ and R as non-interactive standalone command-line applications and wrap them as services in a form suitable for deployment on the platform. The CARMEN Service Builder tool enables neuroscientists to quickly wrap their analysis software for deployment to the CARMEN platform, as a service without knowledge of the service framework or the CARMEN system. A metadata schema describes each service in terms of both system and user requirements. The search functionality allows services to be quickly discovered from the many services available. Within the platform, services may be combined into more complicated analyses using the workflow tool. CARMEN and the service infrastructure are targeted towards the neuroscience community; however, it is a generic platform, and can be targeted towards any discipline.

  1. Epos Working Group 10 Infrastructure for Georesources

    NASA Astrophysics Data System (ADS)

    Orlecka-Sikora, Beata; Lasocki, Stanisław; Kwiatek, Grzegorz

    2013-04-01

    Working Group 10 "Infrastructure for Georesources" deals primarily with induced seismicity (IS) infrastructure. Established during the EPOS Annual Meeting in Utrecht, November 2011, WG10 aims to integrate the research infrastructure in the area of seismicity induced by human activity: tremors and rockbursts in underground mines, seismicity associated with conventional and unconventional oil and gas production, induced by geothermal energy extraction and by underground reposition and storage of liquids (e.g. water disposal associated with energy extraction) and gases (CO2 sequestration, inter alia) and triggered by filling surface water reservoirs, etc. Until now the research in the area of IS has been organized around induced technologies rather than physical problems, common for these shallow seismic processes. This has hampered the integration of IS research community and the research progress. WG10 intends to work out a first step towards changing the IS research perspective from the present, technology-oriented, to physical problems-oriented without, however, losing touch with technological conditions of IS generation. This will be achieved by the integration of IS Research Infrastructure (ISRI) and the creation of Induced Seismicity Node within EPOS. The ISRI to be integrated has three components: data, software and reports. The IS data consists of seismic data and auxiliary data: geological, displacement, geomechanical, geodetic, etc, and last, but by no means least, technological data. A research in the field of IS cannot do without this last data class. The IS software comprises common software tools for data handling and visualisation, standard and advanced software for research and software based on newly proposed algorithms for tests and development. The IS reports are both peer reviewed and unreviewed as well as an internet forum. In addition to that the IS Node will play a significant role in integrating IS community and accelerating research, it will help to develop a synergy between research community and industrial partners. WG10 is working out the strategic solutions for integration and core services provided by future IS node for the European and other research groups, industrial partners, educational centers, central and local administration bodies. Measurable benefit of the integrated ISRI will be the intensification of studies on hazard and risk associated with anthropogenic seismicity and on methods of anthropogenic seismic risk mitigation. Best practices will be disseminated to industrial partners and relevant bodies of public administration. It is also planned to have an information node for the public use.

  2. Use of Google Earth to strengthen public health capacity and facilitate management of vector-borne diseases in resource-poor environments.

    PubMed

    Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Farfan-Ale, Jose Arturo; Loroño-Pino, Maria Alba; Garcia-Rejon, Julian; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Najera-Vazquez, Rosario; Fernandez-Salas, Ildefonso; Calderon-Martinez, Joaquin; Dominguez-Galera, Marco; Mis-Avila, Pedro; Morris, Natashia; Coleman, Michael; Moore, Chester G; Beaty, Barry J; Eisen, Lars

    2008-09-01

    Novel, inexpensive solutions are needed for improved management of vector-borne and other diseases in resource-poor environments. Emerging free software providing access to satellite imagery and simple editing tools (e.g. Google Earth) complement existing geographic information system (GIS) software and provide new opportunities for: (i) strengthening overall public health capacity through development of information for city infrastructures; and (ii) display of public health data directly on an image of the physical environment. We used freely accessible satellite imagery and a set of feature-making tools included in the software (allowing for production of polygons, lines and points) to generate information for city infrastructure and to display disease data in a dengue decision support system (DDSS) framework. Two cities in Mexico (Chetumal and Merida) were used to demonstrate that a basic representation of city infrastructure useful as a spatial backbone in a DDSS can be rapidly developed at minimal cost. Data layers generated included labelled polygons representing city blocks, lines representing streets, and points showing the locations of schools and health clinics. City blocks were colour-coded to show presence of dengue cases. The data layers were successfully imported in a format known as shapefile into a GIS software. The combination of Google Earth and free GIS software (e.g. HealthMapper, developed by WHO, and SIGEpi, developed by PAHO) has tremendous potential to strengthen overall public health capacity and facilitate decision support system approaches to prevention and control of vector-borne diseases in resource-poor environments.

  3. Challenges in Managing Trustworthy Large-scale Digital Science

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.

    2017-12-01

    The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.

  4. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  5. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less

  6. Architectural Implications of Cloud Computing

    DTIC Science & Technology

    2011-10-24

    Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context

  7. 47 CFR 59.3 - Information concerning deployment of new services and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services and equipment, including any software or upgrades of software integral to the use or operation of... services and equipment. 59.3 Section 59.3 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INFRASTRUCTURE SHARING § 59.3 Information concerning deployment of...

  8. The Validation by Measurement Theory of Proposed Object-Oriented Software Metrics

    NASA Technical Reports Server (NTRS)

    Neal, Ralph D.

    1996-01-01

    Moving software development into the engineering arena requires controllability, and to control a process, it must be measurable. Measuring the process does no good if the product is not also measured, i.e., being the best at producing an inferior product does not define a quality process. Also, not every number extracted from software development is a valid measurement. A valid measurement only results when we are able to verify that the number is representative of the attribute that we wish to measure. Many proposed software metrics are used by practitioners without these metrics ever having been validated, leading to costly but often useless calculations. Several researchers have bemoaned the lack of scientific precision in much of the published software measurement work and have called for validation of software metrics by measurement theory. This dissertation applies measurement theory to validate fifty proposed object-oriented software metrics.

  9. Validation of Medical Tourism Service Quality Questionnaire (MTSQQ) for Iranian Hospitals

    PubMed Central

    Qolipour, Mohammad; Torabipour, Amin; Khiavi, Farzad Faraji; Malehi, Amal Saki

    2017-01-01

    Introduction Assessing service quality is one of the basic requirements to develop the medical tourism industry. There is no valid and reliable tool to measure service quality of medical tourism. This study aimed to determine the reliability and validity of a Persian version of medical tourism service quality questionnaire for Iranian hospitals. Methods To validate the medical tourism service quality questionnaire (MTSQQ), a cross-sectional study was conducted on 250 Iraqi patients referred to hospitals in Ahvaz (Iran) from 2015. To design a questionnaire and determine its content validity, the Delphi Technique (3 rounds) with the participation of 20 medical tourism experts was used. Construct validity of the questionnaire was assessed through exploratory and confirmatory factor analysis. Reliability was assessed using Cronbach’s alpha coefficient. Data were analyzed by Excel 2007, SPSS version18, and Lisrel l8.0 software. Results The content validity of the questionnaire with CVI=0.775 was confirmed. According to exploratory factor analysis, the MTSQQ included 31 items and 8 dimensions (tangibility, reliability, responsiveness, assurance, empathy, exchange and travel facilities, technical and infrastructure facilities and safety and security). Construct validity of the questionnaire was confirmed, based on the goodness of fit quantities of model (RMSEA=0.032, CFI= 0.98, GFI=0.88). Cronbach’s alpha coefficient was 0.837 and 0.919 for expectation and perception questionnaire. Conclusion The results of the study showed that the medical tourism SERVQUAL questionnaire with 31 items and 8 dimensions was a valid and reliable tool to measure service quality of medical tourism in Iranian hospitals. PMID:28461863

  10. Survey of Verification and Validation Techniques for Small Satellite Software Development

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    2015-01-01

    The purpose of this paper is to provide an overview of the current trends and practices in small-satellite software verification and validation. This document is not intended to promote a specific software assurance method. Rather, it seeks to present an unbiased survey of software assurance methods used to verify and validate small satellite software and to make mention of the benefits and value of each approach. These methods include simulation and testing, verification and validation with model-based design, formal methods, and fault-tolerant software design with run-time monitoring. Although the literature reveals that simulation and testing has by far the longest legacy, model-based design methods are proving to be useful for software verification and validation. Some work in formal methods, though not widely used for any satellites, may offer new ways to improve small satellite software verification and validation. These methods need to be further advanced to deal with the state explosion problem and to make them more usable by small-satellite software engineers to be regularly applied to software verification. Last, it is explained how run-time monitoring, combined with fault-tolerant software design methods, provides an important means to detect and correct software errors that escape the verification process or those errors that are produced after launch through the effects of ionizing radiation.

  11. e!DAL - a framework to store, share and publish research data

    PubMed Central

    2014-01-01

    Background The life-science community faces a major challenge in handling “big data”, highlighting the need for high quality infrastructures capable of sharing and publishing research data. Data preservation, analysis, and publication are the three pillars in the “big data life cycle”. The infrastructures currently available for managing and publishing data are often designed to meet domain-specific or project-specific requirements, resulting in the repeated development of proprietary solutions and lower quality data publication and preservation overall. Results e!DAL is a lightweight software framework for publishing and sharing research data. Its main features are version tracking, metadata management, information retrieval, registration of persistent identifiers (DOI), an embedded HTTP(S) server for public data access, access as a network file system, and a scalable storage backend. e!DAL is available as an API for local non-shared storage and as a remote API featuring distributed applications. It can be deployed “out-of-the-box” as an on-site repository. Conclusions e!DAL was developed based on experiences coming from decades of research data management at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Initially developed as a data publication and documentation infrastructure for the IPK’s role as a data center in the DataCite consortium, e!DAL has grown towards being a general data archiving and publication infrastructure. The e!DAL software has been deployed into the Maven Central Repository. Documentation and Software are also available at: http://edal.ipk-gatersleben.de. PMID:24958009

  12. e!DAL--a framework to store, share and publish research data.

    PubMed

    Arend, Daniel; Lange, Matthias; Chen, Jinbo; Colmsee, Christian; Flemming, Steffen; Hecht, Denny; Scholz, Uwe

    2014-06-24

    The life-science community faces a major challenge in handling "big data", highlighting the need for high quality infrastructures capable of sharing and publishing research data. Data preservation, analysis, and publication are the three pillars in the "big data life cycle". The infrastructures currently available for managing and publishing data are often designed to meet domain-specific or project-specific requirements, resulting in the repeated development of proprietary solutions and lower quality data publication and preservation overall. e!DAL is a lightweight software framework for publishing and sharing research data. Its main features are version tracking, metadata management, information retrieval, registration of persistent identifiers (DOI), an embedded HTTP(S) server for public data access, access as a network file system, and a scalable storage backend. e!DAL is available as an API for local non-shared storage and as a remote API featuring distributed applications. It can be deployed "out-of-the-box" as an on-site repository. e!DAL was developed based on experiences coming from decades of research data management at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Initially developed as a data publication and documentation infrastructure for the IPK's role as a data center in the DataCite consortium, e!DAL has grown towards being a general data archiving and publication infrastructure. The e!DAL software has been deployed into the Maven Central Repository. Documentation and Software are also available at: http://edal.ipk-gatersleben.de.

  13. Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water in a region with limited water resources and has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI) p...

  14. Representing Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water from a region of limited water resources which has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI)...

  15. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  16. Tips for Ensuring Successful Software Implementation

    ERIC Educational Resources Information Center

    Weathers, Robert

    2013-01-01

    Implementing an enterprise-level, mission-critical software system is an infrastructure project akin to other sizable projects, such as building a school. It's costly and complex, takes a year or more to complete, requires the collaboration of many different parties, involves uncertainties, results in a long-lived asset requiring ongoing…

  17. --No Title--

    Science.gov Websites

    interoperability emerging infrastructure for data management on computational grids Software Packages Services : ATLAS: Management and Steering: Computing Management Board Software Project Management Board Database Model Group Computing TDR: 4.5 Event Data 4.8 Database and Data Management Services 6.3.4 Production and

  18. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  19. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  20. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  1. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Format validation software testing... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying, as far as reasonable and practicable, that CEVAD's data testing software performs the checks, as...

  2. The Information Technology Infrastructure for the Translational Genomics Core and the Partners Biobank at Partners Personalized Medicine

    PubMed Central

    Boutin, Natalie; Holzbach, Ana; Mahanta, Lisa; Aldama, Jackie; Cerretani, Xander; Embree, Kevin; Leon, Irene; Rathi, Neeta; Vickers, Matilde

    2016-01-01

    The Biobank and Translational Genomics core at Partners Personalized Medicine requires robust software and hardware. This Information Technology (IT) infrastructure enables the storage and transfer of large amounts of data, drives efficiencies in the laboratory, maintains data integrity from the time of consent to the time that genomic data is distributed for research, and enables the management of complex genetic data. Here, we describe the functional components of the research IT infrastructure at Partners Personalized Medicine and how they integrate with existing clinical and research systems, review some of the ways in which this IT infrastructure maintains data integrity and security, and discuss some of the challenges inherent to building and maintaining such infrastructure. PMID:26805892

  3. Measuring infrastructure: A key step in program evaluation and planning

    PubMed Central

    Schmitt, Carol L.; Glasgow, LaShawn; Lavinghouze, S. Rene; Rieker, Patricia P.; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-01-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General’s call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model’s utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. PMID:27037655

  4. Measuring infrastructure: A key step in program evaluation and planning.

    PubMed

    Schmitt, Carol L; Glasgow, LaShawn; Lavinghouze, S Rene; Rieker, Patricia P; Fulmer, Erika; McAleer, Kelly; Rogers, Todd

    2016-06-01

    State tobacco prevention and control programs (TCPs) require a fully functioning infrastructure to respond effectively to the Surgeon General's call for accelerating the national reduction in tobacco use. The literature describes common elements of infrastructure; however, a lack of valid and reliable measures has made it difficult for program planners to monitor relevant infrastructure indicators and address observed deficiencies, or for evaluators to determine the association among infrastructure, program efforts, and program outcomes. The Component Model of Infrastructure (CMI) is a comprehensive, evidence-based framework that facilitates TCP program planning efforts to develop and maintain their infrastructure. Measures of CMI components were needed to evaluate the model's utility and predictive capability for assessing infrastructure. This paper describes the development of CMI measures and results of a pilot test with nine state TCP managers. Pilot test findings indicate that the tool has good face validity and is clear and easy to follow. The CMI tool yields data that can enhance public health efforts in a funding-constrained environment and provides insight into program sustainability. Ultimately, the CMI measurement tool could facilitate better evaluation and program planning across public health programs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  6. BIM cost analysis of transport infrastructure projects

    NASA Astrophysics Data System (ADS)

    Volkov, Andrey; Chelyshkov, Pavel; Grossman, Y.; Khromenkova, A.

    2017-10-01

    The article describes the method of analysis of the energy costs of transport infrastructure objects using BIM software. The paper consideres several options of orientation of a building using SketchUp and IES VE software programs. These options allow to choose the best direction of the building facades. Particular attention is given to a distribution of a temperature field in a cross-section of the wall according to the calculation made in the ELCUT software. The issues related to calculation of solar radiation penetration into a building and selection of translucent structures are considered in the paper. The article presents data on building codes relating to the transport sector, on the basis of which the calculations were made. The author emphasizes that BIM-programs should be implemented and used in order to optimize a thermal behavior of a building and increase its energy efficiency using climatic data.

  7. Proceedings of the International Workshop on the Foundations of Service-Oriented Architecture (FSOA 2007)

    DTIC Science & Technology

    2008-06-01

    agenda are summarized. x | CMU/SEI-2008-SR-011 SOFTWARE ENGINEERING INSTITUTE | 1 1 Introduction Service -oriented architecture (SOA... service -provision software systems. In this po- sition paper, we investigate an initial classification of challenge areas related to service orientation...decade we have witnessed a significant growth of software applications that are de- livered in the form of services utilizing a network infrastructure

  8. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  9. Software Attribution for Geoscience Applications in the Computational Infrastructure for Geodynamics

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Dumit, J.; Fish, A.; Soito, L.; Kellogg, L. H.; Smith, M.

    2015-12-01

    Scientific software is largely developed by individual scientists and represents a significant intellectual contribution to the field. As the scientific culture and funding agencies move towards an expectation that software be open-source, there is a corresponding need for mechanisms to cite software, both to provide credit and recognition to developers, and to aid in discoverability of software and scientific reproducibility. We assess the geodynamic modeling community's current citation practices by examining more than 300 predominantly self-reported publications utilizing scientific software in the past 5 years that is available through the Computational Infrastructure for Geodynamics (CIG). Preliminary results indicate that authors cite and attribute software either through citing (in rank order) peer-reviewed scientific publications, a user's manual, and/or a paper describing the software code. Attributions maybe found directly in the text, in acknowledgements, in figure captions, or in footnotes. What is considered citable varies widely. Citations predominantly lack software version numbers or persistent identifiers to find the software package. Versioning may be implied through reference to a versioned user manual. Authors sometimes report code features used and whether they have modified the code. As an open-source community, CIG requests that researchers contribute their modifications to the repository. However, such modifications may not be contributed back to a repository code branch, decreasing the chances of discoverability and reproducibility. Survey results through CIG's Software Attribution for Geoscience Applications (SAGA) project suggest that lack of knowledge, tools, and workflows to cite codes are barriers to effectively implement the emerging citation norms. Generated on-demand attributions on software landing pages and a prototype extensible plug-in to automatically generate attributions in codes are the first steps towards reproducibility.

  10. Proactive routing mutation against stealthy Distributed Denial of Service attacks: metrics, modeling, and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Qi; Al-Shaer, Ehab; Chatterjee, Samrat

    The Infrastructure Distributed Denial of Service (IDDoS) attacks continue to be one of the most devastating challenges facing cyber systems. The new generation of IDDoS attacks exploit the inherent weakness of cyber infrastructure including deterministic nature of routes, skew distribution of flows, and Internet ossification to discover the network critical links and launch highly stealthy flooding attacks that are not observable at the victim end. In this paper, first, we propose a new metric to quantitatively measure the potential susceptibility of any arbitrary target server or domain to stealthy IDDoS attacks, and es- timate the impact of such susceptibility onmore » enterprises. Second, we develop a proactive route mutation technique to minimize the susceptibility to these attacks by dynamically changing the flow paths periodically to invalidate the adversary knowledge about the network and avoid targeted critical links. Our proposed approach actively changes these network paths while satisfying security and qualify of service requirements. We present an integrated approach of proactive route mutation that combines both infrastructure-based mutation that is based on reconfiguration of switches and routers, and middle-box approach that uses an overlay of end-point proxies to construct a virtual network path free of critical links to reach a destination. We implemented the proactive path mutation technique on a Software Defined Network using the OpendDaylight controller to demonstrate a feasible deployment of this approach. Our evaluation validates the correctness, effectiveness, and scalability of the proposed approaches.« less

  11. DataSync - sharing data via filesystem

    NASA Astrophysics Data System (ADS)

    Ulbricht, Damian; Klump, Jens

    2014-05-01

    Usually research work is a cycle of to hypothesize, to collect data, to corroborate the hypothesis, and finally to publish the results. In this sequence there are possibilities to base the own work on the work of others. Maybe there are candidates of physical samples listed in the IGSN-Registry and there is no need to go on excursion to acquire physical samples. Hopefully the DataCite catalogue lists already metadata of datasets that meet the constraints of the hypothesis and that are now open for reappraisal. After all, working with the measured data to corroborate the hypothesis involves new methods, and proven methods as well as different software tools. A cohort of intermediate data is created that can be shared with colleagues to discuss the research progress and receive a first evaluation. In consequence, the intermediate data should be versioned to easily get back to valid intermediate data, when you notice you get on the wrong track. Things are different for project managers. They want to know what is currently done, what has been done, and what is the last valid data, if somebody has to continue the work. To make life of members of small science projects easier we developed Datasync [1] as a software for sharing and versioning data. Datasync is designed to synchronize directory trees between different computers of a research team over the internet. The software is developed as JAVA application and watches a local directory tree for changes that are replicated as eSciDoc-objects into an eSciDoc-infrastructure [2] using the eSciDoc REST API. Modifications to the local filesystem automatically create a new version of an eSciDoc-object inside the eSciDoc-infrastructure. This way individual folders can be shared between team members while project managers can get a general idea of current status by synchronizing whole project inventories. Additionally XML metadata from separate files can be managed together with data files inside the eSciDoc-objects. While Datasync's major task is to distribute directory trees, we complement its functionality with the PHP-based application panMetaDocs [3]. panMetaDocs is the successor to panMetaWorks [4] and inherits most of its functionality. Through an internet browser PanMetaDocs provides a web-based overview of the datasets inside the eSciDoc-infrastructure. The software allows to upload further data, to add and edit metadata using the metadata editor, and it disseminates metadata through various channels. In addition, previous versions of a file can be downloaded and access rights can be defined on files and folders to control visibility of files for users of both panMetaDocs and Datasync. panMetaDocs serves as a publication agent for datasets and it serves as a registration agent for dataset DOIs. The application stack presented here allows sharing, versioning, and central storage of data from the very beginning of project activities by using the file synchronization service Datasync. The web-application panMetaDocs complements the functionality of DataSync by providing a dataset publication agent and other tools to handle administrative tasks on the data. [1] http://github.com/ulbricht/datasync [2] http://github.com/escidoc [3] http://panmetadocs.sf.net [4] http://metaworks.pangaea.de

  12. The validation by measurement theory of proposed object-oriented software metrics

    NASA Technical Reports Server (NTRS)

    Neal, Ralph D.

    1994-01-01

    Moving software development into the engineering arena requires controllability, and to control a process, it must be measurable. Measuring the process does no good if the product is not also measured, i.e., being the best at producing an inferior product does not define a quality process. Also, not every number extracted from software development is a valid measurement. A valid measurement only results when we are able to verify that the number is representative of the attribute that we wish to measure. Many proposed software metrics are used by practitioners without these metrics ever having been validated, leading to costly but often useless calculations. Several researchers have bemoaned the lack of scientific precision in much of the published software measurement work and have called for validation of software metrics by measurement theory. This dissertation applies measurement theory to validate fifty proposed object-oriented software metrics (Li and Henry, 1993; Chidamber and Kemerrer, 1994; Lorenz and Kidd, 1994).

  13. Calibration of radio-astronomical data on the cloud. LOFAR, the pathway to SKA

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Sánchez-Expósito, S.; Garrido, J.; Ruiz, J. E.; Best, P. N.; Verdes-Montenegro, L.

    2015-05-01

    The radio interferometer LOFAR (LOw Frequency ARray) is fully operational now. This Square Kilometre Array (SKA) pathfinder allows the observation of the sky at frequencies between 10 and 240 MHz, a relatively unexplored region of the spectrum. LOFAR is a software defined telescope: the data is mainly processed using specialized software running in common computing facilities. That means that the capabilities of the telescope are virtually defined by software and mainly limited by the available computing power. However, the quantity of data produced can quickly reach huge volumes (several Petabytes per day). After the correlation and pre-processing of the data in a dedicated cluster, the final dataset is handled to the user (typically several Terabytes). The calibration of these data requires a powerful computing facility in which the specific state of the art software under heavy continuous development can be easily installed and updated. That makes this case a perfect candidate for a cloud infrastructure which adds the advantages of an on demand, flexible solution. We present our approach to the calibration of LOFAR data using Ibercloud, the cloud infrastructure provided by Ibergrid. With the calibration work-flow adapted to the cloud, we can explore calibration strategies for the SKA and show how private or commercial cloud infrastructures (Ibercloud, Amazon EC2, Google Compute Engine, etc.) can help to solve the problems with big datasets that will be prevalent in the future of astronomy.

  14. Rapid Processing of Radio Interferometer Data for Transient Surveys

    NASA Astrophysics Data System (ADS)

    Bourke, S.; Mooley, K.; Hallinan, G.

    2014-05-01

    We report on a software infrastructure and pipeline developed to process large radio interferometer datasets. The pipeline is implemented using a radical redesign of the AIPS processing model. An infrastructure we have named AIPSlite is used to spawn, at runtime, minimal AIPS environments across a cluster. The pipeline then distributes and processes its data in parallel. The system is entirely free of the traditional AIPS distribution and is self configuring at runtime. This software has so far been used to process a EVLA Stripe 82 transient survey, the data for the JVLA-COSMOS project, and has been used to process most of the EVLA L-Band data archive imaging each integration to search for short duration transients.

  15. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  16. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology

    PubMed Central

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E.; Troein, Carl; Millar, Andrew J.; Goryanin, Igor; Gilmore, Stephen

    2013-01-01

    Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI’s use of standard data formats. Availability and implementation: All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials. Contact: stg@inf.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23329415

  17. Information technologies in optimization process of monitoring of software and hardware status

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  18. Community-driven computational biology with Debian Linux

    PubMed Central

    2010-01-01

    Background The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. Results The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Conclusions Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers. PMID:21210984

  19. Designing software for operational decision support through coloured Petri nets

    NASA Astrophysics Data System (ADS)

    Maggi, F. M.; Westergaard, M.

    2017-05-01

    Operational support provides, during the execution of a business process, replies to questions such as 'how do I end the execution of the process in the cheapest way?' and 'is my execution compliant with some expected behaviour?' These questions may be asked several times during a single execution and, to answer them, dedicated software components (the so-called operational support providers) need to be invoked. Therefore, an infrastructure is needed to handle multiple providers, maintain data between queries about the same execution and discard information when it is no longer needed. In this paper, we use coloured Petri nets (CPNs) to model and analyse software implementing such an infrastructure. This analysis is needed to clarify the requirements before implementation and to guarantee that the resulting software is correct. To this aim, we present techniques to represent and analyse state spaces with 250 million states on a normal PC. We show how the specified requirements have been implemented as a plug-in of the process mining tool ProM and how the operational support in ProM can be used in combination with an existing operational support provider.

  20. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less

  1. Ada and software management in NASA: Assessment and recommendations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Recent NASA missions have required software systems that are larger, more complex, and more critical than NASA software systems of the past. The Ada programming language and the software methods and support environments associated with it are seen as potential breakthroughs in meeting NASA's software requirements. The findings of a study by the Ada and Software Management Assessment Working Group (ASMAWG) are presented. The study was chartered to perform three tasks: (1) assess the agency's ongoing and planned Ada activities; (2) assess the infrastructure (standards, policies, and internal organizations) supporting software management and the Ada activities; and (3) present an Ada implementation and use strategy appropriate for NASA over the next 5 years.

  2. The costs of avoiding environmental impacts from shale-gas surface infrastructure.

    PubMed

    Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R

    2016-12-01

    Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.

  3. Proceedings of the Fourth International Workshop on a Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA 2010)

    DTIC Science & Technology

    2011-09-01

    service -oriented systems • Software -as-a- Service ( SaaS ) • social network infrastructures • Internet marketing • mobile computing • context awareness...Maintenance and Evolution of Service -Oriented Systems (MESOA 2010), organized by members of the Carnegie Mellon Software Engineering Institute’s...CMU/SEI-2011-SR-008 | 1 1 Workshop Introduction The Software Engineering Institute (SEI) started developing a service -oriented architecture

  4. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSImore » addressed some of these issues to create a more manageable public key infrastructure.« less

  5. Open source system OpenVPN in a function of Virtual Private Network

    NASA Astrophysics Data System (ADS)

    Skendzic, A.; Kovacic, B.

    2017-05-01

    Using of Virtual Private Networks (VPN) can establish high security level in network communication. VPN technology enables high security networking using distributed or public network infrastructure. VPN uses different security and managing rules inside networks. It can be set up using different communication channels like Internet or separate ISP communication infrastructure. VPN private network makes security communication channel over public network between two endpoints (computers). OpenVPN is an open source software product under GNU General Public License (GPL) that can be used to establish VPN communication between two computers inside business local network over public communication infrastructure. It uses special security protocols and 256-bit Encryption and it is capable of traversing network address translators (NATs) and firewalls. It allows computers to authenticate each other using a pre-shared secret key, certificates or username and password. This work gives review of VPN technology with a special accent on OpenVPN. This paper will also give comparison and financial benefits of using open source VPN software in business environment.

  6. Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds

    NASA Astrophysics Data System (ADS)

    Li, Rui; Chen, Lei; Li, Wen-Syan

    Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.

  7. Towards usable and interdisciplinary e-infrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    de Roure, D.

    2010-12-01

    e-Science and cyberinfrastucture at their outset tended to focus on ‘big science’ and cross-organisational infrastructures, demonstrating complex engineering with the promise of high returns. It soon became evident that the key to researchers harnessing new technology for everyday use is a user-centric approach which empowers the user - both from a developer and an end user viewpoint. For example, this philosophy is demonstrated in workflow systems for systematic data processing and in the Web 2.0 approach as exemplified by the myExperiment social web site for sharing workflows, methods and ‘research objects’. Hence the most disruptive aspect of Cloud and virtualisation is perhaps that they make new computational resources and applications usable, creating a flourishing ecosystem for routine processing and innovation alike - and in this we must consider software sustainability. This talk will discuss the changing nature of e-Science digital ecosystem, focus on the e-infrastructure for cross-disciplinary work, and highlight issues in sustainable software development in this context.

  8. Assessing the uptake of persistent identifiers by research infrastructure users

    PubMed Central

    Maull, Keith E.

    2017-01-01

    Significant progress has been made in the past few years in the development of recommendations, policies, and procedures for creating and promoting citations to data sets, software, and other research infrastructures like computing facilities. Open questions remain, however, about the extent to which referencing practices of authors of scholarly publications are changing in ways desired by these initiatives. This paper uses four focused case studies to evaluate whether research infrastructures are being increasingly identified and referenced in the research literature via persistent citable identifiers. The findings of the case studies show that references to such resources are increasing, but that the patterns of these increases are variable. In addition, the study suggests that citation practices for data sets may change more slowly than citation practices for software and research facilities, due to the inertia of existing practices for referencing the use of data. Similarly, existing practices for acknowledging computing support may slow the adoption of formal citations for computing resources. PMID:28394907

  9. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments.

    PubMed

    Burdick, David B; Cavnor, Chris C; Handcock, Jeremy; Killcoyne, Sarah; Lin, Jake; Marzolf, Bruz; Ramsey, Stephen A; Rovira, Hector; Bressler, Ryan; Shmulevich, Ilya; Boyle, John

    2010-07-14

    High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.

  10. SEQADAPT: an adaptable system for the tracking, storage and analysis of high throughput sequencing experiments

    PubMed Central

    2010-01-01

    Background High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Results Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. Conclusion The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services. PMID:20630057

  11. 20 CFR 619.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... inquiries and responses between SWAs. Major IT Modernization Project means conversion, re-engineering..., or upgrading software libraries, protocols, or hardware platform and infrastructure. These are...

  12. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... safety and electromagnetic compatibility; For devices containing software, software verification... electromagnetic compatibility; For devices containing software, software verification, validation, and hazard... electrical components, appropriate analysis and testing must validate electrical safety and electromagnetic...

  13. A fast and complete GEANT4 and ROOT Object-Oriented Toolkit: GROOT

    NASA Astrophysics Data System (ADS)

    Lattuada, D.; Balabanski, D. L.; Chesnevskaya, S.; Costa, M.; Crucillà, V.; Guardo, G. L.; La Cognata, M.; Matei, C.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Tumino, A.; Xu, Y.

    2018-01-01

    Present and future gamma-beam facilities represent a great opportunity to validate and evaluate the cross-sections of many photonuclear reactions at near-threshold energies. Monte Carlo (MC) simulations are very important to evaluate the reaction rates and to maximize the detection efficiency but, unfortunately, they can be very cputime-consuming and in some cases very hard to reproduce, especially when exploring near-threshold cross-section. We developed a software that makes use of the validated tracking GEANT4 libraries and the n-body event generator of ROOT in order to provide a fast, realiable and complete MC tool to be used for nuclear physics experiments. This tool is indeed intended to be used for photonuclear reactions at γ-beam facilities with ELISSA (ELI Silicon Strip Array), a new detector array under development at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP). We discuss the results of MC simulations performed to evaluate the effects of the electromagnetic induced background, of the straggling due to the target thickness and of the resolution of the silicon detectors.

  14. Scale Development of Individual and Organisation Infrastructure for Heart Health Promotion in Regional Health Authorities

    ERIC Educational Resources Information Center

    Plotnikoff, Ronald C.; Anderson, Donna; Raine, Kim; Cook, Kay; Barrett, Linda; Prodaniuk, Tricia R.

    2005-01-01

    Objective: The purpose of this study was to validate measures of individual and organisational infrastructure for health promotion within Alberta's (Canada) 17 Regional Health Authorities (RHAs). Design: A series of phases were conducted to develop individual and organisational scales to measure health promotion infrastructure. Instruments were…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amerio, S.; Behari, S.; Boyd, J.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  16. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  17. PGP repository: a plant phenomics and genomics data publication infrastructure.

    PubMed

    Arend, Daniel; Junker, Astrid; Scholz, Uwe; Schüler, Danuta; Wylie, Juliane; Lange, Matthias

    2016-01-01

    Plant genomics and phenomics represents the most promising tools for accelerating yield gains and overcoming emerging crop productivity bottlenecks. However, accessing this wealth of plant diversity requires the characterization of this material using state-of-the-art genomic, phenomic and molecular technologies and the release of subsequent research data via a long-term stable, open-access portal. Although several international consortia and public resource centres offer services for plant research data management, valuable digital assets remains unpublished and thus inaccessible to the scientific community. Recently, the Leibniz Institute of Plant Genetics and Crop Plant Research and the German Plant Phenotyping Network have jointly initiated the Plant Genomics and Phenomics Research Data Repository (PGP) as infrastructure to comprehensively publish plant research data. This covers in particular cross-domain datasets that are not being published in central repositories because of its volume or unsupported data scope, like image collections from plant phenotyping and microscopy, unfinished genomes, genotyping data, visualizations of morphological plant models, data from mass spectrometry as well as software and documents.The repository is hosted at Leibniz Institute of Plant Genetics and Crop Plant Research using e!DAL as software infrastructure and a Hierarchical Storage Management System as data archival backend. A novel developed data submission tool was made available for the consortium that features a high level of automation to lower the barriers of data publication. After an internal review process, data are published as citable digital object identifiers and a core set of technical metadata is registered at DataCite. The used e!DAL-embedded Web frontend generates for each dataset a landing page and supports an interactive exploration. PGP is registered as research data repository at BioSharing.org, re3data.org and OpenAIRE as valid EU Horizon 2020 open data archive. Above features, the programmatic interface and the support of standard metadata formats, enable PGP to fulfil the FAIR data principles-findable, accessible, interoperable, reusable.Database URL:http://edal.ipk-gatersleben.de/repos/pgp/. © The Author(s) 2016. Published by Oxford University Press.

  18. 15 CFR 995.27 - Format validation software testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Format validation software testing... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR... of NOAA ENC Products § 995.27 Format validation software testing. Tests shall be performed verifying...

  19. Integrating Testing into Software Engineering Courses Supported by a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Clarke, Peter J.; Davis, Debra; King, Tariq M.; Pava, Jairo; Jones, Edward L.

    2014-01-01

    As software becomes more ubiquitous and complex, the cost of software bugs continues to grow at a staggering rate. To remedy this situation, there needs to be major improvement in the knowledge and application of software validation techniques. Although there are several software validation techniques, software testing continues to be one of the…

  20. The role of the ADS in software discovery and citation

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto

    2018-01-01

    As the primary index of scholarly content in astronomy and physics, the NASA Astrophysics Data System (ADS) is collaborating with the AAS journals and the Zenodo repository in an effort to promote the preservation of scientific software used in astronomy research and its citation in scholarly publications. In this talk I will discuss how ADS is updating its service infrastructure to allow for the publication, indexing, and citation of software records in scientific articles.

  1. Global Combat Support System-Marine Corps Proof-of-Concept for Dashboard Analytics

    DTIC Science & Technology

    2014-12-01

    The core is modern, commercial-off-the-shelf enterprise resource planning ( ERP ) software (Oracle 11i e-Business Suite). GCSS-MCs design is focused...factor in the decision to implement this new software . GCSS-MC is the technology centerpiece of the Logistics Modernization (LogMod) Program...GCSS-MC is based on the implementation of Oracle e-Business Suite 11i as the core software package. This is the same infrastructure that Oracle

  2. DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications.

    PubMed

    Coble, M D; Buckleton, J; Butler, J M; Egeland, T; Fimmers, R; Gill, P; Gusmão, L; Guttman, B; Krawczak, M; Morling, N; Parson, W; Pinto, N; Schneider, P M; Sherry, S T; Willuweit, S; Prinz, M

    2016-11-01

    The use of biostatistical software programs to assist in data interpretation and calculate likelihood ratios is essential to forensic geneticists and part of the daily case work flow for both kinship and DNA identification laboratories. Previous recommendations issued by the DNA Commission of the International Society for Forensic Genetics (ISFG) covered the application of bio-statistical evaluations for STR typing results in identification and kinship cases, and this is now being expanded to provide best practices regarding validation and verification of the software required for these calculations. With larger multiplexes, more complex mixtures, and increasing requests for extended family testing, laboratories are relying more than ever on specific software solutions and sufficient validation, training and extensive documentation are of upmost importance. Here, we present recommendations for the minimum requirements to validate bio-statistical software to be used in forensic genetics. We distinguish between developmental validation and the responsibilities of the software developer or provider, and the internal validation studies to be performed by the end user. Recommendations for the software provider address, for example, the documentation of the underlying models used by the software, validation data expectations, version control, implementation and training support, as well as continuity and user notifications. For the internal validations the recommendations include: creating a validation plan, requirements for the range of samples to be tested, Standard Operating Procedure development, and internal laboratory training and education. To ensure that all laboratories have access to a wide range of samples for validation and training purposes the ISFG DNA commission encourages collaborative studies and public repositories of STR typing results. Published by Elsevier Ireland Ltd.

  3. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  4. Self-service for software development projects and HPC activities

    NASA Astrophysics Data System (ADS)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  5. Executable research compendia in geoscience research infrastructures

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel

    2017-04-01

    From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with existing platforms for display and control These integrations are vital for capturing workflows in RIs and connect key stakeholders (scientists, publishers, librarians). They are demonstrated using developments by the DFG-funded project Opening Reproducible Research (http://o2r.info). Semi-automatic creation of ERCs based on research workflows is a core goal of the project. References [0] Tony Hey, Stewart Tansley, Kristin Tolle (eds), 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research. [1] P. Martin et al., Open Information Linking for Environmental Research Infrastructures, 2015 IEEE 11th International Conference on e-Science, Munich, 2015, pp. 513-520. doi: 10.1109/eScience.2015.66 [2] Y. Chen et al., Analysis of Common Requirements for Environmental Science Research Infrastructures, The International Symposium on Grids and Clouds (ISGC) 2013, Taipei, 2013, http://pos.sissa.it/archive/conferences/179/032/ISGC [3] Opening Reproducible Research, Geophysical Research Abstracts Vol. 18, EGU2016-7396, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7396.pdf

  6. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  7. Cyberinfrastructure for Airborne Sensor Webs

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2009-01-01

    Since 2004 the NASA Airborne Science Program has been prototyping and using infrastructure that enables researchers to interact with each other and with their instruments via network communications. This infrastructure uses satellite links and an evolving suite of applications and services that leverage open-source software. The use of these tools has increased near-real-time situational awareness during field operations, resulting in productivity improvements and the collection of better data. This paper describes the high-level system architecture and major components, with example highlights from the use of the infrastructure. The paper concludes with a discussion of ongoing efforts to transition to operational status.

  8. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    NASA Technical Reports Server (NTRS)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For testing, plug-ins are implemented in COSMOS to control the NOS3 simulations, while the command and telemetry tools available in COSMOS are used to communicate with FSW. NOS3 is actively being used for FSW development and component testing of the Simulation-to-Flight 1 (STF-1) CubeSat. As NOS3 matures, hardware models have been added for common CubeSat components such as Novatel GPS receivers, ClydeSpace electrical power systems and batteries, ISISpace antenna systems, etc. In the future, NASA IVV plans to distribute NOS3 to other CubeSat developers and release the suite to the open-source community.

  9. Inside a VAMDC data node—putting standards into practical software

    NASA Astrophysics Data System (ADS)

    Regandell, Samuel; Marquart, Thomas; Piskunov, Nikolai

    2018-03-01

    Access to molecular and atomic data is critical for many forms of remote sensing analysis across different fields. Many atomic and molecular databases are however highly specialised for their intended application, complicating querying and combination data between sources. The Virtual Atomic and Molecular Data Centre, VAMDC, is an electronic infrastructure that allows each database to register as a ‘node’. Through services such as VAMDC’s portal website, users can then access and query all nodes in a homogenised way. Today all major Atomic and Molecular databases are attached to VAMDC This article describes the software tools we developed to help data providers create and manage a VAMDC node. It gives an overview of the VAMDC infrastructure and of the various standards it uses. The article then discusses the development choices made and how the standards are implemented in practice. It concludes with a full example of implementing a VAMDC node using a real-life case as well as future plans for the node software.

  10. CMS Distributed Computing Integration in the LHC sustained operations era

    NASA Astrophysics Data System (ADS)

    Grandi, C.; Bockelman, B.; Bonacorsi, D.; Fisk, I.; González Caballero, I.; Farina, F.; Hernández, J. M.; Padhi, S.; Sarkar, S.; Sciabà, A.; Sfiligoi, I.; Spiga, F.; Úbeda García, M.; Van Der Ster, D. C.; Zvada, M.

    2011-12-01

    After many years of preparation the CMS computing system has reached a situation where stability in operations limits the possibility to introduce innovative features. Nevertheless it is the same need of stability and smooth operations that requires the introduction of features that were considered not strategic in the previous phases. Examples are: adequate authorization to control and prioritize the access to storage and computing resources; improved monitoring to investigate problems and identify bottlenecks on the infrastructure; increased automation to reduce the manpower needed for operations; effective process to deploy in production new releases of the software tools. We present the work of the CMS Distributed Computing Integration Activity that is responsible for providing a liaison between the CMS distributed computing infrastructure and the software providers, both internal and external to CMS. In particular we describe the introduction of new middleware features during the last 18 months as well as the requirements to Grid and Cloud software developers for the future.

  11. Scientific Use Cases for the Virtual Atomic and Molecular Data Center

    NASA Astrophysics Data System (ADS)

    Dubernet, M. L.; Aboudarham, J.; Ba, Y. A.; Boiziot, M.; Bottinelli, S.; Caux, E.; Endres, C.; Glorian, J. M.; Henry, F.; Lamy, L.; Le Sidaner, P.; Møller, T.; Moreau, N.; Rénié, C.; Roueff, E.; Schilke, P.; Vastel, C.; Zwoelf, C. M.

    2014-12-01

    VAMDC Consortium is a worldwide consortium which federates interoperable Atomic and Molecular databases through an e-science infrastructure. The contained data are of the highest scientific quality and are crucial for many applications: astrophysics, atmospheric physics, fusion, plasma and lighting technologies, health, etc. In this paper we present astrophysical scientific use cases in relation to the use of the VAMDC e-infrastructure. Those will cover very different applications such as: (i) modeling the spectra of interstellar objects using the myXCLASS software tool implemented in the Common Astronomy Software Applications package (CASA) or using the CASSIS software tool, in its stand-alone version or implemented in the Herschel Interactive Processing Environment (HIPE); (ii) the use of Virtual Observatory tools accessing VAMDC databases; (iii) the access of VAMDC from the Paris solar BASS2000 portal; (iv) the combination of tools and database from the APIS service (Auroral Planetary Imaging and Spectroscopy); (v) combination of heterogeneous data for the application to the interstellar medium from the SPECTCOL tool.

  12. The Computational Infrastructure for Geodynamics as a Community of Practice

    NASA Astrophysics Data System (ADS)

    Hwang, L.; Kellogg, L. H.

    2016-12-01

    Computational Infrastructure for Geodynamics (CIG), geodynamics.org, originated in 2005 out of community recognition that the efforts of individual or small groups of researchers to develop scientifically-sound software is impossible to sustain, duplicates effort, and makes it difficult for scientists to adopt state-of-the art computational methods that promote new discovery. As a community of practice, participants in CIG share an interest in computational modeling in geodynamics and work together on open source software to build the capacity to support complex, extensible, scalable, interoperable, reliable, and reusable software in an effort to increase the return on investment in scientific software development and increase the quality of the resulting software. The group interacts regularly to learn from each other and better their practices formally through webinar series, workshops, and tutorials and informally through listservs and hackathons. Over the past decade, we have learned that successful scientific software development requires at a minimum: collaboration between domain-expert researchers, software developers and computational scientists; clearly identified and committed lead developer(s); well-defined scientific and computational goals that are regularly evaluated and updated; well-defined benchmarks and testing throughout development; attention throughout development to usability and extensibility; understanding and evaluation of the complexity of dependent libraries; and managed user expectations through education, training, and support. CIG's code donation standards provide the basis for recently formalized best practices in software development (geodynamics.org/cig/dev/best-practices/). Best practices include use of version control; widely used, open source software libraries; extensive test suites; portable configuration and build systems; extensive documentation internal and external to the code; and structured, human readable input formats.

  13. Better software, better research: the challenge of preserving your research and your reputation

    NASA Astrophysics Data System (ADS)

    Chue Hong, N.

    2017-12-01

    Software is fundamental to research. From short, thrown-together temporary scripts, through an abundance of complex spreadsheets analysing collected data, to the hundreds of software engineers and millions of lines of code behind international efforts such as the Large Hadron Collider and the Square Kilometre Array, software has made an invaluable contribution to advancing our research knowledge. Within the earth and space sciences, data is being generated, collected, processed and analysed in ever greater amounts and detail. However the pace of this improvement leads to challenges around the persistence of research outputs and artefacts. A specific challenge in this field is that often experiments and measurements cannot be repeated, yet the infrastructure used to manage, store and process this data must be continually updated and developed: constant change just to stay still. The UK-based Software Sustainability Institute (SSI) aims to improve research software sustainability, working with researchers, funders, research software engineers, managers, and other stakeholders across the research spectrum. In this talk, I will present lessons learned and good practice based on the work of the Institute and its collaborators. I will summarise some of the work that is being done to improve the integration of infrastructure for managing research outputs, including around software citation and reward, extending data management plans, and improving researcher skills: "better software, better research". Ultimately, being a modern researcher in the geosciences requires you to efficiently balance the pursuit of new knowledge with making your work reusable and reproducible. And as scientists are placed under greater scrutiny about whether others can trust their results, the preservation of your artefacts has a key role in the preservation of your reputation.

  14. Is the work flow model a suitable candidate for an observatory supervisory control infrastructure?

    NASA Astrophysics Data System (ADS)

    Daly, Philip N.; Schumacher, Germán.

    2016-08-01

    This paper reports on the early investigation of using the work flow model for observatory infrastructure software. We researched several work ow engines and identified 3 for further detailed, study: Bonita BPM, Activiti and Taverna. We discuss the business process model and how it relates to observatory operations and identify a path finder exercise to further evaluate the applicability of these paradigms.

  15. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  16. Software validation applied to spreadsheets used in laboratories working under ISO/IEC 17025

    NASA Astrophysics Data System (ADS)

    Banegas, J. M.; Orué, M. W.

    2016-07-01

    Several documents deal with software validation. Nevertheless, more are too complex to be applied to validate spreadsheets - surely the most used software in laboratories working under ISO/IEC 17025. The method proposed in this work is intended to be directly applied to validate spreadsheets. It includes a systematic way to document requirements, operational aspects regarding to validation, and a simple method to keep records of validation results and modifications history. This method is actually being used in an accredited calibration laboratory, showing to be practical and efficient.

  17. Design of Community Resource Inventories as a Component of Scalable Earth Science Infrastructure: Experience of the Earthcube CINERGI Project

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Valentine, D. W., Jr.; Grethe, J. S.; Hsu, L.; Malik, T.; Bermudez, L. E.; Gupta, A.; Lehnert, K. A.; Whitenack, T.; Ozyurt, I. B.; Condit, C.; Calderon, R.; Musil, L.

    2014-12-01

    EarthCube is envisioned as a cyberinfrastructure that fosters new, transformational geoscience by enabling sharing, understanding and scientifically-sound and efficient re-use of formerly unconnected data resources, software, models, repositories, and computational power. Its purpose is to enable science enterprise and workforce development via an extensible and adaptable collaboration and resource integration framework. A key component of this vision is development of comprehensive inventories supporting resource discovery and re-use across geoscience domains. The goal of the EarthCube CINERGI (Community Inventory of EarthCube Resources for Geoscience Interoperability) project is to create a methodology and assemble a large inventory of high-quality information resources with standard metadata descriptions and traceable provenance. The inventory is compiled from metadata catalogs maintained by geoscience data facilities, as well as from user contributions. The latter mechanism relies on community resource viewers: online applications that support update and curation of metadata records. Once harvested into CINERGI, metadata records from domain catalogs and community resource viewers are loaded into a staging database implemented in MongoDB, and validated for compliance with ISO 19139 metadata schema. Several types of metadata defects detected by the validation engine are automatically corrected with help of several information extractors or flagged for manual curation. The metadata harvesting, validation and processing components generate provenance statements using W3C PROV notation, which are stored in a Neo4J database. Thus curated metadata, along with the provenance information, is re-published and accessed programmatically and via a CINERGI online application. This presentation focuses on the role of resource inventories in a scalable and adaptable information infrastructure, and on the CINERGI metadata pipeline and its implementation challenges. Key project components are described at the project's website (http://workspace.earthcube.org/cinergi), which also provides access to the initial resource inventory, the inventory metadata model, metadata entry forms and a collection of the community resource viewers.

  18. OSiRIS: a distributed Ceph deployment using software defined networking for multi-institutional research

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Kissel, Ezra; Meekhof, Benjeman; Swany, Martin; Miller, Charles; Gregorowicz, Michael

    2017-10-01

    We report on the first year of the OSiRIS project (NSF Award #1541335, UM, IU, MSU and WSU) which is targeting the creation of a distributed Ceph storage infrastructure coupled together with software-defined networking to provide high-performance access for well-connected locations on any participating campus. The projects goal is to provide a single scalable, distributed storage infrastructure that allows researchers at each campus to read, write, manage and share data directly from their own computing locations. The NSF CC*DNI DIBBS program which funded OSiRIS is seeking solutions to the challenges of multi-institutional collaborations involving large amounts of data and we are exploring the creative use of Ceph and networking to address those challenges. While OSiRIS will eventually be serving a broad range of science domains, its first adopter will be the LHC ATLAS detector project via the ATLAS Great Lakes Tier-2 (AGLT2) jointly located at the University of Michigan and Michigan State University. Part of our presentation will cover how ATLAS is using the OSiRIS infrastructure and our experiences integrating our first user community. The presentation will also review the motivations for and goals of the project, the technical details of the OSiRIS infrastructure, the challenges in providing such an infrastructure, and the technical choices made to address those challenges. We will conclude with our plans for the remaining 4 years of the project and our vision for what we hope to deliver by the projects end.

  19. The case for open-source software in drug discovery.

    PubMed

    DeLano, Warren L

    2005-02-01

    Widespread adoption of open-source software for network infrastructure, web servers, code development, and operating systems leads one to ask how far it can go. Will "open source" spread broadly, or will it be restricted to niches frequented by hopeful hobbyists and midnight hackers? Here we identify reasons for the success of open-source software and predict how consumers in drug discovery will benefit from new open-source products that address their needs with increased flexibility and in ways complementary to proprietary options.

  20. Data Requirements and the Basis for Designing Health Information Kiosks.

    PubMed

    Afzali, Mina; Ahmadi, Maryam; Mahmoudvand, Zahra

    2017-09-01

    Health kiosks are an innovative and cost-effective solution that organizations can easily implement to help educate people. To determine the data requirements and basis for designing health information kiosks as a new technology to maintain the health of society. By reviewing the literature, a list of information requirements was provided in 4 sections (demographic information, general information, diagnostic information and medical history), and questions related to the objectives, data elements, stakeholders, requirements, infrastructures and the applications of health information kiosks were provided. In order to determine the content validity of the designed set, the opinions of 2 physicians and 2 specialists in medical informatics were obtained. The test-retest method was used to measure its reliability. Data were analyzed using SPSS software. In the proposed model for Iran, 170 data elements in 6 sections were presented for experts' opinion, which ultimately, on 106 elements, a collective agreement was reached. To provide a model of health information kiosk, creating a standard data set is a critical point. According to a survey conducted on the various literature review studies related to the health information kiosk, the most important components of a health information kiosk include six categories; information needs, data elements, applications, stakeholders, requirements and infrastructure of health information kiosks that need to be considered when designing a health information kiosk.

  1. Leveraging geospatial data, technology, and methods for improving the health of communities: priorities and strategies from an expert panel convened by the CDC.

    PubMed

    Elmore, Kim; Flanagan, Barry; Jones, Nicholas F; Heitgerd, Janet L

    2010-04-01

    In 2008, CDC convened an expert panel to gather input on the use of geospatial science in surveillance, research and program activities focused on CDC's Healthy Communities Goal. The panel suggested six priorities: spatially enable and strengthen public health surveillance infrastructure; develop metrics for geospatial categorization of community health and health inequity; evaluate the feasibility and validity of standard metrics of community health and health inequities; support and develop GIScience and geospatial analysis; provide geospatial capacity building, training and education; and, engage non-traditional partners. Following the meeting, the strategies and action items suggested by the expert panel were reviewed by a CDC subcommittee to determine priorities relative to ongoing CDC geospatial activities, recognizing that many activities may need to occur either in parallel, or occur multiple times across phases. Phase A of the action items centers on developing leadership support. Phase B focuses on developing internal and external capacity in both physical (e.g., software and hardware) and intellectual infrastructure. Phase C of the action items plan concerns the development and integration of geospatial methods. In summary, the panel members provided critical input to the development of CDC's strategic thinking on integrating geospatial methods and research issues across program efforts in support of its Healthy Communities Goal.

  2. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  3. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  4. Application of large-scale computing infrastructure for diverse environmental research applications using GC3Pie

    NASA Astrophysics Data System (ADS)

    Maffioletti, Sergio; Dawes, Nicholas; Bavay, Mathias; Sarni, Sofiane; Lehning, Michael

    2013-04-01

    The Swiss Experiment platform (SwissEx: http://www.swiss-experiment.ch) provides a distributed storage and processing infrastructure for environmental research experiments. The aim of the second phase project (the Open Support Platform for Environmental Research, OSPER, 2012-2015) is to develop the existing infrastructure to provide scientists with an improved workflow. This improved workflow will include pre-defined, documented and connected processing routines. A large-scale computing and data facility is required to provide reliable and scalable access to data for analysis, and it is desirable that such an infrastructure should be free of traditional data handling methods. Such an infrastructure has been developed using the cloud-based part of the Swiss national infrastructure SMSCG (http://www.smscg.ch) and Academic Cloud. The infrastructure under construction supports two main usage models: 1) Ad-hoc data analysis scripts: These scripts are simple processing scripts, written by the environmental researchers themselves, which can be applied to large data sets via the high power infrastructure. Examples of this type of script are spatial statistical analysis scripts (R-based scripts), mostly computed on raw meteorological and/or soil moisture data. These provide processed output in the form of a grid, a plot, or a kml. 2) Complex models: A more intense data analysis pipeline centered (initially) around the physical process model, Alpine3D, and the MeteoIO plugin; depending on the data set, this may require a tightly coupled infrastructure. SMSCG already supports Alpine3D executions as both regular grid jobs and as virtual software appliances. A dedicated appliance with the Alpine3D specific libraries has been created and made available through the SMSCG infrastructure. The analysis pipelines are activated and supervised by simple control scripts that, depending on the data fetched from the meteorological stations, launch new instances of the Alpine3D appliance, execute location-based subroutines at each grid point and store the results back into the central repository for post-processing. An optional extension of this infrastructure will be to provide a 'ring buffer'-type database infrastructure, such that model results (e.g. test runs made to check parameter dependency or for development) can be visualised and downloaded after completion without submitting them to a permanent storage infrastructure. Data organization Data collected from sensors are archived and classified in distributed sites connected with an open-source software middleware, GSN. Publicly available data are available through common web services and via a cloud storage server (based on Swift). Collocation of the data and processing in the cloud would eventually eliminate data transfer requirements. Execution control logic Execution of the data analysis pipelines (for both the R-based analysis and the Alpine3D simulations) has been implemented using the GC3Pie framework developed by UZH. (https://code.google.com/p/gc3pie/). This allows large-scale, fault-tolerant execution of the pipelines to be described in terms of software appliances. GC3Pie also allows supervision of the execution of large campaigns of appliances as a single simulation. This poster will present the fundamental architectural components of the data analysis pipelines together with initial experimental results.

  5. NASA's Approach to Software Assurance

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2015-01-01

    NASA defines software assurance as: the planned and systematic set of activities that ensure conformance of software life cycle processes and products to requirements, standards, and procedures via quality, safety, reliability, and independent verification and validation. NASA's implementation of this approach to the quality, safety, reliability, security and verification and validation of software is brought together in one discipline, software assurance. Organizationally, NASA has software assurance at each NASA center, a Software Assurance Manager at NASA Headquarters, a Software Assurance Technical Fellow (currently the same person as the SA Manager), and an Independent Verification and Validation Organization with its own facility. An umbrella risk mitigation strategy for safety and mission success assurance of NASA's software, software assurance covers a wide area and is better structured to address the dynamic changes in how software is developed, used, and managed, as well as it's increasingly complex functionality. Being flexible, risk based, and prepared for challenges in software at NASA is essential, especially as much of our software is unique for each mission.

  6. Observatory software for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick

    2016-07-01

    The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.

  7. Modernization of the USGS Hawaiian Volcano Observatory Seismic Processing Infrastructure

    NASA Astrophysics Data System (ADS)

    Antolik, L.; Shiro, B.; Friberg, P. A.

    2016-12-01

    The USGS Hawaiian Volcano Observatory (HVO) operates a Tier 1 Advanced National Seismic System (ANSS) seismic network to monitor, characterize, and report on volcanic and earthquake activity in the State of Hawaii. Upgrades at the observatory since 2009 have improved the digital telemetry network, computing resources, and seismic data processing with the adoption of the ANSS Quake Management System (AQMS) system. HVO aims to build on these efforts by further modernizing its seismic processing infrastructure and strengthen its ability to meet ANSS performance standards. Most notably, this will also allow HVO to support redundant systems, both onsite and offsite, in order to provide better continuity of operation during intermittent power and network outages. We are in the process of implementing a number of upgrades and improvements on HVO's seismic processing infrastructure, including: 1) Virtualization of AQMS physical servers; 2) Migration of server operating systems from Solaris to Linux; 3) Consolidation of AQMS real-time and post-processing services to a single server; 4) Upgrading database from Oracle 10 to Oracle 12; and 5) Upgrading to the latest Earthworm and AQMS software. These improvements will make server administration more efficient, minimize hardware resources required by AQMS, simplify the Oracle replication setup, and provide better integration with HVO's existing state of health monitoring tools and backup system. Ultimately, it will provide HVO with the latest and most secure software available while making the software easier to deploy and support.

  8. Trusted Silicon Stratus (TSS) Workshop

    DTIC Science & Technology

    2011-02-01

    business case for a proposed Infrastructure-as-a- Service (IaaS)/ Software -as-a- Service ( SaaS ) cloud architecture. User desires for innovative pricing and...Public Physically Unclonable Function PUF Physically Unclonable Function SaaS Software -as-a- Service SIP Semiconductor Intellectual Property SNL...WORKSHOP NIMBIS SERVICES INCORPORATED FEBRUARY 2011 FINAL TECHNICAL REPORT  ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE

  9. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  10. Smoothing Data Friction through building Service Oriented Data Platforms

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Richards, C. J.; Evans, B. J. K.; Wang, J.; Druken, K. A.

    2017-12-01

    Data Friction has been commonly defined as the costs in time, energy and attention required to simply collect, check, store, move, receive, and access data. On average, researchers spend a significant fraction of their time finding the data for their research project and then reformatting it so that it can be used by the software application of their choice. There is an increasing role for both data repositories and software to be modernised to help reduce data friction in ways that support the better use of the data. Many generic data repositories simply accept data in the format as supplied: the key check is that the data have sufficient metadata to enable discovery and download. Few generic repositories have both the expertise and infrastructure to support the multiple domain specific requirements that facilitate the increasing need for integration and reusability. In contrast, major science domain-focused repositories are increasingly able to implement and enforce community endorsed best practices and guidelines that ensure reusability and harmonization of data for use within the community by offering semi-automated QC workflows to improve quality of submitted data. The most advanced of these science repositories now operate as service-oriented data platforms that extend the use of data across domain silos and increasingly provide server-side programmatically-enabled access to data via network protocols and community standard APIs. To provide this, more rigorous QA/QC procedures are needed to validate data against standards and community software and tools. This ensures that the data can be accessed in expected ways and also demonstrates that the data works across different (non-domain specific) packages, tools and programming languages deployed by the various user communities. In Australia, the National Computational Infrastructure (NCI) has created such a service-oriented data platform which is demonstrating how this approach can reduce data friction, servicing both individual domains as well as facilitating cross-domain collaboration. The approach has required an increase in effort for the repository to provide the additional expertise, so as to enable a better capability and efficient system which ultimately saves time by the individual researcher.

  11. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL,more » GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).« less

  12. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL,more » GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).« less

  13. Resources in the VLab Science Gateway: Online applications for thermodynamics and thermal elastic properties of mantle minerals

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, R. M.; Da Silveira, P. R.; Wu, Z.; Yu, Y.

    2013-12-01

    Today first principles calculations in mineral physics play a fundamental role in understanding of the Earth. They complement experiments by expanding the pressure and temperature range for which properties can be obtained and provide access to atomic scale phenomena. Since the wealth of predictive first principles results can hardly be communicated in printed form, we have developed online applications where published results can be reproduced/verified online and extensive unpublished results can be generated in customized form. So far these applications have included thermodynamics properties of end-member phases and thermal elastic properties of end-member phases and few solid solutions. Extension of this software infrastructure to include other properties is in principle straightforward. This contribution will review the nature of results that can be generated (methods, thermodynamics domain, list of minerals, properties, etc) and nature of the software infrastructure. These applications are part of a more extensive cyber-infrastructure operating in the XSEDE - the VLab Science Gateway [1]. [1] https://www.xsede.org/web/guest/gateways-listing Research supported by NSF grants ATM-0428744 and EAR-1047629.

  14. Infrastructure and the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Dowler, P.; Gaudet, S.; Schade, D.

    2011-07-01

    The modern data center is faced with architectural and software engineering challenges that grow along with the challenges facing observatories: massive data flow, distributed computing environments, and distributed teams collaborating on large and small projects. By using VO standards as key components of the infrastructure, projects can take advantage of a decade of intellectual investment by the IVOA community. By their nature, these standards are proven and tested designs that already exist. Adopting VO standards saves considerable design effort, allows projects to take advantage of open-source software and test suites to speed development, and enables the use of third party tools that understand the VO protocols. The evolving CADC architecture now makes heavy use of VO standards. We show examples of how these standards may be used directly, coupled with non-VO standards, or extended with custom capabilities to solve real problems and provide value to our users. In the end, we use VO services as major parts of the core infrastructure to reduce cost rather than as an extra layer with additional cost and we can deliver more general purpose and robust services to our user community.

  15. The Earth System Grid Federation : an Open Infrastructure for Access to Distributed Geospatial Data

    NASA Technical Reports Server (NTRS)

    Cinquini, Luca; Crichton, Daniel; Mattmann, Chris; Harney, John; Shipman, Galen; Wang, Feiyi; Ananthakrishnan, Rachana; Miller, Neill; Denvil, Sebastian; Morgan, Mark; hide

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF's architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  16. An authentication infrastructure for today and tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engert, D.E.

    1996-06-01

    The Open Software Foundation`s Distributed Computing Environment (OSF/DCE) was originally designed to provide a secure environment for distributed applications. By combining it with Kerberos Version 5 from MIT, it can be extended to provide network security as well. This combination can be used to build both an inter and intra organizational infrastructure while providing single sign-on for the user with overall improved security. The ESnet community of the Department of Energy is building just such an infrastructure. ESnet has modified these systems to improve their interoperability, while encouraging the developers to incorporate these changes and work more closely together tomore » continue to improve the interoperability. The success of this infrastructure depends on its flexibility to meet the needs of many applications and network security requirements. The open nature of Kerberos, combined with the vendor support of OSF/DCE, provides the infrastructure for today and tomorrow.« less

  17. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  18. 77 FR 50723 - Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Digital Computer Software Used in Safety Systems of Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear... NRC regulations promoting the development of, and compliance with, software verification and...

  19. Information Operations Team Training & Information Operations Training Aid, Information Warfare Effectiveness (IWE) Program, Delivery Order 8

    DTIC Science & Technology

    2010-03-01

    submenus and toolbar with icon buttons 4. The IFOTA shall conform to Defense Information Infrastructure Common Operating Environment ( DII COE) and...him my business card , but it might come in the package we request via AFRL). PSYOP Instructor IWST is now called IWT (??) SME MD MD Instructor...Engineering and Software Engineering CTA Cognitive Task Analysis DII COE Defense Information Infrastructure Common Operating Environment EJB Enterprise Java

  20. Survey of Collaboration Technologies in Multi-level Security Environments

    DTIC Science & Technology

    2014-04-28

    infrastructure or resources. In this research program, the security implications of the US Air Force GeoBase (the US The problem is that in many cases...design structure. ORA uses a Java interface for ease of use, and a C++ computational backend . The current version ORA1.2 software is available on the...information: culture, policy, governance, economics and resources, and technology and infrastructure . This plan, the DoD Information Sharing

  1. Franchise Plan. Central Archive for Reusable Defense Software (CARDS)

    DTIC Science & Technology

    1994-02-28

    learned To achieve maximum benefit from a reuse infrastructure and change the way the organization is doing business, management has to make a long...Purpose For an organization to fully comprehend the benefits of reuse, and to gauge the magnitude of change required to achieve the benefits , information...3.4.3 Identify Technology Infrastructure Rationale In order for an organization to fully comprehend the benefits of reuse and to gauge the magnitude of

  2. A Roadmap to Continuous Integration for ATLAS Software Development

    NASA Astrophysics Data System (ADS)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The ATLAS software infrastructure facilitates efforts of more than 1000 developers working on the code base of 2200 packages with 4 million lines of C++ and 1.4 million lines of python code. The ATLAS offline code management system is the powerful, flexible framework for processing new package versions requests, probing code changes in the Nightly Build System, migration to new platforms and compilers, deployment of production releases for worldwide access and supporting physicists with tools and interfaces for efficient software use. It maintains multi-stream, parallel development environment with about 70 multi-platform branches of nightly releases and provides vast opportunities for testing new packages, for verifying patches to existing software and for migrating to new platforms and compilers. The system evolution is currently aimed on the adoption of modern continuous integration (CI) practices focused on building nightly releases early and often, with rigorous unit and integration testing. This paper describes the CI incorporation program for the ATLAS software infrastructure. It brings modern open source tools such as Jenkins and GitLab into the ATLAS Nightly System, rationalizes hardware resource allocation and administrative operations, provides improved feedback and means to fix broken builds promptly for developers. Once adopted, ATLAS CI practices will improve and accelerate innovation cycles and result in increased confidence in new software deployments. The paper reports the status of Jenkins integration with the ATLAS Nightly System as well as short and long term plans for the incorporation of CI practices.

  3. Validation of software for calculating the likelihood ratio for parentage and kinship.

    PubMed

    Drábek, J

    2009-03-01

    Although the likelihood ratio is a well-known statistical technique, commercial off-the-shelf (COTS) software products for its calculation are not sufficiently validated to suit general requirements for the competence of testing and calibration laboratories (EN/ISO/IEC 17025:2005 norm) per se. The software in question can be considered critical as it directly weighs the forensic evidence allowing judges to decide on guilt or innocence or to identify person or kin (i.e.: in mass fatalities). For these reasons, accredited laboratories shall validate likelihood ratio software in accordance with the above norm. To validate software for calculating the likelihood ratio in parentage/kinship scenarios I assessed available vendors, chose two programs (Paternity Index and familias) for testing, and finally validated them using tests derived from elaboration of the available guidelines for the field of forensics, biomedicine, and software engineering. MS Excel calculation using known likelihood ratio formulas or peer-reviewed results of difficult paternity cases were used as a reference. Using seven testing cases, it was found that both programs satisfied the requirements for basic paternity cases. However, only a combination of two software programs fulfills the criteria needed for our purpose in the whole spectrum of functions under validation with the exceptions of providing algebraic formulas in cases of mutation and/or silent allele.

  4. Software development and its description for Geoid determination based on Spherical-Cap-Harmonics Modelling using digital-zenith camera and gravimetric measurements hybrid data

    NASA Astrophysics Data System (ADS)

    Morozova, K.; Jaeger, R.; Balodis, J.; Kaminskis, J.

    2017-10-01

    Over several years the Institute of Geodesy and Geoinformatics (GGI) was engaged in the design and development of a digital zenith camera. At the moment the camera developments are finished and tests by field measurements are done. In order to check these data and to use them for geoid model determination DFHRS (Digital Finite element Height reference surface (HRS)) v4.3. software is used. It is based on parametric modelling of the HRS as a continous polynomial surface. The HRS, providing the local Geoid height N, is a necessary geodetic infrastructure for a GNSS-based determination of physcial heights H from ellipsoidal GNSS heights h, by H=h-N. The research and this publication is dealing with the inclusion of the data of observed vertical deflections from digital zenith camera into the mathematical model of the DFHRS approach and software v4.3. A first target was to test out and validate the mathematical model and software, using additionally real data of the above mentioned zenith camera observations of deflections of the vertical. A second concern of the research was to analyze the results and the improvement of the Latvian quasi-geoid computation compared to the previous version HRS computed without zenith camera based deflections of the vertical. The further development of the mathematical model and software concerns the use of spherical-cap-harmonics as the designed carrier function for the DFHRS v.5. It enables - in the sense of the strict integrated geodesy approach, holding also for geodetic network adjustment - both a full gravity field and a geoid and quasi-geoid determination. In addition, it allows the inclusion of gravimetric measurements, together with deflections of the vertical from digital-zenith cameras, and all other types of observations. The theoretical description of the updated version of DFHRS software and methods are discussed in this publication.

  5. Open Architecture SDR for Space

    NASA Technical Reports Server (NTRS)

    Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.

    2005-01-01

    This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.

  6. Strengthening Software Authentication with the ROSE Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, G

    2006-06-15

    Many recent nonproliferation and arms control software projects include a software authentication regime. These include U.S. Government-sponsored projects both in the United States and in the Russian Federation (RF). This trend toward requiring software authentication is only accelerating. Demonstrating assurance that software performs as expected without hidden ''backdoors'' is crucial to a project's success. In this context, ''authentication'' is defined as determining that a software package performs only its intended purpose and performs said purpose correctly and reliably over the planned duration of an agreement. In addition to visual inspections by knowledgeable computer scientists, automated tools are needed to highlightmore » suspicious code constructs, both to aid visual inspection and to guide program development. While many commercial tools are available for portions of the authentication task, they are proprietary and not extensible. An open-source, extensible tool can be customized to the unique needs of each project (projects can have both common and custom rules to detect flaws and security holes). Any such extensible tool has to be based on a complete language compiler. ROSE is precisely such a compiler infrastructure developed within the Department of Energy (DOE) and targeted at the optimization of scientific applications and user-defined libraries within large-scale applications (typically applications of a million lines of code). ROSE is a robust, source-to-source analysis and optimization infrastructure currently addressing large, million-line DOE applications in C and C++ (handling the full C, C99, C++ languages and with current collaborations to support Fortran90). We propose to extend ROSE to address a number of security-specific requirements, and apply it to software authentication for nonproliferation and arms control projects.« less

  7. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    NASA Astrophysics Data System (ADS)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the NCI National Environmental Research Data Interoperability Platform), or by uploading data directly from user supplied addresses or files. Similarly, scientific software is accessed through registries pointing to software repositories (e.g., GitHub). Runs are configured by using or modifying default templates designed by subject matter experts. After the appropriate computational resources are identified by the user, Virtual Machines (VMs) are spun up and jobs are submitted to service providers (currently the NeCTAR public cloud or Amazon Web Services). Following completion of the jobs the results can be reviewed and downloaded if desired. By providing a unified platform for science, the VL infrastructure enables sophisticated provenance capture and management. The source of input data (including both collection and queries), user information, software information (version and configuration details) and output information are all captured and managed as a VL resource which can be linked to output data sets. This provenance resource provides a mechanism for publication and citation for Free and Open Source Science.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.; Herner, K.; Jayatilaka, B.

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  9. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  10. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  11. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  12. PIV Data Validation Software Package

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A PIV data validation and post-processing software package was developed to provide semi-automated data validation and data reduction capabilities for Particle Image Velocimetry data sets. The software provides three primary capabilities including (1) removal of spurious vector data, (2) filtering, smoothing, and interpolating of PIV data, and (3) calculations of out-of-plane vorticity, ensemble statistics, and turbulence statistics information. The software runs on an IBM PC/AT host computer working either under Microsoft Windows 3.1 or Windows 95 operating systems.

  13. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  14. Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas

    The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety andmore » to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.« less

  15. JPL Facilities and Software for Collaborative Design: 1994 - Present

    NASA Technical Reports Server (NTRS)

    DeFlorio, Paul A.

    2004-01-01

    The viewgraph presentation provides an overview of the history of the JPL Project Design Center (PDC) and, since 2000, the Center for Space Mission Architecture and Design (CSMAD). The discussion includes PDC objectives and scope; mission design metrics; distributed design; a software architecture timeline; facility design principles; optimized design for group work; CSMAD plan view, facility design, and infrastructure; and distributed collaboration tools.

  16. Expeditionary Oblong Mezzanine

    DTIC Science & Technology

    2016-03-01

    Operating System OSI Open Systems Interconnection OS X Operating System Ten PDU Power Distribution Unit POE Power Over Ethernet xvii SAAS ...providing infrastructure as a service (IaaS) and software as a service ( SaaS ) cloud computing technologies. IaaS is a way of providing computing services...such as servers, storage, and network equipment services (Mell & Grance, 2009). SaaS is a means of providing software and applications as an on

  17. The relationship between external and internal validity of randomized controlled trials: A sample of hypertension trials from China.

    PubMed

    Zhang, Xin; Wu, Yuxia; Ren, Pengwei; Liu, Xueting; Kang, Deying

    2015-10-30

    To explore the relationship between the external validity and the internal validity of hypertension RCTs conducted in China. Comprehensive literature searches were performed in Medline, Embase, Cochrane Central Register of Controlled Trials (CCTR), CBMdisc (Chinese biomedical literature database), CNKI (China National Knowledge Infrastructure/China Academic Journals Full-text Database) and VIP (Chinese scientific journals database) as well as advanced search strategies were used to locate hypertension RCTs. The risk of bias in RCTs was assessed by a modified scale, Jadad scale respectively, and then studies with 3 or more grading scores were included for the purpose of evaluating of external validity. A data extract form including 4 domains and 25 items was used to explore relationship of the external validity and the internal validity. Statistic analyses were performed by using SPSS software, version 21.0 (SPSS, Chicago, IL). 226 hypertension RCTs were included for final analysis. RCTs conducted in university affiliated hospitals (P < 0.001) or secondary/tertiary hospitals (P < 0.001) were scored at higher internal validity. Multi-center studies (median = 4.0, IQR = 2.0) were scored higher internal validity score than single-center studies (median = 3.0, IQR = 1.0) (P < 0.001). Funding-supported trials had better methodological quality (P < 0.001). In addition, the reporting of inclusion criteria also leads to better internal validity (P = 0.004). Multivariate regression indicated sample size, industry-funding, quality of life (QOL) taken as measure and the university affiliated hospital as trial setting had statistical significance (P < 0.001, P < 0.001, P = 0.001, P = 0.006 respectively). Several components relate to the external validity of RCTs do associate with the internal validity, that do not stand in an easy relationship to each other. Regarding the poor reporting, other possible links between two variables need to trace in the future methodological researches.

  18. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  19. The ATLAS Software Installation System v2: a highly available system to install and validate Grid and Cloud sites via Panda

    NASA Astrophysics Data System (ADS)

    De Salvo, A.; Kataoka, M.; Sanchez Pineda, A.; Smirnov, Y.

    2015-12-01

    The ATLAS Installation System v2 is the evolution of the original system, used since 2003. The original tool has been completely re-designed in terms of database backend and components, adding support for submission to multiple backends, including the original Workload Management Service (WMS) and the new PanDA modules. The database engine has been changed from plain MySQL to Galera/Percona and the table structure has been optimized to allow a full High-Availability (HA) solution over Wide Area Network. The servlets, running on each frontend, have been also decoupled from local settings, to allow an easy scalability of the system, including the possibility of an HA system with multiple sites. The clients can also be run in multiple copies and in different geographical locations, and take care of sending the installation and validation jobs to the target Grid or Cloud sites. Moreover, the Installation Database is used as source of parameters by the automatic agents running in CVMFS, in order to install the software and distribute it to the sites. The system is in production for ATLAS since 2013, having as main sites in HA the INFN Roma Tier 2 and the CERN Agile Infrastructure. The Light Job Submission Framework for Installation (LJSFi) v2 engine is directly interfacing with PanDA for the Job Management, the Atlas Grid Information System (AGIS) for the site parameter configurations, and CVMFS for both core components and the installation of the software itself. LJSFi2 is also able to use other plugins, and is essentially Virtual Organization (VO) agnostic, so can be directly used and extended to cope with the requirements of any Grid or Cloud enabled VO. In this work we will present the architecture, performance, status and possible evolutions to the system for the LHC Run2 and beyond.

  20. 48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (JUN 1995) (a) Definitions. (1) As used in this clause...

  1. 48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...

  2. 48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...

  3. 48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...

  4. 48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...

  5. RotCFD Software Validation - Computational and Experimental Data Comparison

    NASA Technical Reports Server (NTRS)

    Fernandez, Ovidio Montalvo

    2014-01-01

    RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.

  6. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov Websites

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  7. 6 CFR 29.6 - Acknowledgment of receipt, validation, and marking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.6 Acknowledgment of receipt, validation, and marking. (a... Program Manager's designees. (e) Validation of information. (1) The PCII Program Manager shall be... 6 Domestic Security 1 2010-01-01 2010-01-01 false Acknowledgment of receipt, validation, and...

  8. 6 CFR 29.6 - Acknowledgment of receipt, validation, and marking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 6 Domestic Security 1 2011-01-01 2011-01-01 false Acknowledgment of receipt, validation, and... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.6 Acknowledgment of receipt, validation, and marking. (a... Program Manager's designees. (e) Validation of information. (1) The PCII Program Manager shall be...

  9. 6 CFR 29.6 - Acknowledgment of receipt, validation, and marking.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 6 Domestic Security 1 2012-01-01 2012-01-01 false Acknowledgment of receipt, validation, and... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.6 Acknowledgment of receipt, validation, and marking. (a... Program Manager's designees. (e) Validation of information. (1) The PCII Program Manager shall be...

  10. 6 CFR 29.6 - Acknowledgment of receipt, validation, and marking.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 6 Domestic Security 1 2013-01-01 2013-01-01 false Acknowledgment of receipt, validation, and... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.6 Acknowledgment of receipt, validation, and marking. (a... Program Manager's designees. (e) Validation of information. (1) The PCII Program Manager shall be...

  11. 6 CFR 29.6 - Acknowledgment of receipt, validation, and marking.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 6 Domestic Security 1 2014-01-01 2014-01-01 false Acknowledgment of receipt, validation, and... PROTECTED CRITICAL INFRASTRUCTURE INFORMATION § 29.6 Acknowledgment of receipt, validation, and marking. (a... Program Manager's designees. (e) Validation of information. (1) The PCII Program Manager shall be...

  12. Customer Communication Challenges and Solutions in Globally Distributed Agile Software Development

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna; Korkala, Mikko

    Working in the globally distributed market is one of the key trends among the software organizations all over the world. [1-5]. Several factors have contributed to the growth of distributed software development; time-zone independent ”follow the sun” development, access to well-educated labour, maturation of the technical infrastructure and reduced costs are some of the most commonly cited benefits of distributed development [3, 6-8]. Furthermore, customers are often located in different countries because of the companies’ internationalization purposes or good market opportunities.

  13. Open source posturography.

    PubMed

    Rey-Martinez, Jorge; Pérez-Fernández, Nicolás

    2016-12-01

    The proposed validation goal of 0.9 in intra-class correlation coefficient was reached with the results of this study. With the obtained results we consider that the developed software (RombergLab) is a validated balance assessment software. The reliability of this software is dependent of the used force platform technical specifications. Develop and validate a posturography software and share its source code in open source terms. Prospective non-randomized validation study: 20 consecutive adults underwent two balance assessment tests, six condition posturography was performed using a clinical approved software and force platform and the same conditions were measured using the new developed open source software using a low cost force platform. Intra-class correlation index of the sway area obtained from the center of pressure variations in both devices for the six conditions was the main variable used for validation. Excellent concordance between RombergLab and clinical approved force platform was obtained (intra-class correlation coefficient =0.94). A Bland and Altman graphic concordance plot was also obtained. The source code used to develop RombergLab was published in open source terms.

  14. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  15. Multiphysics Application Coupling Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Michael T.

    2013-12-02

    This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, open source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems;more » with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.« less

  16. Integrating multiple scientific computing needs via a Private Cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.

    2014-06-01

    In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.

  17. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  18. Mining Software Usage with the Automatic Library Tracking Database (ALTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadri, Bilel; Fahey, Mark R

    2013-01-01

    Tracking software usage is important for HPC centers, computer vendors, code developers and funding agencies to provide more efficient and targeted software support, and to forecast needs and guide HPC software effort towards the Exascale era. However, accurately tracking software usage on HPC systems has been a challenging task. In this paper, we present a tool called Automatic Library Tracking Database (ALTD) that has been developed and put in production on several Cray systems. The ALTD infrastructure prototype automatically and transparently stores information about libraries linked into an application at compilation time and also the executables launched in a batchmore » job. We will illustrate the usage of libraries, compilers and third party software applications on a system managed by the National Institute for Computational Sciences.« less

  19. Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.

    PubMed

    Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2014-05-23

    The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

  20. Building a Generic Virtual Research Environment Framework for Multiple Earth and Space Science Domains and a Diversity of Users.

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Fraser, R.; Evans, B. J. K.; Friedrich, C.; Klump, J. F.; Lescinsky, D. T.

    2017-12-01

    Virtual Research Environments (VREs) are now part of academic infrastructures. Online research workflows can be orchestrated whereby data can be accessed from multiple external repositories with processing taking place on public or private clouds, and centralised supercomputers using a mixture of user codes, and well-used community software and libraries. VREs enable distributed members of research teams to actively work together to share data, models, tools, software, workflows, best practices, infrastructures, etc. These environments and their components are increasingly able to support the needs of undergraduate teaching. External to the research sector, they can also be reused by citizen scientists, and be repurposed for industry users to help accelerate the diffusion and hence enable the translation of research innovations. The Virtual Geophysics Laboratory (VGL) in Australia was started in 2012, built using a collaboration between CSIRO, the National Computational Infrastructure (NCI) and Geoscience Australia, with support funding from the Australian Government Department of Education. VGL comprises three main modules that provide an interface to enable users to first select their required data; to choose a tool to process that data; and then access compute infrastructure for execution. VGL was initially built to enable a specific set of researchers in government agencies access to specific data sets and a limited number of tools. Over the years it has evolved into a multi-purpose Earth science platform with access to an increased variety of data (e.g., Natural Hazards, Geochemistry), a broader range of software packages, and an increasing diversity of compute infrastructures. This expansion has been possible because of the approach to loosely couple data, tools and compute resources via interfaces that are built on international standards and accessed as network-enabled services wherever possible. Built originally for researchers that were not fussy about general usability, increasing emphasis on User Interfaces (UIs) and stability will lead to increased uptake in the education and industry sectors. Simultaneously, improvements are being added to facilitate access to data and tools by experienced researchers who want direct access to both data and flexible workflows.

  1. Model development, testing and experimentation in a CyberWorkstation for Brain-Machine Interface research.

    PubMed

    Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose

    2010-01-01

    The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.

  2. ICW eHealth Framework.

    PubMed

    Klein, Karsten; Wolff, Astrid C; Ziebold, Oliver; Liebscher, Thomas

    2008-01-01

    The ICW eHealth Framework (eHF) is a powerful infrastructure and platform for the development of service-oriented solutions in the health care business. It is the culmination of many years of experience of ICW in the development and use of in-house health care solutions and represents the foundation of ICW product developments based on the Java Enterprise Edition (Java EE). The ICW eHealth Framework has been leveraged to allow development by external partners - enabling adopters a straightforward integration into ICW solutions. The ICW eHealth Framework consists of reusable software components, development tools, architectural guidelines and conventions defining a full software-development and product lifecycle. From the perspective of a partner, the framework provides services and infrastructure capabilities for integrating applications within an eHF-based solution. This article introduces the ICW eHealth Framework's basic architectural concepts and technologies. It provides an overview of its module and component model, describes the development platform that supports the complete software development lifecycle of health care applications and outlines technological aspects, mainly focusing on application development frameworks and open standards.

  3. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  4. Infrastructure Joint Venture Projects in Malaysia: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Romeli, Norsyakilah; Muhamad Halil, Faridah; Ismail, Faridah; Sufian Hasim, Muhammad

    2018-03-01

    As many developed country practise, the function of the infrastructure is to connect the each region of Malaysia holistically and infrastructure is an investment network projects such as transportation water and sewerage, power, communication and irrigations system. Hence, a billions allocations of government income reserved for the sake of the infrastructure development. Towards a successful infrastructure development, a joint venture approach has been promotes by 2016 in one of the government thrust in Construction Industry Transformation Plan which encourage the internationalisation among contractors. However, there is depletion in information on the actual practise of the infrastructure joint venture projects in Malaysia. Therefore, this study attempt to explore the real application of the joint venture in Malaysian infrastructure projects. Using the questionnaire survey, a set of survey question distributed to the targeted respondents. The survey contained three section which the sections are respondent details, organizations background and project capital in infrastructure joint venture project. The results recorded and analyse using SPSS software. The contractors stated that they have implemented the joint venture practice with mostly the client with the usual construction period of the infrastructure project are more than 5 years. Other than that, the study indicates that there are problems in the joint venture project in the perspective of the project capital and the railway infrastructure should be given a highlights in future study due to its high significant in term of cost and technical issues.

  5. Irregular Applications: Architectures & Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  6. AWARE: Adaptive Software Monitoring and Dynamic Reconfiguration for Critical Infrastructure Protection

    DTIC Science & Technology

    2015-04-29

    in which we applied these adaptation patterns to an adaptive news web server intended to tolerate extremely heavy, unexpected loads. To address...collection of existing models used as benchmarks for OO-based refactoring and an existing web -based repository called REMODD to provide users with model...invariant properties. Specifically, we developed Avida- MDE (based on the Avida digital evolution platform) to support the automatic generation of software

  7. MolProbity: More and better reference data for improved all-atom structure validation.

    PubMed

    Williams, Christopher J; Headd, Jeffrey J; Moriarty, Nigel W; Prisant, Michael G; Videau, Lizbeth L; Deis, Lindsay N; Verma, Vishal; Keedy, Daniel A; Hintze, Bradley J; Chen, Vincent B; Jain, Swati; Lewis, Steven M; Arendall, W Bryan; Snoeyink, Jack; Adams, Paul D; Lovell, Simon C; Richardson, Jane S; Richardson, David C

    2018-01-01

    This paper describes the current update on macromolecular model validation services that are provided at the MolProbity website, emphasizing changes and additions since the previous review in 2010. There have been many infrastructure improvements, including rewrite of previous Java utilities to now use existing or newly written Python utilities in the open-source CCTBX portion of the Phenix software system. This improves long-term maintainability and enhances the thorough integration of MolProbity-style validation within Phenix. There is now a complete MolProbity mirror site at http://molprobity.manchester.ac.uk. GitHub serves our open-source code, reference datasets, and the resulting multi-dimensional distributions that define most validation criteria. Coordinate output after Asn/Gln/His "flip" correction is now more idealized, since the post-refinement step has apparently often been skipped in the past. Two distinct sets of heavy-atom-to-hydrogen distances and accompanying van der Waals radii have been researched and improved in accuracy, one for the electron-cloud-center positions suitable for X-ray crystallography and one for nuclear positions. New validations include messages at input about problem-causing format irregularities, updates of Ramachandran and rotamer criteria from the million quality-filtered residues in a new reference dataset, the CaBLAM Cα-CO virtual-angle analysis of backbone and secondary structure for cryoEM or low-resolution X-ray, and flagging of the very rare cis-nonProline and twisted peptides which have recently been greatly overused. Due to wide application of MolProbity validation and corrections by the research community, in Phenix, and at the worldwide Protein Data Bank, newly deposited structures have continued to improve greatly as measured by MolProbity's unique all-atom clashscore. © 2017 The Protein Society.

  8. ggCyto: Next Generation Open-Source Visualization Software for Cytometry.

    PubMed

    Van, Phu; Jiang, Wenxin; Gottardo, Raphael; Finak, Greg

    2018-06-01

    Open source software for computational cytometry has gained in popularity over the past few years. Efforts such as FlowCAP, the Lyoplate and Euroflow projects have highlighted the importance of efforts to standardize both experimental and computational aspects of cytometry data analysis. The R/BioConductor platform hosts the largest collection of open source cytometry software covering all aspects of data analysis and providing infrastructure to represent and analyze cytometry data with all relevant experimental, gating, and cell population annotations enabling fully reproducible data analysis. Data visualization frameworks to support this infrastructure have lagged behind. ggCyto is a new open-source BioConductor software package for cytometry data visualization built on ggplot2 that enables ggplot-like functionality with the core BioConductor flow cytometry data structures. Amongst its features are the ability to transform data and axes on-the-fly using cytometry-specific transformations, plot faceting by experimental meta-data variables, and partial matching of channel, marker and cell populations names to the contents of the BioConductor cytometry data structures. We demonstrate the salient features of the package using publicly available cytometry data with complete reproducible examples in a supplementary material vignette. https://bioconductor.org/packages/devel/bioc/html/ggcyto.html. gfinak@fredhutch.org. Supplementary data are available at Bioinformatics online and at http://rglab.org/ggcyto/.

  9. Architecture of the local spatial data infrastructure for regional climate change research

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny

    2013-04-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the spatial data infrastructure as well as its publication according to OGC CSW (Catalog Service Web) specification 4. Computational and mapping web services to work with geospatial datasets based on OWS (OGC Web Services) standards: WMS, WFS, WPS 5. Geoportal as a key element of thematic regional spatial data infrastructure providing also software framework for dedicated web applications development To realize web mapping services Geoserver software is used since it provides natural WPS implementation as a separate software module. To provide geospatial metadata services GeoNetwork Opensource (http://geonetwork-opensource.org) product is planned to be used for it supports ISO 19115/ISO 19119/ISO 19139 metadata standards as well as ISO CSW 2.0 profile for both client and server. To implement thematic applications based on geospatial web services within the framework of local SDI geoportal the following open source software have been selected: 1. OpenLayers JavaScript library, providing basic web mapping functionality for the thin client such as web browser 2. GeoExt/ExtJS JavaScript libraries for building client-side web applications working with geodata services. The web interface developed will be similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. The work is partially supported by RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2.1 and IP 131.

  10. NASA software specification and evaluation system: Software verification/validation techniques

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA software requirement specifications were used in the development of a system for validating and verifying computer programs. The software specification and evaluation system (SSES) provides for the effective and efficient specification, implementation, and testing of computer software programs. The system as implemented will produce structured FORTRAN or ANSI FORTRAN programs, but the principles upon which SSES is designed allow it to be easily adapted to other high order languages.

  11. Sustaining Open Source Communities through Hackathons - An Example from the ASPECT Community

    NASA Astrophysics Data System (ADS)

    Heister, T.; Hwang, L.; Bangerth, W.; Kellogg, L. H.

    2016-12-01

    The ecosystem surrounding a successful scientific open source software package combines both social and technical aspects. Much thought has been given to the technology side of writing sustainable software for large infrastructure projects and software libraries, but less about building the human capacity to perpetuate scientific software used in computational modeling. One effective format for building capacity is regular multi-day hackathons. Scientific hackathons bring together a group of science domain users and scientific software contributors to make progress on a specific software package. Innovation comes through the chance to work with established and new collaborations. Especially in the domain sciences with small communities, hackathons give geographically distributed scientists an opportunity to connect face-to-face. They foster lively discussions amongst scientists with different expertise, promote new collaborations, and increase transparency in both the technical and scientific aspects of code development. ASPECT is an open source, parallel, extensible finite element code to simulate thermal convection, that began development in 2011 under the Computational Infrastructure for Geodynamics. ASPECT hackathons for the past 3 years have grown the number of authors to >50, training new code maintainers in the process. Hackathons begin with leaders establishing project-specific conventions for development, demonstrating the workflow for code contributions, and reviewing relevant technical skills. Each hackathon expands the developer community. Over 20 scientists add >6,000 lines of code during the >1 week event. Participants grow comfortable contributing to the repository and over half continue to contribute afterwards. A high return rate of participants ensures continuity and stability of the group as well as mentoring for novice members. We hope to build other software communities on this model, but anticipate each to bring their own unique challenges.

  12. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.

  13. A Public Health Grid (PHGrid): Architecture and value proposition for 21st century public health.

    PubMed

    Savel, T; Hall, K; Lee, B; McMullin, V; Miles, M; Stinn, J; White, P; Washington, D; Boyd, T; Lenert, L

    2010-07-01

    This manuscript describes the value of and proposal for a high-level architectural framework for a Public Health Grid (PHGrid), which the authors feel has the capability to afford the public health community a robust technology infrastructure for secure and timely data, information, and knowledge exchange, not only within the public health domain, but between public health and the overall health care system. The CDC facilitated multiple Proof-of-Concept (PoC) projects, leveraging an open-source-based software development methodology, to test four hypotheses with regard to this high-level framework. The outcomes of the four PoCs in combination with the use of the Federal Enterprise Architecture Framework (FEAF) and the newly emerging Federal Segment Architecture Methodology (FSAM) was used to develop and refine a high-level architectural framework for a Public Health Grid infrastructure. The authors were successful in documenting a robust high-level architectural framework for a PHGrid. The documentation generated provided a level of granularity needed to validate the proposal, and included examples of both information standards and services to be implemented. Both the results of the PoCs as well as feedback from selected public health partners were used to develop the granular documentation. A robust high-level cohesive architectural framework for a Public Health Grid (PHGrid) has been successfully articulated, with its feasibility demonstrated via multiple PoCs. In order to successfully implement this framework for a Public Health Grid, the authors recommend moving forward with a three-pronged approach focusing on interoperability and standards, streamlining the PHGrid infrastructure, and developing robust and high-impact public health services. Published by Elsevier Ireland Ltd.

  14. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research Cyber-infrastructure initiative.

  15. [Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis.

    PubMed

    Yu, Ya Ping; Yin, Hai Wei; Kong, Fan Hua; Wang, Jing Jing; Xu, Wen Bin

    2016-07-01

    Based on ArcGIS, Erdas, GuidosToolbox, Conefor and other software platforms, using morphological spatial pattern analysis (MSPA) and landscape connectivity analysis methods, this paper quantitatively analysed the scale effect, edge effect and distance effect of the Nanjing urban green infrastructure network pattern in 2013 by setting different pixel sizes (P) and edge widths in MSPA analysis, and setting different dispersal distance thresholds in landscape connectivity analysis. The results showed that the type of landscape acquired based on the MSPA had a clear scale effect and edge effect, and scale effects only slightly affected landscape types, whereas edge effects were more obvious. Different dispersal distances had a great impact on the landscape connectivity, 2 km or 2.5 km dispersal distance was a critical threshold for Nanjing. When selecting the pixel size 30 m of the input data and the edge wide 30 m used in the morphological model, we could get more detailed landscape information of Nanjing UGI network. Based on MSPA and landscape connectivity, analysis of the scale effect, edge effect, and distance effect on the landscape types of the urban green infrastructure (UGI) network was helpful for selecting the appropriate size, edge width, and dispersal distance when developing these networks, and for better understanding the spatial pattern of UGI networks and the effects of scale and distance on the ecology of a UGI network. This would facilitate a more scientifically valid set of design parameters for UGI network spatiotemporal pattern analysis. The results of this study provided an important reference for Nanjing UGI networks and a basis for the analysis of the spatial and temporal patterns of medium-scale UGI landscape networks in other regions.

  16. The Validation of a Software Evaluation Instrument.

    ERIC Educational Resources Information Center

    Schmitt, Dorren Rafael

    This study, conducted at six southern universities, analyzed the validity and reliability of a researcher developed instrument designed to evaluate educational software in secondary mathematics. The instrument called the Instrument for Software Evaluation for Educators uses measurement scales, presents a summary section of the evaluation, and…

  17. Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

    PubMed Central

    Dinov, Ivo; Lozev, Kamen; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Zamanyan, Alen; Chakrapani, Shruthi; Van Horn, John; Parker, D. Stott; Magsipoc, Rico; Leung, Kelvin; Gutman, Boris; Woods, Roger; Toga, Arthur

    2010-01-01

    Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu. PMID:20927408

  18. MISSION: Mission and Safety Critical Support Environment. Executive overview

    NASA Technical Reports Server (NTRS)

    Mckay, Charles; Atkinson, Colin

    1992-01-01

    For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.

  19. Assessing the SunGuide and STEWARD databases.

    DOT National Transportation Integrated Search

    2017-02-01

    This project evaluated the feasibility of using the existing software and data bases as platforms : for analyzing the attributes of electric vehicles within present and future transportation : infrastructure projects and models. The Florida based Sun...

  20. RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Esposito, Alessandra; Tarricone, Luciano; Zappatore, Marco

    2012-12-01

    Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes. The software framework is based on a general purpose architecture exploiting three key implementation choices: ontology representation, multi-agent paradigm and rule-based logic. From the hardware point of view, the sensing and gathering of context-data is demanded to a new Enhanced RFID Sensor-Tag. This new device, de facto, makes possible the easy integration between RFID and generic sensors, guaranteeing flexibility and preserving the benefits in terms of simplicity of use and low cost of UHF RFID technology. The system is very efficient and versatile and its customization to new scenarios requires a very reduced effort, substantially limited to the update/extension of the ontology codification. Its effectiveness is demonstrated by reporting both customization effort and performance results obtained from validation in two different healthcare monitoring contexts.

  1. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  2. Increasing the resilience and security of the United States' power infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less

  3. A Cloud-based Infrastructure and Architecture for Environmental System Research

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  4. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  5. Idea Paper: The Lifecycle of Software for Scientific Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; McInnes, Lois C.

    The software lifecycle is a well researched topic that has produced many models to meet the needs of different types of software projects. However, one class of projects, software development for scientific computing, has received relatively little attention from lifecycle researchers. In particular, software for end-to-end computations for obtaining scientific results has received few lifecycle proposals and no formalization of a development model. An examination of development approaches employed by the teams implementing large multicomponent codes reveals a great deal of similarity in their strategies. This idea paper formalizes these related approaches into a lifecycle model for end-to-end scientific applicationmore » software, featuring loose coupling between submodels for development of infrastructure and scientific capability. We also invite input from stakeholders to converge on a model that captures the complexity of this development processes and provides needed lifecycle guidance to the scientific software community.« less

  6. A new approach for instrument software at Gemini

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Nunez, Arturo; Dunn, Jennifer

    2008-07-01

    Gemini Observatory is now developing its next generation of astronomical instruments, the Aspen instruments. These new instruments are sophisticated and costly requiring large distributed, collaborative teams. Instrument software groups often include experienced team members with existing mature code. Gemini has taken its experience from the previous generation of instruments and current hardware and software technology to create an approach for developing instrument software that takes advantage of the strengths of our instrument builders and our own operations needs. This paper describes this new software approach that couples a lightweight infrastructure and software library with aspects of modern agile software development. The Gemini Planet Imager instrument project, which is currently approaching its critical design review, is used to demonstrate aspects of this approach. New facilities under development will face similar issues in the future, and the approach presented here can be applied to other projects.

  7. 75 FR 30460 - Notice of Funding Availability for the Department of Transportation's National Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... provide quantitative information regarding expected reductions in emissions of CO 2 or fuel consumption as... provide quantitative information that validates the existence of substantial transportation-related costs... infrastructure investments on systematic analysis of expected benefits and costs, including both quantitative and...

  8. The EPOS e-Infrastructure

    NASA Astrophysics Data System (ADS)

    Jeffery, Keith; Bailo, Daniele

    2014-05-01

    The European Plate Observing System (EPOS) is integrating geoscientific information concerning earth movements in Europe. We are approaching the end of the PP (Preparatory Project) phase and in October 2014 expect to continue with the full project within ESFRI (European Strategic Framework for Research Infrastructures). The key aspects of EPOS concern providing services to allow homogeneous access by end-users over heterogeneous data, software, facilities, equipment and services. The e-infrastructure of EPOS is the heart of the project since it integrates the work on organisational, legal, economic and scientific aspects. Following the creation of an inventory of relevant organisations, persons, facilities, equipment, services, datasets and software (RIDE) the scale of integration required became apparent. The EPOS e-infrastructure architecture has been developed systematically based on recorded primary (user) requirements and secondary (interoperation with other systems) requirements through Strawman, Woodman and Ironman phases with the specification - and developed confirmatory prototypes - becoming more precise and progressively moving from paper to implemented system. The EPOS architecture is based on global core services (Integrated Core Services - ICS) which access thematic nodes (domain-specific European-wide collections, called thematic Core Services - TCS), national nodes and specific institutional nodes. The key aspect is the metadata catalog. In one dimension this is described in 3 levels: (1) discovery metadata using well-known and commonly used standards such as DC (Dublin Core) to enable users (via an intelligent user interface) to search for objects within the EPOS environment relevant to their needs; (2) contextual metadata providing the context of the object described in the catalog to enable a user or the system to determine the relevance of the discovered object(s) to their requirement - the context includes projects, funding, organisations involved, persons involved, related publications, facilities, equipment and others, and utilises CERIF (Common European Research Information Format) standard (see www.eurocris.org); (3) detailed metadata which is specific to a domain or to a particular object and includes the schema describing the object to processing software. The other dimension of the metadata concerns the objects described. These are classified into users, services (including software), data and resources (computing, data storage, instruments and scientific equipment). An alternative architecture has been considered: using brokering. This technique has been used especially in North America geoscience projects to interoperate datasets. The technique involves writing software to interconvert between any two node datasets. Given n nodes this implies writing n*(n-1) convertors. EPOS Working Group 7 (e-infrastructures and virtual community) which deals with the design and implementation of a prototype of the EPOS services, chose to use an approach which endows the system with an extreme flexibility and sustainability. It is called the Metadata Catalogue approach. With the use of the catalogue the EPOS system can: 1. interoperate with software, services, users, organisations, facilities, equipment etc. as well as datasets; 2. avoid to write n*(n-1) software convertors and generate as much as possible, through the information contained in the catalogue only n convertors. This is a huge saving - especially in maintenance as the datasets (or other node resources) evolve. We are working on (semi-) automation of convertor generation by metadata mapping - this is leading-edge computer science research; 3. make large use of contextual metadata which enable a user or a machine to: (i) improve discovery of resources at nodes; (ii) improve precision and recall in search; (iii) drive the systems for identification, authentication, authorisation, security and privacy recording the relevant attributes of the node resources and of the user; (iv) manage provenance and long-term digital preservation; The linkage between the Integrated Services, which provide the integration of data and services, with the diverse Thematic Services Nodes is provided by means of a compatibility layer, which includes the aforementioned metadata catalogue. This layer provides 'connectors' to make local data, software and services available through the EPOS Integrated Services layer. In conclusion, we believe the EPOS e-infrastructure architecture is fit for purpose including long-term sustainability and pan-European access to data and services.

  9. BioContainers: an open-source and community-driven framework for software standardization.

    PubMed

    da Veiga Leprevost, Felipe; Grüning, Björn A; Alves Aflitos, Saulo; Röst, Hannes L; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I; Perez-Riverol, Yasset

    2017-08-15

    BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). The software is freely available at github.com/BioContainers/. yperez@ebi.ac.uk. © The Author(s) 2017. Published by Oxford University Press.

  10. BioContainers: an open-source and community-driven framework for software standardization

    PubMed Central

    da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset

    2017-01-01

    Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341

  11. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  12. Efficient Software Systems for Cardio Surgical Departments

    NASA Astrophysics Data System (ADS)

    Fountoukis, S. G.; Diomidous, M. J.

    2009-08-01

    Herein, the design implementation and deployment of an object oriented software system, suitable for the monitoring of cardio surgical departments, is investigated. Distributed design architectures are applied and the implemented software system can be deployed on distributed infrastructures. The software is flexible and adaptable to any cardio surgical environment regardless of the department resources used. The system exploits the relations and the interdependency of the successive bed positions that the patients occupy at the different health care units during their stay in a cardio surgical department, to determine bed availabilities and to perform patient scheduling and instant rescheduling whenever necessary. It also aims to successful monitoring of the workings of the cardio surgical departments in an efficient manner.

  13. Integrating and Managing Bim in GIS, Software Review

    NASA Astrophysics Data System (ADS)

    El Meouche, R.; Rezoug, M.; Hijazi, I.

    2013-08-01

    Since the advent of Computer-Aided Design (CAD) and Geographical Information System (GIS) tools, project participants have been increasingly leveraging these tools throughout the different phases of a civil infrastructure project. In recent years the number of GIS software that provides tools to enable the integration of Building information in geo context has risen sharply. More and more GIS software are added tools for this purposes and other software projects are regularly extending these tools. However, each software has its different strength and weakness and its purpose of use. This paper provides a thorough review to investigate the software capabilities and clarify its purpose. For this study, Autodesk Revit 2012 i.e. BIM editor software was used to create BIMs. In the first step, three building models were created, the resulted models were converted to BIM format and then the software was used to integrate it. For the evaluation of the software, general characteristics was studied such as the user interface, what formats are supported (import/export), and the way building information are imported.

  14. FOSS Tools for Research Data Management

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Jankowski, Cedric; Hammitzsch, Martin; Wächter, Joachim

    2017-04-01

    Established initiatives and organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. These infrastructures aim the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. In this regard, Research Data Management (RDM) gains importance and thus requires the support by appropriate tools integrated in these infrastructures. Different projects provide arbitrary solutions to manage research data. However, within two projects - SUMARIO for land and water management and TERENO for environmental monitoring - solutions to manage research data have been developed based on Free and Open Source Software (FOSS) components. The resulting framework provides essential components for harvesting, storing and documenting research data, as well as for discovering, visualizing and downloading these data on the basis of standardized services stimulated considerably by enhanced data management approaches of Spatial Data Infrastructures (SDI). In order to fully exploit the potentials of these developments for enhancing data management in Geosciences the publication of software components, e.g. via GitHub, is not sufficient. We will use our experience to move these solutions into the cloud e.g. as PaaS or SaaS offerings. Our contribution will present data management solutions for the Geosciences developed in two projects. A sort of construction kit with FOSS components build the backbone for the assembly and implementation of projects specific platforms. Furthermore, an approach is presented to stimulate the reuse of FOSS RDM solutions with cloud concepts. In further projects specific RDM platforms can be set-up much faster, customized to the individual needs and tools can be added during the run-time.

  15. Intelligent Agents for the Digital Battlefield

    DTIC Science & Technology

    1998-11-01

    specific outcome of our long term research will be the development of a collaborative agent technology system, CATS , that will provide the underlying...software infrastructure needed to build large, heterogeneous, distributed agent applications. CATS will provide a software environment through which multiple...intelligent agents may interact with other agents, both human and computational. In addition, CATS will contain a number of intelligent agent components that will be useful for a wide variety of applications.

  16. GRID-Launcher v.1.0.

    NASA Astrophysics Data System (ADS)

    Deniskina, N.; Brescia, M.; Cavuoti, S.; d'Angelo, G.; Laurino, O.; Longo, G.

    GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

  17. Assessing risk based on uncertain avalanche activity patterns

    NASA Astrophysics Data System (ADS)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables using all valid combinations of the values of input variables to simulate all possible outcomes. In our case the output is the expected risk (Euro/year) for each object (e.g. water intake) considered and the entire hydropower generation system. The output is again a distribution that is interpreted by the decision makers as the final strategy depends on the needs and requirements of the end-user, which may be driven by personal preferences. In this presentation, we will show a way on how we used the uncertain information on avalanche activity in future to subsequently use it in a commercial risk software and therefore bringing the knowledge of natural hazard experts to decision makers.

  18. Automated Transfer Vehicle (ATV) Critical Safety Software Overview

    NASA Astrophysics Data System (ADS)

    Berthelier, D.

    2002-01-01

    The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.

  19. Behavior driven testing in ALMA telescope calibration software

    NASA Astrophysics Data System (ADS)

    Gil, Juan P.; Garces, Mario; Broguiere, Dominique; Shen, Tzu-Chiang

    2016-07-01

    ALMA software development cycle includes well defined testing stages that involves developers, testers and scientists. We adapted Behavior Driven Development (BDD) to testing activities applied to Telescope Calibration (TELCAL) software. BDD is an agile technique that encourages communication between roles by defining test cases using natural language to specify features and scenarios, what allows participants to share a common language and provides a high level set of automated tests. This work describes how we implemented and maintain BDD testing for TELCAL, the infrastructure needed to support it and proposals to expand this technique to other subsystems.

  20. Instrument control software requirement specification for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Kiekebusch, Mario J.; Chiozzi, Gianluca

    2010-07-01

    Engineers in several observatories are now designing the next generation of optical telescopes, the Extremely Large Telescopes (ELT). These are very complex machines that will host sophisticated astronomical instruments to be used for a wide range of scientific studies. In order to carry out scientific observations, a software infrastructure is required to orchestrate the control of the multiple subsystems and functions. This paper will focus on describing the considerations, strategies and main issues related to the definition and analysis of the software requirements for the ELT's Instrument Control System using modern development processes and modelling tools like SysML.

  1. Calibration of controlling input models for pavement management system.

    DOT National Transportation Integrated Search

    2013-07-01

    The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...

  2. Quantitative Microbial Risk Assessment Tutorial - Primer

    EPA Science Inventory

    This document provides a Quantitative Microbial Risk Assessment (QMRA) primer that organizes QMRA tutorials. The tutorials describe functionality of a QMRA infrastructure, guide the user through software use and assessment options, provide step-by-step instructions for implementi...

  3. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.

  4. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    USGS Publications Warehouse

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  5. Models and algorithm of optimization launch and deployment of virtual network functions in the virtual data center

    NASA Astrophysics Data System (ADS)

    Bolodurina, I. P.; Parfenov, D. I.

    2017-10-01

    The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.

  6. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less

  7. Management of complex knowledge in planning for sustainable development: The use of multi-criteria decision aids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kain, Jaan-Henrik; Soederberg, Henriette

    2008-01-15

    The vision of sustainable development entails new and complex planning situations, confronting local policy makers with changing political conditions, different content in decision making and planning and new working methods. Moreover, the call for sustainable development has been a major driving force towards an increasingly multi-stakeholder planning system. This situation requires competence in working in, and managing, groups of actors, including not only experts and project owners but also other categories of stakeholders. Among other qualities, such competence requires a working strategy aimed at integrating various, and sometimes incommensurable, forms of knowledge to construct a relevant and valid knowledge basemore » prior to decision making. Consequently, there lies great potential in methods that facilitate the evaluation of strategies for infrastructural development across multiple knowledge areas, so-called multi-criteria decision aids (MCDAs). In the present article, observations from six case studies are discussed, where the common denominators are infrastructural planning, multi-stakeholder participation and the use of MCDAs as interactive decision support. Three MCDAs are discussed - NAIADE, SCA and STRAD - with an emphasis on how they function in their procedural context. Accordingly, this is not an analysis of MCDA algorithms, of software programming aspects or of MCDAs as context-independent 'decision machines'-the focus is on MCDAs as actor systems, not as expert systems. The analysis is carried out across four main themes: (a) symmetrical management of different forms of knowledge; (b) management of heterogeneity, pluralism and conflict; (c) functionality and ease of use; and (d) transparency and trust. It shows that STRAD, by far, seems to be the most useful MCDA in interactive settings. NAIADE and SCA are roughly equivalent but have their strengths and weaknesses in different areas. Moreover, it was found that some MCDA issues require further attention, i.e., regarding transparency and understandability; qualitative/quantitative knowledge input; switching between different modes of weighting; software flexibility; as well as graphic and user interfaces.« less

  8. Family-Based Benchmarking of Copy Number Variation Detection Software.

    PubMed

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.

  9. ValWorkBench: an open source Java library for cluster validation, with applications to microarray data analysis.

    PubMed

    Giancarlo, R; Scaturro, D; Utro, F

    2015-02-01

    The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Scalability and Validation of Big Data Bioinformatics Software.

    PubMed

    Yang, Andrian; Troup, Michael; Ho, Joshua W K

    2017-01-01

    This review examines two important aspects that are central to modern big data bioinformatics analysis - software scalability and validity. We argue that not only are the issues of scalability and validation common to all big data bioinformatics analyses, they can be tackled by conceptually related methodological approaches, namely divide-and-conquer (scalability) and multiple executions (validation). Scalability is defined as the ability for a program to scale based on workload. It has always been an important consideration when developing bioinformatics algorithms and programs. Nonetheless the surge of volume and variety of biological and biomedical data has posed new challenges. We discuss how modern cloud computing and big data programming frameworks such as MapReduce and Spark are being used to effectively implement divide-and-conquer in a distributed computing environment. Validation of software is another important issue in big data bioinformatics that is often ignored. Software validation is the process of determining whether the program under test fulfils the task for which it was designed. Determining the correctness of the computational output of big data bioinformatics software is especially difficult due to the large input space and complex algorithms involved. We discuss how state-of-the-art software testing techniques that are based on the idea of multiple executions, such as metamorphic testing, can be used to implement an effective bioinformatics quality assurance strategy. We hope this review will raise awareness of these critical issues in bioinformatics.

  11. A General Purpose High Performance Linux Installation Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsmann, Alf

    2002-06-17

    With more and more and larger and larger Linux clusters, the question arises how to install them. This paper addresses this question by proposing a solution using only standard software components. This installation infrastructure scales well for a large number of nodes. It is also usable for installing desktop machines or diskless Linux clients, thus, is not designed for cluster installations in particular but is, nevertheless, highly performant. The infrastructure proposed uses PXE as the network boot component on the nodes. It uses DHCP and TFTP servers to get IP addresses and a bootloader to all nodes. It then usesmore » kickstart to install Red Hat Linux over NFS. We have implemented this installation infrastructure at SLAC with our given server hardware and installed a 256 node cluster in 30 minutes. This paper presents the measurements from this installation and discusses the bottlenecks in our installation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadayappan, Ponnuswamy

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. We propose a new approach to the data and work distribution model provided by system software based on the unifying formalism of an abstract file system. The proposed hierarchical data model providesmore » simple, familiar visibility and access to data structures through the file system hierarchy, while providing fault tolerance through selective redundancy. The hierarchical task model features work queues whose form and organization are represented as file system objects. Data and work are both first class entities. By exposing the relationships between data and work to the runtime system, information is available to optimize execution time and provide fault tolerance. The data distribution scheme provides replication (where desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it possible to take advantage of locality. The user, tools, and applications, including legacy applications, can interface with the data, work queues, and one another through the abstract file model. This runtime environment will provide multiple interfaces to support traditional Message Passing Interface applications, languages developed under DARPA's High Productivity Computing Systems program, as well as other, experimental programming models. We will validate our runtime system with pilot codes on existing platforms and will use simulation to validate for exascale-class platforms. In this final report, we summarize research results from the work done at the Ohio State University towards the larger goals of the project listed above.« less

  13. Calibration of LOFAR data on the cloud

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Sánchez-Expósito, S.; Best, P.; Garrido, J.; Verdes-Montenegro, L.; Lezzi, D.

    2017-04-01

    New scientific instruments are starting to generate an unprecedented amount of data. The Low Frequency Array (LOFAR), one of the Square Kilometre Array (SKA) pathfinders, is already producing data on a petabyte scale. The calibration of these data presents a huge challenge for final users: (a) extensive storage and computing resources are required; (b) the installation and maintenance of the software required for the processing is not trivial; and (c) the requirements of calibration pipelines, which are experimental and under development, are quickly evolving. After encountering some limitations in classical infrastructures like dedicated clusters, we investigated the viability of cloud infrastructures as a solution. We found that the installation and operation of LOFAR data calibration pipelines is not only possible, but can also be efficient in cloud infrastructures. The main advantages were: (1) the ease of software installation and maintenance, and the availability of standard APIs and tools, widely used in the industry; this reduces the requirement for significant manual intervention, which can have a highly negative impact in some infrastructures; (2) the flexibility to adapt the infrastructure to the needs of the problem, especially as those demands change over time; (3) the on-demand consumption of (shared) resources. We found that a critical factor (also in other infrastructures) is the availability of scratch storage areas of an appropriate size. We found no significant impediments associated with the speed of data transfer, the use of virtualization, the use of external block storage, or the memory available (provided a minimum threshold is reached). Finally, we considered the cost-effectiveness of a commercial cloud like Amazon Web Services. While a cloud solution is more expensive than the operation of a large, fully-utilized cluster completely dedicated to LOFAR data reduction, we found that its costs are competitive if the number of datasets to be analysed is not high, or if the costs of maintaining a system capable of calibrating LOFAR data become high. Coupled with the advantages discussed above, this suggests that a cloud infrastructure may be favourable for many users.

  14. Specifications and programs for computer software validation

    NASA Technical Reports Server (NTRS)

    Browne, J. C.; Kleir, R.; Davis, T.; Henneman, M.; Haller, A.; Lasseter, G. L.

    1973-01-01

    Three software products developed during the study are reported and include: (1) FORTRAN Automatic Code Evaluation System, (2) the Specification Language System, and (3) the Array Index Validation System.

  15. DOIDB: Reusing DataCite's search software as metadata portal for GFZ Data Services

    NASA Astrophysics Data System (ADS)

    Elger, K.; Ulbricht, D.; Bertelmann, R.

    2016-12-01

    GFZ Data Services is the central service point for the publication of research data at the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ). It provides data publishing services to scientists of GFZ, associated projects, and associated institutions. The publishing services aim to make research data and physical samples visible and citable, by assigning persistent identifiers (DOI, IGSN) and by complementing existing IT infrastructure. To integrate several research domains a modular software stack that is made of free software components has been created to manage data and metadata as well as register persistent identifiers [1]. Pivotal component for the registration of DOIs is the DOIDB. It has been derived from three software components provided by DataCite [2] that moderate the registration of DOIs and the deposition of metadata, allow the dissemination of metadata, and provide a user interface to navigate and discover datasets. The DOIDB acts as a proxy to the DataCite infrastructure and in addition to the DataCite metadata schema, it allows to deposit and disseminate metadata following the schemas ISO19139 and NASA GCMD DIF. The search component has been modified to meet the requirements of a geosciences metadata portal. In particular, the search component has been altered to make use of Apache SOLRs capability to index and query spatial coordinates. Furthermore, the user interface has been adjusted to provide a first impression of the data by showing a map, summary information and subjects. DOIDB and its components are available on GitHub [3].We present a software solution for registration of DOIs that allows to integrate existing data systems, keeps track of registered DOIs, and provides a metadata portal to discover datasets [4]. [1] Ulbricht, D.; Elger, K.; Bertelmann, R.; Klump, J. panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services. ISPRS Int. J. Geo-Inf. 2016, 5, 25. http://doi.org/10.3390/ijgi5030025[2] https://github.com/datacite[3] https://github.com/ulbricht/search/tree/doidb , https://github.com/ulbricht/mds/tree/doidb , https://github.com/ulbricht/oaip/tree/doidb[4] http://doidb.wdc-terra.org

  16. Performing Verification and Validation in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1999-01-01

    The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.

  17. Los Angeles congestion reduction demonstration (Metro ExpressLanes) program. National evaluation : environmental data test plan.

    DOT National Transportation Integrated Search

    1997-09-19

    The term National Intelligent Transportation Infrastructure (NITI) refers to the integrated electronics, communications, and hardware and software elements that can support Intelligent Transportation System (ITS) services and products. NITI is not ju...

  18. The Road to Successful ITS Software Acquisition. Executive Summary

    DOT National Transportation Integrated Search

    2013-08-01

    This report analyzes the merits and limits of active sensing technologies such as radar, LIDAR, and ultrasonic detectors and how the market for these technologies is evolving and being applied to vehicles and highway infrastructure to improve...

  19. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  20. Web accessibility and open source software.

    PubMed

    Obrenović, Zeljko

    2009-07-01

    A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.

  1. Establishing Qualitative Software Metrics in Department of the Navy Programs

    DTIC Science & Technology

    2015-10-29

    dedicated to provide the highest quality software to its users. In doing, there is a need for a formalized set of Software Quality Metrics . The goal...of this paper is to establish the validity of those necessary Quality metrics . In our approach we collected the data of over a dozen programs...provide the necessary variable data for our formulas and tested the formulas for validity. Keywords: metrics ; software; quality I. PURPOSE Space

  2. The Belle II software—From detector signals to physics results

    NASA Astrophysics Data System (ADS)

    Kuhr, T.

    2017-07-01

    The construction of the Belle II detector is being completed and the focus shifts towards the reconstruction of higher level objects from the detector signals with the aim to search for new physics effects in huge data samples. The software is providing the connection between detector hardware and physics analyses. This article describes the development infrastructure and main components of the Belle II software which are essential for the success of the Belle II physics program.

  3. InaSAFE applications in disaster preparedness

    NASA Astrophysics Data System (ADS)

    Pranantyo, Ignatius Ryan; Fadmastuti, Mahardika; Chandra, Fredy

    2015-04-01

    Disaster preparedness activities aim to reduce the impact of disasters by being better prepared to respond when a disaster occurs. In order to better anticipate requirements during a disaster, contingency planning activities can be undertaken prior to a disaster based on a realistic disaster scenario. InaSAFE is a tool that can inform this process. InaSAFE is a free and open source software that estimates the impact to people and infrastructure from potential hazard scenarios. By using InaSAFE, disaster managers can develop scenarios of disaster impacts (people and infrastructures affected) to inform their contingency plan and emergency response operation plan. While InaSAFE provides the software framework exposure data and hazard data are needed as inputs to run this software. Then InaSAFE can be used to forecast the impact of the hazard scenario to the exposure data. InaSAFE outputs include estimates of the number of people, buildings and roads are affected, list of minimum needs (rice and clean water), and response checklist. InaSAFE is developed by Indonesia's National Disaster Management Agency (BNPB) and the Australian Government, through the Australia-Indonesia Facility for Disaster Reduction (AIFDR), in partnership with the World Bank - Global Facility for Disaster Reduction and Recovery (GFDRR). This software has been used in many parts of Indonesia, including Padang, Maumere, Jakarta, and Slamet Mountain for emergency response and contingency planning.

  4. Making Temporal Search More Central in Spatial Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Corti, P.; Lewis, B.

    2017-10-01

    A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.

  5. Multimedia courseware in an open-systems environment: a DoD strategy

    NASA Astrophysics Data System (ADS)

    Welsch, Lawrence A.

    1991-03-01

    The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.

  6. Evaluation of three different validation procedures regarding the accuracy of template-guided implant placement: an in vitro study.

    PubMed

    Vasak, Christoph; Strbac, Georg D; Huber, Christian D; Lettner, Stefan; Gahleitner, André; Zechner, Werner

    2015-02-01

    The study aims to evaluate the accuracy of the NobelGuide™ (Medicim/Nobel Biocare, Göteborg, Sweden) concept maximally reducing the influence of clinical and surgical parameters. Moreover, the study was to compare and validate two validation procedures versus a reference method. Overall, 60 implants were placed in 10 artificial edentulous mandibles according to the NobelGuide™ protocol. For merging the pre- and postoperative DICOM data sets, three different fusion methods (Triple Scan Technique, NobelGuide™ Validation software, and AMIRA® software [VSG - Visualization Sciences Group, Burlington, MA, USA] as reference) were applied. Discrepancies between the virtual and the actual implant positions were measured. The mean deviations measured with AMIRA® were 0.49 mm (implant shoulder), 0.69 mm (implant apex), and 1.98°mm (implant axis). The Triple Scan Technique as well as the NobelGuide™ Validation software revealed similar deviations compared with the reference method. A significant correlation between angular and apical deviations was seen (r = 0.53; p < .001). A greater implant diameter was associated with greater deviations (p = .03). The Triple Scan Technique as a system-independent validation procedure as well as the NobelGuide™ Validation software are in accordance with the AMIRA® software. The NobelGuide™ system showed similar or less spatial and angular deviations compared with others. © 2013 Wiley Periodicals, Inc.

  7. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen

    2015-01-01

    The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes.

  8. Prototype Software Assurance Framework (SAF): Introduction and Overview

    DTIC Science & Technology

    2017-04-05

    Introduction 1 1 Process Management (Category 1) 6 1.1 Process Definition (Area 1.1) 6 1.2 Infrastructure Standards (Area 1.2) 6 1.3 Resources (Area 1.3) 7...1.4 Training (Area 1.4) 8 2 Project Management (Category 2) 9 2.1 Project Plans (Area 2.1) 9 2.2 Project Infrastructure (Area 2.2) 10 2.3 Project...Monitoring (Area 2.3) 10 2.4 Project Risk Management (Area 2.4) 11 2.5 Supplier Management (Area 2.5) 11 3 Engineering (Category 3) 13 3.1 Product

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    Hybrid programming models for beyond-CMOS technologies will prove critical for integrating new computing technologies alongside our existing infrastructure. Unfortunately the software infrastructure required to enable this is lacking or not available. XACC is a programming framework for extreme-scale, post-exascale accelerator architectures that integrates alongside existing conventional applications. It is a pluggable framework for programming languages developed for next-gen computing hardware architectures like quantum and neuromorphic computing. It lets computational scientists efficiently off-load classically intractable work to attached accelerators through user-friendly Kernel definitions. XACC makes post-exascale hybrid programming approachable for domain computational scientists.

  10. Software defined networking (SDN) over space division multiplexing (SDM) optical networks: features, benefits and experimental demonstration.

    PubMed

    Amaya, N; Yan, S; Channegowda, M; Rofoee, B R; Shu, Y; Rashidi, M; Ou, Y; Hugues-Salas, E; Zervas, G; Nejabati, R; Simeonidou, D; Puttnam, B J; Klaus, W; Sakaguchi, J; Miyazawa, T; Awaji, Y; Harai, H; Wada, N

    2014-02-10

    We present results from the first demonstration of a fully integrated SDN-controlled bandwidth-flexible and programmable SDM optical network utilizing sliceable self-homodyne spatial superchannels to support dynamic bandwidth and QoT provisioning, infrastructure slicing and isolation. Results show that SDN is a suitable control plane solution for the high-capacity flexible SDM network. It is able to provision end-to-end bandwidth and QoT requests according to user requirements, considering the unique characteristics of the underlying SDM infrastructure.

  11. FastaValidator: an open-source Java library to parse and validate FASTA formatted sequences.

    PubMed

    Waldmann, Jost; Gerken, Jan; Hankeln, Wolfgang; Schweer, Timmy; Glöckner, Frank Oliver

    2014-06-14

    Advances in sequencing technologies challenge the efficient importing and validation of FASTA formatted sequence data which is still a prerequisite for most bioinformatic tools and pipelines. Comparative analysis of commonly used Bio*-frameworks (BioPerl, BioJava and Biopython) shows that their scalability and accuracy is hampered. FastaValidator represents a platform-independent, standardized, light-weight software library written in the Java programming language. It targets computer scientists and bioinformaticians writing software which needs to parse quickly and accurately large amounts of sequence data. For end-users FastaValidator includes an interactive out-of-the-box validation of FASTA formatted files, as well as a non-interactive mode designed for high-throughput validation in software pipelines. The accuracy and performance of the FastaValidator library qualifies it for large data sets such as those commonly produced by massive parallel (NGS) technologies. It offers scientists a fast, accurate and standardized method for parsing and validating FASTA formatted sequence data.

  12. A Study to Compare the Failure Rates of Current Space Shuttle Ground Support Equipment with the New Pathfinder Equipment and Investigate the Effect that the Proposed GSE Infrastructure Upgrade Might Have to Reduce GSE Infrastructure Failures

    NASA Technical Reports Server (NTRS)

    Kennedy, Barbara J.

    2004-01-01

    The purposes of this study are to compare the current Space Shuttle Ground Support Equipment (GSE) infrastructure with the proposed GSE infrastructure upgrade modification. The methodology will include analyzing the first prototype installation equipment at Launch PAD B called the "Pathfinder". This study will begin by comparing the failure rate of the current components associated with the "Hardware interface module (HIM)" at the Kennedy Space Center to the failure rate of the neW Pathfinder components. Quantitative data will be gathered specifically on HIM components and the PAD B Hypergolic Fuel facility and Hypergolic Oxidizer facility areas which has the upgraded pathfinder equipment installed. The proposed upgrades include utilizing industrial controlled modules, software, and a fiber optic network. The results of this study provide evidence that there is a significant difference in the failure rates of the two studied infrastructure equipment components. There is also evidence that the support staff for each infrastructure system is not equal. A recommendation to continue with future upgrades is based on a significant reduction of failures in the new' installed ground system components.

  13. Software for roof defects recognition on aerial photographs

    NASA Astrophysics Data System (ADS)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  14. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M.; Robinson, C.; Gupta, N.

    2012-10-10

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technicalmore » basis and calculations, and steps taken to verify its performance.« less

  15. RELAP-7 Software Verification and Validation Plan: Requirements Traceability Matrix (RTM) Part 1 – Physics and numerical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yong Joon; Yoo, Jun Soo; Smith, Curtis Lee

    2015-09-01

    This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  16. Using Academia-Industry Partnerships to Enhance Software Verification & Validation Education via Active Learning Tools

    ERIC Educational Resources Information Center

    Acharya, Sushil; Manohar, Priyadarshan; Wu, Peter; Schilling, Walter

    2017-01-01

    Imparting real world experiences in a software verification and validation (SV&V) course is often a challenge due to the lack of effective active learning tools. This pedagogical requirement is important because graduates are expected to develop software that meets rigorous quality standards in functional and application domains. Realizing the…

  17. Expert system verification and validation guidelines/workshop task. Deliverable no. 1: ES V/V guidelines

    NASA Technical Reports Server (NTRS)

    French, Scott W.

    1991-01-01

    The goals are to show that verifying and validating a software system is a required part of software development and has a direct impact on the software's design and structure. Workshop tasks are given in the areas of statistics, integration/system test, unit and architectural testing, and a traffic controller problem.

  18. EVER-EST: a virtual research environment for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Albani, Mirko; Glaves, Helen

    2016-04-01

    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications. Central to the EVEREST approach is the concept of the Research Object (RO) , which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using "virtual machines" that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. EVER-EST is funded by the European Commission's H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN.

  19. Managing Watersheds with WMOST (Watershed Management Optimization Support Tool)

    EPA Science Inventory

    EPA’s Green Infrastructure research program and EPA Region 1 recently released a new public-domain software application, WMOST, which supports community applications of Integrated Water Resources Management (IWRM) principles (http://cfpub.epa.gov/si/si_public_record_report....

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Ryan; Marger, Bernard L.; Chiu, Ailsa

    During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.

  1. Cost-effective and business-beneficial computer validation for bioanalytical laboratories.

    PubMed

    McDowall, Rd

    2011-07-01

    Computerized system validation is often viewed as a burden and a waste of time to meet regulatory requirements. This article presents a different approach by looking at validation in a bioanalytical laboratory from the business benefits that computer validation can bring. Ask yourself the question, have you ever bought a computerized system that did not meet your initial expectations? This article will look at understanding the process to be automated, the paper to be eliminated and the records to be signed to meet the requirements of the GLP or GCP and Part 11 regulations. This paper will only consider commercial nonconfigurable and configurable software such as plate readers and LC-MS/MS data systems rather than LIMS or custom applications. Two streamlined life cycle models are presented. The first one consists of a single document for validation of nonconfigurable software. The second is for configurable software and is a five-stage model that avoids the need to write functional and design specifications. Both models are aimed at managing the risk each type of software poses whist reducing the amount of documented evidence required for validation.

  2. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    NASA Astrophysics Data System (ADS)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust configuration is based on cloud computing and allows the installation on a private or public cloud infrastructure. In this configuration, the processing resources can be dynamically allocated and the execution time can be considerably improved by the available virtual resources and the number of parallelizable sequences in the processing flow. The presentation highlights the benefits and issues of the proposed solution by analyzing some significant experimental use cases. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Constantin Nandra, Dorian Gorgan: "Defining Earth data batch processing tasks by means of a flexible workflow description language", ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 59-66, (2016). [3] Victor Bacu, Teodor Stefanut, Dorian Gorgan, "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  3. A review of the FDA draft guidance document for software validation: guidance for industry.

    PubMed

    Keatley, K L

    1999-01-01

    A Draft Guidance Document (Version 1.1) was issued by the United States Food and Drug Administration (FDA) to address the software validation requirement of the Quality System Regulation, 21 CFR Part 820, effective June 1, 1997. The guidance document outlines validation considerations that the FDA regards as applicable to both medical device software and software used to "design, develop or manufacture" medical devices. The Draft Guidance is available at the FDA web site http:@www.fda.gov/cdrh/comps/swareval++ +.html. Presented here is a review of the main features of the FDA document for Quality System Regulation (QSR), and some guidance for its implementation in industry.

  4. Reliability and validity of the AutoCAD software method in lumbar lordosis measurement

    PubMed Central

    Letafatkar, Amir; Amirsasan, Ramin; Abdolvahabi, Zahra; Hadadnezhad, Malihe

    2011-01-01

    Objective The aim of this study was to determine the reliability and validity of the AutoCAD software method in lumbar lordosis measurement. Methods Fifty healthy volunteers with a mean age of 23 ± 1.80 years were enrolled. A lumbar lateral radiograph was taken on all participants, and the lordosis was measured according to the Cobb method. Afterward, the lumbar lordosis degree was measured via AutoCAD software and flexible ruler methods. The current study is accomplished in 2 parts: intratester and intertester evaluations of reliability as well as the validity of the flexible ruler and software methods. Results Based on the intraclass correlation coefficient, AutoCAD's reliability and validity in measuring lumbar lordosis were 0.984 and 0.962, respectively. Conclusions AutoCAD showed to be a reliable and valid method to measure lordosis. It is suggested that this method may replace those that are costly and involve health risks, such as radiography, in evaluating lumbar lordosis. PMID:22654681

  5. Reliability and validity of the AutoCAD software method in lumbar lordosis measurement.

    PubMed

    Letafatkar, Amir; Amirsasan, Ramin; Abdolvahabi, Zahra; Hadadnezhad, Malihe

    2011-12-01

    The aim of this study was to determine the reliability and validity of the AutoCAD software method in lumbar lordosis measurement. Fifty healthy volunteers with a mean age of 23 ± 1.80 years were enrolled. A lumbar lateral radiograph was taken on all participants, and the lordosis was measured according to the Cobb method. Afterward, the lumbar lordosis degree was measured via AutoCAD software and flexible ruler methods. The current study is accomplished in 2 parts: intratester and intertester evaluations of reliability as well as the validity of the flexible ruler and software methods. Based on the intraclass correlation coefficient, AutoCAD's reliability and validity in measuring lumbar lordosis were 0.984 and 0.962, respectively. AutoCAD showed to be a reliable and valid method to measure lordosis. It is suggested that this method may replace those that are costly and involve health risks, such as radiography, in evaluating lumbar lordosis.

  6. GPS Software Packages Deliver Positioning Solutions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "To determine a spacecraft s position, the Jet Propulsion Laboratory (JPL) developed an innovative software program called the GPS (global positioning system)-Inferred Positioning System and Orbit Analysis Simulation Software, abbreviated as GIPSY-OASIS, and also developed Real-Time GIPSY (RTG) for certain time-critical applications. First featured in Spinoff 1999, JPL has released hundreds of licenses for GIPSY and RTG, including to Longmont, Colorado-based DigitalGlobe. Using the technology, DigitalGlobe produces satellite imagery with highly precise latitude and longitude coordinates and then supplies it for uses within defense and intelligence, civil agencies, mapping and analysis, environmental monitoring, oil and gas exploration, infrastructure management, Internet portals, and navigation technology."

  7. Software to Manage the Unmanageable

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In 1995, NASA s Jet Propulsion Laboratory (JPL) contracted Redmond, Washington-based Lucidoc Corporation, to design a technology infrastructure to automate the intersection between policy management and operations management with advanced software that automates document workflow, document status, and uniformity of document layout. JPL had very specific parameters for the software. It expected to store and catalog over 8,000 technical and procedural documents integrated with hundreds of processes. The project ended in 2000, but NASA still uses the resulting highly secure document management system, and Lucidoc has managed to help other organizations, large and small, with integrating document flow and operations management to ensure a compliance-ready culture.

  8. Aerocapture, Entry, Descent and Landing (AEDL) Human Planetary Landing Systems. Section 10: AEDL Analysis, Test and Validation Infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, J.; Cheatwood, N.; Powell, D.; Wolf, A.; Guensey, C.; Rivellini, T.; Venkatapathy, E.; Beard, T.; Beutter, B.; Laub, B.

    2005-01-01

    Contents include the following: 3 Listing of critical capabilities (knowledge, procedures, training, facilities) and metrics for validating that they are mission ready. Examples of critical capabilities and validation metrics: ground test and simulations. Flight testing to prove capabilities are mission ready. Issues and recommendations.

  9. DNAseq Workflow in a Diagnostic Context and an Example of a User Friendly Implementation.

    PubMed

    Wolf, Beat; Kuonen, Pierre; Dandekar, Thomas; Atlan, David

    2015-01-01

    Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.

  10. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  11. Development, Validation and Integration of the ATLAS Trigger System Software in Run 2

    NASA Astrophysics Data System (ADS)

    Keyes, Robert; ATLAS Collaboration

    2017-10-01

    The trigger system of the ATLAS detector at the LHC is a combination of hardware, firmware, and software, associated to various sub-detectors that must seamlessly cooperate in order to select one collision of interest out of every 40,000 delivered by the LHC every millisecond. These proceedings discuss the challenges, organization and work flow of the ongoing trigger software development, validation, and deployment. The goal of this development is to ensure that the most up-to-date algorithms are used to optimize the performance of the experiment. The goal of the validation is to ensure the reliability and predictability of the software performance. Integration tests are carried out to ensure that the software deployed to the online trigger farm during data-taking run as desired. Trigger software is validated by emulating online conditions using a benchmark run and mimicking the reconstruction that occurs during normal data-taking. This exercise is computationally demanding and thus runs on the ATLAS high performance computing grid with high priority. Performance metrics ranging from low-level memory and CPU requirements, to distributions and efficiencies of high-level physics quantities are visualized and validated by a range of experts. This is a multifaceted critical task that ties together many aspects of the experimental effort and thus directly influences the overall performance of the ATLAS experiment.

  12. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Sievers, Michael; Standley, Shaun

    2012-01-01

    Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.

  13. Validation of a Quality Management Metric

    DTIC Science & Technology

    2000-09-01

    quality management metric (QMM) was used to measure the performance of ten software managers on Department of Defense (DoD) software development programs. Informal verification and validation of the metric compared the QMM score to an overall program success score for the entire program and yielded positive correlation. The results of applying the QMM can be used to characterize the quality of software management and can serve as a template to improve software management performance. Future work includes further refining the QMM, applying the QMM scores to provide feedback

  14. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility ormore » control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.« less

  15. Network Systems Administration Needs Assessment.

    ERIC Educational Resources Information Center

    Lexington Community Coll., KY. Office of Institutional Research.

    In spring 1996, Lexington Community College (LCC) in Kentucky, conducted a survey to gather information on employment trends and educational needs in the field of network systems administration (NSA). NSA duties involve the installation and administration of network operating systems, applications software, and networking infrastructure;…

  16. Cyber Infrastructure Protection

    DTIC Science & Technology

    2011-05-01

    274 TOWARD A SOLUTION THAT WORKS Building on our long history of involvement in assuring all types of communications networks, Tel- cordia has...wireless, and security areas. He currently has responsibility for a new Tel- cordia software product in IP network management, and has led all product

  17. Secure Proactive Recovery a Hardware Based Mission Assurance Scheme

    DTIC Science & Technology

    2011-08-01

    Room, January. Kalbarczyk, Z., Iyer, R.K., Bagchi, S. and Whisnant, K. (1999) " Chameleon : a software infrastructure for adaptive fault tolerance...components of this evaluation include a JAVA implementation based on Chameleon ARMORs (Kalbarczyk et al. 1999), ARENA simulation (http

  18. Software development predictors, error analysis, reliability models and software metric analysis

    NASA Technical Reports Server (NTRS)

    Basili, Victor

    1983-01-01

    The use of dynamic characteristics as predictors for software development was studied. It was found that there are some significant factors that could be useful as predictors. From a study on software errors and complexity, it was shown that meaningful results can be obtained which allow insight into software traits and the environment in which it is developed. Reliability models were studied. The research included the field of program testing because the validity of some reliability models depends on the answers to some unanswered questions about testing. In studying software metrics, data collected from seven software engineering laboratory (FORTRAN) projects were examined and three effort reporting accuracy checks were applied to demonstrate the need to validate a data base. Results are discussed.

  19. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  20. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software in Young People with Down Syndrome.

    PubMed

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Rey-Abella, Ferran; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2016-05-01

    People with Down syndrome present skeletal abnormalities in their feet that can be analyzed by commonly used gold standard indices (the Hernández-Corvo index, the Chippaux-Smirak index, the Staheli arch index, and the Clarke angle) based on footprint measurements. The use of Photoshop CS5 software (Adobe Systems Software Ireland Ltd, Dublin, Ireland) to measure footprints has been validated in the general population. The present study aimed to assess the reliability and validity of this footprint assessment technique in the population with Down syndrome. Using optical podography and photography, 44 footprints from 22 patients with Down syndrome (11 men [mean ± SD age, 23.82 ± 3.12 years] and 11 women [mean ± SD age, 24.82 ± 6.81 years]) were recorded in a static bipedal standing position. A blinded observer performed the measurements using a validated manual method three times during the 4-month study, with 2 months between measurements. Test-retest was used to check the reliability of the Photoshop CS5 software measurements. Validity and reliability were obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed very good values for the Photoshop CS5 method (ICC, 0.982-0.995). Validity testing also found no differences between the techniques (ICC, 0.988-0.999). The Photoshop CS5 software method is reliable and valid for the study of footprints in young people with Down syndrome.

  1. Using Colored Stochastic Petri Net (CS-PN) software for protocol specification, validation, and evaluation

    NASA Technical Reports Server (NTRS)

    Zenie, Alexandre; Luguern, Jean-Pierre

    1987-01-01

    The specification, verification, validation, and evaluation, which make up the different steps of the CS-PN software are outlined. The colored stochastic Petri net software is applied to a Wound/Wait protocol decomposable into two principal modules: request or couple (transaction, granule) treatment module and wound treatment module. Each module is specified, verified, validated, and then evaluated separately, to deduce a verification, validation and evaluation of the complete protocol. The colored stochastic Petri nets tool is shown to be a natural extension of the stochastic tool, adapted to distributed systems and protocols, because the color conveniently takes into account the numerous sites, transactions, granules and messages.

  2. Efficacy of a Newly Designed Cephalometric Analysis Software for McNamara Analysis in Comparison with Dolphin Software.

    PubMed

    Nouri, Mahtab; Hamidiaval, Shadi; Akbarzadeh Baghban, Alireza; Basafa, Mohammad; Fahim, Mohammad

    2015-01-01

    Cephalometric norms of McNamara analysis have been studied in various populations due to their optimal efficiency. Dolphin cephalometric software greatly enhances the conduction of this analysis for orthodontic measurements. However, Dolphin is very expensive and cannot be afforded by many clinicians in developing countries. A suitable alternative software program in Farsi/English will greatly help Farsi speaking clinicians. The present study aimed to develop an affordable Iranian cephalometric analysis software program and compare it with Dolphin, the standard software available on the market for cephalometric analysis. In this diagnostic, descriptive study, 150 lateral cephalograms of normal occlusion individuals were selected in Mashhad and Qazvin, two major cities of Iran mainly populated with Fars ethnicity, the main Iranian ethnic group. After tracing the cephalograms, the McNamara analysis standards were measured both with Dolphin and the new software. The cephalometric software was designed using Microsoft Visual C++ program in Windows XP. Measurements made with the new software were compared with those of Dolphin software on both series of cephalograms. The validity and reliability were tested using intra-class correlation coefficient. Calculations showed a very high correlation between the results of the Iranian cephalometric analysis software and Dolphin. This confirms the validity and optimal efficacy of the newly designed software (ICC 0.570-1.0). According to our results, the newly designed software has acceptable validity and reliability and can be used for orthodontic diagnosis, treatment planning and assessment of treatment outcome.

  3. Space Images for NASA JPL Android Version

    NASA Technical Reports Server (NTRS)

    Nelson, Jon D.; Gutheinz, Sandy C.; Strom, Joshua R.; Arca, Jeremy M.; Perez, Martin; Boggs, Karen; Stanboli, Alice

    2013-01-01

    This software addresses the demand for easily accessible NASA JPL images and videos by providing a user friendly and simple graphical user interface that can be run via the Android platform from any location where Internet connection is available. This app is complementary to the iPhone version of the application. A backend infrastructure stores, tracks, and retrieves space images from the JPL Photojournal and Institutional Communications Web server, and catalogs the information into a streamlined rating infrastructure. This system consists of four distinguishing components: image repository, database, server-side logic, and Android mobile application. The image repository contains images from various JPL flight projects. The database stores the image information as well as the user rating. The server-side logic retrieves the image information from the database and categorizes each image for display. The Android mobile application is an interfacing delivery system that retrieves the image information from the server for each Android mobile device user. Also created is a reporting and tracking system for charting and monitoring usage. Unlike other Android mobile image applications, this system uses the latest emerging technologies to produce image listings based directly on user input. This allows for countless combinations of images returned. The backend infrastructure uses industry-standard coding and database methods, enabling future software improvement and technology updates. The flexibility of the system design framework permits multiple levels of display possibilities and provides integration capabilities. Unique features of the software include image/video retrieval from a selected set of categories, image Web links that can be shared among e-mail users, sharing to Facebook/Twitter, marking as user's favorites, and image metadata searchable for instant results.

  4. Reusable experiment controllers, case studies

    NASA Astrophysics Data System (ADS)

    Buckley, Brian A.; Gaasbeck, Jim Van

    1996-03-01

    Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.

  5. Operable Data Management for Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Chavez, F. P.; Graybeal, J. B.; Godin, M. A.

    2004-12-01

    As oceanographic observing systems become more numerous and complex, data management solutions must follow. Most existing oceanographic data management systems fall into one of three categories: they have been developed as dedicated solutions, with limited application to other observing systems; they expect that data will be pre-processed into well-defined formats, such as netCDF; or they are conceived as robust, generic data management solutions, with complexity (high) and maturity and adoption rates (low) to match. Each approach has strengths and weaknesses; no approach yet fully addresses, nor takes advantage of, the sophistication of ocean observing systems as they are now conceived. In this presentation we describe critical data management requirements for advanced ocean observing systems, of the type envisioned by ORION and IOOS. By defining common requirements -- functional, qualitative, and programmatic -- for all such ocean observing systems, the performance and nature of the general data management solution can be characterized. Issues such as scalability, maintaining metadata relationships, data access security, visualization, and operational flexibility suggest baseline architectural characteristics, which may in turn lead to reusable components and approaches. Interoperability with other data management systems, with standards-based solutions in metadata specification and data transport protocols, and with the data management infrastructure envisioned by IOOS and ORION, can also be used to define necessary capabilities. Finally, some requirements for the software infrastructure of ocean observing systems can be inferred. Early operational results and lessons learned, from development and operations of MBARI ocean observing systems, are used to illustrate key requirements, choices, and challenges. Reference systems include the Monterey Ocean Observing System (MOOS), its component software systems (Software Infrastructure and Applications for MOOS, and the Shore Side Data System), and the Autonomous Ocean Sampling Network (AOSN).

  6. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study.

    PubMed

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Noh, Kyoung Jin; Shim, Hackjoon; Seol, Hae Young

    2017-05-01

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ c ) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP.

  7. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  8. A methodology for collecting valid software engineering data

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Weiss, David M.

    1983-01-01

    An effective data collection method for evaluating software development methodologies and for studying the software development process is described. The method uses goal-directed data collection to evaluate methodologies with respect to the claims made for them. Such claims are used as a basis for defining the goals of the data collection, establishing a list of questions of interest to be answered by data analysis, defining a set of data categorization schemes, and designing a data collection form. The data to be collected are based on the changes made to the software during development, and are obtained when the changes are made. To insure accuracy of the data, validation is performed concurrently with software development and data collection. Validation is based on interviews with those people supplying the data. Results from using the methodology show that data validation is a necessary part of change data collection. Without it, as much as 50% of the data may be erroneous. Feasibility of the data collection methodology was demonstrated by applying it to five different projects in two different environments. The application showed that the methodology was both feasible and useful.

  9. Smart RC elements for long-life monitoring of civil infrastructures

    NASA Astrophysics Data System (ADS)

    Zonta, Daniele; Pozzi, Matteo; Forti, Marco; Bursi, Oreste S.

    2005-05-01

    A research effort has been launched at the University of Trento, aimed at developing an innovative distributed construction system based on smart prefabricated concrete elements allowing for real-time condition assessment of civil infrastructures. So far, two reduced-scale prototypes have been produced, each consisting of a 0.2 by 0.3 by 5.6m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optics Sensors (FOS) at the lower edge. The sensors employed are Fiber Bragg Grating (FBG) -based and can measure finite displacements both in statics and dynamics. The acquisition module uses a single commercial interrogation unit and a software-controlled optical switch, allowing acquisition of dynamic multi-channel signals from FBG-FOS, with a sample frequency of 625 Hz per channel. The performance of the system underwent validation I n the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including concrete cover spalling and partial corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. This paper presents in detail the results of the experiment and demonstrates how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

  10. A Validation Framework for the Long Term Preservation of High Energy Physics Data

    NASA Astrophysics Data System (ADS)

    Ozerov, Dmitri; South, David M.

    2014-06-01

    The study group on data preservation in high energy physics, DPHEP, is moving to a new collaboration structure, which will focus on the implementation of preservation projects, such as those described in the group's large scale report published in 2012. One such project is the development of a validation framework, which checks the compatibility of evolving computing environments and technologies with the experiments software for as long as possible, with the aim of substantially extending the lifetime of the analysis software, and hence of the usability of the data. The framework is designed to automatically test and validate the software and data of an experiment against changes and upgrades to the computing environment, as well as changes to the experiment software itself. Technically, this is realised using a framework capable of hosting a number of virtual machine images, built with different configurations of operating systems and the relevant software, including any necessary external dependencies.

  11. The High-Performance Computing and Communications program, the national information infrastructure and health care.

    PubMed Central

    Lindberg, D A; Humphreys, B L

    1995-01-01

    The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116

  12. SCOS2: ESA's new generation of mission control systems

    NASA Technical Reports Server (NTRS)

    Kaufeler, J. F.; Head, N. C.

    1993-01-01

    The paper describes the next generation Spacecraft Control System infrastructure (SCOSII) which is being developed at the Operations Centre (ESOC) of the European Space Agency (ESA). The objectives of the new system and selected areas of the proposed hardware and software approach are described.

  13. Globalisation, Consumption and the Learning Business.

    ERIC Educational Resources Information Center

    Field, John

    1995-01-01

    Distance open learning represents both an outcome of and a primary factor in globalization. Despite investment in infrastructure, software, and human resources, demand for distance open learning in the European market remains constrained. The European Union's policies conceptualize a "European economic space" that ignores the real…

  14. Building a School District's Wide Area Network.

    ERIC Educational Resources Information Center

    Mastel, Vern L.

    1996-01-01

    Describes the development of a wide area network (WAN) in the Bismarck Public School District (North Dakota). Topics include design goals, network infrastructure, implementing library access, sharing resources across platforms, electronic mail, dial-in access, Internet access, adhering to software licenses, shareware and freeware, and monitoring…

  15. Multimedia on the Network: Has Its Time Come?

    ERIC Educational Resources Information Center

    Galbreath, Jeremy

    1995-01-01

    Examines the match between multimedia data and local area network (LAN) infrastructures. Highlights include applications for networked multimedia, i.e., asymmetric and symmetric; alternate LAN technology, including stream management software, Ethernet, FDDI (Fiber Distributed Data Interface), and ATM (Asynchronous Transfer Mode); WAN (Wide Area…

  16. Coaching for Better (Software) Buying Power in an Agile World

    DTIC Science & Technology

    2013-06-01

    believes that DevOps , the process of warfighters and developers work- ing together throughout the project, is superior to volumes of detailed...ride on the Consolidated Afloat Networks and Enterprise Services (CANES) infrastructure. This transformation is not easy. It requires a change in

  17. Leveraging e-Science infrastructure for electrochemical research.

    PubMed

    Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F

    2011-08-28

    As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.

  18. Building an infrastructure at PICKSC for the educational use of kinetic software tools

    NASA Astrophysics Data System (ADS)

    Mori, W. B.; Decyk, V. K.; Tableman, A.; Fonseca, R. A.; Tsung, F. S.; Hu, Q.; Winjum, B. J.; Amorim, L. D.; An, W.; Dalichaouch, T. N.; Davidson, A.; Joglekar, A.; Li, F.; May, J.; Touati, M.; Xu, X. L.; Yu, P.

    2016-10-01

    One aim of the Particle-In-Cell and Kinetic Simulation Center (PICKSC) at UCLA is to coordinate a community development of educational software for undergraduate and graduate courses in plasma physics and computer science. The rich array of physical behaviors exhibited by plasmas can be difficult to grasp by students. If they are given the ability to quickly and easily explore plasma physics through kinetic simulations, and to make illustrative visualizations of plasma waves, particle motion in electromagnetic fields, instabilities, or other phenomena, then they can be equipped with first-hand experiences that inform and contextualize conventional texts and lectures. We are developing an infrastructure for any interested persons to take our kinetic codes, run them without any prerequisite knowledge, and explore desired scenarios. Furthermore, we are actively interested in any ideas or input from other plasma physicists. This poster aims to illustrate what we have developed and gather a community of interested users and developers. Supported by NSF under Grant ACI-1339893.

  19. OpenSoC Fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-21

    Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by itsmore » base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less

  20. Software Defined Networking challenges and future direction: A case study of implementing SDN features on OpenStack private cloud

    NASA Astrophysics Data System (ADS)

    Shamugam, Veeramani; Murray, I.; Leong, J. A.; Sidhu, Amandeep S.

    2016-03-01

    Cloud computing provides services on demand instantly, such as access to network infrastructure consisting of computing hardware, operating systems, network storage, database and applications. Network usage and demands are growing at a very fast rate and to meet the current requirements, there is a need for automatic infrastructure scaling. Traditional networks are difficult to automate because of the distributed nature of their decision making process for switching or routing which are collocated on the same device. Managing complex environments using traditional networks is time-consuming and expensive, especially in the case of generating virtual machines, migration and network configuration. To mitigate the challenges, network operations require efficient, flexible, agile and scalable software defined networks (SDN). This paper discuss various issues in SDN and suggests how to mitigate the network management related issues. A private cloud prototype test bed was setup to implement the SDN on the OpenStack platform to test and evaluate the various network performances provided by the various configurations.

  1. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  2. A vision for collaborative training infrastructure for bioinformatics.

    PubMed

    Williams, Jason J; Teal, Tracy K

    2017-01-01

    In biology, a missing link connecting data generation and data-driven discovery is the training that prepares researchers to effectively manage and analyze data. National and international cyberinfrastructure along with evolving private sector resources place biologists and students within reach of the tools needed for data-intensive biology, but training is still required to make effective use of them. In this concept paper, we review a number of opportunities and challenges that can inform the creation of a national bioinformatics training infrastructure capable of servicing the large number of emerging and existing life scientists. While college curricula are slower to adapt, grassroots startup-spirited organizations, such as Software and Data Carpentry, have made impressive inroads in training on the best practices of software use, development, and data analysis. Given the transformative potential of biology and medicine as full-fledged data sciences, more support is needed to organize, amplify, and assess these efforts and their impacts. © 2016 New York Academy of Sciences.

  3. Data Mining as a Service (DMaaS)

    NASA Astrophysics Data System (ADS)

    Tejedor, E.; Piparo, D.; Mascetti, L.; Moscicki, J.; Lamanna, M.; Mato, P.

    2016-10-01

    Data Mining as a Service (DMaaS) is a software and computing infrastructure that allows interactive mining of scientific data in the cloud. It allows users to run advanced data analyses by leveraging the widely adopted Jupyter notebook interface. Furthermore, the system makes it easier to share results and scientific code, access scientific software, produce tutorials and demonstrations as well as preserve the analyses of scientists. This paper describes how a first pilot of the DMaaS service is being deployed at CERN, starting from the notebook interface that has been fully integrated with the ROOT analysis framework, in order to provide all the tools for scientists to run their analyses. Additionally, we characterise the service backend, which combines a set of IT services such as user authentication, virtual computing infrastructure, mass storage, file synchronisation, development portals or batch systems. The added value acquired by the combination of the aforementioned categories of services is discussed, focusing on the opportunities offered by the CERNBox synchronisation service and its massive storage backend, EOS.

  4. Biotechnology software in the digital age: are you winning?

    PubMed

    Scheitz, Cornelia Johanna Franziska; Peck, Lawrence J; Groban, Eli S

    2018-01-16

    There is a digital revolution taking place and biotechnology companies are slow to adapt. Many pharmaceutical, biotechnology, and industrial bio-production companies believe that software must be developed and maintained in-house and that data are more secure on internal servers than on the cloud. In fact, most companies in this space continue to employ large IT and software teams and acquire computational infrastructure in the form of in-house servers. This is due to a fear of the cloud not sufficiently protecting in-house resources and the belief that their software is valuable IP. Over the next decade, the ability to quickly adapt to changing market conditions, with agile software teams, will quickly become a compelling competitive advantage. Biotechnology companies that do not adopt the new regime may lose on key business metrics such as return on invested capital, revenue, profitability, and eventually market share.

  5. Stress on external hexagon and Morse taper implants submitted to immediate loading

    PubMed Central

    Odo, Caroline H.; Pimentel, Marcele J.; Consani, Rafael L.X.; Mesquita, Marcelo F.; Nóbilo, Mauro A.A.

    2015-01-01

    Background/Aims This study aimed to evaluate the stress distribution around external hexagon (EH) and Morse taper (MT) implants with different prosthetic systems of immediate loading (distal bar (DB), casting technique (CT), and laser welding (LW)) by using photoelastic method. Methods Three infrastructures were manufactured on a model simulating an edentulous lower jaw. All models were composed by five implants (4.1 mm × 13.0 mm) simulating a conventional lower protocol. The samples were divided into six groups. G1: EH implants with DB and acrylic resin; G2: EH implants with titanium infrastructure CT; G3: EH implants with titanium infrastructure attached using LW; G4: MT implants with DB and acrylic resin; G5: MT implants with titanium infrastructure CT; G6: MT implants with titanium infrastructure attached using LW. After the infrastructures construction, the photoelastic models were manufactured and a loading of 4.9 N was applied in the cantilever. Five pre-determined points were analyzed by Fringes software. Results Data showed significant differences between the connection types (p < 0.0001), and there was no significant difference among the techniques used for infrastructure. Conclusion The reduction of the stress levels was more influenced by MT connection (except for CT). Different bar types submitted to immediate loading not influenced stress concentration. PMID:26605142

  6. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  7. Protocol independent transmission method in software defined optical network

    NASA Astrophysics Data System (ADS)

    Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng

    2016-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.

  8. Open source GIS for HIV/AIDS management

    PubMed Central

    Vanmeulebrouk, Bas; Rivett, Ulrike; Ricketts, Adam; Loudon, Melissa

    2008-01-01

    Background Reliable access to basic services can improve a community's resilience to HIV/AIDS. Accordingly, work is being done to upgrade the physical infrastructure in affected areas, often employing a strategy of decentralised service provision. Spatial characteristics are one of the major determinants in implementing services, even in the smaller municipal areas, and good quality spatial information is needed to inform decision making processes. However, limited funds, technical infrastructure and human resource capacity result in little or no access to spatial information for crucial infrastructure development decisions at local level. This research investigated whether it would be possible to develop a GIS for basic infrastructure planning and management at local level. Given the resource constraints of the local government context, particularly in small municipalities, it was decided that open source software should be used for the prototype system. Results The design and development of a prototype system illustrated that it is possible to develop an open source GIS system that can be used within the context of local information management. Usability tests show a high degree of usability for the system, which is important considering the heavy workload and high staff turnover that characterises local government in South Africa. Local infrastructure management stakeholders interviewed in a case study of a South African municipality see the potential for the use of GIS as a communication tool and are generally positive about the use of GIS for these purposes. They note security issues that may arise through the sharing of information, lack of skills and resource constraints as the major barriers to adoption. Conclusion The case study shows that spatial information is an identified need at local level. Open source GIS software can be used to develop a system to provide local-level stakeholders with spatial information. However, the suitability of the technology is only a part of the system – there are wider information and management issues which need to be addressed before the implementation of a local-level GIS for infrastructure management can be successful. PMID:18945338

  9. An open-source software platform for data management, visualisation, model building and model sharing in water, energy and other resource modelling domains.

    NASA Astrophysics Data System (ADS)

    Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.

    2015-12-01

    Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web-based apps in other languages for remote functionality. Partner CH2M is developing a commercial user-interface for Hydra Platform however custom interfaces and visualization tools can be built. Hydra Platform is available on GitHub while Apps will be shared on a central repository.

  10. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  11. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  12. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control

    PubMed Central

    Mathew, Cherian; Obst, Matthias; Vicario, Saverio; Haines, Robert; Williams, Alan R.; de Jong, Yde; Goble, Carole

    2014-01-01

    Abstract The compilation and cleaning of data needed for analyses and prediction of species distributions is a time consuming process requiring a solid understanding of data formats and service APIs provided by biodiversity informatics infrastructures. We designed and implemented a Taverna-based Data Refinement Workflow which integrates taxonomic data retrieval, data cleaning, and data selection into a consistent, standards-based, and effective system hiding the complexity of underlying service infrastructures. The workflow can be freely used both locally and through a web-portal which does not require additional software installations by users. PMID:25535486

  13. Preservation Environments

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.

    2004-01-01

    The long-term preservation of digital entities requires mechanisms to manage the authenticity of massive data collections that are written to archival storage systems. Preservation environments impose authenticity constraints and manage the evolution of the storage system technology by building infrastructure independent solutions. This seeming paradox, the need for large archives, while avoiding dependence upon vendor specific solutions, is resolved through use of data grid technology. Data grids provide the storage repository abstractions that make it possible to migrate collections between vendor specific products, while ensuring the authenticity of the archived data. Data grids provide the software infrastructure that interfaces vendor-specific storage archives to preservation environments.

  14. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  15. Proceedings of Tenth Annual Software Engineering Workshop

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers are presented on the following topics: measurement of software technology, recent studies of the Software Engineering Lab, software management tools, expert systems, error seeding as a program validation technique, software quality assurance, software engineering environments (including knowledge-based environments), the Distributed Computing Design System, and various Ada experiments.

  16. Metric analysis and data validation across FORTRAN projects

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Selby, Richard W., Jr.; Phillips, Tsai-Yun

    1983-01-01

    The desire to predict the effort in developing or explaining the quality of software has led to the proposal of several metrics. As a step toward validating these metrics, the Software Engineering Laboratory (SEL) has analyzed the software science metrics, cyclomatic complexity, and various standard program measures for their relation to effort (including design through acceptance testing), development errors (both discrete and weighted according to the amount of time to locate and fix), and one another. The data investigated are collected from a project FORTRAN environment and examined across several projects at once, within individual projects and by reporting accuracy checks demonstrating the need to validate a database. When the data comes from individual programmers or certain validated projects, the metrics' correlations with actual effort seem to be strongest. For modules developed entirely by individual programmers, the validity ratios induce a statistically significant ordering of several of the metrics' correlations. When comparing the strongest correlations, neither software science's E metric cyclomatic complexity not source lines of code appears to relate convincingly better with effort than the others.

  17. Validation of thermal effects of LED package by using Elmer finite element simulation method

    NASA Astrophysics Data System (ADS)

    Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap

    2017-02-01

    The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.

  18. Software for imaging phase-shift interference microscope

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Couceiro, I. B.

    2018-03-01

    In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.

  19. First field trial of Virtual Network Operator oriented network on demand (NoD) service provisioning over software defined multi-vendor OTN networks

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui

    2017-01-01

    A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.

  20. Moving code - Sharing geoprocessing logic on the Web

    NASA Astrophysics Data System (ADS)

    Müller, Matthias; Bernard, Lars; Kadner, Daniel

    2013-09-01

    Efficient data processing is a long-standing challenge in remote sensing. Effective and efficient algorithms are required for product generation in ground processing systems, event-based or on-demand analysis, environmental monitoring, and data mining. Furthermore, the increasing number of survey missions and the exponentially growing data volume in recent years have created demand for better software reuse as well as an efficient use of scalable processing infrastructures. Solutions that address both demands simultaneously have begun to slowly appear, but they seldom consider the possibility to coordinate development and maintenance efforts across different institutions, community projects, and software vendors. This paper presents a new approach to share, reuse, and possibly standardise geoprocessing logic in the field of remote sensing. Drawing from the principles of service-oriented design and distributed processing, this paper introduces moving-code packages as self-describing software components that contain algorithmic code and machine-readable descriptions of the provided functionality, platform, and infrastructure, as well as basic information about exploitation rights. Furthermore, the paper presents a lean publishing mechanism by which to distribute these packages on the Web and to integrate them in different processing environments ranging from monolithic workstations to elastic computational environments or "clouds". The paper concludes with an outlook toward community repositories for reusable geoprocessing logic and their possible impact on data-driven science in general.

  1. The Particle Physics Data Grid. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livny, Miron

    2002-08-16

    The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services:more » reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.« less

  2. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    NASA Astrophysics Data System (ADS)

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  3. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service.

    PubMed

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung

    2015-04-01

    To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.

  4. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less

  5. JPL Space Telecommunications Radio System Operating Environment

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  6. High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; LeCompte, Tom

    2015-10-29

    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less

  7. Software-Reconfigurable Processors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey

    2005-01-01

    A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).

  8. Software as a service approach to sensor simulation software deployment

    NASA Astrophysics Data System (ADS)

    Webster, Steven; Miller, Gordon; Mayott, Gregory

    2012-05-01

    Traditionally, military simulation has been problem domain specific. Executing an exercise currently requires multiple simulation software providers to specialize, deploy, and configure their respective implementations, integrate the collection of software to achieve a specific system behavior, and then execute for the purpose at hand. This approach leads to rigid system integrations which require simulation expertise for each deployment due to changes in location, hardware, and software. Our alternative is Software as a Service (SaaS) predicated on the virtualization of Night Vision Electronic Sensors (NVESD) sensor simulations as an exemplary case. Management middleware elements layer self provisioning, configuration, and integration services onto the virtualized sensors to present a system of services at run time. Given an Infrastructure as a Service (IaaS) environment, enabled and managed system of simulations yields a durable SaaS delivery without requiring user simulation expertise. Persistent SaaS simulations would provide on demand availability to connected users, decrease integration costs and timelines, and benefit the domain community from immediate deployment of lessons learned.

  9. Middleware Case Study: MeDICi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynne, Adam S.

    2011-05-05

    In many application domains in science and engineering, data produced by sensors, instruments and networks is naturally processed by software applications structured as a pipeline . Pipelines comprise a sequence of software components that progressively process discrete units of data to produce a desired outcome. For example, in a Web crawler that is extracting semantics from text on Web sites, the first stage in the pipeline might be to remove all HTML tags to leave only the raw text of the document. The second step may parse the raw text to break it down into its constituent grammatical parts, suchmore » as nouns, verbs and so on. Subsequent steps may look for names of people or places, interesting events or times so documents can be sequenced on a time line. Each of these steps can be written as a specialized program that works in isolation with other steps in the pipeline. In many applications, simple linear software pipelines are sufficient. However, more complex applications require topologies that contain forks and joins, creating pipelines comprising branches where parallel execution is desirable. It is also increasingly common for pipelines to process very large files or high volume data streams which impose end-to-end performance constraints. Additionally, processes in a pipeline may have specific execution requirements and hence need to be distributed as services across a heterogeneous computing and data management infrastructure. From a software engineering perspective, these more complex pipelines become problematic to implement. While simple linear pipelines can be built using minimal infrastructure such as scripting languages, complex topologies and large, high volume data processing requires suitable abstractions, run-time infrastructures and development tools to construct pipelines with the desired qualities-of-service and flexibility to evolve to handle new requirements. The above summarizes the reasons we created the MeDICi Integration Framework (MIF) that is designed for creating high-performance, scalable and modifiable software pipelines. MIF exploits a low friction, robust, open source middleware platform and extends it with component and service-based programmatic interfaces that make implementing complex pipelines simple. The MIF run-time automatically handles queues between pipeline elements in order to handle request bursts, and automatically executes multiple instances of pipeline elements to increase pipeline throughput. Distributed pipeline elements are supported using a range of configurable communications protocols, and the MIF interfaces provide efficient mechanisms for moving data directly between two distributed pipeline elements.« less

  10. How Nasa's Independent Verification and Validation (IVandV) Program Builds Reliability into a Space Mission Software System (SMSS)

    NASA Technical Reports Server (NTRS)

    Fisher, Marcus S.; Northey, Jeffrey; Stanton, William

    2014-01-01

    The purpose of this presentation is to outline how the NASA Independent Verification and Validation (IVV) Program helps to build reliability into the Space Mission Software Systems (SMSSs) that its customers develop.

  11. Coordinated Fault-Tolerance for High-Performance Computing Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Dhabaleswar Kumar; Beckman, Pete

    2011-07-28

    With the Coordinated Infrastructure for Fault Tolerance Systems (CIFTS, as the original project came to be called) project, our aim has been to understand and tackle the following broad research questions, the answers to which will help the HEC community analyze and shape the direction of research in the field of fault tolerance and resiliency on future high-end leadership systems. Will availability of global fault information, obtained by fault information exchange between the different HEC software on a system, allow individual system software to better detect, diagnose, and adaptively respond to faults? If fault-awareness is raised throughout the system throughmore » fault information exchange, is it possible to get all system software working together to provide a more comprehensive end-to-end fault management on the system? What are the missing fault-tolerance features that widely used HEC system software lacks today that would inhibit such software from taking advantage of systemwide global fault information? What are the practical limitations of a systemwide approach for end-to-end fault management based on fault awareness and coordination? What mechanisms, tools, and technologies are needed to bring about fault awareness and coordination of responses on a leadership-class system? What standards, outreach, and community interaction are needed for adoption of the concept of fault awareness and coordination for fault management on future systems? Keeping our overall objectives in mind, the CIFTS team has taken a parallel fourfold approach. Our central goal was to design and implement a light-weight, scalable infrastructure with a simple, standardized interface to allow communication of fault-related information through the system and facilitate coordinated responses. This work led to the development of the Fault Tolerance Backplane (FTB) publish-subscribe API specification, together with a reference implementation and several experimental implementations on top of existing publish-subscribe tools. We enhanced the intrinsic fault tolerance capabilities representative implementations of a variety of key HPC software subsystems and integrated them with the FTB. Targeting software subsystems included: MPI communication libraries, checkpoint/restart libraries, resource managers and job schedulers, and system monitoring tools. Leveraging the aforementioned infrastructure, as well as developing and utilizing additional tools, we have examined issues associated with expanded, end-to-end fault response from both system and application viewpoints. From the standpoint of system operations, we have investigated log and root cause analysis, anomaly detection and fault prediction, and generalized notification mechanisms. Our applications work has included libraries for fault-tolerance linear algebra, application frameworks for coupled multiphysics applications, and external frameworks to support the monitoring and response for general applications. Our final goal was to engage the high-end computing community to increase awareness of tools and issues around coordinated end-to-end fault management.« less

  12. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    USDA-ARS?s Scientific Manuscript database

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  13. Intrusion-Tolerant Replication under Attack

    ERIC Educational Resources Information Center

    Kirsch, Jonathan

    2010-01-01

    Much of our critical infrastructure is controlled by large software systems whose participants are distributed across the Internet. As our dependence on these critical systems continues to grow, it becomes increasingly important that they meet strict availability and performance requirements, even in the face of malicious attacks, including those…

  14. Surface transportation weather decision support requirements : advanced-integrated decision support using weather information for surface transportation decisions makers : draft (truncated*) version 1.0

    DOT National Transportation Integrated Search

    1997-09-19

    This report gives an overview of the National Intelligent Transportation Infrastructure Initiative (NITI). NITI refers to the integrated electronics, communications, and hardware and software elements that are available to support Intelligent Transpo...

  15. Integration of the NRL Digital Library.

    ERIC Educational Resources Information Center

    King, James

    2001-01-01

    The Naval Research Laboratory (NRL) Library has identified six primary areas that need improvement: infrastructure, InfoWeb, TORPEDO Ultra, journal data management, classified data, and linking software. It is rebuilding InfoWeb and TORPEDO Ultra as database-driven Web applications, upgrading the STILAS library catalog, and creating other support…

  16. Reusablility in ESOC mission control systems developments - the SMART-1 mission case

    NASA Astrophysics Data System (ADS)

    Pignède, Max; Davies, Kevin

    2002-07-01

    The European Space Operations Centre (ESOC) have a long experience in spacecraft mission control systems developments and use a large number of existing elements for the build up of control systems for new missions. The integration of such elements in a new system covers not only the direct re-use of infrastructure software but also the re-use of concepts and work methodology. Applying reusability is a major asset in ESOC's strategy, especially for low cost space missions. This paper describes re-use of existing elements in the ESOC production of the SMART-1 mission control system (S1MCS) and explores the following areas: The most significant (and major cost-saving contributors) re-used elements are the Spacecraft Control and Operations System (SCOS-2000) and the Network Control and TM/TC Router System (NCTRS) infrastructure systems. These systems are designed precisely for allowing all general mission parameters to be configured easily without any change in the software (in particular the NCTRS configuration for SMART-1 was time and cost effective). Further, large parts of the ESOC ROSETTA and INTEGRAL software systems (also SCOS-2000 based) were directly re-used, such as the on-board command schedule maintenance and modelling subsystem (OBQ), the time correlator (TCO) and the external file transfer subsystem (FTS). The INTEGRAL spacecraft database maintenance system (both the editors and configuration control mechanism) and its export facilities into the S1MCS runtime system are directly reused. A special kind of re-use concerns the ENVISAT approach to both the telemetry (TM) and telecommanding (TC) context saving in the redundant server system in order to enable smooth support of operations in case of prime server failure. In this case no software or tools can be re-used because the S1MCS is based on a much more modern technology than the ENVISAT mission control system as well as on largely differing workstations architectures but the ENVISAT validated capabilities to support hot-standby system reconfiguration and machines and data resynchronisation following failures for all mission phases make them a good candidate for re-use by newer missions. Common methods and tools for requirements production, test plan production and problem tracking which are used by most of the other ESOC missions development teams in their daily work are also re-used without any changes. Finally conclusions are drawn about reusability in perspective with the latest state of the S1MCS and about benefits to other SCOS-2000 based "client" missions. Lessons learned for ESOC space missions (whether for mission control systems currently under development or up-and-coming space missions) and also related considerations for the wider space community are made, reflecting ESOC skills and expertise in mission operations and control.

  17. A process improvement model for software verification and validation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  18. A process improvement model for software verification and validation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and Space Station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  19. A Toolkit to Study Sensitivity of the Geant4 Predictions to the Variations of the Physics Model Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Laura; Genser, Krzysztof; Hatcher, Robert

    Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less

  20. An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited.

    PubMed

    Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald

    2016-01-14

    Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.

  1. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  2. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  3. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.

  4. The computing and data infrastructure to interconnect EEE stations

    NASA Astrophysics Data System (ADS)

    Noferini, F.; EEE Collaboration

    2016-07-01

    The Extreme Energy Event (EEE) experiment is devoted to the search of high energy cosmic rays through a network of telescopes installed in about 50 high schools distributed throughout the Italian territory. This project requires a peculiar data management infrastructure to collect data registered in stations very far from each other and to allow a coordinated analysis. Such an infrastructure is realized at INFN-CNAF, which operates a Cloud facility based on the OpenStack opensource Cloud framework and provides Infrastructure as a Service (IaaS) for its users. In 2014 EEE started to use it for collecting, monitoring and reconstructing the data acquired in all the EEE stations. For the synchronization between the stations and the INFN-CNAF infrastructure we used BitTorrent Sync, a free peer-to-peer software designed to optimize data syncronization between distributed nodes. All data folders are syncronized with the central repository in real time to allow an immediate reconstruction of the data and their publication in a monitoring webpage. We present the architecture and the functionalities of this data management system that provides a flexible environment for the specific needs of the EEE project.

  5. The Chandra Source Catalog: Processing and Infrastructure

    NASA Astrophysics Data System (ADS)

    Evans, Janet; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Hall, Diane M.; Miller, Joseph B.; Plummer, David A.; Zografou, Panagoula; Primini, Francis A.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.

    2009-09-01

    Chandra Source Catalog processing recalibrates each observation using the latest available calibration data, and employs a wavelet-based source detection algorithm to identify all the X-ray sources in the field of view. Source properties are then extracted from each detected source that is a candidate for inclusion in the catalog. Catalog processing is completed by matching sources across multiple observations, merging common detections, and applying quality assurance checks. The Chandra Source Catalog processing system shares a common processing infrastructure and utilizes much of the functionality that is built into the Standard Data Processing (SDP) pipeline system that provides calibrated Chandra data to end-users. Other key components of the catalog processing system have been assembled from the portable CIAO data analysis package. Minimal new software tool development has been required to support the science algorithms needed for catalog production. Since processing pipelines must be instantiated for each detected source, the number of pipelines that are run during catalog construction is a factor of order 100 times larger than for SDP. The increased computational load, and inherent parallel nature of the processing, is handled by distributing the workload across a multi-node Beowulf cluster. Modifications to the SDP automated processing application to support catalog processing, and extensions to Chandra Data Archive software to ingest and retrieve catalog products, complete the upgrades to the infrastructure to support catalog processing.

  6. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  7. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under implementation, which will be validated and tested during 2018. Particular attention in this talk will be given to connecting EPOS with similar global initiatives and identifying common best practice and approaches.

  8. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  9. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  10. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    NASA Astrophysics Data System (ADS)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide scale deployment of such energy saving software, they need to be portable across multiple buildings. However, buildings consist of heterogeneous equipment and use inconsistent naming schema, and developers need extensive domain knowledge to map sensor information to a standard format. To enable portability, we present an active learning algorithm that automates mapping building sensor metadata to a standard naming schema.

  11. Unidata Cyberinfrastructure in the Cloud

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Young, J. W.

    2016-12-01

    Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.

  12. Simulation verification techniques study. Subsystem simulation validation techniques

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1974-01-01

    Techniques for validation of software modules which simulate spacecraft onboard systems are discussed. An overview of the simulation software hierarchy for a shuttle mission simulator is provided. A set of guidelines for the identification of subsystem/module performance parameters and critical performance parameters are presented. Various sources of reference data to serve as standards of performance for simulation validation are identified. Environment, crew station, vehicle configuration, and vehicle dynamics simulation software are briefly discussed from the point of view of their interfaces with subsystem simulation modules. A detailed presentation of results in the area of vehicle subsystems simulation modules is included. A list of references, conclusions and recommendations are also given.

  13. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II projects. We present here the case study of an existing network of institutions brought together toward common goals by a non-binding agreement, ENES, and of its two IS-ENES projects. These latter will be discussed in their double role as a means to provide and/or maintain the actual infrastructure (hardware, software, skilled human resources, services) to achieve ENES scientific goals -fulfilling the aims set in a strategy document-, but also to inform and provide to the network a structured way of working and of interacting with the extended community. The genesis and evolution of the network and the interaction network/projects will also be analysed in terms of long-term sustainability.

  14. Telemedicine using free voice over internet protocol (VoIP) technology.

    PubMed

    Miller, David J; Miljkovic, Nikola; Chiesa, Chad; Callahan, John B; Webb, Brad; Boedeker, Ben H

    2011-01-01

    Though dedicated videoteleconference (VTC) systems deliver high quality, low-latency audio and video for telemedical applications, they require expensive hardware and extensive infrastructure. The purpose of this study was to investigate free commercially available Voice over Internet Protocol (VoIP) software as a low cost alternative for telemedicine.

  15. Evaluating Usability in a Distance Digital Systems Laboratory Class

    ERIC Educational Resources Information Center

    Kostaras, N.; Xenos, M.; Skodras, A. N.

    2011-01-01

    This paper presents the usability evaluation of a digital systems laboratory class offered to distance-learning students. It details the way in which students can participate remotely in such a laboratory, the methodology employed in the usability assessment of the laboratory infrastructure (hardware and software), and also outlines the main…

  16. Progress in catalytic ignition fabrication, modeling and infrastructure : (part 2) development of a multi-zone engine model simulated using MATLAB software.

    DOT National Transportation Integrated Search

    2014-02-01

    A mathematical model was developed for the purpose of providing students with data : acquisition and engine modeling experience at the University of Idaho. In developing the : model, multiple heat transfer and emissions models were researched and com...

  17. U.S. Chemical Warfare Stockpile Vulnerability: Effects to Local Infrastructure From a Chemical-Agent Release

    DTIC Science & Technology

    2007-06-01

    2 D. SCOPE, LIMITATIONS, AND ASSUMPTIONS ........................................4 E . THESIS ORGANIZATION...Summary (Blue Grass) ......................................................................53 E . PUEBLO CHEMICAL DEPOT, COLORADO...the current software implementation to handle. 5 E . THESIS ORGANIZATION Chapter II begins with a short primer on chemical agents stored at CFs in

  18. Investigating the Application of Moving Target Defenses to Network Security

    DTIC Science & Technology

    2013-08-01

    developing an MTD testbed using OpenStack [14] to show that our MTD design can actually work. Building an MTD system in a cloud infrastructure will be...Information Intelli- gence Research. New York, USA: ACM, 2013. [14] Openstack , “ Openstack : The folsom release,” http://www.openstack.org/software

  19. An Innovative Community College Program and Partnership in Information Security.

    ERIC Educational Resources Information Center

    Howard, Barbara C; Morneau, Keith A.

    This report describes an innovative network security program initiated by Northern Virginia Community College and funded with a grant from the Northern Virginia Regional Partnership. The program educates and trains students in the instillation, configuration, and troubleshooting of the hardware and software infrastructure of information security.…

  20. Learning with Mobiles in Developing Countries: Technology, Language, and Literacy

    ERIC Educational Resources Information Center

    Traxler, John M.

    2017-01-01

    In the countries of the global South, the challenges of fixed infrastructure and environment, the apparent universality of mobile hardware, software and network technologies and the rhetoric of the global knowledge economy have slowed or impoverished the development of appropriate theoretical discourses to underpin learning with mobiles. This…

  1. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    DTIC Science & Technology

    2016-01-01

    PI minicomputer powered by a different supply. The ODROID and Raspberry PI communicate via an Ethernet connection through a software interface named...HardKernel, an Atheros Wi-Fi card connected to it, and a dedicated power pack developed by RavPower. The hexarotor’s autopilot runs on a separate Raspberry

  2. Morphological Spatial Pattern Analysis of the Conterminous US

    EPA Science Inventory

    Six data layers, all created using GUIDOS 1.3 MSPA software to identify green infrastructure components (e.g. core, edge, corridor, etc.). Water was treated three different ways: 1) as foreground, 2) as background, and 3) as missing using both NLCD 2001 and 2006 for six total lay...

  3. Remix and Reuse of Source Code in Software Production

    ERIC Educational Resources Information Center

    Jones, M. Cameron

    2010-01-01

    The means of producing information and the infrastructure for disseminating it are constantly changing. The web mobilizes information in electronic formats, making it easier to copy, modify, remix, and redistribute. This has changed how information is produced, distributed, and used. People are not just consuming information; they are actively…

  4. A distributed telerobotics construction set

    NASA Technical Reports Server (NTRS)

    Wise, James D.

    1994-01-01

    During the course of our research on distributed telerobotic systems, we have assembled a collection of generic, reusable software modules and an infrastructure for connecting them to form a variety of telerobotic configurations. This paper describes the structure of this 'Telerobotics Construction Set' and lists some of the components which comprise it.

  5. Human Research and Engineering Directorate, Major Laboratory Programs: Current Thrust Areas and Recent Research

    DTIC Science & Technology

    2010-09-01

    response equipment. After the hardware and software infrastructure is complete, the focus will shift to creating soundscapes over headphones and...Background sounds will emulate a range of conditions from quiet deserts to busy urban streets. Accurate portrayals of military soundscapes and listening

  6. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  7. ELER software - a new tool for urban earthquake loss assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.

    2010-12-01

    Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and ATC-55 (Yang, 2005). An urban loss assessment exercise for a scenario earthquake for the city of Istanbul is conducted and physical and social losses are presented. Damage to the urban environment is compared to the results obtained from similar software, i.e. KOERILoss (KOERI, 2002) and DBELA (Crowley et al., 2004). The European rapid loss estimation tool is expected to help enable effective emergency response, on both local and global level, as well as public information.

  8. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  9. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  10. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  11. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  12. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  13. To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne

    2012-08-01

    A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.

  14. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  15. Hardware and software reliability estimation using simulations

    NASA Technical Reports Server (NTRS)

    Swern, Frederic L.

    1994-01-01

    The simulation technique is used to explore the validation of both hardware and software. It was concluded that simulation is a viable means for validating both hardware and software and associating a reliability number with each. This is useful in determining the overall probability of system failure of an embedded processor unit, and improving both the code and the hardware where necessary to meet reliability requirements. The methodologies were proved using some simple programs, and simple hardware models.

  16. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1987-01-01

    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management.

  17. An informatics model for guiding assembly of telemicrobiology workstations for malaria collaborative diagnostics using commodity products and open-source software.

    PubMed

    Suhanic, West; Crandall, Ian; Pennefather, Peter

    2009-07-17

    Deficits in clinical microbiology infrastructure exacerbate global infectious disease burdens. This paper examines how commodity computation, communication, and measurement products combined with open-source analysis and communication applications can be incorporated into laboratory medicine microbiology protocols. Those commodity components are all now sourceable globally. An informatics model is presented for guiding the use of low-cost commodity components and free software in the assembly of clinically useful and usable telemicrobiology workstations. The model incorporates two general principles: 1) collaborative diagnostics, where free and open communication and networking applications are used to link distributed collaborators for reciprocal assistance in organizing and interpreting digital diagnostic data; and 2) commodity engineering, which leverages globally available consumer electronics and open-source informatics applications, to build generic open systems that measure needed information in ways substantially equivalent to more complex proprietary systems. Routine microscopic examination of Giemsa and fluorescently stained blood smears for diagnosing malaria is used as an example to validate the model. The model is used as a constraint-based guide for the design, assembly, and testing of a functioning, open, and commoditized telemicroscopy system that supports distributed acquisition, exploration, analysis, interpretation, and reporting of digital microscopy images of stained malarial blood smears while also supporting remote diagnostic tracking, quality assessment and diagnostic process development. The open telemicroscopy workstation design and use-process described here can address clinical microbiology infrastructure deficits in an economically sound and sustainable manner. It can boost capacity to deal with comprehensive measurement of disease and care outcomes in individuals and groups in a distributed and collaborative fashion. The workstation enables local control over the creation and use of diagnostic data, while allowing for remote collaborative support of diagnostic data interpretation and tracking. It can enable global pooling of malaria disease information and the development of open, participatory, and adaptable laboratory medicine practices. The informatic model highlights how the larger issue of access to generic commoditized measurement, information processing, and communication technology in both high- and low-income countries can enable diagnostic services that are much less expensive, but substantially equivalent to those currently in use in high-income countries.

  18. New Catalog of Resources Enables Paleogeosciences Research

    NASA Astrophysics Data System (ADS)

    Lingo, R. C.; Horlick, K. A.; Anderson, D. M.

    2014-12-01

    The 21st century promises a new era for scientists of all disciplines, the age where cyber infrastructure enables research and education and fuels discovery. EarthCube is a working community of over 2,500 scientists and students of many Earth Science disciplines who are looking to build bridges between disciplines. The EarthCube initiative will create a digital infrastructure that connects databases, software, and repositories. A catalog of resources (databases, software, repositories) has been produced by the Research Coordination Network for Paleogeosciences to improve the discoverability of resources. The Catalog is currently made available within the larger-scope CINERGI geosciences portal (http://hydro10.sdsc.edu/geoportal/catalog/main/home.page). Other distribution points and web services are planned, using linked data, content services for the web, and XML descriptions that can be harvested using metadata protocols. The databases provide searchable interfaces to find data sets that would otherwise remain dark data, hidden in drawers and on personal computers. The software will be described in catalog entries so just one click will lead users to methods and analytical tools that many geoscientists were unaware of. The repositories listed in the Paleogeosciences Catalog contain physical samples found all across the globe, from natural history museums to the basements of university buildings. EarthCube has over 250 databases, 300 software systems, and 200 repositories which will grow in the coming year. When completed, geoscientists across the world will be connected into a productive workflow for managing, sharing, and exploring geoscience data and information that expedites collaboration and innovation within the paleogeosciences, potentially bringing about new interdisciplinary discoveries.

  19. Evolving PSTN to NGN

    NASA Astrophysics Data System (ADS)

    Wu, Liang T.

    2004-04-01

    The concept of Next Generation Network (NGN) was conceived around 1998 as an integrated solution to combine the quality and features of the PSTN with the low cost and routing flexibility of the Internet to provide a single infrastructure for the future public network. This carrier grade Internet solution calls for the creation of a consolidated, packet transport and switching infrastructure and the development of a flexible, open, software switch (softswitch) to handle voice telephony as well as multimedia services. Almost all the telecom equipment manufacturers as well as some Internet equipment vendors immediately subscribed to this vision and joined the race to create convergent products for the NGN market.

  20. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

Top