75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... Technologies and Software Defined Radios AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY... concerning the use of open source software to implement security features in software defined radios (SDRs... ongoing technical developments in cognitive and software defined radio (SDR) technologies. 2. On April 20...
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Johnson, Sandra K.; Lux, James P.
2010-01-01
NASA is developing an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR), networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASA s Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners. Planned for launch in early 2012, the payload will be externally mounted to the International Space Station truss and conduct experiments representative of future mission capability.
Space Communication and Navigation Testbed Communications Technology for Exploration
NASA Technical Reports Server (NTRS)
Reinhart, Richard
2013-01-01
NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.
Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2013-01-01
NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Open Architecture Standard for NASA's Software-Defined Space Telecommunications Radio Systems
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.; Kacpura, Thomas J.; Hall, Charles S.; Smith, Carl R.; Liebetreu, John
2008-01-01
NASA is developing an architecture standard for software-defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer. This paper presents the initial Space Telecommunications Radio System (STRS) Architecture for NASA missions to provide the desired software abstraction and flexibility while minimizing the resources necessary to support the architecture.
Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.
2012-01-01
This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.
Open Architecture SDR for Space
NASA Technical Reports Server (NTRS)
Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.
2005-01-01
This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.
Fault-Tolerant Software-Defined Radio on Manycore
NASA Technical Reports Server (NTRS)
Ricketts, Scott
2015-01-01
Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.
Space Software Defined Radio Characterization to Enable Reuse
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David
2012-01-01
NASA's Space Communication and Navigation Testbed is beginning operations on the International Space Station this year. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System architecture standard. The Space Station payload has three software defined radios onboard that allow for a wide variety of communications applications; however, each radio was only launched with one waveform application. By design the testbed allows new waveform applications to be uploaded and tested by experimenters in and outside of NASA. During the system integration phase of the testbed special waveform test modes and stand-alone test waveforms were used to characterize the SDR platforms for the future experiments. Characterization of the Testbed's JPL SDR using test waveforms and specialized ground test modes is discussed in this paper. One of the test waveforms, a record and playback application, can be utilized in a variety of ways, including new satellite on-orbit checkout as well as independent on-board testbed experiments.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2012-01-01
NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2013-01-01
NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
47 CFR 2.944 - Software defined radios.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Software defined radios. 2.944 Section 2.944... Authorization § 2.944 Software defined radios. (a) Manufacturers must take steps to ensure that only software that has been approved with a software defined radio can be loaded into the radio. The software must...
47 CFR 2.944 - Software defined radios.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Software defined radios. 2.944 Section 2.944... Authorization § 2.944 Software defined radios. (a) Manufacturers must take steps to ensure that only software that has been approved with a software defined radio can be loaded into the radio. The software must...
47 CFR 2.944 - Software defined radios.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Software defined radios. 2.944 Section 2.944... Authorization § 2.944 Software defined radios. (a) Manufacturers must take steps to ensure that only software that has been approved with a software defined radio can be loaded into the radio. The software must...
47 CFR 2.944 - Software defined radios.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Software defined radios. 2.944 Section 2.944... Authorization § 2.944 Software defined radios. (a) Manufacturers must take steps to ensure that only software that has been approved with a software defined radio can be loaded into the radio. The software must...
47 CFR 2.944 - Software defined radios.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Software defined radios. 2.944 Section 2.944... Authorization § 2.944 Software defined radios. (a) Manufacturers must take steps to ensure that only software that has been approved with a software defined radio can be loaded into the radio. The software must...
Reconfigurable, Cognitive Software-Defined Radio
NASA Technical Reports Server (NTRS)
Bhat, Arvind
2015-01-01
Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.
Applications of software-defined radio (SDR) technology in hospital environments.
Chávez-Santiago, Raúl; Mateska, Aleksandra; Chomu, Konstantin; Gavrilovska, Liljana; Balasingham, Ilangko
2013-01-01
A software-defined radio (SDR) is a radio communication system where the major part of its functionality is implemented by means of software in a personal computer or embedded system. Such a design paradigm has the major advantage of producing devices that can receive and transmit widely different radio protocols based solely on the software used. This flexibility opens several application opportunities in hospital environments, where a large number of wired and wireless electronic devices must coexist in confined areas like operating rooms and intensive care units. This paper outlines some possible applications in the 2360-2500 MHz frequency band. These applications include the integration of wireless medical devices in a common communication platform for seamless interoperability, and cognitive radio (CR) for body area networks (BANs) and wireless sensor networks (WSNs) for medical environmental surveillance. The description of a proof-of-concept CR prototype is also presented.
Space Telecommunications Radio System (STRS) Definitions and Acronyms
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Handler, Louis M.; Johnson, Sandra K.; Nappier, Jennifer; Gnepp, Steven; Kacpura, Thomas J.; Reinhart, Richard C.; Hall, Charles S.; Mortensen, Dale
2008-01-01
Software-defined radio is a relatively new technology area, and industry consensus on terminology is not always consistent. Confusion exists when the various organizations and standards bodies define different radio terms associated with the actual amount of reconfigurability of the radios. The Space Telecommunications Radio System (STRS) Definitions and Acronyms Document provides the readers of the STRS documents a common understanding of the terminology used and how they will be applied to the STRS architecture.
Hardware Architecture Study for NASA's Space Software Defined Radios
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John
2008-01-01
This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Rail-CR : railroad cognitive radio.
DOT National Transportation Integrated Search
2012-12-01
Robust, reliable, and interoperable wireless communication devices or technologies are vital to the success of positive train control (PTC) systems. Accordingly, the railway industry has started adopting software-defined radios (SDRs) for packet-data...
NASA Technical Reports Server (NTRS)
Siamidis, John; Yuko, Jim
2014-01-01
The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).
Space Telecommunications Radio System STRS Cognitive Radio
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Handler, Louis M.
2013-01-01
Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.
NASA Technical Reports Server (NTRS)
Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III
2011-01-01
The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.
Software Defined Radios - Architectures, Systems and Functions
NASA Technical Reports Server (NTRS)
Sims, William H.
2017-01-01
Software Defined Radio is an industry term describing a method of utilizing a minimum amount of Radio Frequency (RF)/analog electronics before digitization takes place. Upon digitization all other functions are performed in software/firmware. There are as many different types of SDRs as there are data systems. Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 90's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. SDR technology offers potential to revolutionize satellite transponder technology by increasing science data through-put capability by at least an order of magnitude. While the SDR is adaptive in nature and is "One-size-fits-all" by design, conventional transponders are built to a specific platform and must be redesigned for every new bus. The SDR uses a minimum amount of analog/Radio Frequency components to up/down-convert the RF signal to/from a digital format. Once analog data is digitized, all processing is performed using hardware logic. Typical SDR processes include; filtering, modulation, up/down converting and demodulation. This presentation will show how the emerging SDR market has leveraged the existing commercial sector to provide a path to a radiation tolerant SDR transponder. These innovations will reduce the cost of transceivers, a decrease in power requirements and a commensurate reduction in volume. A second pay-off is the increased flexibility of the SDR by allowing the same hardware to implement multiple transponder types by altering hardware logic - no change of analog hardware is required - all of which can be ultimately accomplished in orbit. This in turn would provide high capability and low cost transponder to programs of all sizes.
Software Defined Radios - Architectures, Systems and Functions
NASA Technical Reports Server (NTRS)
Sims, Herb
2017-01-01
Software Defined Radio is an industry term describing a method of utilizing a minimum amount of Radio Frequency (RF)/analog electronics before digitization takes place. Upon digitization all other functions are performed in software/firmware. There are as many different types of SDRs as there are data systems. Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 90's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. SDR technology offers potential to revolutionize satellite transponder technology by increasing science data through-put capability by at least an order of magnitude. While the SDR is adaptive in nature and is "One-size-fits-all" by design, conventional transponders are built to a specific platform and must be redesigned for every new bus. The SDR uses a minimum amount of analog/Radio Frequency components to up/down-convert the RF signal to/from a digital format. Once analog data is digitized, all processing is performed using hardware logic. Typical SDR processes include; filtering, modulation, up/down converting and demodulation. This presentation will show how the emerging SDR market has leveraged the existing commercial sector to provide a path to a radiation tolerant SDR transponder. These innovations will reduce the cost of transceivers, a decrease in power requirements and a commensurate reduction in volume. A second pay-off is the increased flexibility of the SDR by allowing the same hardware to implement multiple transponder types by altering hardware logic - no change of analog hardware is required - all of which can be ultimately accomplished in orbit. This in turn would provide high capability and low cost transponder to programs of all sizes
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
The NASA Glenn Research Center is investigating the development and suitability of a software-based open-architecture for space-based reconfigurable transceivers (RTs) and software-defined radios (SDRs). The main objectives of this project are to enable advanced operations and reduce mission costs. SDRs are becoming more common because of the capabilities of reconfigurable digital signal processing technologies such as field programmable gate arrays and digital signal processors, which place radio functions in firmware and software that were traditionally performed with analog hardware components. Features of interest of this communications architecture include nonproprietary open standards and application programming interfaces to enable software reuse and portability, independent hardware and software development, and hardware and software functional separation. The goals for RT and SDR technologies for NASA space missions include prelaunch and on-orbit frequency and waveform reconfigurability and programmability, high data rate capability, and overall communications and processing flexibility. These operational advances over current state-of-art transceivers will be provided to reduce the power, mass, and cost of RTs and SDRs for space communications. The open architecture for NASA communications will support existing (legacy) communications needs and capabilities while providing a path to more capable, advanced waveform development and mission concepts (e.g., ad hoc constellations with self-healing networks and high-rate science data return). A study was completed to assess the state of the art in RT architectures, implementations, and technologies. In-house researchers conducted literature searches and analysis, interviewed Government and industry contacts, and solicited information and white papers from industry on space-qualifiable RTs and SDRs and their associated technologies for space-based NASA applications. The white papers were evaluated, compiled, and used to assess RT and SDR system architectures and core technology elements to determine an appropriate investment strategy to advance these technologies to meet future mission needs. The use of these radios in the space environment represents a challenge because of the space radiation suitability of the components, which drastically reduces the processing capability. The radios available for space are considered to be RTs (as opposed to SDRs), which are digitally programmable radios with selectable changes from an architecture combining analog and digital components. The limited flexibility of this design contrasts against the desire to have a power-efficient solution and open architecture.
Using SysML to model complex systems for security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cano, Lester Arturo
2010-08-01
As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: Capturing Requirements: Defining Hardware Interfaces: Defining Software Interfaces: Integrating Technologies: Radio Systems: Voice Over IP Systems: Situational Awareness Systems.
Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Lux, James P.
2014-01-01
The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.
Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith
2014-01-01
The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Handler, Louis M.; Hall, Steve C.; Reinhart, Richard C.; Kacpura, Thomas J.
2009-01-01
The Space Telecommunication Radio System (STRS) standard is a Software Defined Radio (SDR) architecture standard developed by NASA. The goal of STRS is to reduce NASA s dependence on custom, proprietary architectures with unique and varying interfaces and hardware and support reuse of waveforms across platforms. The STRS project worked with members of the Object Management Group (OMG), Software Defined Radio Forum, and industry partners to leverage existing standards and knowledge. This collaboration included investigating the use of the OMG s Platform-Independent Model (PIM) SWRadio as the basis for an STRS PIM. This paper details the influence of the OMG technologies on the STRS update effort, findings in the STRS/SWRadio mapping, and provides a summary of the SDR Forum recommendations.
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.
2005-01-01
This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.
Software-defined Radio Based Measurement Platform for Wireless Networks
Chao, I-Chun; Lee, Kang B.; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-01-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc.) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks. PMID:27891210
Software-defined Radio Based Measurement Platform for Wireless Networks.
Chao, I-Chun; Lee, Kang B; Candell, Richard; Proctor, Frederick; Shen, Chien-Chung; Lin, Shinn-Yan
2015-10-01
End-to-end latency is critical to many distributed applications and services that are based on computer networks. There has been a dramatic push to adopt wireless networking technologies and protocols (such as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, etc. ) into time-critical applications. Examples of such applications include industrial automation, telecommunications, power utility, and financial services. While performance measurement of wired networks has been extensively studied, measuring and quantifying the performance of wireless networks face new challenges and demand different approaches and techniques. In this paper, we describe the design of a measurement platform based on the technologies of software-defined radio (SDR) and IEEE 1588 Precision Time Protocol (PTP) for evaluating the performance of wireless networks.
SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2008-01-01
This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.
Software Configurable Multichannel Transceiver
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter
2009-01-01
Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.
2011-06-01
USING SPECTRAL CORRELATION FUNCTION THESIS Mujun Song, Captain, ROKA AFIT/GCE/ENG/11-09 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the...generator, Agilent E4438C, ESG Vector Signal Generator. Universal Software Radio Peripheral 2 (USRP2), which is a Software Defined Radio (SDR), is used
A Software Defined Radio Based Airplane Communication Navigation Simulation System
NASA Astrophysics Data System (ADS)
He, L.; Zhong, H. T.; Song, D.
2018-01-01
Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.
Software Defined Radios - Architectures, Systems and Functions
NASA Technical Reports Server (NTRS)
Sims, Herb
2017-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 90's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. SDR technology offers potential to revolutionize satellite transponder technology by increasing science data through-put capability by at least an order of magnitude. While the SDR is adaptive in nature and is "One-size-fits-all" by design, conventional transponders are built to a specific platform and must be redesigned for every new bus. The SDR uses a minimum amount of analog/Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once analog data is digitized, all processing is performed using hardware logic. Typical SDR processes include; filtering, modulation, up/down converting and demodulation. These innovations have reduced the cost of transceivers, a decrease in power requirements and a commensurate reduction in volume. An additional pay-off is the increased flexibility of the SDR: allowing the same hardware to implement multiple transponder types by altering hardware logic -no change of analog hardware is required -all of which can be ultimately accomplished in orbit.
A real-time GNSS-R system based on software-defined radio and graphics processing units
NASA Astrophysics Data System (ADS)
Hobiger, Thomas; Amagai, Jun; Aida, Masanori; Narita, Hideki
2012-04-01
Reflected signals of the Global Navigation Satellite System (GNSS) from the sea or land surface can be utilized to deduce and monitor physical and geophysical parameters of the reflecting area. Unlike most other remote sensing techniques, GNSS-Reflectometry (GNSS-R) operates as a passive radar that takes advantage from the increasing number of navigation satellites that broadcast their L-band signals. Thereby, most of the GNSS-R receiver architectures are based on dedicated hardware solutions. Software-defined radio (SDR) technology has advanced in the recent years and enabled signal processing in real-time, which makes it an ideal candidate for the realization of a flexible GNSS-R system. Additionally, modern commodity graphic cards, which offer massive parallel computing performances, allow to handle the whole signal processing chain without interfering with the PC's CPU. Thus, this paper describes a GNSS-R system which has been developed on the principles of software-defined radio supported by General Purpose Graphics Processing Units (GPGPUs), and presents results from initial field tests which confirm the anticipated capability of the system.
A reprogrammable receiver architecture for wireless signal interception
NASA Astrophysics Data System (ADS)
Yao, Timothy S.
2003-09-01
In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.
Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas
2012-01-01
National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.
2015-03-26
REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A SOFTWARE-DEFINED RADIO WITH FPGA...not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-054 REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A...REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES USING A SOFTWARE-DEFINED RADIO WITH FPGA PROCESSING William M. Lowder, BSEE, BSCPE
Software-Defined Radio for Space-to-Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.
2011-01-01
A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.
Programmable Ultra-Lightweight System Adaptable Radio Satellite Base Station
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Sims, Herb
2015-01-01
With the explosion of the CubeSat, small sat, and nanosat markets, the need for a robust, highly capable, yet affordable satellite base station, capable of telemetry capture and relay, is significant. The Programmable Ultra-Lightweight System Adaptable Radio (PULSAR) is NASA Marshall Space Flight Center's (MSFC's) software-defined digital radio, developed with previous Technology Investment Programs and Technology Transfer Office resources. The current PULSAR will have achieved a Technology Readiness Level-6 by the end of FY 2014. The extensibility of the PULSAR will allow it to be adapted to perform the tasks of a mobile base station capable of commanding, receiving, and processing satellite, rover, or planetary probe data streams with an appropriate antenna.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Considerations for the Next Revision of STRS
NASA Technical Reports Server (NTRS)
Johnson, Sandra K.; Handler, Louis M.; Briones, Janette C.
2016-01-01
Development of NASAs Software Defined Radio architecture, the Space Telecommunication Radio System (STRS), was initiated in 2004 with a goal of reducing the cost, risk and schedule when implementing Software Defined Radios (SDR) for NASA space missions. Since STRS was first flown in 2012 on three Software Defined Radios on the Space Communication and Navigation (SCaN) Testbed, only minor changes have been made to the architecture. Multiple entities have since implemented the architecture and have provided significant feedback for consideration for the next revision of the standard. The focus for the first set of updates to the architecture is items that enhance application portability. Items that require modifications to existing applications before migrating to the updated architecture will only be considered if there is compelling reasons to make the change. The significant suggestions that were further evaluated for consideration include expanding and clarifying the timing Application Programming Interfaces (APIs), improving handle name and identification (ID) definitions and use, and multiple items related to implementation of STRS Devices. In addition to ideas suggested while implementing STRS, SDR technology has evolved significantly and this impact to the architecture needs to be considered. These include incorporating cognitive concepts - learning from past decisions and making new decisions that the radio can act upon. SDRs are also being developed that do not contain a General Purpose Module which is currently required for the platform to be STRS compliant. The purpose of this paper is to discuss the comments received, provide a summary of the evaluation considerations, and examine planned dispositions
Considerations for the Next Revision of NASA's Space Telecommunications Radio System Architecture
NASA Technical Reports Server (NTRS)
Johnson, Sandra K.; Handler, Louis M.; Briones, Janette C.
2016-01-01
Development of NASA's Software Defined Radio architecture, the Space Telecommunication Radio System (STRS), was initiated in 2004 with a goal of reducing the cost, risk and schedule when implementing Software Defined Radios (SDR) for National Aeronautics and Space Administration (NASA) space missions. Since STRS was first flown in 2012 on three Software Defined Radios on the Space Communication and Navigation (SCaN) Testbed, only minor changes have been made to the architecture. Multiple entities have since implemented the architecture and provided significant feedback for consideration for the next revision of the standard. The focus for the first set of updates to the architecture is items that enhance application portability. Items that require modifications to existing applications before migrating to the updated architecture will only be considered if there is compelling reasons to make the change. The significant suggestions that were further evaluated for consideration include expanding and clarifying the timing Application Programming Interfaces (APIs), improving handle name and identification (ID) definitions and use, and multiple items related to implementation of STRS Devices. In addition to ideas suggested while implementing STRS, SDR technology has evolved significantly and this impact to the architecture needs to be considered. These include incorporating cognitive concepts - learning from past decisions and making new decisions that the radio can act upon. SDRs are also being developed that do not contain a General Purpose Module - which is currently required for the platform to be STRS compliant. The purpose of this paper is to discuss the comments received, provide a summary of the evaluation considerations, and examine planned dispositions.
Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite
NASA Technical Reports Server (NTRS)
Xia, Tian
2016-01-01
The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.
Software Defined Radio Architecture Contributions to Next Generation Space Communications
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John
2015-01-01
Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications systems, as well as those communications and navigation systems operated by international space agencies and civilian and government agencies. In this paper, we review the philosophies, technologies, architectural attributes, mission services, and communications capabilities that form the structure of candidate next-generation integrated communication architectures for space communications and navigation. A key area that this paper explores is from the development and operation of the software defined radio for the NASA Space Communications and Navigation (SCaN) Testbed currently on the International Space Station (ISS). Evaluating the lessons learned from development and operation feed back into the communications architecture. Leveraging the reconfigurability provides a change in the way that operations are done and must be considered. Quantifying the impact on the NASA Space Telecommunications Radio System (STRS) software defined radio architecture provides feedback to keep the standard useful and up to date. NASA is not the only customer of these radios. Software defined radios are developed for other applications, and taking advantage of these developments promotes an architecture that is cost effective and sustainable. Developments in the following areas such as an updated operating environment, higher data rates, networking and security can be leveraged. The ability to sustain an architecture that uses radios for multiple markets can lower costs and keep new technology infused.
Architectural Implementation of NASA Space Telecommunications Radio System Specification
NASA Technical Reports Server (NTRS)
Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.
2012-01-01
This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen
2008-01-01
This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.
Telemetry Modernization with Open Architecture Software-Defined Radio Technology
2016-01-01
digital (A/D) con- vertors and separated into narrowband channels through digital down-conversion ( DDC ) techniques implemented in field-programmable...Lexington, MA 02420-9108 781-981-4204 Operations center Recording Filter FPGA DDC Filter Channel 1 Filter FPGA DDC Filter Channel n Wideband tuner A
Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)
NASA Technical Reports Server (NTRS)
Reyes, Miguel A. De Jesus
2014-01-01
GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multicore, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to approx.50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Software Defined Radio with Parallelized Software Architecture
NASA Technical Reports Server (NTRS)
Heckler, Greg
2013-01-01
This software implements software-defined radio procession over multi-core, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to .50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.
Design and Testing of Space Telemetry SCA Waveform
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.
2006-01-01
A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.
SCA Waveform Development for Space Telemetry
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.
2004-01-01
The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.
NASA Technical Reports Server (NTRS)
Roche, Rigoberto; Shalkhauser, Mary Jo Windmille
2017-01-01
The Integrated Power, Avionics and Software (IPAS) software defined radio (SDR) was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RAICS) platform, for radio development at NASA Johnson Space Center. Software and hardware description language (HDL) code were delivered by NASA Glenn Research Center for use in the IPAS test bed and for development of their own Space Telecommunications Radio System (STRS) waveforms on the RAICS platform. The purpose of this document is to describe how to setup and operate the IPAS STRS Radio platform with its delivered test waveform.
Updates to the NASA Space Telecommunications Radio System (STRS) Architecture
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Handler, Louis M.; Briones, Janette; Hall, Charles S.
2008-01-01
This paper describes an update of the Space Telecommunications Radio System (STRS) open architecture for NASA space based radios. The STRS architecture has been defined as a framework for the design, development, operation and upgrade of space based software defined radios, where processing resources are constrained. The architecture has been updated based upon reviews by NASA missions, radio providers, and component vendors. The STRS Standard prescribes the architectural relationship between the software elements used in software execution and defines the Application Programmer Interface (API) between the operating environment and the waveform application. Modeling tools have been adopted to present the architecture. The paper will present a description of the updated API, configuration files, and constraints. Minimum compliance is discussed for early implementations. The paper then closes with a summary of the changes made and discussion of the relevant alignment with the Object Management Group (OMG) SWRadio specification, and enhancements to the specialized signal processing abstraction.
2015-10-26
platforms and are quickly using up available spectrum. The national need in the commercial sector with emerging technologies such as 5G is pushing for...recovered and post processed later. The Front End Server also sends selected data stream across a high speed network link to the centralized
Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview
NASA Technical Reports Server (NTRS)
Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.
2012-01-01
Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.
Application of the GNU Radio platform in the multistatic radar
NASA Astrophysics Data System (ADS)
Szlachetko, Boguslaw; Lewandowski, Andrzej
2009-06-01
This document presents the application of the Software Defined Radio-based platform in the multistatic radar. This platform consists of four-sensor linear antenna, Universal Software Radio Peripheral (USRP) hardware (radio frequency frontend) and GNU-Radio PC software. The paper provides information about architecture of digital signal processing performed by USRP's FPGA (digital down converting blocks) and PC host (implementation of the multichannel digital beamforming). The preliminary results of the signal recording performed by our experimental platform are presented.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.
2017-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.
Space Telecommunications Radio System (STRS) Application Repository Design and Analysis
NASA Technical Reports Server (NTRS)
Handler, Louis M.
2013-01-01
The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process.
NASA Astrophysics Data System (ADS)
Park, Sungkyung; Park, Chester Sungchung
2018-03-01
A composite radio receiver back-end and digital front-end, made up of a delta-sigma analogue-to-digital converter (ADC) with a high-speed low-noise sampling clock generator, and a fractional sample rate converter (FSRC), is proposed and designed for a multi-mode reconfigurable radio. The proposed radio receiver architecture contributes to saving the chip area and thus lowering the design cost. To enable inter-radio access technology handover and ultimately software-defined radio reception, a reconfigurable radio receiver consisting of a multi-rate ADC with its sampling clock derived from a local oscillator, followed by a rate-adjustable FSRC for decimation, is designed. Clock phase noise and timing jitter are examined to support the effectiveness of the proposed radio receiver. A FSRC is modelled and simulated with a cubic polynomial interpolator based on Lagrange method, and its spectral-domain view is examined in order to verify its effect on aliasing, nonlinearity and signal-to-noise ratio, giving insight into the design of the decimation chain. The sampling clock path and the radio receiver back-end data path are designed in a 90-nm CMOS process technology with 1.2V supply.
NASA Astrophysics Data System (ADS)
Boettcher, M. A.; Butt, B. M.; Klinkner, S.
2016-10-01
A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.
Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink
NASA Technical Reports Server (NTRS)
Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony
2016-01-01
As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.
Low Power, Low Mass, Modular, Multi-band Software-defined Radios
NASA Technical Reports Server (NTRS)
Haskins, Christopher B. (Inventor); Millard, Wesley P. (Inventor)
2013-01-01
Methods and systems to implement and operate software-defined radios (SDRs). An SDR may be configured to perform a combination of fractional and integer frequency synthesis and direct digital synthesis under control of a digital signal processor, which may provide a set of relatively agile, flexible, low-noise, and low spurious, timing and frequency conversion signals, and which may be used to maintain a transmit path coherent with a receive path. Frequency synthesis may include dithering to provide additional precision. The SDR may include task-specific software-configurable systems to perform tasks in accordance with software-defined parameters or personalities. The SDR may include a hardware interface system to control hardware components, and a host interface system to provide an interface to the SDR with respect to a host system. The SDR may be configured for one or more of communications, navigation, radio science, and sensors.
GNU Radio Sandia Utilities v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Jacob; Knee, Peter
This software adds a data handling module to the GNU Radio (GR) software defined radio (SDR) framework as well as some general-purpose function blocks (filters, metadata control, etc). This software is useful for processing bursty RF transmissions with GR, and serves as a base for applying SDR signal processing techniques to a whole burst of data at a time, as opposed to streaming data which GR has been primarily focused around.
Precise Interval Timer for Software Defined Radio
NASA Technical Reports Server (NTRS)
Pozhidaev, Aleksey (Inventor)
2014-01-01
A precise digital fractional interval timer for software defined radios which vary their waveform on a packet-by-packet basis. The timer allows for variable length in the preamble of the RF packet and allows to adjust boundaries of the TDMA (Time Division Multiple Access) Slots of the receiver of an SDR based on the reception of the RF packet of interest.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
NASA Technical Reports Server (NTRS)
Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.
2016-01-01
The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.
NASA Astrophysics Data System (ADS)
Xiong, Wenhao; Tian, Xin; Chen, Genshe; Pham, Khanh; Blasch, Erik
2017-05-01
Software defined radio (SDR) has become a popular tool for the implementation and testing for communications performance. The advantage of the SDR approach includes: a re-configurable design, adaptive response to changing conditions, efficient development, and highly versatile implementation. In order to understand the benefits of SDR, the space telecommunication radio system (STRS) was proposed by NASA Glenn research center (GRC) along with the standard application program interface (API) structure. Each component of the system uses a well-defined API to communicate with other components. The benefit of standard API is to relax the platform limitation of each component for addition options. For example, the waveform generating process can support a field programmable gate array (FPGA), personal computer (PC), or an embedded system. As long as the API defines the requirements, the generated waveform selection will work with the complete system. In this paper, we demonstrate the design and development of adaptive SDR following the STRS and standard API protocol. We introduce step by step the SDR testbed system including the controlling graphic user interface (GUI), database, GNU radio hardware control, and universal software radio peripheral (USRP) tranceiving front end. In addition, a performance evaluation in shown on the effectiveness of the SDR approach for space telecommunication.
Digital beacon receiver for ionospheric TEC measurement developed with GNU Radio
NASA Astrophysics Data System (ADS)
Yamamoto, M.
2008-11-01
A simple digital receiver named GNU Radio Beacon Receiver (GRBR) was developed for the satellite-ground beacon experiment to measure the ionospheric total electron content (TEC). The open-source software toolkit for the software defined radio, GNU Radio, is utilized to realize the basic function of the receiver and perform fast signal processing. The software is written in Python for a LINUX PC. The open-source hardware called Universal Software Radio Peripheral (USRP), which best matches the GNU Radio, is used as a front-end to acquire the satellite beacon signals of 150 and 400 MHz. The first experiment was successful as results from GRBR showed very good agreement to those from the co-located analog beacon receiver. Detailed design information and software codes are open at the URL http://www.rish.kyoto-u.ac.jp/digitalbeacon/.
Low-Cost Telemetry System for Small/Micro Satellites
NASA Technical Reports Server (NTRS)
Sims, William; Varnavas, Kosta
2012-01-01
A Software Defined Radio (SDR) concept uses a minimum amount of analog/radio frequency components to up/downconvert the RF signal to/from a digital format. Once in the digital domain, all other processing (filtering, modulation, demodulation, etc.) is done in software. The project will leverage existing designs and enhance capabilities in the commercial sector to provide a path to a radiation-hardened SDR transponder. The SDR transponder would incorporate baseline technologies dealing with improved Forward Error Correcting (FEC) codes to be deployed to all Near Earth Network (NEN) ground stations. By incorporating this FEC, at least a tenfold increase in data throughput can be achieved. A family of transponder products can be implemented using common platform architecture, allowing new products to be more quickly introduced into the market. Software can be reused across products, reducing software/hardware costs dramatically. New features and capabilities, such as encoding and decoding algorithms, filters, and bit synchronizers, can be added to the existing infrastructure without requiring major new capital expenditures, allowing implementation of advanced features in the communication systems. As new telecommunication technologies emerge, incorporating them into the SDR fabric will be easily accomplished with little or no requirements for new hardware. There are no preferred flight platforms for the SDR technology, so it can be used on any type of orbital or sub-orbital platform, all within a fully radiation hardened design.
The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems
NASA Technical Reports Server (NTRS)
Varnavas, Kosta; Sims, William Herbert; Casas, Joseph
2015-01-01
This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.
Mahnke, Peter
2018-01-01
A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/Hz. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm -1 absorption line of carbon monoxide.
NASA Astrophysics Data System (ADS)
Mahnke, Peter
2018-01-01
A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/√{Hz }. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm-1 absorption line of carbon monoxide.
Reconfigurable firmware-defined radios synthesized from standard digital logic cells
NASA Astrophysics Data System (ADS)
Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.
2011-06-01
This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.
Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)
NASA Astrophysics Data System (ADS)
Ingala, Dominique Guelord Kumamputu
2015-03-01
This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.
Collaborative Beamfocusing Radio (COBRA)
NASA Astrophysics Data System (ADS)
Rode, Jeremy P.; Hsu, Mark J.; Smith, David; Husain, Anis
2013-05-01
A Ziva team has recently demonstrated a novel technique called Collaborative Beamfocusing Radios (COBRA) which enables an ad-hoc collection of distributed commercial off-the-shelf software defined radios to coherently align and beamform to a remote radio. COBRA promises to operate even in high multipath and non-line-of-sight environments as well as mobile applications without resorting to computationally expensive closed loop techniques that are currently unable to operate with significant movement. COBRA exploits two key technologies to achieve coherent beamforming. The first is Time Reversal (TR) which compensates for multipath and automatically discovers the optimal spatio-temporal matched filter to enable peak signal gains (up to 20 dB) and diffraction-limited focusing at the intended receiver in NLOS and severe multipath environments. The second is time-aligned buffering which enables TR to synchronize distributed transmitters into a collaborative array. This time alignment algorithm avoids causality violations through the use of reciprocal buffering. Preserving spatio-temporal reciprocity through the TR capture and retransmission process achieves coherent alignment across multiple radios at ~GHz carriers using only standard quartz-oscillators. COBRA has been demonstrated in the lab, aligning two off-the-shelf software defined radios over-the-air to an accuracy of better than 2 degrees of carrier alignment at 450 MHz. The COBRA algorithms are lightweight, with computation in 5 ms on a smartphone class microprocessor. COBRA also has low start-up latency, achieving high accuracy from a cold-start in 30 ms. The COBRA technique opens up a large number of new capabilities in communications, and electronic warfare including selective spatial jamming, geolocation and anti-geolocation.
Unique Challenges Testing SDRs for Space
NASA Technical Reports Server (NTRS)
Chelmins, David; Downey, Joseph A.; Johnson, Sandra K.; Nappier, Jennifer M.
2013-01-01
This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA s Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test waveforms were developed to measure the gain of the transmit system across the tunable frequency band. These were used during thermal vacuum testing to enable characterization of the integrated system in the wide operational temperature range of space. Receive power indicators were used for Electromagnetic Interference tests (EMI) to understand the platform s susceptibility to external interferers independent of the waveform. Additional approaches and lessons learned during the SCaN Testbed subsystem and system level testing will be discussed that may help future SDR integrators
Unique Challenges Testing SDRs for Space
NASA Technical Reports Server (NTRS)
Johnson, Sandra; Chelmins, David; Downey, Joseph; Nappier, Jennifer
2013-01-01
This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA's Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test waveforms were developed to measure the gain of the transmit system across the tunable frequency band. These were used during thermal vacuum testing to enable characterization of the integrated system in the wide operational temperature range of space. Receive power indicators were used for Electromagnetic Interference tests (EMI) to understand the platform's susceptibility to external interferers independent of the waveform. Additional approaches and lessons learned during the SCaN Testbed subsystem and system level testing will be discussed that may help future SDR integrators.
NASA Technical Reports Server (NTRS)
2012-01-01
The topics include: 1) Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy; 2) Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control; 3) In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer; 4) Physics Mining of Multi-Source Data Sets; 5) Photogrammetry Tool for Forensic Analysis; 6) Connect Global Positioning System RF Module; 7) Simple Cell Balance Circuit; 8) Miniature EVA Software Defined Radio; 9) Remotely Accessible Testbed for Software Defined Radio Development; 10) System-of-Systems Technology-Portfolio-Analysis Tool; 11) VESGEN Software for Mapping and Quantification of Vascular Regulators; 12) Constructing a Database From Multiple 2D Images for Camera Pose Estimation and Robot Localization; 13) Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology; 14) 3D Visualization for Phoenix Mars Lander Science Operations; 15) RxGen General Optical Model Prescription Generator; 16) Carbon Nanotube Bonding Strength Enhancement Using Metal Wicking Process; 17) Multi-Layer Far-Infrared Component Technology; 18) Germanium Lift-Off Masks for Thin Metal Film Patterning; 19) Sealing Materials for Use in Vacuum at High Temperatures; 20) Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded With Electropolymers; 21) Nano Sponges for Drug Delivery and Medicinal Applications; 22) Molecular Technique to Understand Deep Microbial Diversity; 23) Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions; 24) Secure Peer-to-Peer Networks for Scientific Information Sharing; 25) Multiplexer/Demultiplexer Loading Tool (MDMLT); 26) High-Rate Data-Capture for an Airborne Lidar System; 27) Wavefront Sensing Analysis of Grazing Incidence Optical Systems; 28) Foam-on-Tile Damage Model; 29) Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold; 30) Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras; 31) Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem; and 32) Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes.
Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J
2016-11-01
We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.
Miniature EVA Software Defined Radio
NASA Technical Reports Server (NTRS)
Pozhidaev, Aleksey
2012-01-01
As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.
A Link-Level Simulator of the cdma2000 Reverse-Link Physical Layer
Gharavi, H.; Chin, F.; Ban, K.; Wyatt-Millington, R.
2003-01-01
The cdma2000 system is an evolutionary enhancement of the IS-95 standards which support 3G services defined by the International Telecommunications Union (ITU). cdma2000 comes in two phases: 1XRTT and 3XRTT (1X and 3X indicates the number of 1.25 MHz wide radio carrier channels used and RTT stands for Radio Transmission Technology). The cdma2000 1XRTT, which operates within a 1.25 MHz bandwidth, can be utilized in existing IS-95 CDMA channels as it uses the same bandwidth, while 3XRTT requires the commitment of 5 MHz bandwidth to support higher data rates. This paper describes a software model implementation of the cdma2000 reverse link and its application for evaluating the effect of rake receiver design parameters on the system performance under various multipath fading conditions. The cdma2000 models were developed at the National Institute of Standards and Technology (NIST), using SPW (Signal Processing Worksystem) commercial software tools. The model has been developed in a generic manner that includes all the reverse link six radio configurations and their corresponding data rates, according to cdma2000 specifications. After briefly reviewing the traffic channel characteristics of the cdma2000 reverse link (subscriber to base station), the paper discusses the rake receiver implementation including an ideal rake receiver. It then evaluates the performance of each receiver for a Spreading Rate 3 (3XRTT) operation, which is considered as a true “3G” cdma2000 technology. These evaluations are based on the vehicular IMT-2000 (International Mobile Telecommunication 2000) channel model using the link budget defined in cdma2000 specifications for the reverse link. PMID:27413613
Parallel design patterns for a low-power, software-defined compressed video encoder
NASA Astrophysics Data System (ADS)
Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar
2011-06-01
Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.
Closed-Loop Analysis of Soft Decisions for Serial Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlensinger, Adam M.
2012-01-01
Modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more overhead through noisier channels, and software-defined radios use error-correction techniques that approach Shannon s theoretical limit of performance. The authors describe the benefit of closed-loop measurements for a receiver when paired with a counterpart transmitter and representative channel conditions. We also describe a real-time Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in real-time during the development of software defined radios.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... type of switch software) to provide payphone specific coding digits for per-call compensation. The... Information; [cir] RF Exposure Information; [cir] Operational Description; [cir] Cover Letters; [cir] Software Defined Radio/Cognitive Radio Files In general, an applicant's submission is as follows: (a) FCC Form 731...
Buttles, John W [Idaho Falls, ID
2011-12-20
Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
NASA Technical Reports Server (NTRS)
Sims. Herb; Varnavas, Kosta; Eberly, Eric
2013-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.
Exploiting the Automatic Dependent Surveillance-Broadcast System via False Target Injection
2012-03-01
THESIS Domenic Magazu III, Captain, USAF AFIT/GCO/ENG/12-07 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY...Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...of GNU Radio, a Universal Software Radio Peripheral (USRP), and software developed by the author. The ability to generate, transmit, and insert
Software-Defined Architectures for Spectrally Efficient Cognitive Networking in Extreme Environments
NASA Astrophysics Data System (ADS)
Sklivanitis, Georgios
The objective of this dissertation is the design, development, and experimental evaluation of novel algorithms and reconfigurable radio architectures for spectrally efficient cognitive networking in terrestrial, airborne, and underwater environments. Next-generation wireless communication architectures and networking protocols that maximize spectrum utilization efficiency in congested/contested or low-spectral availability (extreme) communication environments can enable a rich body of applications with unprecedented societal impact. In recent years, underwater wireless networks have attracted significant attention for military and commercial applications including oceanographic data collection, disaster prevention, tactical surveillance, offshore exploration, and pollution monitoring. Unmanned aerial systems that are autonomously networked and fully mobile can assist humans in extreme or difficult-to-reach environments and provide cost-effective wireless connectivity for devices without infrastructure coverage. Cognitive radio (CR) has emerged as a promising technology to maximize spectral efficiency in dynamically changing communication environments by adaptively reconfiguring radio communication parameters. At the same time, the fast developing technology of software-defined radio (SDR) platforms has enabled hardware realization of cognitive radio algorithms for opportunistic spectrum access. However, existing algorithmic designs and protocols for shared spectrum access do not effectively capture the interdependencies between radio parameters at the physical (PHY), medium-access control (MAC), and network (NET) layers of the network protocol stack. In addition, existing off-the-shelf radio platforms and SDR programmable architectures are far from fulfilling runtime adaptation and reconfiguration across PHY, MAC, and NET layers. Spectrum allocation in cognitive networks with multi-hop communication requirements depends on the location, network traffic load, and interference profile at each network node. As a result, the development and implementation of algorithms and cross-layer reconfigurable radio platforms that can jointly treat space, time, and frequency as a unified resource to be dynamically optimized according to inter- and intra-network interference constraints is of fundamental importance. In the next chapters, we present novel algorithmic and software/hardware implementation developments toward the deployment of spectrally efficient terrestrial, airborne, and underwater wireless networks. In Chapter 1 we review the state-of-art in commercially available SDR platforms, describe their software and hardware capabilities, and classify them based on their ability to enable rapid prototyping and advance experimental research in wireless networks. Chapter 2 discusses system design and implementation details toward real-time evaluation of a software-radio platform for all-spectrum cognitive channelization in the presence of narrowband or wideband primary stations. All-spectrum channelization is achieved by designing maximum signal-to-interference-plus-noise ratio (SINR) waveforms that span the whole continuum of the device-accessible spectrum, while satisfying peak power and interference temperature (IT) constraints for the secondary and primary users, respectively. In Chapter 3, we introduce the concept of all-spectrum channelization based on max-SINR optimized sparse-binary waveforms, we propose optimal and suboptimal waveform design algorithms, and evaluate their SINR and bit-error-rate (BER) performance in an SDR testbed. Chapter 4 considers the problem of channel estimation with minimal pilot signaling in multi-cell multi-user multi-input multi-output (MIMO) systems with very large antenna arrays at the base station, and proposes a least-squares (LS)-type algorithm that iteratively extracts channel and data estimates from a short record of data measurements. Our algorithmic developments toward spectrally-efficient cognitive networking through joint optimization of channel access code-waveforms and routes in a multi-hop network are described in Chapter 5. Algorithmic designs are software optimized on heterogeneous multi-core general-purpose processor (GPP)-based SDR architectures by leveraging a novel software-radio framework that offers self-optimization and real-time adaptation capabilities at the PHY, MAC, and NET layers of the network protocol stack. Our system design approach is experimentally validated under realistic conditions in a large-scale hybrid ground-air testbed deployment. Chapter 6 reviews the state-of-art in software and hardware platforms for underwater wireless networking and proposes a software-defined acoustic modem prototype that enables (i) cognitive reconfiguration of PHY/MAC parameters, and (ii) cross-technology communication adaptation. The proposed modem design is evaluated in terms of effective communication data rate in both water tank and lake testbed setups. In Chapter 7, we present a novel receiver configuration for code-waveform-based multiple-access underwater communications. The proposed receiver is fully reconfigurable and executes (i) all-spectrum cognitive channelization, and (ii) combined synchronization, channel estimation, and demodulation. Experimental evaluation in terms of SINR and BER show that all-spectrum channelization is a powerful proposition for underwater communications. At the same time, the proposed receiver design can significantly enhance bandwidth utilization. Finally, in Chapter 8, we focus on challenging practical issues that arise in underwater acoustic sensor network setups where co-located multi-antenna sensor deployment is not feasible due to power, computation, and hardware limitations, and design, implement, and evaluate an underwater receiver structure that accounts for multiple carrier frequency and timing offsets in virtual (distributed) MIMO underwater systems.
Comparison of cyclic correlation and the wavelet method for symbol rate detection
NASA Astrophysics Data System (ADS)
Carr, Richard; Whitney, James
Software defined radio (SDR) is a relatively new technology that holds a great deal of promise in the communication field in general, and, in particular the area of space communications. Tra-ditional communication systems are comprised of a transmitter and a receiver, where through prior planning and scheduling, the transmitter and receiver are pre-configured for a particu-lar communication modality. For any particular modality the radio circuitry is configured to transmit, receive, and resolve one type of modulation at a certain data rate. Traditional radio's are limited by the fact that the circuitry is fixed. Software defined radios on the other hand do not suffer from this limitation. SDR's are comprised mainly of software modules which allow them to be flexible, in that they can resolve various types of modulation types that occur at different data rates. This ability is of very high importance in space where parameters of the communications link may need to be changed due to channel fading, reduced power, or other unforeseen events. In these cases the ability to autonomously change aspects of the radio's con-figuration becomes an absolute necessity in order to maintain communications. In order for the technology to work the receiver has to be able to determine the modulation type and the data rate of the signal. The data rate of the signal is one of the first parameters to be resolved, as it is needed to find the other signal parameters such as modulation type and the signal-to-noise ratio. There are a number of algorithms that have been developed to detect or estimate the data rate of a signal. This paper will investigate two of these algorithms, namely, the cyclic correlation algorithm and a wavelet-based detection algorithm. Both of these algorithms are feature-based algorithms, meaning that they make their estimations based on certain inherent features of the signals to which they are applied. The cyclic correlation algorithm takes advan-tage of the cyclostationary nature of MPSK signals, while the wavelet-based algorithms take advantage of the fact of being able to detect transient changes in the signal, i.e., transitions from `1' to'0'. Both of these algorithms are tested under various signal-to-noise conditions to see which has the better performance, and the results are presented in this paper.
Radio Astronomy Software Defined Receiver Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul
The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a usermore » s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.« less
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
Closed-Loop Analysis of Soft Decisions for Serial Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlesinger, Adam M.
2013-01-01
We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam
2013-01-01
We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
SCaN Testbed Software Development and Lessons Learned
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Varga, Denise M.
2012-01-01
National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.
Telecommunications and data acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
47 CFR 2.1043 - Changes in certificated equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... permissive change includes modifications to the software of a software defined radio transmitter that change... compliance with the other provisions of this section. Changes to the software installed in a transmitter that... complies with the applicable rules with the new software loaded, including compliance with the applicable...
47 CFR 2.1043 - Changes in certificated equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... permissive change includes modifications to the software of a software defined radio transmitter that change... compliance with the other provisions of this section. Changes to the software installed in a transmitter that... complies with the applicable rules with the new software loaded, including compliance with the applicable...
47 CFR 2.1043 - Changes in certificated equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... permissive change includes modifications to the software of a software defined radio transmitter that change... compliance with the other provisions of this section. Changes to the software installed in a transmitter that... complies with the applicable rules with the new software loaded, including compliance with the applicable...
47 CFR 2.1043 - Changes in certificated equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... permissive change includes modifications to the software of a software defined radio transmitter that change... compliance with the other provisions of this section. Changes to the software installed in a transmitter that... complies with the applicable rules with the new software loaded, including compliance with the applicable...
47 CFR 2.1043 - Changes in certificated equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... permissive change includes modifications to the software of a software defined radio transmitter that change... compliance with the other provisions of this section. Changes to the software installed in a transmitter that... complies with the applicable rules with the new software loaded, including compliance with the applicable...
The telecommunications and data acquisition report
NASA Technical Reports Server (NTRS)
Renzetti, N. A.
1980-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implemention, and operations is documented. In addition, developments in Earth based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is documented. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Deep Space Network (DSN) progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operation is discussed. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
Railway cognitive radio to enhance safety, security, and performance of positive train control.
DOT National Transportation Integrated Search
2013-02-01
Robust and interoperable wireless communications are vital to Positive Train Control (PTC). The railway industry has started adopting software-defined radios (SDRs) for packet-data transmission. SDR systems realize previously fixed components as reco...
The MeqTrees software system and its use for third-generation calibration of radio interferometers
NASA Astrophysics Data System (ADS)
Noordam, J. E.; Smirnov, O. M.
2010-12-01
Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. Aims: The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their parameters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and exchange of ideas (and scripts). Methods: MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results: MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propose to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes, but can also improve the calibration of existing instruments.
gr-MRI: A software package for magnetic resonance imaging using software defined radios.
Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright © 2016. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Snjegota, Ana; Rattenbury, Nicholas James
2017-01-01
The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be…
SBIR Technology Applications to Space Communications and Navigation (SCaN)
NASA Technical Reports Server (NTRS)
Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene
2010-01-01
This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.; Roche, Rigoberto
2017-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.
Space Telecommunications Radio System Software Architecture Concepts and Analysis
NASA Technical Reports Server (NTRS)
Handler, Louis M.; Hall, Charles S.; Briones, Janette C.; Blaser, Tammy M.
2008-01-01
The Space Telecommunications Radio System (STRS) project investigated various Software Defined Radio (SDR) architectures for Space. An STRS architecture has been selected that separates the STRS operating environment from its various waveforms and also abstracts any specialized hardware to limit its effect on the operating environment. The design supports software evolution where new functionality is incorporated into the radio. Radio hardware functionality has been moving from hardware based ASICs into firmware and software based processors such as FPGAs, DSPs and General Purpose Processors (GPPs). Use cases capture the requirements of a system by describing how the system should interact with the users or other systems (the actors) to achieve a specific goal. The Unified Modeling Language (UML) is used to illustrate the Use Cases in a variety of ways. The Top Level Use Case diagram shows groupings of the use cases and how the actors are involved. The state diagrams depict the various states that a system or object may be in and the transitions between those states. The sequence diagrams show the main flow of activity as described in the use cases.
STRS Compliant FPGA Waveform Development
NASA Technical Reports Server (NTRS)
Nappier, Jennifer; Downey, Joseph
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.
Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul
2013-11-27
A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to "enjoy" from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.
2017-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. At the conclusion of the development, the software and hardware description language (HDL) code was delivered to JSC for their use in their iPAS test bed to get hands-on experience with the STRS standard, and for development of their own STRS Waveforms on the now STRS compliant platform.The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe the design of the HDL code for the FPGA portion of the iPAS STRS Radio particularly the design of the FPGA wrapper and the test waveform.
Intelligent cognitive radio jamming - a game-theoretical approach
NASA Astrophysics Data System (ADS)
Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.
2014-12-01
Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.
Spatial Identification of Passive Radio Frequency Identification Tags Using Software Defined Radios
2012-03-01
75 3.4 Experiment Configurations . . . . . . . . . . . . . . . . . . . . 77 4.1 Simulation Enviromental Elements . . . . . . . . . . . . . . . . 79...tabletop zReader 20cm Tag vertical offset from reader z 10 cm 3dB angle of sensor antenna theat3db 0.698 radians Table 4.1: Simulation Enviromental
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported.
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1986-01-01
This publication, one of a series formerly titled The Deep Space Network Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics and the radio search for extraterrestrial intelligence are reported.
A New Generation of Telecommunications for Mars: The Reconfigurable Software Radio
NASA Technical Reports Server (NTRS)
Adams, J.; Horne, W.
2000-01-01
Telecommunications is a critical component for any mission at Mars as it is an enabling function that provides connectivity back to Earth and provides a means for conducting science. New developments in telecommunications, specifically in software - configurable radios, expand the possible approaches for science missions at Mars. These radios provide a flexible and re-configurable platform that can evolve with the mission and that provide an integrated approach to communications and science data processing. Deep space telecommunication faces challenges not normally faced by terrestrial and near-earth communications. Radiation, thermal, highly constrained mass, volume, packaging and reliability all are significant issues. Additionally, once the spacecraft leaves earth, there is no way to go out and upgrade or replace radio components. The reconfigurable software radio is an effort to provide not only a product that is immediately usable in the harsh space environment but also to develop a radio that will stay current as the years pass and technologies evolve.
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.; Roche, Rigoberto
2017-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.
Comparing On-Orbit and Ground Performance for an S-Band Software-Defined Radio
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Welch, Bryan W.
2014-01-01
NASA's Space Communications and Navigation Testbed was installed on an external truss of the International Space Station in 2012. The testbed contains several software-defined radios (SDRs), including the Jet Propulsion Laboratory (JPL) SDR, which underwent performance testing throughout 2013 with NASAs Tracking and Data Relay Satellite System (TDRSS). On-orbit testing of the JPL SDR was conducted at S-band with the Glenn Goddard TDRSS waveform and compared against an extensive dataset collected on the ground prior to launch. This paper will focus on the development of a waveform power estimator on the ground post-launch and discuss the performance challenges associated with operating the power estimator in space.
High-speed real-time heterodyne interferometry using software-defined radio.
Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A
2018-01-10
This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.
Comparing On-Orbit and Ground Performance for an S-Band Software-Defined Radio
NASA Technical Reports Server (NTRS)
Chelmins, David; Welch, Bryan
2014-01-01
NASA's Space Communications and Navigation Testbed was installed on an external truss of the International Space Station in 2012. The testbed contains several software-defined radios (SDRs), including the Jet Propulsion Laboratory (JPL) SDR, which underwent performance testing throughout 2013 with NASA's Tracking and Data Relay Satellite System (TDRSS). On-orbit testing of the JPL SDR was conducted at S-band with the Glenn Goddard TDRSS waveform and compared against an extensive dataset collected on the ground prior to launch. This paper will focus on the development of a waveform power estimator on the ground post-launch and discuss the performance challenges associated with operating the power estimator in space.
A cognitive mobile BTS solution with software-defined radioelectric sensing.
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Sergio; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel García; Valcarce, Roberto López; Bravo, Cristina López
2013-02-05
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals.
A Cognitive Mobile BTS Solution with Software-Defined Radioelectric Sensing
Muñoz, Jorge; Alonso, Javier Vales; García, Francisco Quiñoy; Costas, Secundino; Pillado, Marcos; Castaño, Francisco Javier González; Sánchez, Manuel Garćia; Valcarce, Roberto López; Bravo, Cristina López
2013-01-01
Private communications inside large vehicles such as ships may be effectively provided using standard cellular systems. In this paper we propose a new solution based on software-defined radio with electromagnetic sensing support. Software-defined radio allows low-cost developments and, potentially, added-value services not available in commercial cellular networks. The platform of reference, OpenBTS, only supports single-channel cells. Our proposal, however, has the ability of changing BTS channel frequency without disrupting ongoing communications. This ability should be mandatory in vehicular environments, where neighbouring cell configurations may change rapidly, so a moving cell must be reconfigured in real-time to avoid interferences. Full details about frequency occupancy sensing and the channel reselection procedure are provided in this paper. Moreover, a procedure for fast terminal detection is proposed. This may be decisive in emergency situations, e.g., if someone falls overboard. Different tests confirm the feasibility of our proposal and its compatibility with commercial GSM terminals. PMID:23385417
Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Mitra, Pramita; Barhen, Jacob
2010-01-01
While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less
Learning and Visualizing Modulation Discriminative Radio Signal Features
2016-09-01
implemented as a mapping of a sequence of in-phase quadrature ( IQ ) measurements generated by a software-defined radio to a probability distri- bution...over modulation classes. 3.1 TRAINING SNR EVALUATION Training CNNs on RF data raises the unique question of determining an optimal training SNR, that
Optimization of Passive Coherent Receiver System Placement
2013-09-01
spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive
2008-04-16
Zhen (Edward) Hu Peng (Peter) Zhang Yu Song Amanpreet Singh Saini Corey Cooke April 16, 2006 Department of Electrical and Computer Engineering Center...and RF frequency agility is the most challenging issue for spectrum sensing. The radio under development is an ultra-wideband software -defined radio...PC USB programming cable and accom- panying PC software as well as download test vectors to the waveform memory module, as shown in Figure 3.25,3I
Design and Implementation of a Mobile Phone Locator Using Software Defined Radio
2007-09-01
time difference of arrival 15. NUMBER OF PAGES 116 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF...THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540012805500 Standard Form 298...relatively inexpensive device called the Universal Software Radio Peripheral (USRP). The USRP consists of a motherboard which performs the analog-to
GNSS software receiver sampling noise and clock jitter performance and impact analysis
NASA Astrophysics Data System (ADS)
Chen, Jian Yun; Feng, XuZhe; Li, XianBin; Wu, GuangYao
2015-02-01
In the design of a multi-frequency multi-constellation GNSS software defined radio receivers is becoming more and more popular due to its simple architecture, flexible configuration and good coherence in multi-frequency signal processing. It plays an important role in navigation signal processing and signal quality monitoring. In particular, GNSS software defined radio receivers driving the sampling clock of analogue-to-digital converter (ADC) by FPGA implies that a more flexible radio transceiver design is possible. According to the concept of software defined radio (SDR), the ideal is to digitize as close to the antenna as possible. Whereas the carrier frequency of GNSS signal is of the frequency of GHz, converting at this frequency is expensive and consumes more power. Band sampling method is a cheaper, more effective alternative. When using band sampling method, it is possible to sample a RF signal at twice the bandwidth of the signal. Unfortunately, as the other side of the coin, the introduction of SDR concept and band sampling method induce negative influence on the performance of the GNSS receivers. ADC's suffer larger sampling clock jitter generated by FPGA; and low sampling frequency introduces more noise to the receiver. Then the influence of sampling noise cannot be neglected. The paper analyzes the sampling noise, presents its influence on the carrier noise ratio, and derives the ranging error by calculating the synchronization error of the delay locked loop. Simulations aiming at each impact factors of sampling-noise-induced ranging error are performed. Simulation and experiment results show that if the target ranging accuracy is at the level of centimeter, the quantization length should be no less than 8 and the sampling clock jitter should not exceed 30ps.
Telemedicine System Based on Radio Cell Phone Technology
2001-10-25
This paper presents a system for transmitting ECG signals using recent cell phone technologies. The aim of the project is to give physicians and...The software for displaying these signals at both ends of the system provides an easy-to-use interface. The cell phone used is able to transmit data information with short delay time and to operate in radio-like mode.
2017-01-18
1 AN/VRC 118 Mid-Tier Networking Vehicular Radio and Joint Enterprise Network Manager Early Fielding Report This report provides my assessment of...the AN/VRC-118 Mid-Tier Networking Vehicular Radio (MNVR) and the Joint Enterprise Network Manager (JENM) in support of the Army’s fielding of low...September 2016 ADM does not address the JENM, which must be fielded with MNVR to allow soldiers to configure and manage the software- defined radio
STRS Compliant FPGA Waveform Development
NASA Technical Reports Server (NTRS)
Nappier, Jennifer; Downey, Joseph; Mortensen, Dale
2008-01-01
The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.
Wide-Area Persistent Energy-Efficient Maritime Sensing
2015-09-30
Matt Reynolds, Lefteris Kampianakis, and Andreas Pedrosse-Engel at UW designed and tested a Software Defined Radar testbed as well as an Arduino - based ...hardware based on a software-defined radio platform. 2) Development of a standalone Arduino - based backscatter node. 3) Analysis of the limits of the... Arduino - based node that can modulate radar backscatter with data received from a sensor using a low-power Arduino Nano processor. Figure 5 shows a
System Framework for a Multi-Band, Multi-Mode Software Defined Radio
2014-06-01
detection, while the VITA Radio Transport ( VRT ) protocol over Gigabit Ethernet (GIGE) is implemented for the data interface. In addition to the SoC...CTRL VGA CTRL C2 GPP C2 CORE SW ARM0 RX SYN CTRL PL MEMORY MAP DR CTRL GENERIC INTERRUPT CONTROLLER DR GPP VITERBI ALGORITHM & VRT INTERFACE ARM1
NASA Technical Reports Server (NTRS)
Simms, William Herbert, III; Varnavas, Kosta; Eberly, Eric
2014-01-01
Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, the foundations of transponder technology presently qualified for satellite applications were developed during the early space program of the 1960's. Conventional transponders are built to a specific platform and must be redesigned for every new bus while the SDR is adaptive in nature and can fit numerous applications with no hardware modifications. A SDR uses a minimum amount of analog / Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once the signal is digitized, all processing is performed using hardware or software logic. Typical SDR digital processes include; filtering, modulation, up/down converting and demodulation. NASA Marshall Space Flight Center (MSFC) Programmable Ultra Lightweight System Adaptable Radio (PULSAR) leverages existing MSFC SDR designs and commercial sector enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space standard transponders, (2) decrease power requirements, and (3) commensurately reduce volume. A second pay-off is the increased SDR flexibility by allowing the same hardware to implement multiple transponder types simply by altering hardware logic - no change of hardware is required - all of which will ultimately be accomplished in orbit. Development of SDR technology for space applications will provide a highly capable, low cost transponder to programs of all sizes. The MSFC PULSAR Project results in a Technology Readiness Level (TRL) 7 low-cost telemetry system available to Smallsat and CubeSat missions, as well as other platforms. This paper documents the continued development and verification/validation of the MSFC SDR, called PULSAR, which contributes to advancing the state-of-the-art in transponder design - directly applicable to the SmallSat and CubeSat communities. This paper focuses on lessons learned on the first sub-orbital flight (high altitude balloon) and the follow-on steps taken to validate PULSAR. A sounding rocket launch, currently planned for 03/2015, will further expose PULSAR to the high dynamics of sub-orbital flights. Future opportunities for orbiting satellite incorporation reside in the small satellite missions (FASTSat, CubeSat. etc.).
A Framework for Software Reuse in Safety-Critical System of Systems
2008-03-01
environment.8 Pressman , on the other hand, defines a software component as a unit of composition with contractually specified and explicit context...2005, p654. 9 R.S. Pressman ., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005, p817. 10 W.C. Lim...index.php. 79 Pressman , R.S., Software Engineering A Practitioner’s Approach, Sixth Edition, New York, NY.: McGraw-Hill, 2005. Radio Technical
[Intradiscal temperature variation resulting from radiofrequency thermal therapy. Cadaver study].
Ramírez-León, J F; Rugeles-Ortiz, J G; Barreto-perea, J A; Alonso-cuéllar, G O
2014-01-01
Disc disease is one of the most common causes of lumbar pain. The new era of treatments for degenerative disc disease involves the use of minimally-invasive thermal technologies allowing for collagen remodeling and destruction of nociceptors in the annulus. However, a better understanding of the treatment pathophysiology is needed. The purpose of this study was to measure intradiscal temperature variation after thermodiscoplasty. A human cadaver spine specimen was obtained and divided into blocks, each composed of two intervertebral plates and an intact disc. Radio frequency was applied at five spots with three different time intervals. Temperature was measured in each of the combinations. Units were weighed before and after treatment. Finally, the disc was exposed and the tightening achieved with each radio frequency application was measured. Data were analyzed with the SPSS software. The mean weight reduction obtained was 1.4 g on average (SD 0.599), with values between 0.5 and 2.6 grams. Mean temperature in the posterior rim of the annulus was 37.6 degrees C and mean temperature variation was 3.0 degrees C (SD 6.407). Mean tightening achieved in all blocks overall was 1.4 mm. The results obtained show the effectiveness of radio frequency thermodiscoplasty when performed within the safety parameters. Temperature values with radio frequency were lower than those found in comparable studies. The weight and the tightening show the effect of disc shrinking and dehydration. This report is an effective tool to define time parameters for the application of this technology.
Information Content in Radio Waves: Student Investigations in Radio Science
NASA Astrophysics Data System (ADS)
Jacobs, K.; Scaduto, T.
2013-12-01
We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.
Radio frequency tags systems to initiate system processing
NASA Astrophysics Data System (ADS)
Madsen, Harold O.; Madsen, David W.
1994-09-01
This paper describes the automatic identification technology which has been installed at Applied Magnetic Corp. MR fab. World class manufacturing requires technology exploitation. This system combines (1) FluoroTrac cassette and operator tracking, (2) CELLworks cell controller software tools, and (3) Auto-Soft Inc. software integration services. The combined system eliminates operator keystrokes and errors during normal processing within a semiconductor fab. The methods and benefits of this system are described.
Intelligent Wireless Sensor Networks for System Health Monitoring
NASA Technical Reports Server (NTRS)
Alena, Rick
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of PAN configuration, providing the appropriate response for maintaining overall sensor system function, even when sensor modules fail or the WSN is reconfigured. The session will present the architecture and technical feasibility of creating fault-tolerant WSNs for aerospace applications based on our application of the technology to a Structural Health Monitoring testbed. The interim results of WSN development and testing including our software architecture for intelligent sensor management will be discussed in the context of the specific tradeoffs required for effective use. Initial certification measurement techniques and test results gauging WSN susceptibility to Radio Frequency interference are introduced as key challenges for technology adoption. A candidate Developmental and Flight Instrumentation implementation using intelligent sensor networks for wind tunnel and flight tests is developed as a guide to understanding key aspects of the aerospace vehicle design, test and operations life cycle.
An Examination of Application of Artificial Neural Network in Cognitive Radios
NASA Astrophysics Data System (ADS)
Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.
2013-12-01
Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.
Software defined radio (SDR) architecture for concurrent multi-satellite communications
NASA Astrophysics Data System (ADS)
Maheshwarappa, Mamatha R.
SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a generic software methodology for both ground and space applications that will remain unaltered despite new evolutions in hardware, and supports concurrent multi-standard, multi-channel and multi-rate telemetry signals.
A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology
NASA Technical Reports Server (NTRS)
Hoy, Scott D.; Figueiredo, Marco A.
2006-01-01
Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:
Lessons Learned in the First Year Operating Software Defined Radios in Space
NASA Technical Reports Server (NTRS)
Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard
2014-01-01
Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDRs approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.
Lessons Learned in the First Year Operating Software Defined Radios in Space
NASA Technical Reports Server (NTRS)
Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard
2014-01-01
Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDR's approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2007-01-01
NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.
NASA Technical Reports Server (NTRS)
Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan
2017-01-01
In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.
Intelligent Mobile Technologies
NASA Technical Reports Server (NTRS)
Alena, Rick; Gilbaugh, Bruce; Glass, Brian; Swanson, Keith (Technical Monitor)
2000-01-01
Testing involves commercial radio equipment approved for export and use in Canada. Testing was conducted in the Canadian High Arctic, where hilly terrain provided the worst-case testing. SFU and Canadian governmental agencies made significant technical contributions. The only technical data related to radio testing was exchanged with SFU. Test protocols are standard radio tests performed by communication technicians worldwide. The Joint Fields Operations objectives included the following: (1) to provide Internet communications services for field science work and mobile exploration systems; (2) to evaluate the range and throughput of three different medium-range radio link technologies for providing coverage of the crater area; and (3) to demonstrate collaborative software such as NetMeeting with multi-point video for exchange of scientific information between remote node and base-base camp and science centers as part of communications testing.
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
Exploring Cognition Using Software Defined Radios for NASA Missions
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Reinhart, Richard C.
2016-01-01
NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and the plan for implementing them on platforms, including the SCaN Testbed. Discussions in the paper will include how these concepts might be used to reduce cost and improve the science return for NASA missions.
Software defined multi-OLT passive optical network for flexible traffic allocation
NASA Astrophysics Data System (ADS)
Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui
2016-10-01
With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.
2013-12-01
AbdelWahab, “ 2G / 3G Inter-RAT Handover Performance Analysis,” Second European Conference on Antennas and Propagation, pp. 1, 8, 11–16, Nov. 2007. [19] J...RADIO GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING by Carson C. McAbee... MOBILE COMMUNICATIONS TRANSMITTER DEVELOPMENT FOR HETEROGENEOUS NETWORK VULNERABILITY TESTING 5. FUNDING NUMBERS 6. AUTHOR(S) Carson C. McAbee
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Hickey, Joseph P.; Briones, Janette C.; Roche, Rigoberto; Handler, Louis M.; Hall, Steven
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS). The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plug-and-play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS APIs through the cFS infrastructure. These APis are used to standardize the communication protocols on NASAs space SDRs. The cFE-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFE-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC Sband Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station. Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
An Overview of SBIR Phase 2 Communications Technology and Development
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Vulnerabilities in GSM technology and feasibility of selected attacks
NASA Astrophysics Data System (ADS)
Voznak, M.; Prokes, M.; Sevcik, L.; Frnda, J.; Toral-Cruz, Homer; Jakovlev, Sergej; Fazio, Peppino; Mehic, M.; Mikulec, M.
2015-05-01
Global System for Mobile communication (GSM) is the most widespread technology for mobile communications in the world and serving over 7 billion users. Since first publication of system documentation there has been notified a potential safety problem's occurrence. Selected types of attacks, based on the analysis of the technical feasibility and the degree of risk of these weaknesses, were implemented and demonstrated in laboratory of the VSB-Technical University of Ostrava, Czech Republic. These vulnerabilities were analyzed and afterwards possible attacks were described. These attacks were implemented using open-source tools, software programmable radio USRP (Universal Software RadioPeripheral) and DVB-T (Digital Video Broadcasting - Terrestrial) receiver. GSM security architecture is being scrutinized since first public releases of its specification mainly pointing out weaknesses in authentication and ciphering mechanisms. This contribution also summarizes practically proofed and used scenarios that are performed using opensource software tools and variety of scripts mostly written in Python. Main goal of this paper is in analyzing security issues in GSM network and practical demonstration of selected attacks.
Technology Integration in the Schools of Guyana: A Case Study
ERIC Educational Resources Information Center
MacKinnon, Gregory; MacKinnon, Paula
2010-01-01
The following study examines the implementation of learning technologies in Guyana, South America. Specifically, the study addresses the impact of using interactive radio instruction for teaching mathematics and SuccessMaker software for enhancing literacy skills. The research results were based on surveys, interviews, classroom observations, and…
The deep space network, Volume 11
NASA Technical Reports Server (NTRS)
1972-01-01
Deep Space Network progress in flight project support, Tracking and Data Acquisition research and technology, network engineering, hardware and software implementation, and operations are presented. Material is presented in each of the following categories: description of DSN; mission support; radio science; support research and technology; network engineering and implementation; and operations and facilities.
Space Telecommunications Radio System (STRS) Architecture Goals/Objectives and Level 1 Requirements
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Johnson, Sandra K.; VanDerAar, Lisa
2007-01-01
The Space Telecommunications Radio System (STRS) Architecture Requirements Document provides the basis for the development of an open architecture for NASA Software Defined Radios (SDRs) for space use. The main objective of this document is to evaluate the goals and objectives and high level (Level 1) requirements that have bearing on the design of the architecture. The goals and objectives will provide broad, fundamental direction and purpose. The high level requirements (Level 1) intend to guide the broader and longer term aspects aspects of the SDR Architecture and provide guidance for the development of level 2 requirements.
Scintillation-Hardened GPS Receiver
NASA Technical Reports Server (NTRS)
Stephens, Donald R.
2015-01-01
CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.
Cryptanalysis of the Sodark Family of Cipher Algorithms
2017-09-01
software project for building three-bit LUT circuit representations of S- boxes is available as a GitHub repository [40]. It contains several improvements...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The...second- and third-generation automatic link establishment (ALE) systems for high frequency radios. Radios utilizing ALE technology are in use by a
Experimenting Galileo on Board the International Space Station
NASA Technical Reports Server (NTRS)
Fantinato, Samuele; Pozzobon, Oscar; Gamba, Giovanni; Chiara, Andrea Dalla; Montagner, Stefano; Giordano, Pietro; Crisci, Massimo; Enderle, Werner; Chelmins, David T.; Sands, Obed S.;
2016-01-01
The SCaN Testbed is an advanced integrated communications system and laboratory facility installed on the International Space Station (ISS) in 2012. The testbed incorporates a set of new generation of Software Defined Radio (SDR) technologies intended to allow researchers to develop, test, and demonstrate new communications, networking, and navigation capabilities in the actual environment of space. Qascom, in cooperation with ESA and NASA, is designing a Software Defined Radio GalileoGPS Receiver capable to provide accurate positioning and timing to be installed on the ISS SCaN Testbed. The GalileoGPS waveform will be operated in the JPL SDR that is constituted by several hardware components that can be used for experimentations in L-Band and S-Band. The JPL SDR includes an L-Band Dorne Margolin antenna mounted onto a choke ring. The antenna is connected to a radio front end capable to provide one bit samples for the three GNSS frequencies (L1, L2 and L5) at 38 MHz, exploiting the subharmonic sampling. The baseband processing is then performed by an ATMEL AT697 processor (100 MIPS) and two Virtex 2 FPGAs. The JPL SDR supports the STRS (Space Telecommunications Radio System) that provides common waveform software interfaces, methods of instantiation, operation, and testing among different compliant hardware and software products. The standard foresees the development of applications that are modular, portable, reconfigurable, and reusable. The developed waveform uses the STRS infrastructure-provided application program interfaces (APIs) and services to load, verify, execute, change parameters, terminate, or unload an application. The project is divided in three main phases. 1)Design and Development of the GalileoGPS waveform for the SCaN Testbed starting from Qascom existing GNSS SDR receiver. The baseline design is limited to the implementation of the single frequency Galileo and GPS L1E1 receiver even if as part of the activity it will be to assess the feasibility of a dual frequency implementation (L1E1+L5E5a) in the same SDR platform.2)Qualification and test the GalileoGPS waveform using ground systems available at the NASA Glenn Research Center. Experimenters can have access to two SCaN Testbed ground based systems for development and verification: the Experimenter Development System (EDS) that is intended to provide initial opportunity for software testing and basic functional validation and the Ground Integration Unit (GIU) that is a high fidelity version of the SCaN Testbed flight system and is therefore used for more controlled final development testing and verification testing.3)Perform in-orbit validation and experimentation: The experimentation phase will consists on the collection of raw measurements (pseudorange, Carrier phase, CN0) in space, assessment on the quality of the measurements and the receiver performances in terms of signal acquisition, tracking, etc. Finally computation of positioning in space (Position, Velocity and time) and assessment of its performance.(Complete abstract in attached document).
Future Standardization of Space Telecommunications Radio System with Core Flight System
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.
2016-01-01
NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and modular framework to minimize software development efforts for spaceflight missions.
Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope
NASA Astrophysics Data System (ADS)
Shanmugha Sundaram, GA
2015-08-01
Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.
Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios
NASA Astrophysics Data System (ADS)
Ozden, Mehmet Tahir
2015-12-01
An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.
15 CFR 30.37 - Miscellaneous exemptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements of the licensing Federal agency. (f) Exports of technology and software as defined in 15 CFR 772... required for mass-market software. For purposes of this part, mass-market software is defined as software... of commodities and software intended for use by individual USPPIs or by employees or representatives...
15 CFR 30.37 - Miscellaneous exemptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements of the licensing Federal agency. (f) Exports of technology and software as defined in 15 CFR 772... required for mass-market software. For purposes of this part, mass-market software is defined as software... of commodities and software intended for use by individual USPPIs or by employees or representatives...
15 CFR 30.37 - Miscellaneous exemptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requirements of the licensing Federal agency. (f) Exports of technology and software as defined in 15 CFR 772... required for mass-market software. For purposes of this part, mass-market software is defined as software... of commodities and software intended for use by individual USPPIs or by employees or representatives...
15 CFR 30.37 - Miscellaneous exemptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements of the licensing Federal agency. (f) Exports of technology and software as defined in 15 CFR 772... required for mass-market software. For purposes of this part, mass-market software is defined as software... of commodities and software intended for use by individual USPPIs or by employees or representatives...
Simulation Tools Prevent Signal Interference on Spacecraft
NASA Technical Reports Server (NTRS)
2014-01-01
NASA engineers use simulation software to detect and prevent interference between different radio frequency (RF) systems on a rocket and satellite before launch. To speed up the process, Kennedy Space Center awarded SBIR funding to Champaign, Illinois-based Delcross Technologies LLC, which added a drag-and-drop feature to its commercial simulation software, resulting in less time spent preparing for the analysis.
A research on the application of software defined networking in satellite network architecture
NASA Astrophysics Data System (ADS)
Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing
2017-10-01
Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.
Data Format Classification for Autonomous Software Defined Radios
NASA Technical Reports Server (NTRS)
Simon, Marvin; Divsalar, Dariush
2005-01-01
We present maximum-likelihood (ML) coherent and noncoherent classifiers for discriminating between NRZ and Manchester coded (biphase-L) data formats for binary phase-shift-keying (BPSK) modulation. Such classification of the data format is an essential element of so-called autonomous software defined radio (SDR) receivers (similar to so-called cognitive SDR receivers in the military application) where it is desired that the receiver perform each of its functions by extracting the appropriate knowledge from the received signal and, if possible, with as little information of the other signal parameters as possible. Small and large SNR approximations to the ML classifiers are also proposed that lead to simpler implementation with comparable performance in their respective SNR regions. Numerical performance results obtained by a combination of computer simulation and, wherever possible, theoretical analyses, are presented and comparisons are made among the various configurations based on the probability of misclassification as a performance criterion. Extensions to other modulations such as QPSK are readily accomplished using the same methods described in the paper.
Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation
2014-08-01
Software - Defined Networking ( SDN ), when fully realized, offer many improvements over the current rigid and...functionalities like handshake, connection setup, switch management, and security. 15. SUBJECT TERMS OpenFlow, software - defined networking , Cisco ONE, SDN ...innovating packet-forwarding technologies. Network device roles are strictly defined with little or no flexibility. In Software - Defined Networks ( SDNs ),
Space Telecommunications Radio System (STRS) Compliance Testing
NASA Technical Reports Server (NTRS)
Handler, Louis M.
2011-01-01
The Space Telecommunications Radio System (STRS) defines an open architecture for software defined radios. This document describes the testing methodology to aid in determining the degree of compliance to the STRS architecture. Non-compliances are reported to the software and hardware developers as well as the NASA project manager so that any non-compliances may be fixed or waivers issued. Since the software developers may be divided into those that provide the operating environment including the operating system and STRS infrastructure (OE) and those that supply the waveform applications, the tests are divided accordingly. The static tests are also divided by the availability of an automated tool that determines whether the source code and configuration files contain the appropriate items. Thus, there are six separate step-by-step test procedures described as well as the corresponding requirements that they test. The six types of STRS compliance tests are: STRS application automated testing, STRS infrastructure automated testing, STRS infrastructure testing by compiling WFCCN with the infrastructure, STRS configuration file testing, STRS application manual code testing, and STRS infrastructure manual code testing. Examples of the input and output of the scripts are shown in the appendices as well as more specific information about what to configure and test in WFCCN for non-compliance. In addition, each STRS requirement is listed and the type of testing briefly described. Attached is also a set of guidelines on what to look for in addition to the requirements to aid in the document review process.
48 CFR 252.211-7006 - Passive Radio Frequency Identification.
Code of Federal Regulations, 2013 CFR
2013-10-01
... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...
48 CFR 252.211-7006 - Passive Radio Frequency Identification.
Code of Federal Regulations, 2012 CFR
2012-10-01
... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...
48 CFR 252.211-7006 - Passive Radio Frequency Identification.
Code of Federal Regulations, 2014 CFR
2014-10-01
... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...
NASA Technical Reports Server (NTRS)
Srinivasan, J.; Farrington, A.; Gray, A.
2001-01-01
They present an overview of long-life reconfigurable processor technologies and of a specific architecture for implementing a software reconfigurable (software-defined) network processor for space applications.
Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform
NASA Technical Reports Server (NTRS)
Roche, Rigoberto
2016-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The Glenn Research Center (GRC) team made a software-defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development on an STRS compliant platform to support future space communication systems for advanced exploration missions. Validated STRS compliant applications provided tested code with extensive documentation to potentially reduce risk, cost and efforts in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, the sample waveform, and wrapper development efforts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation SDRs for advance exploration missions.
Cobalt: A GPU-based correlator and beamformer for LOFAR
NASA Astrophysics Data System (ADS)
Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.
2018-04-01
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
15 CFR Supplement No. 2 to Part 730 - Technical Advisory Committees
Code of Federal Regulations, 2012 CFR
2012-01-01
..., materials, or supplies, including technology, software, and other information, that are subject to export... to a clearly defined grouping of articles, materials, or supplies, including technology, software, or..., including technology, software, and other information, that are subject to export controls because of their...
15 CFR Supplement No. 2 to Part 730 - Technical Advisory Committees
Code of Federal Regulations, 2013 CFR
2013-01-01
..., materials, or supplies, including technology, software, and other information, that are subject to export... to a clearly defined grouping of articles, materials, or supplies, including technology, software, or..., including technology, software, and other information, that are subject to export controls because of their...
15 CFR Supplement No. 2 to Part 730 - Technical Advisory Committees
Code of Federal Regulations, 2014 CFR
2014-01-01
..., materials, or supplies, including technology, software, and other information, that are subject to export... to a clearly defined grouping of articles, materials, or supplies, including technology, software, or..., including technology, software, and other information, that are subject to export controls because of their...
Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe
2017-01-08
A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.
The Design and Realization of Radio Telescope Control Software in Windows XP System with VC++
NASA Astrophysics Data System (ADS)
Zhao, Rong-Bing; Aili, Yu; Zhang, Jin; Yu, Yun
2007-03-01
The main function of the radio telescope control software is to drive the radio telescope to track the target accurately. The design of radio telescope control software is based on Windows XP system with VC++. The functions of the software, communication mode and the user interface is introduced in this article.
The Study and Implementation of Text-to-Speech System for Agricultural Information
NASA Astrophysics Data System (ADS)
Zheng, Huoguo; Hu, Haiyan; Liu, Shihong; Meng, Hong
The Broadcast and Television coverage has increased to more than 98% in china. Information services by radio have wide coverage, low cost, easy-to-grass-roots farmers to accept etc. characteristics. In order to play the better role of broadcast information service, as well as aim at the problem of lack of information resource in rural, we R & D the text-to-speech system. The system includes two parts, software and hardware device, both of them can translate text into audio file. The software subsystem was implemented basic on third-part middleware, and the hardware subsystem was realized with microelectronics technology. Results indicate that the hardware is better than software. The system has been applied in huailai city hebei province, which has conversed more than 8000 audio files as programming materials for the local radio station.
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.
15 CFR 732.2 - Steps regarding scope of the EAR.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) of this section. (b) Step 2: Publicly available technology and software. This step is relevant for both exports and reexports. Determine if your technology or software is publicly available as defined... practical examples describing publicly available technology and software that are outside the scope of the...
15 CFR 732.2 - Steps regarding scope of the EAR.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) of this section. (b) Step 2: Publicly available technology and software. This step is relevant for both exports and reexports. Determine if your technology or software is publicly available as defined... practical examples describing publicly available technology and software that are outside the scope of the...
15 CFR 732.2 - Steps regarding scope of the EAR.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) of this section. (b) Step 2: Publicly available technology and software. This step is relevant for both exports and reexports. Determine if your technology or software is publicly available as defined... practical examples describing publicly available technology and software that are outside the scope of the...
15 CFR 732.2 - Steps regarding scope of the EAR.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) of this section. (b) Step 2: Publicly available technology and software. This step is relevant for both exports and reexports. Determine if your technology or software is publicly available as defined... practical examples describing publicly available technology and software that are outside the scope of the...
15 CFR 732.2 - Steps regarding scope of the EAR.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) of this section. (b) Step 2: Publicly available technology and software. This step is relevant for both exports and reexports. Determine if your technology or software is publicly available as defined... practical examples describing publicly available technology and software that are outside the scope of the...
2006-12-01
Convolutional encoder of rate 1/2 (From [10]). Table 3 shows the puncturing patterns used to derive the different code rates . X precedes Y in the order... convolutional code with puncturing configuration (From [10])......11 Table 4. Mandatory channel coding per modulation (From [10...a concatenation of a Reed– Solomon outer code and a rate -adjustable convolutional inner code . At the transmitter, data shall first be encoded with
Lou, Jerry J; Andrechak, Gary; Riben, Michael; Yong, William H
2011-01-01
Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the "islands of data" dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software "plug and play" interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software.
Lou, Jerry J.; Andrechak, Gary; Riben, Michael; Yong, William H.
2011-01-01
Patient safety initiatives throughout the anatomic laboratory and in biorepository laboratories have mandated increasing emphasis on the need for accurately identifying and tracking biospecimen assets throughout their production lifecycle and for archiving/retrieval purposes. However, increasing production volume along with complex workflow characteristics, reliance on manual production processes, and required asset movement to disparate destinations throughout asset lifecycles continue to challenge laboratory efforts. Radio Frequency Identification (RFID) technology, use of radio waves to communicate data between electronic tags attached to objects and a reader, shows significant potential to facilitate and overcome these hurdles. Advantages over traditional barcode labeling include readability without direct line-of-sight alignment to the reader, ability to read multiple tags simultaneously, higher data storage capacity, faster data transmission rate, and capacity to perform multiple read-writes of data to the tag. Most importantly, use of radio waves decreases the need to manually scan each asset, and at each step, identification or tracking event is needed. Temperature monitoring by on-board sensors and three-dimensional position tracking are additional potential benefits of using RFID technology. To date, barriers to implementation of RFID systems in the anatomic laboratory include increased associated costs of tags and readers, system software, data security concerns, lack of specific data standards for stored information, and potential for technological obsolescence during decades of specimen storage. Novel RFID production techniques and increased production capacity are projected to lower costs of some tags to a few cents each. Potentially, information security concerns can be addressed by techniques such as shielding, data encryption, and tag pseudonyms. Commitment by stakeholder groups to develop RFID tag data standards for anatomic pathology and biorepository laboratories could avoid or mitigate the “islands of data” dilemma presented by barcode usage where there are innumerable standards and a consequent paucity of hardware or software “plug and play” interoperability. Work remains to be done to establish the durability and appropriate shielding of individual tag types for use in harsh laboratory environmental conditions, and for long-term archival storage. Finally, given the requirements for long-term storage of biospecimen assets, consideration should be given to ways of mitigating data isolation due to eventual technological obsolescence of a particular RFID technology or software. PMID:21886890
NASA Technical Reports Server (NTRS)
2013-01-01
Topics include: Cloud Absorption Radiometer Autonomous Navigation System - CANS, Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis, Discrete Data Qualification System and Method Comprising Noise Series Fault Detection, Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s, Application Program Interface for the Orion Aerodynamics Database, Hyperspectral Imager-Tracker, Web Application Software for Ground Operations Planning Database (GOPDb) Management, Software Defined Radio with Parallelized Software Architecture, Compact Radar Transceiver with Included Calibration, Software Defined Radio with Parallelized Software Architecture, Phase Change Material Thermal Power Generator, The Thermal Hogan - A Means of Surviving the Lunar Night, Micromachined Active Magnetic Regenerator for Low-Temperature Magnetic Coolers, Nano-Ceramic Coated Plastics, Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use, Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO, Dual-Compartment Inflatable Suitlock, Modular Connector Keying Concept, Genesis Ultrapure Water Megasonic Wafer Spin Cleaner, Piezoelectrically Initiated Pyrotechnic Igniter, Folding Elastic Thermal Surface - FETS, Multi-Pass Quadrupole Mass Analyzer, Lunar Sulfur Capture System, Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use, Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter, Qualification of UHF Antenna for Extreme Martian Thermal Environments, Ensemble Eclipse: A Process for Prefab Development Environment for the Ensemble Project, ISS Live!, Space Operations Learning Center (SOLC) iPhone/iPad Application, Software to Compare NPP HDF5 Data Files, Planetary Data Systems (PDS) Imaging Node Atlas II, Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit, Translating MAPGEN to ASPEN for MER, Support Routines for In Situ Image Processing, and Semi-Supervised Eigenbasis Novelty Detection.
Cognitive software defined radar: waveform design for clutter and interference suppression
NASA Astrophysics Data System (ADS)
Kirk, Benjamin H.; Owen, Jonathan W.; Narayanan, Ram M.; Blunt, Shannon D.; Martone, Anthony F.; Sherbondy, Kelly D.
2017-05-01
Clutter and radio frequency interference (RFI) are prevalent issues in the field of radar and are specifically of interest to of cognitive radar. Here, methods for applying and testing the utility of cognitive radar for clutter and RFI mitigation are explored. Using the adaptable transmit capability, environmental database, and general "awareness" of a cognitive radar system (i.e. spectrum sensing, geographical location, etc.), a matched waveform is synthesized that improves the signal-to-clutter ratio (SCR), assuming at least an estimate of the target response and the environmental clutter response are known a prior i. RFI may also be mitigated by sensing the RF spectrum and adapting the transmit center frequency and bandwidth using methods that optimize bandwidth and signal-to-interference plus noise ratio (SINR) (i.e. the spectrum sensing, multi-objective (SS-MO) algorithm). The improvement is shown by a decrease in the noise floor. The above methods' effectiveness are examined via a test-bed developed around a software defined radio (SDR). Testing and the general use of commercial off the shelf (COTS) devices are desirable for their cost effectiveness, general ease of use, as well as technical and community support, but these devices provide design challenges in order to be effective. The universal software radio peripheral (USRP) X310 SDR is a relatively cheap and portable device that has all the system components of a basic cognitive radar. Design challenges of the SDR include phase coherency between channels, bandwidth limitations, dynamic range, and speed of computation and data communication / recording.
Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.
2017-12-01
Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.
NASA Astrophysics Data System (ADS)
The subjects discussed are related to LSI/VLSI based subscriber transmission and customer access for the Integrated Services Digital Network (ISDN), special applications of fiber optics, ISDN and competitive telecommunication services, technical preparations for the Geostationary-Satellite Orbit Conference, high-capacity statistical switching fabrics, networking and distributed systems software, adaptive arrays and cancelers, synchronization and tracking, speech processing, advances in communication terminals, full-color videotex, and a performance analysis of protocols. Advances in data communications are considered along with transmission network plans and progress, direct broadcast satellite systems, packet radio system aspects, radio-new and developing technologies and applications, the management of software quality, and Open Systems Interconnection (OSI) aspects of telematic services. Attention is given to personal computers and OSI, the role of software reliability measurement in information systems, and an active array antenna for the next-generation direct broadcast satellite.
Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform
NASA Technical Reports Server (NTRS)
Roche, Rigoberto J.; Shalkhauser, Mary Jo; Hickey, Joseph P.; Briones, Janette C.
2016-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The NASA Glenn Research Center (GRC) team made a software defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development onto an STRS compliant platform to support future space communication systems for advanced exploration missions. The use of validated STRS compliant applications provides tested code with extensive documentation to potentially reduce risk, cost and e ort in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, and the test waveform and wrapper development e orts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation flight system SDRs for advanced exploration missions.
Oscillator metrology with software defined radio.
Sherman, Jeff A; Jördens, Robert
2016-05-01
Analog electrical elements such as mixers, filters, transfer oscillators, isolating buffers, dividers, and even transmission lines contribute technical noise and unwanted environmental coupling in time and frequency measurements. Software defined radio (SDR) techniques replace many of these analog components with digital signal processing (DSP) on rapidly sampled signals. We demonstrate that, generically, commercially available multi-channel SDRs are capable of time and frequency metrology, outperforming purpose-built devices by as much as an order-of-magnitude. For example, for signals at 10 MHz and 6 GHz, we observe SDR time deviation noise floors of about 20 fs and 1 fs, respectively, in under 10 ms of averaging. Examining the other complex signal component, we find a relative amplitude measurement instability of 3 × 10(-7) at 5 MHz. We discuss the scalability of a SDR-based system for simultaneous measurement of many clocks. SDR's frequency agility allows for comparison of oscillators at widely different frequencies. We demonstrate a novel and extreme example with optical clock frequencies differing by many terahertz: using a femtosecond-laser frequency comb and SDR, we show femtosecond-level time comparisons of ultra-stable lasers with zero measurement dead-time.
Application and Implications of Agent Technology for Librarians.
ERIC Educational Resources Information Center
Nardi, Bonnie A.; O'Day, Vicki L.
1998-01-01
Examines intelligent software agents, presents nine design principles aimed specifically at the technology perspective (to personalize task performance and general principles), and discusses what librarians can do that software agents (agents defined as activity-aware software programs) cannot do. Describes an information ecology that integrates…
Calibration of radio-astronomical data on the cloud. LOFAR, the pathway to SKA
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez-Expósito, S.; Garrido, J.; Ruiz, J. E.; Best, P. N.; Verdes-Montenegro, L.
2015-05-01
The radio interferometer LOFAR (LOw Frequency ARray) is fully operational now. This Square Kilometre Array (SKA) pathfinder allows the observation of the sky at frequencies between 10 and 240 MHz, a relatively unexplored region of the spectrum. LOFAR is a software defined telescope: the data is mainly processed using specialized software running in common computing facilities. That means that the capabilities of the telescope are virtually defined by software and mainly limited by the available computing power. However, the quantity of data produced can quickly reach huge volumes (several Petabytes per day). After the correlation and pre-processing of the data in a dedicated cluster, the final dataset is handled to the user (typically several Terabytes). The calibration of these data requires a powerful computing facility in which the specific state of the art software under heavy continuous development can be easily installed and updated. That makes this case a perfect candidate for a cloud infrastructure which adds the advantages of an on demand, flexible solution. We present our approach to the calibration of LOFAR data using Ibercloud, the cloud infrastructure provided by Ibergrid. With the calibration work-flow adapted to the cloud, we can explore calibration strategies for the SKA and show how private or commercial cloud infrastructures (Ibercloud, Amazon EC2, Google Compute Engine, etc.) can help to solve the problems with big datasets that will be prevalent in the future of astronomy.
The Use of Technology in Adult Literacy Programs.
ERIC Educational Resources Information Center
Anderson, Jonathan; And Others
This document describes the use of educational technology (including radio, television, computers, telephones, satellites, and optical laser discs) in adult literacy programs in Australia. Chapter 1 describes the scope of the study that resulted in the document and defines both literacy and educational technology. Chapter 2 contains a generalized…
Evolution of a radio communication relay system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Pezeshkian, Narek; Hart, Abraham; Burmeister, Aaron; Holz, Kevin; Neff, Joseph; Roth, Leif
2013-05-01
Providing long-distance non-line-of-sight control for unmanned ground robots has long been recognized as a problem, considering the nature of the required high-bandwidth radio links. In the early 2000s, the DARPA Mobile Autonomous Robot Software (MARS) program funded the Space and Naval Warfare Systems Center (SSC) Pacific to demonstrate a capability for autonomous mobile communication relaying on a number of Pioneer laboratory robots. This effort also resulted in the development of ad hoc networking radios and software that were later leveraged in the development of a more practical and logistically simpler system, the Automatically Deployed Communication Relays (ADCR). Funded by the Joint Ground Robotics Enterprise and internally by SSC Pacific, several generations of ADCR systems introduced increasingly more capable hardware and software for automatic maintenance of communication links through deployment of static relay nodes from mobile robots. This capability was finally tapped in 2010 to fulfill an urgent need from theater. 243 kits of ruggedized, robot-deployable communication relays were produced and sent to Afghanistan to extend the range of EOD and tactical ground robots in 2012. This paper provides a summary of the evolution of the radio relay technology at SSC Pacific, and then focuses on the latest two stages, the Manually-Deployed Communication Relays and the latest effort to automate the deployment of these ruggedized and fielded relay nodes.
Interference-Detection Module in a Digital Radar Receiver
NASA Technical Reports Server (NTRS)
Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi
2009-01-01
A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.
Software-defined microwave photonic filter with high reconfigurable resolution
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-01-01
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062
Software-defined microwave photonic filter with high reconfigurable resolution.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-10-19
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.
A Field Programmable Gate Array Based Software Defined Radio Design for the Space Environment
2009-12-01
CHANGING PARAMETERS ......................................................................97 APPENDIX B. ADDITIONAL APPLICATIONS ...Professor Frank Kragh was inspirational and always provided keen insight into the mathematics of signal analysis. Special thanks to Professor...and risk involved with launching a new satellite. [2] An FPGA design with potential for space applications was presented in [3]. This initial SDR
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musson, John C.; Seaton, Chad; Spata, Mike F.
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less
The new 64m Sardinia Radio Telescope and VLBI facilities in Italy
NASA Astrophysics Data System (ADS)
Giovannini, Gabriele; Feretti, Luigina; Prandoni, Isabella; Giroletti, Marcello
2015-08-01
The Sardinia Radio Telescope (SRT) is a new major radio astronomical facility available in Italy for single dish and interferometric observations. It represents a flexible instrument for Radio Astronomy, Geodynamical studies and Space Science, either in single dish or VLBI mode. The SRT combines a 64m steerable collecting area, one of the largest all over the World with state-of-the-art technology (including an active surface) to enable high efficiency observations up to the 3-mm band.This new radio telescope together with the two 32m antennas in Noto and Medicina can be used for VLBI observations on a national basis (VLBIT). Data can be correlated in a short time (in real time soon) thanks to fiber-optics connection among the radio telescopes and the software correlator installed at the Radio Astronomy Institute in Bologna (IRA/INAF). In the poster I will present capabilities of the SRT telescope as well as the VLBIT project and I will shortly discuss the scientific prospects of the VLBIT.
Software Assurance Competency Model
2013-03-01
COTS) software , and software as a service ( SaaS ). L2: Define and analyze risks in the acquisition of contracted software , COTS software , and SaaS ...2010a]: Application of technologies and processes to achieve a required level of confidence that software systems and services function in the...
Rosenbaum, Benjamin P
2014-03-01
Radio frequency identification (RFID) technology has been implemented in a wide variety of industries. Health care is no exception. This article explores implementations and limitations of RFID in several health care domains: authentication, medication safety, patient tracking, and blood transfusion medicine. Each domain has seen increasing utilization of unique applications of RFID technology. Given the importance of protecting patient and data privacy, potential privacy and security concerns in each domain are discussed. Such concerns, some of which are inherent to existing RFID hardware and software technology, may limit ubiquitous adoption. In addition, an apparent lack of security standards within the RFID domain and specifically health care may also hinder the growth and utility of RFID within health care for the foreseeable future. Safeguarding the privacy of patient data may be the most important obstacle to overcome to allow the health care industry to take advantage of the numerous benefits RFID technology affords.
A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116
A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... section, written approval must be obtained from the Chief, Office of Engineering and Technology, FCC; and... approval must be obtained from the Chief, Office of Engineering and Technology, FCC. (iv) Distinctly... fewer radio receivers, computers, or other unintentional radiators as defined in part 15 of this chapter...
47 CFR 2.1204 - Import conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... section, written approval must be obtained from the Chief, Office of Engineering and Technology, FCC; and... approval must be obtained from the Chief, Office of Engineering and Technology, FCC. (iv) Distinctly... fewer radio receivers, computers, or other unintentional radiators as defined in part 15 of this chapter...
2015-03-01
62 5.13 Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order cumulants during interference techniques...0.9 1 Tx Node RF Gain P c m o d u la ti o n Figure 5.13: Probabilty of correct SC modulation detection for 95 OFDM bursts using sixth order
Performance of High-Reliability Space-Qualified Processors Implementing Software Defined Radios
2014-03-01
ADDRESS(ES) AND ADDRESS(ES) Naval Postgraduate School, Department of Electrical and Computer Engineering, 833 Dyer Road, Monterey, CA 93943-5121 8...Chairman Jeffrey D. Paduan Electrical and Computer Engineering Dean of Research iii THIS PAGE...capability. Radiation in space poses a considerable threat to modern microelectronic devices, in particular to the high-performance low-cost computing
A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller
NASA Astrophysics Data System (ADS)
He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie
2018-02-01
There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.
Study on a novel laser target detection system based on software radio technique
NASA Astrophysics Data System (ADS)
Song, Song; Deng, Jia-hao; Wang, Xue-tian; Gao, Zhen; Sun, Ji; Sun, Zhi-hui
2008-12-01
This paper presents that software radio technique is applied to laser target detection system with the pseudo-random code modulation. Based on the theory of software radio, the basic framework of the system, hardware platform, and the implementation of the software system are detailed. Also, the block diagram of the system, DSP circuit, block diagram of the pseudo-random code generator, and soft flow diagram of signal processing are designed. Experimental results have shown that the application of software radio technique provides a novel method to realize the modularization, miniaturization and intelligence of the laser target detection system, and the upgrade and improvement of the system will become simpler, more convenient, and cheaper.
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
Fronthaul evolution: From CPRI to Ethernet
NASA Astrophysics Data System (ADS)
Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker
2015-12-01
It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.
RASDR: Benchtop Demonstration of SDR for Radio Astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vacaliuc, Bogdan; Oxley, Paul; Fields, David
The Society of Amateur Radio Astronomers (SARA) members present the benchtop version of RASDR, a Software Defined Radio (SDR) that is optimized for Radio Astronomy. RASDR has the potential to be a common digital receiver interface useful to many SARA members. This document describes the RASDR 0.0 , which provides digitized radio data to a backend computer through a USB 2.0 interface. A primary component of RASDR is the Lime Microsystems Femtocell chip which tunes from a 0.4-4 GHz center frequency with several selectable bandwidths from 0.75 MHz to 14 MHz. A second component is a board with a Complexmore » Programmable Logic Device (CPLD) chip that connects to the Femtocell and provides two USB connections to the backend computer. A third component is an analog balanced mixer up conversion section. Together these three components enable RASDR to tune from 0.015 MHz thru 3.8GHz of the radio frequency (RF) spectrum. We will demonstrate and discuss capabilities of the breadboard system and SARA members will be able to operate the unit hands-on throughout the workshop.« less
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
NASA Astrophysics Data System (ADS)
Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.
2017-04-01
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.
Building an efficient supply chain.
Scalise, Dagmara
2005-08-01
Realizing at last that supply chain management can produce efficiencies and save costs, hospitals are beginning to adopt practices from other industries, such as the concept of extended supply chains, to improve product flow. They're also investing in enterprise planning resource software, radio frequency identification and other technologies, using quality data to drive standardization and streamlining processes.
2013-06-01
Radio is a software development toolkit that provides signal processing blocks to drive the SDR. GNU Radio has many strong points – it is actively...maintained with a large user base, new capabilities are constantly being added, and compiled C code is fast for many real-time applications such as...programming interface (API) makes learning the architecture a daunting task, even for the experienced software developer. This requirement poses many
NASA Astrophysics Data System (ADS)
The Pierre Auger Collaboration
2016-01-01
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.
Aab, Alexander
2016-01-29
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less
User Needs and Advances in Space Wireless Sensing and Communications
NASA Technical Reports Server (NTRS)
Kegege, Obadiah
2017-01-01
Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.
2014-05-01
function Value = Select_Element(Index,Signal) %# eml Value = Signal(Index); Code Listing 1 Code for Selector Block 12 | P a g e 4.3...code for the Simulink function shiftedSignal = fcn(signal,Shift) %# eml shiftedSignal = circshift(signal,Shift); Code Listing 2 Code for CircShift
2014-05-09
Interfaces Configuration – Wired Network Connections before Editing Move the cursor to the end of the line that ends with “eth0 inet dhcp ” and type...X”. This will delete text one character back from the cursor. Delete the word “ dhcp ”. Once this is done, type “a” to begin inserting text and add
A software control system for the ACTS high-burst-rate link evaluation terminal
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Daugherty, Elaine S.
1991-01-01
Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.
Programmable Ultra-Lightweight System Adaptable Radio
NASA Technical Reports Server (NTRS)
Werkheiser, Arthur
2015-01-01
The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.
A parallel unbalanced digitization architecture to reduce the dynamic range of multiple signals
NASA Astrophysics Data System (ADS)
Vallérian, Mathieu; HuÅ£u, Florin; Villemaud, Guillaume; Miscopein, Benoît; Risset, Tanguy
2016-05-01
Technologies employed in urban sensor networks are permanently evolving, and thus the gateways employed to collect data in such kind of networks have to be very flexible in order to be compliant with the new communication standards. A convenient way to do that is to digitize all the received signals in one shot and then to digitally perform the signal processing, as it is done in software-defined radio (SDR). All signals can be emitted with very different features (bandwidth, modulation type, and power level) in order to respond to the various propagation conditions. Their difference in terms of power levels is a problem when digitizing them together, as no current commercial analog-to-digital converter (ADC) can provide a fine enough resolution to digitize this high dynamic range between the weakest possible signal in the presence of a stronger signal. This paper presents an RF front end receiver architecture capable of handling this problem by using two ADCs of lower resolutions. The architecture is validated through a set of simulations using Keysight's ADS software. The main validation criterion is the bit error rate comparison with a classical receiver.
Using component technology to facilitate external software reuse in ground-based planning systems
NASA Technical Reports Server (NTRS)
Chase, A.
2003-01-01
APGEN (Activity Plan GENerator - 314), a multi-mission planning tool, must interface with external software to vest serve its users. AP-GEN's original method for incorporating external software, the User-Defined library mechanism, has been very successful in allowing APGEN users access to external software functionality.
Enabling Higher Data Rates for Planetary Science Missions
NASA Astrophysics Data System (ADS)
Deutsch, L. J.; Townes, S. A.; Lazio, J.; Bell, D. J.; Chahat, N. E.; Kovalik, J. M.; Kuperman, I.; Sauder, J.; Liebrecht, P. E.
2017-12-01
The data rate from deep space spacecraft has increased by more than 10 orders of magnitude since the first lunar missions in the 1960s. The demand for increased data rates has stemmed from the increasing sophistication of the science questions being addressed and the concomitant increase in the complexity of the missions themselves (from fly-by to orbit to land and rove). Projections for the next few decades suggest the demand for data rates for deep space missions will continue to increase by approximately one order of magnitude every decade, driven by these same factors. Achieving higher data rates requires a partnership between the spacecraft and the ground system. We describe a series of technology developments for flight telecommunications systems, both at radio frequency (RF) and optical, to enable spacecraft to transmit and receive larger data volumes. These technology developments include deployable high gain antennas for small spacecraft, re-programmable software-defined radios, and optical communication packages designed for CubeSat form factors. The intent is that these developments would provide enhancements in capability for both spacecraft-Earth and spacecraft-spacecraft telecommunications. We also describe the future planning for NASA's Deep Space Network (DSN), which remains the prime conduit for data from all planetary science missions. Through a combination of new antennas and backends being installed over the next five years and incorporation of optical communications, the DSN aims to ensure that the historical improvements in data rates and volumes will continue for many decades. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
A Low Cost Single Chip VDL Compatible Transceiver ASIC
NASA Technical Reports Server (NTRS)
Becker, Robert
2004-01-01
Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.
Cross layer optimization for cloud-based radio over optical fiber networks
NASA Astrophysics Data System (ADS)
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming
2016-07-01
To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Pursimo, T.
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less
Bolaños, Federico; LeDue, Jeff M; Murphy, Timothy H
2017-01-30
Automation of animal experimentation improves consistency, reduces potential for error while decreasing animal stress and increasing well-being. Radio frequency identification (RFID) tagging can identify individual mice in group housing environments enabling animal-specific tracking of physiological parameters. We describe a simple protocol to radio frequency identification (RFID) tag and detect mice. RFID tags were injected sub-cutaneously after brief isoflurane anesthesia and do not require surgical steps such as suturing or incisions. We employ glass-encapsulated 125kHz tags that can be read within 30.2±2.4mm of the antenna. A raspberry pi single board computer and tag reader enable automated logging and cross platform support is possible through Python. We provide sample software written in Python to provide a flexible and cost effective system for logging the weights of multiple mice in relation to pre-defined targets. The sample software can serve as the basis of any behavioral or physiological task where users will need to identify and track specific animals. Recently, we have applied this system of tagging to automated mouse brain imaging within home-cages. We provide a cost effective solution employing open source software to facilitate adoption in applications such as automated imaging or tracking individual animal weights during tasks where food or water restriction is employed as motivation for a specific behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hart, Andrew F.; Cinquini, Luca; Khudikyan, Shakeh E.; Thompson, David R.; Mattmann, Chris A.; Wagstaff, Kiri; Lazio, Joseph; Jones, Dayton
2015-01-01
“Fast radio transients” are defined here as bright millisecond pulses of radio-frequency energy. These short-duration pulses can be produced by known objects such as pulsars or potentially by more exotic objects such as evaporating black holes. The identification and verification of such an event would be of great scientific value. This is one major goal of the Very Long Baseline Array (VLBA) Fast Transient Experiment (V-FASTR), a software-based detection system installed at the VLBA. V-FASTR uses a “commensal” (piggy-back) approach, analyzing all array data continually during routine VLBA observations and identifying candidate fast transient events. Raw data can be stored from a buffer memory, which enables a comprehensive off-line analysis. This is invaluable for validating the astrophysical origin of any detection. Candidates discovered by the automatic system must be reviewed each day by analysts to identify any promising signals that warrant a more in-depth investigation. To support the timely analysis of fast transient detection candidates by V-FASTR scientists, we have developed a metadata-driven, collaborative candidate review framework. The framework consists of a software pipeline for metadata processing composed of both open source software components and project-specific code written expressly to extract and catalog metadata from the incoming V-FASTR data products, and a web-based data portal that facilitates browsing and inspection of the available metadata for candidate events extracted from the VLBA radio data.
Test Waveform Applications for JPL STRS Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.
2013-01-01
This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
NASA Technical Reports Server (NTRS)
Thieman, J. R.
2010-01-01
The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.
Engineering intelligent tutoring systems
NASA Technical Reports Server (NTRS)
Warren, Kimberly C.; Goodman, Bradley A.
1993-01-01
We have defined an object-oriented software architecture for Intelligent Tutoring Systems (ITS's) to facilitate the rapid development, testing, and fielding of ITS's. This software architecture partitions the functionality of the ITS into a collection of software components with well-defined interfaces and execution concept. The architecture was designed to isolate advanced technology components, partition domain dependencies, take advantage of the increased availability of commercial software packages, and reduce the risks involved in acquiring ITS's. A key component of the architecture, the Executive, is a publish and subscribe message handling component that coordinates all communication between ITS components.
The Search for Extra-Terrestrial Intelligence
NASA Astrophysics Data System (ADS)
Tarter, J.
1998-12-01
Aliens abound on the movie screens, but in reality we are still trying to find out if we share our universe with other sentient creatures. Intelligence is very difficult to define, and impossible to directly detect over interstellar distances. Therefore, SETI, the search for extraterrestrial intelligence, is actually an attempt to detect evidence of another distant technology. If we find such evidence, we will infer the existence of intelligent technologists. For the past 36 years, the SETI community has had a very pragmatic definition of intelligence - the ability to build radio telescopes! Radio signals are not the only possible way to detect a technology across the vast distances that separate the stars, but given our own current technological state, it remains the best way.
Music Software and Emerging Technology.
ERIC Educational Resources Information Center
Peters, G. David
1992-01-01
Traces the history of instructional computing in music education. Describes the development of music software and hardware. Discusses potential benefits of using the newly developed software in the classroom. Suggests that educators and musicians interact with the publishing community to help define their needs in music education. (DK)
NASA Astrophysics Data System (ADS)
Guzman, J. C.; Bennett, T.
2008-08-01
The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.
Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P
2013-03-11
Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.
ERIC Educational Resources Information Center
Militello, Matthew
While its educational goals were yet to be defined, the aims of the radio in the early 1920s included the social goal of cultural pluralism; the economic goal of profiteering; the military goal of communicating, training, and surveillance; and, the political goal of propaganda and morale building. In the end, like previous technological advances,…
An FPGA-based reconfigurable DDC algorithm
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Kasprowicz, G.
2016-09-01
This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.
Developing Open Source Software To Advance High End Computing. Report to the President.
ERIC Educational Resources Information Center
National Coordination Office for Information Technology Research and Development, Arlington, VA.
This is part of a series of reports to the President and Congress developed by the President's Information Technology Advisory Committee (PITAC) on key contemporary issues in information technology. This report defines open source software, explains PITAC's interest in this model, describes the process used to investigate issues in open source…
Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory
NASA Astrophysics Data System (ADS)
Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.
2007-12-01
Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.
SDR implementation of the receiver of adaptive communication system
NASA Astrophysics Data System (ADS)
Skarzynski, Jacek; Darmetko, Marcin; Kozlowski, Sebastian; Kurek, Krzysztof
2016-04-01
The paper presents software implementation of a receiver forming a part of an adaptive communication system. The system is intended for communication with a satellite placed in a low Earth orbit (LEO). The ability of adaptation is believed to increase the total amount of data transmitted from the satellite to the ground station. Depending on the signal-to-noise ratio (SNR) of the received signal, adaptive transmission is realized using different transmission modes, i.e., different modulation schemes (BPSK, QPSK, 8-PSK, and 16-APSK) and different convolutional code rates (1/2, 2/3, 3/4, 5/6, and 7/8). The receiver consists of a software-defined radio (SDR) module (National Instruments USRP-2920) and a multithread reception software running on Windows operating system. In order to increase the speed of signal processing, the software takes advantage of single instruction multiple data instructions supported by x86 processor architecture.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
First steps of processing VLBI data of space probes with VieVS
NASA Astrophysics Data System (ADS)
Plank, L.; Böhm, J.; Schuh, H.
2011-07-01
Since 2008 the VLBI group at the Institute of Geodesy and Geophysics (IGG) of the Vienna University of Technology has developed the Vienna VLBI Software VieVS which is capable to process geodetic VLBI data in NGS format. Constantly we are working on upgrading the new software, e.g. by developing a scheduling tool or extending the software from single session solution to a so-called global solution, allowing the joint analysis of many sessions covering several years. In this presentation we report on first steps to enable the processing of space VLBI data with the software. Driven by the recently increasing number of space VLBI applications, our goal is the geodetic usage of such data, primarily concerning frame ties between various reference frames, e. g. by connecting the dynamic reference frame of a space probe with the kinematically defined International Celestial Reference Frame (ICRF). Main parts of the software extension w.r.t. the existing VieVS are the treatment of fast moving targets, the implementation of a delay model for radio emitters at finite distances, and the adequate mathematical model and adjustment of the particular unknowns. Actual work has been done for two mission scenarios so far: On the one hand differential VLBI (D-VLBI) data from the two sub-satellites of the Japanese lunar mission Selene were processed, on the other hand VLBI observations of GNSS satellites were modelled in VieVS. Besides some general aspects, we give details on the calculation of the theoretical delay (delay model for moving sources at finite distances) and its realization in VieVS. First results with real data and comparisons with best fit mission orbit data are also presented.'
15 CFR 732.3 - Steps regarding the ten general prohibitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... The CCL and the Country Chart are taken together to define these license requirements. The applicable... 'bundled' with controlled U.S.-origin software, foreign-made software that is commingled with controlled U.S.-origin software, or foreign-made technology that is commingled with controlled U.S.-origin...
Direct Broadcast Satellite: Radio Program
NASA Astrophysics Data System (ADS)
Hollansworth, James E.
1992-10-01
NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.
Development of an Automatic Echo-counting Program for HROFFT Spectrograms
NASA Astrophysics Data System (ADS)
Noguchi, Kazuya; Yamamoto, Masa-Yuki
2008-06-01
Radio meteor observations by Ham-band beacon or FM radio broadcasts using “Ham-band Radio meteor Observation Fast Fourier Transform” (HROFFT) an automatic operating software have been performed widely in recent days. Previously, counting of meteor echoes on the spectrograms of radio meteor observation was performed manually by observers. In the present paper, we introduce an automatic meteor echo counting software application. Although output images of the HROFFT contain both the features of meteor echoes and those of various types of noises, a newly developed image processing technique has been applied, resulting in software that enables a useful auto-counting tool. There exists a slight error in the processing on spectrograms when the observation site is affected by many disturbing noises. Nevertheless, comparison between software and manual counting revealed an agreement of almost 90%. Therefore, we can easily obtain a dataset of detection time, duration time, signal strength, and Doppler shift of each meteor echo from the HROFFT spectrograms. Using this software, statistical analyses of meteor activities is based on the results obtained at many Ham-band Radio meteor Observation (HRO) sites throughout the world, resulting in a very useful “standard” for monitoring meteor stream activities in real time.
NASA Technical Reports Server (NTRS)
Few, A. A., Jr.
1981-01-01
The various needs for lightning data that exist among potential users of satellite lightning data were identified and systems were defined which utilize the optical and radio frequency radiations from lightning to serve as the satellite based lightning mapper. Three teams worked interactively with NASA to develop a system concept. An assessment of the results may be summarized as follows: (1) a small sensor system can be easily designed to operate on a geostationary satellite that can provide the bulk of the real time user requirements; (2) radio frequency systems in space may be feasible but would be much larger and more costly; RF technology for this problem lags the optical technology by years; and (3) a hybrid approach (optical in space and RF on the ground) would provide the most complete information but is probably unreasonably complex and costly at this time.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
NASA Astrophysics Data System (ADS)
Thieman, J.; Higgins, C.; Lauffer, G.; Ulivastro, R.; Flagg, R.; Sky, J.
2003-04-01
The Radio JOVE project (http://radiojove.gsfc.nasa.gov) began over four years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 500 of these kits have been distributed to students and interested observers (ages 10 through adult) in 24 countries. Many students and teachers do not have the time or feel comfortable building a kit of their own. The Radio JOVE project has made it possible to monitor data and streaming audio from professional radio telescopes in Florida (16 element 10-40 MHz log spiral array - http://jupiter.kochi-ct.jp) and Hawaii (17-30 MHz log periodic antenna - http://jupiter.wcc.hawaii.edu/newradiojove/main.html) using standard web browsers and/or freely downloadable software. Radio-Skypipe software (http://radiosky.com) emulates a chart recorder for ones own radio telescope. It will also display the signals being received by other observers worldwide who send out their data over the Internet using the same software package. A built-in chat feature allows the users to discuss their observations and results in real time. New software is being developed to allow network users to interactively view a multi-frequency spectroscopic display of the Hawaii radio telescope. This software may also be useful for research applications. Observers in the U.S. and Europe have been contributing data to a central archive of Jupiter and Solar observations (http://jovearchive.gsfc.nasa.gov/). We believe these data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. We welcome ideas for expanding the application of these data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Andrew F.; Cinquini, Luca; Khudikyan, Shakeh E.
2015-01-01
“Fast radio transients” are defined here as bright millisecond pulses of radio-frequency energy. These short-duration pulses can be produced by known objects such as pulsars or potentially by more exotic objects such as evaporating black holes. The identification and verification of such an event would be of great scientific value. This is one major goal of the Very Long Baseline Array (VLBA) Fast Transient Experiment (V-FASTR), a software-based detection system installed at the VLBA. V-FASTR uses a “commensal” (piggy-back) approach, analyzing all array data continually during routine VLBA observations and identifying candidate fast transient events. Raw data can be storedmore » from a buffer memory, which enables a comprehensive off-line analysis. This is invaluable for validating the astrophysical origin of any detection. Candidates discovered by the automatic system must be reviewed each day by analysts to identify any promising signals that warrant a more in-depth investigation. To support the timely analysis of fast transient detection candidates by V-FASTR scientists, we have developed a metadata-driven, collaborative candidate review framework. The framework consists of a software pipeline for metadata processing composed of both open source software components and project-specific code written expressly to extract and catalog metadata from the incoming V-FASTR data products, and a web-based data portal that facilitates browsing and inspection of the available metadata for candidate events extracted from the VLBA radio data.« less
1992-05-01
formats, and character formats that can easily integrate graphics and text into one document. FrameMaker is one of few ERP software programs that has...easier and faster using ERP software. The DIS-II ERP software program is FrameMaker by Frame Technology, Incorporated. FrameMaker uses the X window...functions, calculus, relations, and other complicated math applications. FrameMaker permits the user to define formats for master pages, reference pages
NASA Astrophysics Data System (ADS)
Zhai, Chuanying; Zou, Zhuo; Zhou, Qin; Mao, Jia; Chen, Qiang; Tenhunen, Hannu; Zheng, Lirong; Xu, Lida
2017-07-01
This paper presents a 2.4-GHz radio frequency (RF) and ultra-wide bandwidth (UWB) hybrid real-time locating system (RTLS) for industrial enterprise Internet of Things (IoT). It employs asymmetric wireless link, that is, UWB radio is utilised for accurate positioning up to 10 cm in critical sites, whereas 2.4-GHz RF is used for tag control and coarse positioning in non-critical sites. The specified communication protocol and the adaptive tag synchronisation rate ensure reliable and deterministic access with a scalable system capacity and avoid unpredictable latency and additional energy consumption of retransmissions due to collisions. The tag, consisting of a commercial 2.4-GHz transceiver and a customised application-specific integrated circuit (ASIC) UWB transmitter (Tx), is able to achieve up to 3 years' battery life at 1600 tags per position update second with 1000 mAh battery in one cluster. The time difference of arrival (TDoA)-based positioning experiment at UWB radio is performed on the designed software-defined radio (SDR) platform.
On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.
2015-09-01
We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analysesmore » of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.« less
2008-12-09
as an antenna followed by an analog signal processing chain ( filters , RF amplifiers) followed by an analog-to- digital converter (ADC) followed by a...Figure 2.3 Block diagram of a DSP- based superheterodyne receiver. ADC RF Filter LNA IF Filter IF Amplifier Tunable Local Oscillator ADC...some band limiting filtering and amplification. In a more realistic architecture (Figure 2.3) that we call the DSP- based superheterodyne receiver, a
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Liebetreu, John; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben
2005-01-01
This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.
Modeling and Analysis of Space Based Transceivers
NASA Technical Reports Server (NTRS)
Moore, Michael S.; Price, Jeremy C.; Abbott, Ben; Liebetreu, John; Reinhart, Richard C.; Kacpura, Thomas J.
2007-01-01
This paper presents the tool chain, methodology, and initial results of a study to provide a thorough, objective, and quantitative analysis of the design alternatives for space Software Defined Radio (SDR) transceivers. The approach taken was to develop a set of models and tools for describing communications requirements, the algorithm resource requirements, the available hardware, and the alternative software architectures, and generate analysis data necessary to compare alternative designs. The Space Transceiver Analysis Tool (STAT) was developed to help users identify and select representative designs, calculate the analysis data, and perform a comparative analysis of the representative designs. The tool allows the design space to be searched quickly while permitting incremental refinement in regions of higher payoff.
Code of Federal Regulations, 2011 CFR
2011-01-01
... as that term is defined in Section 4 of the Stevenson-Wydler Technology Innovation Act of 1980, as..., software, audio/video production, technology application assessment generated pursuant to Section 11(c) of...
15 CFR 736.2 - General prohibitions and determination of applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
....-origin commodities, foreign-made commodities that are “bundled” with controlled U.S.-origin software, foreign-made software that is commingled with controlled U.S.-origin software, or foreign-made technology... of controlled U.S. content, as defined in § 734.4 of the EAR concerning the scope of the EAR. (A) It...
15 CFR 736.2 - General prohibitions and determination of applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
....-origin commodities, foreign-made commodities that are “bundled” with controlled U.S.-origin software, foreign-made software that is commingled with controlled U.S.-origin software, or foreign-made technology... of controlled U.S. content, as defined in § 734.4 of the EAR concerning the scope of the EAR. (A) It...
15 CFR 736.2 - General prohibitions and determination of applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
....-origin commodities, foreign-made commodities that are “bundled” with controlled U.S.-origin software, foreign-made software that is commingled with controlled U.S.-origin software, or foreign-made technology... of controlled U.S. content, as defined in § 734.4 of the EAR concerning the scope of the EAR. (A) It...
15 CFR 732.3 - Steps regarding the ten general prohibitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... The CCL and the Country Chart are taken together to define these license requirements. The applicable... commodity that is ‘bundled’ with controlled U.S.-origin software, foreign-made software that is commingled with controlled U.S.-origin software, or foreign-made technology that is commingled with controlled U.S...
Frequency Agile Transceiver for Advanced Vehicle Data Links
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Macias, Filiberto; Cornelius, Harold
2009-01-01
Emerging and next-generation test instrumentation increasingly relies on network communication to manage complex and dynamic test scenarios, particularly for uninhabited autonomous systems. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. Frequency agility is one characteristic of reconfigurable radios that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate a promising chipset that performs conversion of RF signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit, programmable for any frequency band between 1 MHz and 6 GHz.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke
2011-10-01
In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.
Enhancing Literacy Skills through Technology.
ERIC Educational Resources Information Center
Sistek-Chandler, Cynthia
2003-01-01
Discusses how to use technology to enhance literacy skills. Highlights include defining literacy, including information literacy; research to support reading and writing instruction; literacy software; thinking skills; organizational strategies for writing and reading; how technology can individualize literacy instruction; and a new genre of…
Radio Frequency Scanning and Simulation of Oriented Strand Board Material Property
NASA Astrophysics Data System (ADS)
Liu, Xiaojian; Zhang, Jilei; Steele, Philip. H.; Donohoe, J. Patrick
2008-02-01
Oriented strandboard (OSB) is a wood composite product with the largest market share in U.S. residential and commercial construction. Wood specific gravity (SG) and moisture content (MC) play an important role in the OSB manufacturing process. They are the two of the critical variables that manufacturers are required to monitor, locate, and control in order to produce a product with consistent quality. In this study, radio frequency scanning nondestructive evaluation (NDE) technologies evaluated the local area MC and SG of OSB panels following panel production by hot pressing. A finite element software simulation tool was used to optimize the sensor geometry and for investigating the interaction between electromagnetic field and wood dielectric properties. Our results indicate the RF scanning response is closely correlated to the MC and SG variations in OSB panels. Radio frequency NDE appears to have potential as an effective method for insuring OSB panel quality during manufacturing.
NASA Astrophysics Data System (ADS)
Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.
5G: The Convergence of Wireless Communications.
Chávez-Santiago, Raúl; Szydełko, Michał; Kliks, Adrian; Foukalas, Fotis; Haddad, Yoram; Nolan, Keith E; Kelly, Mark Y; Masonta, Moshe T; Balasingham, Ilangko
As the rollout of 4G mobile communication networks takes place, representatives of industry and academia have started to look into the technological developments toward the next generation (5G). Several research projects involving key international mobile network operators, infrastructure manufacturers, and academic institutions, have been launched recently to set the technological foundations of 5G. However, the architecture of future 5G systems, their performance, and mobile services to be provided have not been clearly defined. In this paper, we put forth the vision for 5G as the convergence of evolved versions of current cellular networks with other complementary radio access technologies. Therefore, 5G may not be a single radio access interface but rather a "network of networks". Evidently, the seamless integration of a variety of air interfaces, protocols, and frequency bands, requires paradigm shifts in the way networks cooperate and complement each other to deliver data rates of several Gigabits per second with end-to-end latency of a few milliseconds. We provide an overview of the key radio technologies that will play a key role in the realization of this vision for the next generation of mobile communication networks. We also introduce some of the research challenges that need to be addressed.
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
Pourasghar, Faramarz; Tabrizi, Jafar Sadegh; Yarifard, Khadijeh
2016-01-01
Background: Patient safety is one of the most important elements of quality of healthcare. It means preventing any harm to the patients during medical care process. Objective: This paper introduces a cost-effective tool in which the Radio Frequency Identification (RFID) technology is used to identify medical errors in hospital. Methods: The proposed clinical error management system (CEMS) is consisted of a reader device, a transfer/receiver device, a database and managing software. The reader device works using radio waves and is wireless. The reader sends and receives data to/from the database via the transfer/receiver device which is connected to the computer via USB port. The database contains data about patients’ medication orders. Results: The CEMS has the ability to identify the clinical errors before they occur and then warns the care-giver with voice and visual messages to prevent the error. This device reduces the errors and thus improves the patient safety. Conclusion: A new tool including software and hardware was developed in this study. Application of this tool in clinical settings can help the nurses prevent medical errors. It can also be a useful tool for clinical risk management. Using this device can improve the patient safety to a considerable extent and thus improve the quality of healthcare. PMID:27147802
Pourasghar, Faramarz; Tabrizi, Jafar Sadegh; Yarifard, Khadijeh
2016-04-01
Patient safety is one of the most important elements of quality of healthcare. It means preventing any harm to the patients during medical care process. This paper introduces a cost-effective tool in which the Radio Frequency Identification (RFID) technology is used to identify medical errors in hospital. The proposed clinical error management system (CEMS) is consisted of a reader device, a transfer/receiver device, a database and managing software. The reader device works using radio waves and is wireless. The reader sends and receives data to/from the database via the transfer/receiver device which is connected to the computer via USB port. The database contains data about patients' medication orders. The CEMS has the ability to identify the clinical errors before they occur and then warns the care-giver with voice and visual messages to prevent the error. This device reduces the errors and thus improves the patient safety. A new tool including software and hardware was developed in this study. Application of this tool in clinical settings can help the nurses prevent medical errors. It can also be a useful tool for clinical risk management. Using this device can improve the patient safety to a considerable extent and thus improve the quality of healthcare.
New radio meteor detecting and logging software
NASA Astrophysics Data System (ADS)
Kaufmann, Wolfgang
2017-08-01
A new piece of software ``Meteor Logger'' for the radio observation of meteors is described. It analyses an incoming audio stream in the frequency domain to detect a radio meteor signal on the basis of its signature, instead of applying an amplitude threshold. For that reason the distribution of the three frequencies with the highest spectral power are considered over the time (3f method). An auto notch algorithm is developed to prevent the radio meteor signal detection from being jammed by a present interference line. The results of an exemplary logging session are discussed.
A Fixed-Point Phase Lock Loop in a Software Defined Radio
2002-09-01
code from a simulation model. This feature will allow easy implementation on an FPGA as C can be easily converted to VHDL , the language required...this is equivalent to the MATLAB code implementation in Appendix A. The PD takes the input signal 40 and multiplies it by the in-phase and...stop to 60 mph in 3.1 seconds (the fastest production car ever built is the Porsche Carrera twin turbo which was tested at 0-60 mph in 3.1 seconds
Universal Frequency Domain Baseband Receiver Structure for Future Military Software Defined Radios
2010-09-01
selective channels, i.e., it may have a poor performance at good conditions [4]. Military systems may require a direct sequence ( DS ) component for...frequency bins using a spreading code. This is called the MC- CDMA signal. Note that spreading does not need to cover all the subcarriers but just a few, like...preambles with appropriate frequency domain properties. A DS component can be added as usually. The FDP block then includes this code as a reference
NASA Astrophysics Data System (ADS)
DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta
2012-06-01
Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.
Cognitive bio-radar: The natural evolution of bio-signals measurement.
Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana
2016-10-01
In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.
Development of wide band digital receiver for atmospheric radars using COTS board based SDR
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.
2016-07-01
Digital receiver extracts the received echo signal information, and is a potential subsystem for atmospheric radar, also referred to as wind profiling radar (WPR), which provides the vertical profiles of 3-dimensional wind vector in the atmosphere. This paper presents the development of digital receiver using COTS board based Software Defined Radio technique, which can be used for atmospheric radars. The developmental work is being carried out at National Atmospheric Research Laboratory (NARL), Gadanki. The digital receiver consists of a commercially available software defined radio (SDR) board called as universal software radio peripheral B210 (USRP B210) and a personal computer. USRP B210 operates over a wider frequency range from 70 MHz to 6 GHz and hence can be used for variety of radars like Doppler weather radars operating in S/C bands, in addition to wind profiling radars operating in VHF, UHF and L bands. Due to the flexibility and re-configurability of SDR, where the component functionalities are implemented in software, it is easy to modify the software to receive the echoes and process them as per the requirement suitable for the type of the radar intended. Hence, USRP B210 board along with the computer forms a versatile digital receiver from 70 MHz to 6 GHz. It has an inbuilt direct conversion transceiver with two transmit and two receive channels, which can be operated in fully coherent 2x2 MIMO fashion and thus it can be used as a two channel receiver. Multiple USRP B210 boards can be synchronized using the pulse per second (PPS) input provided on the board, to configure multi-channel digital receiver system. RF gain of the transceiver can be varied from 0 to 70 dB. The board can be controlled from the computer via USB 3.0 interface through USRP hardware driver (UHD), which is an open source cross platform driver. The USRP B210 board is connected to the personal computer through USB 3.0. Reference (10 MHz) clock signal from the radar master oscillator is used to lock the board, which is essential for deriving Doppler information. Input from the radar analog receiver is given to one channel of USRP B210, which is down converted to baseband. 12-bit ADC present on the board digitizes the signal and produces I (in-phase) and Q (quadrature-phase) data. The maximum sampling rate possible is about 61 MSPS. The I and Q (time series) data is sent to PC via USB 3.0, where the signal processing is carried out. The online processing steps include decimation, range gating, decoding, coherent integration and FFT computation (optional). The processed data is then stored in the hard disk. C++ programming language is used for developing the real time signal processing. Shared memory along with multi threading is used to collect and process data simultaneously. Before implementing the real time operation, stand alone test of the board was carried out through GNU radio software and the base band output data obtained is found satisfactory. Later the board is integrated with the existing Lower Atmospheric Wind Profiling radar at NARL. The radar receive IF output at 70 MHz is given to the board and the real-time radar data is collected. The data is processed off-line and the range-doppler spectrum is obtained. Online processing software is under progress.
47 CFR 80.157 - Radio officer defined.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Radio officer defined. 80.157 Section 80.157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Operator Requirements Ship Station Operator Requirements § 80.157 Radio officer defined...
NASA space station software standards issues
NASA Technical Reports Server (NTRS)
Tice, G. D., Jr.
1985-01-01
The selection and application of software standards present the NASA Space Station Program with the opportunity to serve as a pacesetter for the United States software in the area of software standards. The strengths and weaknesses of each of the NASA defined software standards issues are summerized and discussed. Several significant standards issues are offered for NASA consideration. A challenge is presented for the NASA Space Station Program to serve as a pacesetter for the U.S. Software Industry through: (1) Management commitment to software standards; (2) Overall program participation in software standards; and (3) Employment of the best available technology to support software standards
48 CFR 252.204-7008 - Export-Controlled Items.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Defense items, defined in the Arms Export Control Act, 22 U.S.C. 2778(j)(4)(A), as defense articles, defense services, and related technical data, and further defined in the ITAR, 22 CFR part 120. (2) Items, defined in the EAR as “commodities, software, and technology,” terms that are also defined in the EAR, 15...
48 CFR 252.204-7008 - Export-Controlled Items.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Defense items, defined in the Arms Export Control Act, 22 U.S.C. 2778(j)(4)(A), as defense articles, defense services, and related technical data, and further defined in the ITAR, 22 CFR part 120. (2) Items, defined in the EAR as “commodities, software, and technology,” terms that are also defined in the EAR, 15...
48 CFR 252.204-7008 - Export-Controlled Items.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Defense items, defined in the Arms Export Control Act, 22 U.S.C. 2778(j)(4)(A), as defense articles, defense services, and related technical data, and further defined in the ITAR, 22 CFR part 120. (2) Items, defined in the EAR as “commodities, software, and technology,” terms that are also defined in the EAR, 15...
Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services
NASA Astrophysics Data System (ADS)
Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui
2017-09-01
In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.
47 CFR 73.9007 - Robustness requirements for covered demodulator products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RADIO SERVICES RADIO BROADCAST SERVICES Digital Broadcast Television Redistribution Control § 73.9007...-available tools or equipment also means specialized electronic tools or software tools that are widely... requirements set forth in this subpart. Such specialized electronic tools or software tools includes, but is...
ERIC Educational Resources Information Center
Reed, Penny; Bowser, Gayl
This guide defines assistive technology as specialized hardware and software equipment used by students with disabilities to increase their ability to participate in tasks of learning and daily living and function as independently as possible. Types of assistive technology are listed, and information resources about assistive technology are noted.…
GPU Based Software Correlators - Perspectives for VLBI2010
NASA Technical Reports Server (NTRS)
Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun
2010-01-01
Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.
NASA Tech Briefs, January 2001. Volume 25, No. 1
NASA Technical Reports Server (NTRS)
2001-01-01
The topics include: 1) A "Model" of Interactive Engineering; 2) Feature Section: Communications Technology; 3) lnReview; 4) Application Briefs; 5) Submillimeter-Wave Image Sensor; 6) Ultrasonic/Sonic Drill/Corers With Integrated Sensors; 7) Normally Closed, Piezoelectrically Actuated Microvalve; 8) Magnetostrictively Actuated Valves for Cryosurgical Probes; 9) Remote Sensing of Electric Fields in Clouds; 10) Wireless-Communication Headset Subsystem To Enhance Signaling; 11) Power Amplifier With 9 to 13 dB of Gain From 65 to 146 GHz; 12) Humidity Interlock for Protecting a Cooled Laser Crystal; 13) A Lightweight Ambulatory Physiological Monitoring System; 14) Improvements in a Lightning-Measuring Instrument; 15) Broad-Band, Noninvasive Radio-Frequency Current Probe; 16) Web-Based Technology Distributes Lean Models; 17) Software Guides Aeroelastic-Systems Design; and 18) Postprocessing Software for Micromechanics Analysis Code. A Photonics West 2001 Preview Tech Brief supplement to this January 2001 issue is also included.
31 CFR 544.206 - Exempt transactions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... informational materials, as defined in § 544.304, whether commercial or otherwise, regardless of format or... exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 541.206 - Exempt transactions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... country and the exportation to any country of information or informational materials, as defined in § 541... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to...
31 CFR 549.206 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 774, or to the exportation of goods, technology, or software for use in...
31 CFR 544.206 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... informational materials, as defined in § 544.304, whether commercial or otherwise, regardless of format or... exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 542.206 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... country and the exportation to any country of information or informational materials, as defined in § 542... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 799, or to the exportation of goods, technology or software...
31 CFR 542.206 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... country and the exportation to any country of information or informational materials, as defined in § 542... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 799, or to the exportation of goods, technology or software...
31 CFR 541.206 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... country and the exportation to any country of information or informational materials, as defined in § 541... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to...
31 CFR 588.206 - Exempt transactions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined in § 588.304, whether commercial or otherwise, regardless of format or medium of transmission, are... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to the provision...
31 CFR 544.206 - Exempt transactions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... informational materials, as defined in § 544.304, whether commercial or otherwise, regardless of format or... exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 541.206 - Exempt transactions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... country and the exportation to any country of information or informational materials, as defined in § 541... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to...
31 CFR 548.206 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use in the...
31 CFR 548.206 - Exempt transactions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use in the...
31 CFR 549.206 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 774, or to the exportation of goods, technology, or software for use in...
31 CFR 541.206 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... country and the exportation to any country of information or informational materials, as defined in § 541... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to...
31 CFR 544.206 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... informational materials, as defined in § 544.304, whether commercial or otherwise, regardless of format or... exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 544.206 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... informational materials, as defined in § 544.304, whether commercial or otherwise, regardless of format or... exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 542.206 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... country and the exportation to any country of information or informational materials, as defined in § 542... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 799, or to the exportation of goods, technology or software...
31 CFR 541.206 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... country and the exportation to any country of information or informational materials, as defined in § 541... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology or software, or to...
31 CFR 548.206 - Exempt transactions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use in the...
31 CFR 549.206 - Exempt transactions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 774, or to the exportation of goods, technology, or software for use in...
31 CFR 549.206 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 774, or to the exportation of goods, technology, or software for use in...
31 CFR 548.206 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use in the...
31 CFR 548.206 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... country and the exportation to any country of any information or informational materials, as defined in... authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use in the...
31 CFR 542.206 - Exempt transactions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... country and the exportation to any country of information or informational materials, as defined in § 542... regulation or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730 through 799, or to the exportation of goods, technology or software...
Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging
NASA Astrophysics Data System (ADS)
Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.
2016-12-01
Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we can localize the radio emission originating from the head or flanks of the CMEs in spite of the phase errors introduced by uncertainties in orbit and clock estimation.
47 CFR 64.619 - VRS Access Technology Reference Platform and administrator.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Access Technology Reference Platform shall be a software product that performs consistently with the...) Compensation. The TRS Fund, as defined by § 64.604(a)(5)(iii) of this subpart, may be used to compensate the...
47 CFR 64.619 - VRS Access Technology Reference Platform and administrator.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Access Technology Reference Platform shall be a software product that performs consistently with the...) Compensation. The TRS Fund, as defined by § 64.604(a)(5)(iii) of this subpart, may be used to compensate the...
A general method for radio spectrum efficiency defining
NASA Astrophysics Data System (ADS)
Ramadanovic, Ljubomir M.
1986-08-01
A general method for radio spectrum efficiency defining is proposed. Although simple it can be applied to various radio services. The concept of spectral elements, as information carriers, is introduced to enable the organization of larger spectral spaces - radio network models - characteristic for a particular radio network. The method is applied to some radio network models, concerning cellular radio telephone systems and digital radio relay systems, to verify its unified approach capability. All discussed radio services operate continuously.
The Radio JOVE Project - Shoestring Radio Astronomy
NASA Technical Reports Server (NTRS)
Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.
2010-01-01
Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials
2014-10-01
44 Table 19: Raspberry Pi Information...boards – These are single board devices targeted to education and embedding, the best known being the Raspberry Pi ; and 3. Development boards – These...popular, as it has high performance processor (perhaps 4 times the power of a Raspberry Pi ) with dual core processors running at 1.6 GHz and the cost is
Protected transitional solution to transformational satellite communications
NASA Astrophysics Data System (ADS)
Brand, Jerry C.
2005-06-01
As the Warfighter progresses into the next generation battlefield, transformational communications become evident as an enabling technology. Satellite communications become even more vital as the battles range over greater non-contiguous spaces. While current satellite communications provide suitable beyond line-of-sight communications and the Transformational Communications Architecture (TCA) sets the stage for sound information exchange, a realizable transition must occur to ensure successful succession to this higher level. This paper addresses the need for a planned escalation to the next generation satellite communications architecture and offers near-term alternatives. Commercial satellite systems continue to enable the Warfighter to reach back to needed information resources, providing a large majority of available bandwidth. Four areas of concentration for transition include encrypted Telemetry, Tracking and Control (or Command) (TT&C), encrypted and covered data, satellite attack detection and protection, and operational mobility. Solution methodologies include directly embedding COMSEC devices in the satellites and terminals, and supplementing existing terminals with suitable equipment and software. Future satellites planned for near-term launches can be adapted to include commercial grade and higher-level secure equipment. Alternately, the expected use of programmable modems (Software Defined Radios (SDR)) enables incorporation of powerful cipher methods approaching military standards as well as waveforms suitable for on-the-move operation. Minimal equipment and software additions on the satellites can provide reasonable attack detection and protection methods in concert with the planned satellite usage. Network management suite modifications enable cohesive incorporation of these protection schemes. Such transitional ideas offer a smooth and planned transition as the TCA takes life.
PySE: Software for extracting sources from radio images
NASA Astrophysics Data System (ADS)
Carbone, D.; Garsden, H.; Spreeuw, H.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Broderick, J. W.; Rol, E.; Law, C.; Molenaar, G.; Wijers, R. A. M. J.
2018-04-01
PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce the LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their interaction with LOFAR images, concluding with the current status of PySE and its future development.
31 CFR 576.209 - Exempt transactions.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., as defined in § 576.306, whether commercial or otherwise, regardless of format or medium of... does not exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 576.209 - Exempt transactions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., as defined in § 576.306, whether commercial or otherwise, regardless of format or medium of... does not exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
31 CFR 576.209 - Exempt transactions.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., as defined in § 576.306, whether commercial or otherwise, regardless of format or medium of... does not exempt or authorize transactions incident to the exportation of software subject to the Export Administration Regulations, 15 CFR parts 730-774, or to the exportation of goods, technology, or software for use...
NASA Technical Reports Server (NTRS)
Bretmersky, Steven C.; Bishop, William D.; Dailey, Justin E.; Chevalier, Christine T.
2014-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is performing communications systems research for the Unmanned Aircraft System (UAS) in the National Airspace System (NAS) Project. One of the goals of the communications element is to select and test a communications technology for the UAS Control and Non-Payload Communications (CNPC) link. The GRC UAS Modeling and Simulation (M/S) Sub Team will evaluate the performance of several potential technologies for the CNPC link through detailed software simulations. In parallel, an industry partner will implement a technology in hardware to be used for flight testing. The task necessitated a technical assessment of existing Radio Frequency (RF) communications technologies to identify the best candidate systems for use as the UAS CNPC link. The assessment provides a basis for selecting the technologies for the M/S effort and the hardware radio design. The process developed for the technical assessments for the Future Communications Study1 (FCS) was used as an initial starting point for this assessment. The FCS is a joint Federal Aviation Administration (FAA) and Eurocontrol study on technologies for use as a future aeronautical communications link. The FCS technology assessment process methodology can be applied to the UAS CNPC link; however the findings of the FCS are not directly applicable because of different requirements between a CNPC link and a general aeronautical data link. Additional technologies were added to the potential technologies list from the State of the Art Unmanned Aircraft System Communication Assessment developed by NASA GRC2. This document investigates the state of the art of communications as related to UAS. A portion of the document examines potential communications systems for a UAS communication architecture. Like the FCS, the state of the art assessment surveyed existing communications technologies. It did not, however, perform a detailed assessment of the technology necessary to recommend a technology for the UAS CNPC link. The technical assessment process, as shown in Figure 1, consists of the following steps. First, candidate RF communications technologies are identified. An initial review of each of these technologies is then performed to determine if the technology appears to be a good candidate and requires further review. Any technology that can be shown to be inadequate at that point is removed from consideration to allow for more detailed analysis of the remaining technologies. Criteria for the detailed assessments are defined and a scoring methodology is devised. This is followed by the detailed review and scoring of each technology. The least favorable technologies are removed during the process until only the few best candidates remain.
A Lossless Network for Data Acquisition
NASA Astrophysics Data System (ADS)
Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw
2017-06-01
The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.
Increase in Efficiency of Use of Pedestrian Radiation Portal Monitors
NASA Astrophysics Data System (ADS)
Solovev, D. B.; Merkusheva, A. E.
2017-11-01
Most international airports in the world use radiation portal monitors (RPM) for primary radiation control organization. During the exploitation pedestrian radiation portal monitors operators (in the Russian Federation it is a special subdivision of customs officials) have certain problems related to the search of an ionizing radiation source causing the alarm signal of a radiation monitor. Radiation portal monitors at standard (factory) settings have to find out the illegal moving of the radioisotopes moved by physical persons passing through a controlled zone and having a steady radiation by the gamma or neutron channel. The problem is that recently the number of the ownerships who underwent treatment or medical diagnostics with the use of radio pharmaceuticals considerably increased, i.e,. ownerships represent such an ionizing radiation source. The operator of the radiation portal monitor has to define very quickly whether the ownership is a violator (takes unsolved radioisotopes illegally) or is just a patient of the clinic who underwent treatment/diagnostics with the use of radio pharmaceuticals. The research showing the radioisotopes which are most often used in the medical purposes are given in article, it is offered to use the new software developed by the authors allowing the operator of the radiation portal monitor to define the location of the ownership which has such ionizing radiation source by the activity of radiation similar to the radiation from radio pharmaceuticals.
PNT Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sands, Obed
2017-01-01
This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.
Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments
NASA Technical Reports Server (NTRS)
Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa
2017-01-01
Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.
Software life cycle methodologies and environments
NASA Technical Reports Server (NTRS)
Fridge, Ernest
1991-01-01
Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.
Tactically Extensible and Modular Communications - X-Band TEMCOM-X
NASA Technical Reports Server (NTRS)
Sims, William Herbert; Varnavas, Kosta A.; Casas, Joseph; Spehn, Stephen L.; Kendrick, Neal; Cross, Stephen; Sanderson, Paul; Booth, Janet C.
2015-01-01
This paper will discuss a proposed CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Protoflight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.5U CubeSat volume. Extensible and modular communications for CubeSat technologies will partially mitigate current capability gaps between traditional strategic space platforms and lower-cost small satellite solutions. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications), while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.
Towards an Imaging Mid-Infrared Heterodyne Spectrometer
NASA Technical Reports Server (NTRS)
Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.
2012-01-01
We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.
Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T
2015-01-01
Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.
NASA Astrophysics Data System (ADS)
Kumar, Sameer; Kadow, Brooke B.; Lamkin, Melissa K.
2011-05-01
As radio-frequency identification (RFID) implementation becomes more widespread it is important for managers to consider if this technology is right for their businesses. This study examines challenges of RFID implementation along with a cost-benefit analysis of a pharmaceuticals manufacturer's supply chain. Research was gathered from a variety of sources on the topic of RFID to provide an in-depth analysis of challenges and benefits found with RFID systems. Furthermore, the study reviews the real case applications of the RFID technology in healthcare and customer services. Many of the challenges with RFID stem from improper planning of the synchronisation of the supply chain and the integration of RFID technology into facilities and software systems. Customer privacy, excess information and obsolete technology are also of concern to companies considering RFID. Benefits such as increased information sharing, product visibility and real-time information help to offset these challenges. In addition, pharmaceuticals manufacturer real case application showed cost savings from reducing labour and decreased opportunities for lost product counteract the expense to implement an RFID system. This study will be of value to managers who are attempting to implement RFID technology in their companies. It is intended that readers, both academics and practitioners, will be able to identify possible challenges and mitigate them as the RFID technology is put into practice.
Flexible communications for battlespace 2000
NASA Astrophysics Data System (ADS)
Seiler, Thomas M.
2000-08-01
The advent of software-defined radios (products of DSP) with embedded processors capable of performing, communications functions (i.e., modulation) makes it possible for networks of radios to operate efficiently by changing its transmission characteristics (waveform) to fit the input data bandwidth requirements commensurate with received Eb/N0. It is also now feasible to have embedded within the network of radios a networking system capable of allocating bandwidth in accordance with current needs and priorities. The subject of battlefield networking can now also be addressed. A system with the multiple degrees of freedom (e.g., ability to manually and automatically change communications parameters to improve communications performance, spectrum management and the ability to incorporate different mission processing support) will provide the warfighter, those who support the warfighter and the rapidly expanding mission of our armed forces (i.e., peacekeeping, anti-terrorism) to meet an ever-changing mission and operational environment. This paper will address how such a robust communications system will enhance the mission of the specialist and make the products of his efforts a real-time tool for the shooter who must operate within the digitized battlespace.
NASA Astrophysics Data System (ADS)
Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Dembinski, H.; Denkiewicz, A.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rivera, H.; Riviére, C.; Rizi, V.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Taşcău, O.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.
2011-04-01
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.
Open Radio Communications Architecture Core Framework V1.1.0 Volume 1 Software Users Manual
2005-02-01
on a PC utilizing the KDE desktop that comes with Red Hat Linux . The default desktop for most Red Hat Linux installations is the GNOME desktop. The...SCA) v2.2. The software was designed for a desktop computer running the Linux operating system (OS). It was developed in C++, uses ACE/TAO for CORBA...middleware, Xerces for the XML parser, and Red Hat Linux for the Operating System. The software is referred to as, Open Radio Communication
Protocol independent transmission method in software defined optical network
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng
2016-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.
NASA Astrophysics Data System (ADS)
Maoz, Dan; Loeb, Abraham
2017-06-01
If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com; Department of Physics, University of Mumbai, Kalina, Santacruz; Sahasrabudhe, S. N.
2014-01-15
This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variationmore » in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.« less
Cížek, Martin; Hucl, Václav; Hrabina, Jan; Smíd, Radek; Mikel, Břetislav; Lazar, Josef; Cíp, Ondřej
2014-01-20
A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).
Čížek, Martin; Hucl, Václav; Hrabina, Jan; Šmíd, Radek; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej
2014-01-01
A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. Astabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10−11. PMID:24448169
Defense AT and L. Volume 42, Number 1
2013-02-01
Agnish The U.S. Army late last year began equipping brigade combat teams with its first package of radios, satellite systems, software applications...Army’s first package of radios, satellite systems, software applications, smartphone-like devices, and other network components that provide integrated... satellite communications, intelligence, mission command applications, and the integration of C4ISR equip- ment onto various vehicle platforms. This
Radio Synthesis Imaging - A High Performance Computing and Communications Project
NASA Astrophysics Data System (ADS)
Crutcher, Richard M.
The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.
48 CFR 2439.107 - Contract clauses.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Departmental automated information systems or applications as they are defined in the clause. (b) The... solicitations and contracts under which the contractor will provide information technology hardware, software or...
48 CFR 2439.107 - Contract clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Departmental automated information systems or applications as they are defined in the clause. (b) The... solicitations and contracts under which the contractor will provide information technology hardware, software or...
48 CFR 2439.107 - Contract clauses.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Departmental automated information systems or applications as they are defined in the clause. (b) The... solicitations and contracts under which the contractor will provide information technology hardware, software or...
Direct broadcast satellite-radio market, legal, regulatory, and business considerations
NASA Technical Reports Server (NTRS)
Sood, Des R.
1991-01-01
A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.
Direct broadcast satellite-radio market, legal, regulatory, and business considerations
NASA Astrophysics Data System (ADS)
Sood, Des R.
1991-03-01
A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Control List (CCL) that includes “items”—i.e., “commodities,” “software,” and “technology”—subject to the.... 1 to this part, and Supplement No. 2 to this part contains the General Technology and Software Notes... the CCL that are defined in part 772 (Definitions of Terms), or for purposes of ECCNs, where a...
Mobile radio alternative systems study traffic model
NASA Astrophysics Data System (ADS)
Tucker, W. T.; Anderson, R. E.
1983-06-01
The markets for mobile radio services in non-urban areas of the United States are examined for the years 1985-2000. Three market categories are identified. New Services are defined as those for which there are different expressed ideas but which are not now met by any application of available technology. The complete fulfillment of the needs requires nationwide radio access to vehicles without knowledge of vehicle location, wideband data transmission from remote sites, one- and two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The commercial and public services market of interest to the study is drawn from existing users of mobile radio in non-urban areas who are dissatisfied with the geographical range or coverage of their systems. The mobile radio telephone market comprises potential users who require access to the public switched telephone network in areas that are not likely to be served by the traditional growth patterns of terrestrial mobile telephone services. Conservative, likely, and optimistic estimates of the markets are presented in terms of numbers of vehicles that will be served and the radio traffic they will generate.
Mobile radio alternative systems study. Volume 1: Traffic model
NASA Technical Reports Server (NTRS)
Tucker, W. T.; Anderson, R. E.
1983-01-01
The markets for mobile radio services in non-urban areas of the United States are examined for the years 1985-2000. Three market categories are identified. New Services are defined as those for which there are different expressed ideas but which are not now met by any application of available technology. The complete fulfillment of the needs requires nationwide radio access to vehicles without knowledge of vehicle location, wideband data transmission from remote sites, one- and two way exchange of short data and control messages between vehicles and dispatch or control centers, and automatic vehicle location (surveillance). The commercial and public services market of interest to the study is drawn from existing users of mobile radio in non-urban areas who are dissatisfied with the geographical range or coverage of their systems. The mobile radio telephone market comprises potential users who require access to the public switched telephone network in areas that are not likely to be served by the traditional growth patterns of terrestrial mobile telephone services. Conservative, likely, and optimistic estimates of the markets are presented in terms of numbers of vehicles that will be served and the radio traffic they will generate.
48 CFR 2439.107 - Contract clauses.
Code of Federal Regulations, 2013 CFR
2013-10-01
... have access to any HUD information system(s) as defined in the clause. (b) The contracting officer... and contracts under which the contractor will provide information technology hardware, software or...
48 CFR 2439.107 - Contract clauses.
Code of Federal Regulations, 2014 CFR
2014-10-01
... have access to any HUD information system(s) as defined in the clause. (b) The contracting officer... and contracts under which the contractor will provide information technology hardware, software or...
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
1993-05-01
limitation of the software package would not allow DATE/I’ME FREQUENCY (kHz) the program to run over 2359 to 0001 UT. This was 18.1 19.0 21.4 24.0...Capability (LWPC), software package devel- oped at NOSC (FERGUSON et al 1989) and adapted by us to the Macintosh personal computer. We find that this... software works very well. Our investigations are to I evaluate and devise geophysical models to be used with . LWPC in assessing VLF communications and
Push for Cheese: A Metaphor for Software Usability
NASA Astrophysics Data System (ADS)
Radziwill, Nicole; Shelton, Amy
2005-12-01
At the National Radio Astronomy Observatory's (NRAO) Science Center in Green Bank, W. Va., visitors curious about radio astronomy and the observatory's history and operations will discover an educational, entertaining experience. Employees also visit the science center, but their thoughts are more on afternoon snacks rather than distant galaxies. The employees of NRAO's Software Development Division in Green Bank have gained tremendous insight on the topic of software usability from many visits to the Science Center Café by pontificating upon the wisdom inherent in the design and use of the liquid cheese dispenser there.
SDN based millimetre wave radio over fiber (RoF) network
NASA Astrophysics Data System (ADS)
Amate, Ahmed; Milosavljevic, Milos; Kourtessis, Pandelis; Robinson, Matthew; Senior, John M.
2015-01-01
This paper introduces software-defined, millimeter Wave (mm-Wave) networks with Radio over Fiber (RoF) for the delivery of gigabit connectivity required to develop fifth generation (5G) mobile. This network will enable an effective open access system allowing providers to manage and lease the infrastructure to service providers through unbundling new business models. Exploiting the inherited benefits of RoF, complete base station functionalities are centralized at the edges of the metro and aggregation network, leaving remote radio heads (RRHs) with only tunable filtering and amplification. A Software Defined Network (SDN) Central Controller (SCC) is responsible for managing the resource across several mm-Wave Radio Access Networks (RANs) providing a global view of the several network segments. This ensures flexible resource allocation for reduced overall latency and increased throughput. The SDN based mm-Wave RAN also allows for inter edge node communication. Therefore, certain packets can be routed between different RANs supported by the same edge node, reducing latency. System level simulations of the complete network have shown significant improvement of the overall throughput and SINR for wireless users by providing effective resource allocation and coordination among interfering cells. A new Coordinated Multipoint (CoMP) algorithm exploiting the benefits of the SCC global network view for reduced delay in control message exchange is presented, accounting for a minimum packet delay and limited Channel State Information (CSI) in a Long Term Evolution-Advanced (LTE-A), Cloud RAN (CRAN) configuration. The algorithm does not require detailed CSI feedback from UEs but it rather considers UE location (determined by the eNB) as the required parameter. UE throughput in the target sector is represented using a Cumulative Distributive Function (CDF). The drawn characteristics suggest that there is a significant 60% improvement in UE cell edge throughput following the application, in the coordinating cells, of the new CoMP algorithm. Results also show a further improvement of 36% in cell edge UE throughput when eNBs are centralized in a CRAN backhaul architecture. The SINR distribution of UEs in the cooperating cells has also been evaluated using a box plot. As expected, UEs with CoMP perform better demonstrating an increase of over 2 dB at the median between the transmission scenarios.
Some characteristics of the international space channel
NASA Technical Reports Server (NTRS)
Noack, T. L.; Poland, W. B., Jr.
1975-01-01
Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.
NASA Astrophysics Data System (ADS)
The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.
Manager’s Guide to Technology Transition in an Evolutionary Acquisition Environment
2005-06-01
program managers, product managers, staffs, and organizations that manage the development , procurement, production, and fielding of systems...rapidly advancing technologies. Technology transitions can occur during the development of systems, or even after a system has been in the field ...Documentation Evolutionary acquisition is an acquisition strategy that defines, develops , produces or acquires, and fields an initial hardware or software
NASA Astrophysics Data System (ADS)
Jaworski, Allan
1993-08-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) will serve as a major resource for the earth science community, supporting both command and control of complex instruments onboard the EOS spacecraft and the archiving, distribution, and analysis of data. The scale of EOSDIS and the volume of multidisciplinary research to be conducted using EOSDIS resources will produce unparalleled needs for technology transparency, data integration, and system interoperability. The scale of this effort far outscopes any previous scientific data system in its breadth or operational and performance needs. Modern hardware technology can meet the EOSDIS technical challenge. Multiprocessing speeds of many giga-flops are being realized by modern computers. Online storage disk, optical disk, and videocassette libraries with storage capacities of many terabytes are now commercially available. Radio frequency and fiber optics communications networks with gigabit rates are demonstrable today. It remains, of course, to perform the system engineering to establish the requirements, architectures, and designs that will implement the EOSDIS systems. Software technology, however, has not enjoyed the price/performance advances of hardware. Although we have learned to engineer hardware systems which have several orders of magnitude greater complexity and performance than those built in the 1960's, we have not made comparable progress in dramatically reducing the cost of software development. This lack of progress may significantly reduce our capabilities to achieve economically the types of highly interoperable, responsive, integraded, and productive environments which are needed by the earth science community. This paper describes some of the EOSDIS software requirements and current activities in the software community which are applicable to meeting the EOSDIS challenge. Some of these areas include intelligent user interfaces, software reuse libraries, and domain engineering. Also included are discussions of applicable standards in the areas of operating systems interfaces, user interfaces, communications interfaces, data transport, and science algorithm support, and their role in supporting the software development process.
Future payload technology requirements study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology advances needed for an overall mission model standpoint as well as those for individual shuttle payloads are defined. The technology advances relate to the mission scientific equipment, spacecraft subsystems that functionally support this equipment, and other payload-related equipment, software, and environment necessary to meet broad program objectives. In the interest of obtaining commonality of requirements, the study was structured according to technology categories rather than in terms of individual payloads.
Emerging Technologies for Software-Reliant Systems of Systems
2010-09-01
conditions, such as temperature, sound, vibration, light intensity , motion, or proximity to objects [Raghavendra 2006]. Cognitive Network A cognitive...systems evolutionary development emergent behavior geographic distribution Maier also defines four types of SoS based on their management...by multinational teams. Many organizations use offshoring as a way to reduce costs of software development. Large web- based systems often use
A solar radio dynamic spectrograph with flexible temporal-spectral resolution
NASA Astrophysics Data System (ADS)
Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao
2017-09-01
Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1-32 k) and time cadences (5 ms-10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms-10 s) and spectral (3 kHz˜320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.
NEXUS - Resilient Intelligent Middleware
NASA Astrophysics Data System (ADS)
Kaveh, N.; Hercock, R. Ghanea
Service-oriented computing, a composition of distributed-object computing, component-based, and Web-based concepts, is becoming the widespread choice for developing dynamic heterogeneous software assets available as services across a network. One of the major strengths of service-oriented technologies is the high abstraction layer and large granularity level at which software assets are viewed compared to traditional object-oriented technologies. Collaboration through encapsulated and separately defined service interfaces creates a service-oriented environment, whereby multiple services can be linked together through their interfaces to compose a functional system. This approach enables better integration of legacy and non-legacy services, via wrapper interfaces, and allows for service composition at a more abstract level especially in cases such as vertical market stacks. The heterogeneous nature of service-oriented technologies and the granularity of their software components makes them a suitable computing model in the pervasive domain.
NASA Astrophysics Data System (ADS)
Watson, Clifton L.; Biswas, Subir
2014-06-01
With an increasing demand for spectrum, dynamic spectrum access (DSA) has been proposed as viable means for providing the flexibility and greater access to spectrum necessary to meet this demand. Within the DSA concept, unlicensed secondary users temporarily "borrow" or access licensed spectrum, while respecting the licensed primary user's rights to that spectrum. As key enablers for DSA, cognitive radios (CRs) are based on software-defined radios which allow them to sense, learn, and adapt to the spectrum environment. These radios can operate independently and rapidly switch channels. Thus, the initial setup and maintenance of cognitive radio networks are dependent upon the ability of CR nodes to find each other, in a process known as rendezvous, and create a link on a common channel for the exchange of data and control information. In this paper, we propose a novel rendezvous protocol, known as QLP, which is based on Q-learning and the p-persistent CSMA protocol. With the QLP protocol, CR nodes learn which channels are best for rendezvous and thus adapt their behavior to visit those channels more frequently. We demonstrate through simulation that the QLP protocol provides a rendevous capability for DSA environments with different dynamics of PU activity, while attempting to achieve the following performance goals: (1) minimize the average time-to-rendezvous, (2) maximize system throughput, (3) minimize primary user interference, and (4) minimize collisions among CR nodes.
STAR: FPGA-based software defined satellite transponder
NASA Astrophysics Data System (ADS)
Davalle, Daniele; Cassettari, Riccardo; Saponara, Sergio; Fanucci, Luca; Cucchi, Luca; Bigongiari, Franco; Errico, Walter
2013-05-01
This paper presents STAR, a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites, developed in collaboration with INTECS and SITAEL companies. With respect to state-of-the-art EO transponders, STAR includes the possibility of scientific data transfer thanks to the 40 Mbps downlink data-rate. This feature represents an important optimization in terms of hardware mass, which is important for EO small satellites. Furthermore, in-flight re-configurability of communication parameters via telecommand is important for in-orbit link optimization, which is especially useful for low orbit satellites where visibility can be as short as few hundreds of seconds. STAR exploits the principles of digital radio to minimize the analog section of the transceiver. 70MHz intermediate frequency (IF) is the interface with an external S/X band radio-frequency front-end. The system is composed of a dedicated configurable high-speed digital signal processing part, the Signal Processor (SP), described in technology-independent VHDL working with a clock frequency of 184.32MHz and a low speed control part, the Control Processor (CP), based on the 32-bit Gaisler LEON3 processor clocked at 32 MHz, with SpaceWire and CAN interfaces. The quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss which is less than 0.5 dB at BER = 10-5 for the RX chain. The IF ports require 8-bit precision. The system prototype is fitted on the Xilinx Virtex 6 VLX75T-FF484 FPGA of which a space-qualified version has been announced. The total device occupation is 82 %.
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...
SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY
Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...
NASA's Software Bank (Signal Group)
NASA Technical Reports Server (NTRS)
1992-01-01
A COSMIC program helped the Signal Group to provide a communications system linking a desert area without communications facilities to civilization. The system was developed for a hunting party of wealthy Middle Eastern men. The latest in two-way radio technology was incorporated into a portable system with a small inflatable tethered blimp, which served as a solar-powered relay station. The program, Transverse Mercator Map Projection of the Spheroid Using Transformation of the Elliptic Integral, enabled the company to develop the system without the aid of accurate satellite derived terrain data.
NASA Astrophysics Data System (ADS)
Molenaar, G.; Smirnov, O.
2018-07-01
KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN is to save time and prevent frustration in setting up of scientific pipelines, and to assist in achieving scientific reproducibility.
Radios in the Classroom: Curriculum Integration and Communication Skills. ERIC Digest.
ERIC Educational Resources Information Center
Ninno, Anton
Teachers have explored the use of radio in the classroom almost since radio technology entered into the mainstream of society, yet radio remains a relatively unused mode of instruction. This Digest describes several radio applications and summarizes various radio activities to assist teachers in integrating technology into the curriculum.…
Rocca-Serra, Philippe; Brandizi, Marco; Maguire, Eamonn; Sklyar, Nataliya; Taylor, Chris; Begley, Kimberly; Field, Dawn; Harris, Stephen; Hide, Winston; Hofmann, Oliver; Neumann, Steffen; Sterk, Peter; Tong, Weida; Sansone, Susanna-Assunta
2010-01-01
Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: isatools@googlegroups.com PMID:20679334
Implementing the Second-Order Fermi Process in a Kinetic Monte-Carlo Simulation
NASA Technical Reports Server (NTRS)
Summerlin, Errol J.
2010-01-01
Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials
NASA Astrophysics Data System (ADS)
Ren, Danping; Wu, Shanshan; Zhang, Lijing
2016-09-01
In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.
Radio frequency sensing measurements and methods for location classification in wireless networks
NASA Astrophysics Data System (ADS)
Maas, Dustin C.
The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces (SOF). We show that it is possible to obtain valuable tracking information using as few as 10 radios over a single floor of a typical suburban home, even without precise radio location measurements.
Sandia Compact Sensor Node (SCSN) v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
HARRINGTON, JOHN
2009-01-07
The SCSN communication protocol is implemented in software and incorporates elements of Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), and Carrier Sense Multiple Access (CSMA) to reduce radio message collisions, latency, and power consumption. Alarm messages are expeditiously routed to a central node as a 'star' network with minimum overhead. Other messages can be routed along network links between any two nodes so that peer-to-peer communication is possible. Broadcast messages can be composed that flood the entire network or just specific portions with minimal radio traffic and latency. Two-way communication with sensor nodes, which sleep most ofmore » the time to conserve battery life, can occur at seven second intervals. SCSN software also incorporates special algorithms to minimize superfluous radio traffic that can result from excessive intrusion alarm messages. A built-in seismic detector is implemented with a geophone and software that distinguishes between pedestrian and vehicular targets. Other external sensors can be attached to a SCSN using supervised interface lines that are controlled by software. All software is written in the ANSI C language for ease of development, maintenance, and portability.« less
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.
2014-01-01
Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.
Using Automatic Identification System Technology to Improve Maritime Border Security
2014-12-01
digital selective calling EPIRB Emergency Position Indicting Radio Beacon EU European Union FAA Federal Aviation Administration GAO U. S. Government...that has visited a hovering vessel or received merchandise outside the territorial sea. A hovering vessel is defined as a vessel loitering offshore...often with the intent to introduce merchandise into the United States illegally. Departing the United States and transiting international or foreign
Graphical and Statistical Analysis of Airplane Passenger Cabin RF Coupling Paths to Avionics
NASA Technical Reports Server (NTRS)
Jafri, Madiha; Ely, Jay; Vahala, Linda
2003-01-01
Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes.
The X-windows interactive navigation data editor
NASA Technical Reports Server (NTRS)
Rinker, G. C.
1992-01-01
A new computer program called the X-Windows Interactive Data Editor (XIDE) was developed and demonstrated as a prototype application for editing radio metric data in the orbit-determination process. The program runs on a variety of workstations and employs pull-down menus and graphical displays, which allow users to easily inspect and edit radio metric data in the orbit data files received from the Deep Space Network (DSN). The XIDE program is based on the Open Software Foundation OSF/Motif Graphical User Interface (GUI) and has proven to be an efficient tool for editing radio metric data in the navigation operations environment. It was adopted by the Magellan Navigation Team as their primary data-editing tool. Because the software was designed from the beginning to be portable, the prototype was successfully moved to new workstation environments. It was also itegrated into the design of the next-generation software tool for DSN multimission navigation interactive launch support.
Modern Radar Techniques for Geophysical Applications: Two Examples
NASA Technical Reports Server (NTRS)
Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.
2005-01-01
The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.
VLSI Technology for Cognitive Radio
NASA Astrophysics Data System (ADS)
VIJAYALAKSHMI, B.; SIDDAIAH, P.
2017-08-01
One of the most challenging tasks of cognitive radio is the efficiency in the spectrum sensing scheme to overcome the spectrum scarcity problem. The popular and widely used spectrum sensing technique is the energy detection scheme as it is very simple and doesn’t require any previous information related to the signal. We propose one such approach which is an optimised spectrum sensing scheme with reduced filter structure. The optimisation is done in terms of area and power performance of the spectrum. The simulations of the VLSI structure of the optimised flexible spectrum is done using verilog coding by using the XILINX ISE software. Our method produces performance with 13% reduction in area and 66% reduction in power consumption in comparison to the flexible spectrum sensing scheme. All the results are tabulated and comparisons are made. A new scheme for optimised and effective spectrum sensing opens up with our model.
Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA
NASA Astrophysics Data System (ADS)
Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei
2013-03-01
With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.
Stabilized radio-frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1982-09-29
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Stabilized radio frequency quadrupole
Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.
1984-01-01
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Artificial intelligence approaches to software engineering
NASA Technical Reports Server (NTRS)
Johannes, James D.; Macdonald, James R.
1988-01-01
Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.
An Exploration of Software-Based GNSS Signal Processing at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Pasqual Paul, Manuel; Elosegui, Pedro; Lind, Frank; Vazquez, Antonio; Pankratius, Victor
2017-01-01
The Global Navigation Satellite System (GNSS; i.e., GPS, GLONASS, Galileo, and other constellations) has recently grown into numerous areas that go far beyond the traditional scope in navigation. In the geosciences, for example, high-precision GPS has become a powerful tool for a myriad of geophysical applications such as in geodynamics, seismology, paleoclimate, cryosphere, and remote sensing of the atmosphere. Positioning with millimeter-level accuracy can be achieved through carrier-phase-based, multi-frequency signal processing, which mitigates various biases and error sources such as those arising from ionospheric effects. Today, however, most receivers with multi-frequency capabilities are highly specialized hardware receiving systems with proprietary and closed designs, limited interfaces, and significant acquisition costs. This work explores alternatives that are entirely software-based, using Software-Defined Radio (SDR) receivers as a way to digitize the entire spectrum of interest. It presents an overview of existing open-source frameworks and outlines the next steps towards converting GPS software receivers from single-frequency to dual-frequency, geodetic-quality systems. In the future, this development will lead to a more flexible multi-constellation GNSS processing architecture that can be easily reused in different contexts, as well as to further miniaturization of receivers.
CAD/CAM approach to improving industry productivity gathers momentum
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1982-01-01
Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined
Airborne and Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-421 Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) As of FY 2017...Information Program Name Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) products are software programmable
NASA Astrophysics Data System (ADS)
Vidal, E. V. S.; Ishitsuka, J. I. I.; Koyama, K. Y.
2006-08-01
We are in the process to transform a 32m antenna in Peru, used for telecommunications, into a Radio Telescope to perform Radio Astronomy in Peru. The 32m antenna of Peru constructed by NEC was used for telecommunications with communications satellites at 6 GHz for transmission, and 4 GHz for reception. In collaboration of National Institute of Information and Communications Technology (NICT) Japan, and National Observatory of Japan we developed an Antenna Control System for the 32m antenna in Peru. It is based on the Field System FS9, software released by NASA for VLBI station, and an interface to link PC within FS9 software (PC-FS9) and Antenna Control Unit (ACU) of the 32 meters antenna. The PC-FS9 controls the antenna, commands are translated by interface into control signals compatibles with the ACU using: an I/O digital card with two 20bits ports to read azimuth and elevation angles, one 16bits port for reading status of ACU, one 24bits port to send pulses to start or stop operations of antenna, two channels are analogic outputs to drive the azimuth and elevation motors of the antenna, a LCD display to show the status of interface and error messages, and one serial port for communications with PC-FS9,. The first experiment of the control system was made with 11m parabolic antenna of Kashima Space Research Center (NICT), where we tested the right working of the routines implemented for de FS9 software, and simulations was made with looped data between output and input of the interface, both test were done successfully. With this scientific instrument we will be able to contribute with researching of astrophysics. We expect to into a near future to work at 6.7GHz to study Methanol masers, and higher frequencies with some improvements of the surface of the dish.
Stabilized radio frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1984-12-25
Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.
Development of Network-based Communications Architectures for Future NASA Missions
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2007-01-01
Since the Vision for Space Exploration (VSE) announcement, NASA has been developing a communications infrastructure that combines existing terrestrial techniques with newer concepts and capabilities. The overall goal is to develop a flexible, modular, and extensible architecture that leverages and enhances terrestrial networking technologies that can either be directly applied or modified for the space regime. In addition, where existing technologies leaves gaps, new technologies must be developed. An example includes dynamic routing that accounts for constrained power and bandwidth environments. Using these enhanced technologies, NASA can develop nodes that provide characteristics, such as routing, store and forward, and access-on-demand capabilities. But with the development of the new infrastructure, challenges and obstacles will arise. The current communications infrastructure has been developed on a mission-by-mission basis rather than an end-to-end approach; this has led to a greater ground infrastructure, but has not encouraged communications between space-based assets. This alone provides one of the key challenges that NASA must encounter. With the development of the new Crew Exploration Vehicle (CEV), NASA has the opportunity to provide an integration path for the new vehicles and provide standards for their development. Some of the newer capabilities these vehicles could include are routing, security, and Software Defined Radios (SDRs). To meet these needs, the NASA/Glenn Research Center s (GRC) Network Emulation Laboratory (NEL) has been using both simulation and emulation to study and evaluate these architectures. These techniques provide options to NASA that directly impact architecture development. This paper identifies components of the infrastructure that play a pivotal role in the new NASA architecture, develops a scheme using simulation and emulation for testing these architectures and demonstrates how NASA can strengthen the new infrastructure by implementing these concepts.
Design in Context: A Conceptual Framework for the Study of Computer Software in Higher Education.
ERIC Educational Resources Information Center
Kozma, Robert B.; Bangert-Drowns, Robert L.
The conceptual groundwork needed to examine the impact of technology, primarily microcomputers, on student learning is presented. Medium, method, and context are tied with a science of design. In section I, research on technology in higher education is reviewed, medium and method are defined, and interaction with context is discussed. Taxonomies…
NASA Astrophysics Data System (ADS)
Yarce, Andrés; Sebastián Rodríguez, Juan; Galvez, Julián; Gómez, Alejandro; García, Manuel J.
2017-06-01
This paper presents the development stage of a communication module for a solid propellant mid-power rocket model. The communication module was named. Simple-1 and this work considers its design, construction and testing. A rocket model Estes Ventris Series Pro II® was modified to introduce, on the top of the payload, several sensors in a CanSat form factor. The Printed Circuit Board (PCB) was designed and fabricated from Commercial Off The Shelf (COTS) components and assembled in a cylindrical rack structure similar to this small format satellite concept. The sensors data was processed using one Arduino Mini and transmitted using a radio module to a Software Defined Radio (SDR) HackRF based platform on the ground station. The Simple-1 was tested using a drone in successive releases, reaching altitudes from 200 to 300 meters. Different kind of data, in terms of altitude, position, atmospheric pressure and vehicle temperature were successfully measured, making possible the progress to a next stage of launching and analysis.
Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds
NASA Astrophysics Data System (ADS)
Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni
2012-09-01
Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
5G: rethink mobile communications for 2020+.
Chih-Lin, I; Han, Shuangfeng; Xu, Zhikun; Sun, Qi; Pan, Zhengang
2016-03-06
The 5G network is anticipated to meet the challenging requirements of mobile traffic in the 2020s, which are characterized by super high data rate, low latency, high mobility, high energy efficiency and high traffic density. This paper provides an overview of China Mobile's 5G vision and potential solutions. Three key characteristics of 5G are analysed, i.e. super fast, soft and green. The main 5G R&D themes are further elaborated, which include five fundamental rethinkings of the traditional design methodologies. The 5G network design considerations are also discussed, with cloud radio access network, ultra-dense network, software defined network and network function virtualization examined as key potential solutions towards a green and soft 5G network. The paradigm shift to user-centric network operation from the traditional cell-centric operation is also investigated, where the decoupled downlink and uplink, control and data, and adaptive multiple connections provide sufficient means to achieve a user-centric 5G network with 'no more cells'. The software defined air interface is investigated under a uniform framework and can adaptively adapt the parameters to well satisfy various requirements in different 5G scenarios. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Mattmann, Chris
2014-04-01
In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.
The Wettzell System Monitoring Concept and First Realizations
NASA Technical Reports Server (NTRS)
Ettl, Martin; Neidhardt, Alexander; Muehlbauer, Matthias; Ploetz, Christian; Beaudoin, Christopher
2010-01-01
Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.
Colonial modernity and networks in the Japanese empire: the role of Gotō Shinpei.
Low, Morris
2010-01-01
This paper examines how Gotō Shinpei (1857-1929) sought to develop imperial networks emanating out of Tokyo in the fields of public health, railways, and communications. These areas helped define colonial modernity in the Japanese empire. In public health, Gotō's friendship with the bacteriologist Kitasato Shibasaburō led to the establishment of an Institute of Infectious Diseases in Tokyo. Key scientists from the institute took up positions in colonial medical colleges, creating a public health network that serviced the empire. Much of the empire itself was linked by a network of railways. Gotō was the first president of the South Manchuria Railway company (SMR). Communication technologies, especially radio, helped to bring the empire closer. By 1925, the Tokyo Broadcasting Station had begun its public radio broadcasts. Broadcasting soon came under the umbrella of the new organization, the Nippon Hōsō Kyōkai (NHK). Gotō was NHK's first president. The empire would soon be linked by radio, and it was by radio that Emperor Hirohito announced to the nation in 1945 that the empire had been lost.
Mobile radio alternative systems study, executive summary
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Cromwell, N.; Lester, H. L.
1983-01-01
Present day mobile communication technologies, systems and equipment are described from background in evaluating the concepts generated in the study. Average propagation ranges are calculated for terrestrial installations in each of seven physiographic areas of the contiguous states to determine the number of installations that would be required for nationwide coverage. Four system concepts are defined and analyzed to determine how well terrestrial systems can fulfill the requirements at acceptable costs.
2004-07-01
five qualitative methods , each a potential candidate for conducting this study . Of the five methods listed, the grounded theory method fit this study ...Strauss and Corbin define the grounded theory approach as a qualitative research method that uses a systematic set of procedures to develop and... research question may also be used” (Leedy and Ormrod, 2001). The primary research method
DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.
Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...
Joint Information Environment: DOD Needs to Strengthen Governance and Management
2016-07-01
provide fast and secure connections to any application or service from any authorized network at any time Software application rationalization and...deployment at all sites. DOD further defines an automated information system as a system of computer hardware, computer software , data or telecommunications ...Why GAO Did This Study For fiscal year 2017, DOD plans to spend more than $38 billion on information technology to support thousands of networks and
NASA Astrophysics Data System (ADS)
Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris
This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.
Defining Requirements and Applying Information Modeling for Protecting Enterprise Assets
NASA Astrophysics Data System (ADS)
Fortier, Stephen C.; Volk, Jennifer H.
The advent of terrorist threats has heightened local, regional, and national governments' interest in emergency response and disaster preparedness. The threat of natural disasters also challenges emergency responders to act swiftly and in a coordinated fashion. When a disaster occurs, an ad hoc coalition of pre-planned groups usually forms to respond to the incident. History has shown that these “system of systems” do not interoperate very well. Communications between fire, police and rescue components either do not work or are inefficient. Government agencies, non-governmental organizations (NGOs), and private industry use a wide array of software platforms for managing data about emergency conditions, resources and response activities. Most of these are stand-alone systems with very limited capability for data sharing with other agencies or other levels of government. Information technology advances have facilitated the movement towards an integrated and coordinated approach to emergency management. Other communication mechanisms, such as video teleconferencing, digital television and radio broadcasting, are being utilized to combat the challenges of emergency information exchange. Recent disasters, such as Hurricane Katrina and the tsunami in Indonesia, have illuminated the weaknesses in emergency response. This paper will discuss the need for defining requirements for components of ad hoc coalitions which are formed to respond to disasters. A goal of our effort was to develop a proof of concept that applying information modeling to the business processes used to protect and mitigate potential loss of an enterprise was feasible. These activities would be modeled both pre- and post-incident.
Change management methodologies trained for automotive infotainment projects
NASA Astrophysics Data System (ADS)
Prostean, G.; Volker, S.; Hutanu, A.
2017-01-01
An Automotive Electronic Control Units (ECU) development project embedded within a car Environment is constantly under attack of a continuous flow of modifications of specifications throughout the life cycle. Root causes for those modifications are for instance simply software or hardware implementation errors or requirement changes to satisfy the forthcoming demands of the market to ensure the later commercial success. It is unavoidable that from the very beginning until the end of the project “requirement changes” will “expose” the agreed objectives defined by contract specifications, which are product features, budget, schedule and quality. The key discussions will focus upon an automotive radio-navigation (infotainment) unit, which challenges aftermarket devises such as smart phones. This competition stresses especially current used automotive development processes, which are fit into a 4 Year car development (introduction) cycle against a one-year update cycle of a smart phone. The research will focus the investigation of possible impacts of changes during all phases of the project: the Concept-Validation, Development and Debugging-Phase. Building a thorough understanding of prospective threats is of paramount importance in order to establish the adequate project management process to handle requirement changes. Personal automotive development experiences and Literature review of change- and configuration management software development methodologies led the authors to new conceptual models, which integrates into the structure of traditional development models used in automotive projects, more concretely of radio-navigation projects.
Network of wireless gamma ray sensors for radiological detection and identification
NASA Astrophysics Data System (ADS)
Barzilov, A.; Womble, P.; Novikov, I.; Paschal, J.; Board, J.; Moss, K.
2007-04-01
The paper describes the design and development of a network of wireless gamma-ray sensors based on cell phone or WiFi technology. The system is intended for gamma-ray detection and automatic identification of radioactive isotopes and nuclear materials. The sensor is a gamma-ray spectrometer that uses wireless technology to distribute the results. A small-size sensor module contains a scintillation detector along with a small size data acquisition system, PDA, battery, and WiFi radio or a cell phone modem. The PDA with data acquisition and analysis software analyzes the accumulated spectrum on real-time basis and returns results to the screen reporting the isotopic composition and intensity of detected radiation source. The system has been programmed to mitigate false alarms from medical isotopes and naturally occurring radioactive materials. The decision-making software can be "trained" to indicate specific signatures of radiation sources like special nuclear materials. The sensor is supplied with GPS tracker coupling radiological information with geographical coordinates. The sensor is designed for easy use and rapid deployment in common wireless networks.
SETI Searches for Radio Transients from Kepler Field Planets and Astropulse Candidates
NASA Astrophysics Data System (ADS)
Gautam, Abhimat Krishna; Siemion, Andrew; Korpela, Eric J.; Cobb, Jeff; Lebofsky, Matt; Werthimer, Dan
2014-06-01
We present a search for fast radio transients in targeted observations of planet candidates in the Kepler Field and candidate Astropulse sources.Kepler Field observations were conducted in the band 1.1 and 1.9 GHz using the Green Bank Telescope in Green Bank, West Virginia and are centered on 86 stars hosting candidate planets identified by the Kepler spacecraft. These stars were chosen based on the properties of their putative planetary system thought to be conducive to the development of advanced life, including all systems known (as of May 2011) hosting a Kepler Object of Interest (KOI) with a calculated equilibrium temperature between 230 and 380 K, at least 4 KOIs or a KOI with an inferred radius < 3.0 r_earth and a period > 50 d. The Kepler Field is centered at an intermediate galactic latitude, b = 13.5°, which presents an additional opportunity to detect signals from the older population of millisecond and recycled pulsars located above the galactic plane.The Astropulse radio survey searches for brief wide-band pulses in a 2.5 MHz band centered at 1420 MHz using commensal data recorded from the Arecibo ALFA receiver. In early Astropulse analysis, 108 candidate sources were identified that passed a series of tests designed to eliminate potential sources of radio frequency interference (RFI). We have performed targeted re-observations of these sources at Arecibo over the full (1214-1536 MHz) ALFA band.We have developed a software pipeline to locate fast dispersed transients in these observations, leveraging components of the PRESTO software library. This pipeline consists of finding and removing RFI, conducting de-dispersion to remove the effects of dispersion from the interstellar medium (ISM) on the signal and identifying over- threshold events. We also perform de-dispersion at negative dispersion measures, proposed to be a potential technique for intelligent civilizations to distinguish their emission from natural sources. We carry out both a periodicity and single-pulse search on de-dispersed time series. The outputs from these steps are examined to look for both technological and astrophysical sources of impulsive radio emission.
Automation Hooks Architecture Trade Study for Flexible Test Orchestration
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.
2010-01-01
We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.
Computer Literacy for Teachers.
ERIC Educational Resources Information Center
Sarapin, Marvin I.; Post, Paul E.
Basic concepts of computer literacy are discussed as they relate to industrial arts/technology education. Computer hardware development is briefly examined, and major software categories are defined, including database management, computer graphics, spreadsheet programs, telecommunications and networking, word processing, and computer assisted and…
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
NASA Technical Reports Server (NTRS)
Tikidjian, Raffi; Mackey, Ryan
2008-01-01
The DSN Array Simulator (wherein 'DSN' signifies NASA's Deep Space Network) is an updated version of software previously denoted the DSN Receive Array Technology Assessment Simulation. This software (see figure) is used for computational modeling of a proposed DSN facility comprising user-defined arrays of antennas and transmitting and receiving equipment for microwave communication with spacecraft on interplanetary missions. The simulation includes variations in spacecraft tracked and communication demand changes for up to several decades of future operation. Such modeling is performed to estimate facility performance, evaluate requirements that govern facility design, and evaluate proposed improvements in hardware and/or software. The updated version of this software affords enhanced capability for characterizing facility performance against user-defined mission sets. The software includes a Monte Carlo simulation component that enables rapid generation of key mission-set metrics (e.g., numbers of links, data rates, and date volumes), and statistical distributions thereof as functions of time. The updated version also offers expanded capability for mixed-asset network modeling--for example, for running scenarios that involve user-definable mixtures of antennas having different diameters (in contradistinction to a fixed number of antennas having the same fixed diameter). The improved version also affords greater simulation fidelity, sufficient for validation by comparison with actual DSN operations and analytically predictable performance metrics.
A technical review of cellular radio and analysis of a possible protocol
NASA Astrophysics Data System (ADS)
Reese, William D.
1992-09-01
Radio and television technology made the field of cellular radio possible. This thesis shows the development of radio and television technology from both a historical and technical aspect. A review of the important researchers and their contributions is followed by a technical explanation of the theories behind electromagnetic radiation of radio and television signals and the technology which was developed to implement such transmissions. The evolution of development which the paper outlines begins with some of the first theories about electricity and magnetism and the subsequent mathematical foundation developed to explain them. This is followed by a number of experimental and developmental researchers and their contributions. The bulk of the paper is concentrated on explaining the earliest generations of radio and all generations of television. The major components of both radio and television are described in detail along with an explanation of what they do and how they work. Such components, in many cases, found important uses in fields outside those for which they were developed. A brief overview of the regulatory environment of each technology and the U.S. and international standardization efforts is also included. Finally, the paper illustrates a modern-day application of radio technology--the cellular radio industry. A description of the components and their functions is followed by a possible cellular radio protocol and analysis.
Penn State Radar Systems: Implementation and Observations
NASA Astrophysics Data System (ADS)
Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.
2014-12-01
Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Shawn
Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktopmore » computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.« less
Misimi, Ekrem; Martinsen, Svein; Mathiassen, John Reidar; Erikson, Ulf
2014-01-01
The aim of this study was to investigate the feasibility of two detection methods for use in discrimination and sorting of adult Atlantic cod (about 2 kg) in the small scale capture-based aquaculture (CBA). Presently, there is no established method for discrimination of weaned and unweaned cod in CBA. Generally, 60-70% of the wild-caught cod in the CBA are weaned into commercial dry feed. To increase profitability for the fish farmers, unweaned cod must be separated from the stock, meaning the fish must be sorted into two groups - unweaned and weaned from moist feed. The challenges with handling of large numbers of fish in cages, defined the limits of the applied technology. As a result, a working model was established, focusing on implementing different marking materials added to the fish feed, and different technology for detecting the feed presence in the fish gut. X-ray imaging in two modes (planar and dual energy band) and sensitive radio-frequency metal detection were the detection methods that were chosen for the investigations. Both methods were tested in laboratory conditions using dead fish with marked feed inserted into the gut cavity. In particular, the sensitive radio-frequency metal detection method with carbonyl powder showed very promising results in detection of marked feed. Results show also that Dual energy band X-ray imaging may have potential for prediction of fat content in the feed. Based on the investigations it can be concluded that both X-ray imaging and sensitive radio-frequency metal detector technology have the potential for detecting cod having consumed marked feed. These are all technologies that may be adapted to large scale handling of fish from fish cages. Thus, it may be possible to discriminate between unweaned and weaned cod in a large scale grading situation. Based on the results of this study, a suggestion for evaluation of concept for in-situ sorting system is presented.
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.
Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon
2018-02-28
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility
2018-01-01
Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599
Share Repository Framework: Component Specification and Otology
2008-04-23
Palantir Technologies has created one such software application to support the DoD intelligence community by providing robust capabilities for...managing data from various sources. The Palantir tool is based on user-defined ontologies and supports multiple representation and analysis tools
ERIC Educational Resources Information Center
Blatecky, Alan; West, Ann; Spada, Mary
2002-01-01
Defines middleware, often called the "glue" that makes the elements of the cyberinfrastructure work together. Discusses how the National Science Foundation (NSF) Middleware Initiative (NMI) is consolidating expertise, software, and technology to address the critical and ubiquitous middleware issues facing research and education today.…
Fault Tolerance in ZigBee Wireless Sensor Networks
NASA Technical Reports Server (NTRS)
Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete
2011-01-01
Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.
SwaMURAy - Swapping Memory Unit for Radio Astronomy
NASA Astrophysics Data System (ADS)
Winberg, Simon
2016-03-01
This paper concerns design and performance testing of an HDL module called SwaMURAy that is a configurable, high-speed data sequencing and flow control module serving as an intermediary between data acquisition and subsequent processing stages. While a FIFO suffices for many applications, our case needed a more elaborate solution to overcome legacy design limitations. The SwaMURAy is designed around a system where a block of sampled data is acquired at a fast rate and is then distributed among multiple processing paths to achieve a desired overall processing rate. This architecture provides an effective design pattern around which various software defined radio (SDR) and radio astronomy applications can be built. This solution was partly in response to legacy design restrictions of the SDR platform we used, a difficulty likely experienced by many developers whereby new sampling peripherals are inhibited by legacy characteristics of an underlying reconfigurable platform. Our SDR platform had a planned lifetime of at least five years as a complete redesign and refabrication would be too costly. While the SwaMURAy overcame some performance problems, other problems arose. This paper overviews the SwaMURAy design, performance improvements achieved in an SDR case study, and discusses remaining limitations and workarounds we expect will achieve further improvements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hardware and/or software in the caller's portable or mobile phone. Private Mobile Radio Service. A mobile... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES COMMERCIAL MOBILE RADIO SERVICES § 20.3 Definitions. Appropriate local emergency authority. An emergency answering point that has...
RFIC's challenges for third-generation wireless systems
NASA Astrophysics Data System (ADS)
Boric-Lubecke, Olga; Lin, Jenshan; Gould, Penny; Kermalli, Munawar
2001-11-01
Third generation (3G) cellular wireless systems are envisioned to offer low cost, high-capacity mobile communications with data rates of up to 2 Mbit/s, with global roaming and advanced data services. Besides adding mobility to the internet, 3G systems will provide location-based services, as well as personalized information and entertainment. Low cost, high dynamic-range radios, both for base stations (BS) and for mobile stations (MS) are required to enable worldwide deployment of such networks. A receiver's reference sensitivity, intermodulation characteristics, and blocking characteristics, set by a wireless standard, define performance requirements of individual components of a receiver front end. Since base station handles multiple signals from various distances simultaneously, its radio specifications are significantly more demanding than those for mobile devices. While high level of integration has already been achieved for second generation hand-sets using low-cost silicon technologies, the cost and size reduction of base stations still remains a challenge and necessity. While silicon RFIC technology is steadily improving, it is still difficult to achieve noise figure (NF), linearity, and phase noise requirements with presently available devices. This paper will discuss base station specification for 2G (GSM) and 3G (UMTS) systems, as well as the feasibility of implementing base station radios in low-cost silicon processes.
NASA Astrophysics Data System (ADS)
Thieman, J.; Higgins, C.; Flagg, R.; Sky, J.
2003-05-01
The Radio JOVE project began over four years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 500 of these kits have been distributed to students and interested observers (ages 10 through adult) in 24 countries. For those who are not comfortable building their own kit, the Radio JOVE project has made it possible to monitor real-time data and streaming audio online from professional radio telescopes in Florida (http://jupiter.kochi-ct.jp) and Hawaii (http://jupiter.wcc.hawaii.edu/newradiojove/main.html). Freely downloadable software called Radio-Skypipe (http://radiosky.com) emulates a chart recorder to monitor ones own radio telescope or the telescopes of other observers worldwide who send out their data over the Internet. A built-in chat feature allows the users to discuss their observations and results in real time. New software is being developed to allow network users to interactively view a multi-frequency spectroscopic display of the Hawaii radio telescope. The Radio JOVE project is also partnering with NASA's Student Observation Network (http://sunearth.gsfc.nasa.gov/sunearthday/2003/networkintro.htm) in an effort to use online collaborations to monitor and track solar storms as a hands-on science experience for students. We believe the amateur network data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. Results of the project and plans for the future will be highlighted.
NASA Technical Reports Server (NTRS)
Hamkins, Jon (Inventor); Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor); Dolinar, Samuel J. (Inventor); Tkacenko, Andre (Inventor)
2013-01-01
A method, radio receiver, and system to autonomously receive and decode a plurality of signals having a variety of signal types without a priori knowledge of the defining characteristics of the signals is disclosed. The radio receiver is capable of receiving a signal of an unknown signal type and, by estimating one or more defining characteristics of the signal, determine the type of signal. The estimated defining characteristic(s) is/are utilized to enable the receiver to determine other defining characteristics. This in turn, enables the receiver, through multiple iterations, to make a maximum-likelihood (ML) estimate for each of the defining characteristics. After the type of signal is determined by its defining characteristics, the receiver selects an appropriate decoder from a plurality of decoders to decode the signal.
The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)
2002-01-01
NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.
The microwave holography system for the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Serra, G.; Bolli, P.; Busonera, G.; Pisanu, T.; Poppi, S.; Gaudiomonte, F.; Zacchiroli, G.; Roda, J.; Morsiani, M.; López-Pérez, J. A.
2012-09-01
Microwave holography is a well-established technique for mapping surface errors of large reflector antennas, particularly those designed to operate at high frequencies. We present here a holography system based on the interferometric method for mapping the primary reflector surface of the Sardinia Radio Telescope (SRT). SRT is a new 64-m-diameter antenna located in Sardinia, Italy, equipped with an active surface and designed to operate up to 115 GHz. The system consists mainly of two radio frequency low-noise coherent channels, designed to receive Ku-band digital TV signals from geostationary satellites. Two commercial prime focus low-noise block converters are installed on the radio telescope under test and on a small reference antenna, respectively. Then the signals are amplified, filtered and downconverted to baseband. An innovative digital back-end based on FPGA technology has been implemented to digitize two 5 MHz-band signals and calculate their cross-correlation in real-time. This is carried out by using a 16-bit resolution ADCs and a FPGA reaching very large amplitude dynamic range and reducing post-processing time. The final holography data analysis is performed by CLIC data reduction software developed within the Institut de Radioastronomie Millimétrique (IRAM, Grenoble, France). The system was successfully tested during several holography measurement campaigns, recently performed at the Medicina 32-m radio telescope. Two 65-by-65 maps, using an on-the-fly raster scan with on-source phase calibration, were performed pointing the radio telescope at 38 degrees elevation towards EUTELSAT 7A satellite. The high SNR (greater than 60 dB) and the good phase stability led to get an accuracy on the surface error maps better than 150 μm RMS.
RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system.
Catarinucci, Luca; Colella, Riccardo; Esposito, Alessandra; Tarricone, Luciano; Zappatore, Marco
2012-12-01
Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes. The software framework is based on a general purpose architecture exploiting three key implementation choices: ontology representation, multi-agent paradigm and rule-based logic. From the hardware point of view, the sensing and gathering of context-data is demanded to a new Enhanced RFID Sensor-Tag. This new device, de facto, makes possible the easy integration between RFID and generic sensors, guaranteeing flexibility and preserving the benefits in terms of simplicity of use and low cost of UHF RFID technology. The system is very efficient and versatile and its customization to new scenarios requires a very reduced effort, substantially limited to the update/extension of the ontology codification. Its effectiveness is demonstrated by reporting both customization effort and performance results obtained from validation in two different healthcare monitoring contexts.
The Application Design of Solar Radio Spectrometer Based on FPGA
NASA Astrophysics Data System (ADS)
Du, Q. F.; Chen, R. J.; Zhao, Y. C.; Feng, S. W.; Chen, Y.; Song, Y.
2017-10-01
The Solar radio spectrometer is the key instrument to observe solar radio. By programing the computer software, we control the AD signal acquisition card which is based on FPGA to get a mass of data. The data are transferred by using PCI-E port. This program has realized the function of timing data collection, finding data in specific time and controlling acquisition meter in real time. It can also map the solar radio power intensity graph. By doing the experiment, we verify the reliability of solar radio spectrum instrument, in the meanwhile, the instrument simplifies the operation in observing the sun.
Jeon, Joonryong
2017-01-01
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945
Heo, Gwanghee; Jeon, Joonryong
2017-07-12
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.
Microcomputers, Evaluation, Literacy: Will the Teacher Survive?
ERIC Educational Resources Information Center
Hofmann, Richard J., Ed.
1982-01-01
The development of computer technology is considered, the concept of computer literacy is defined, and the role of teachers in educational microcomputer programs is discussed. The field of commercially produced software for microcomputers is reviewed. (For related articles, see EC 142 959-962.) (Author)
Glenn Goddard TDRSS Waveform 1.1.3 On-Orbit Performance Report
NASA Technical Reports Server (NTRS)
Chelmins, David T.
2014-01-01
The objective of the Space Communications and Navigation (SCaN) Testbed is to study the development, testing, and operation of software defined radios (SDRs) and their associated appliations in the operational space environment to reduce cost and risk for future space missions. This report covers the results of on-orbit performance testing completed using the Glenn Goddard Tracking and Data Relay Satellite System (TDRSS) waveform version 1.1.3 in the ground and space environments. The Glenn Goddard TDRSS (GGT) waveform, operating on the SCaN Testbed Jet Propulsion Laboratory (JPL) SDR, is capable of a variety of data rates and frequencies, operating using Binary Phase Shift Keying (BPSK).
A miniaturized NQR spectrometer for a multi-channel NQR-based detection device
NASA Astrophysics Data System (ADS)
Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko
2014-10-01
A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14 N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14 N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14 N NQR based detection device.
Tactically Extensible and Modular Communications X-Band TEMCOM-X
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Proto-flight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications).
A Model of Workflow Composition for Emergency Management
NASA Astrophysics Data System (ADS)
Xin, Chen; Bin-ge, Cui; Feng, Zhang; Xue-hui, Xu; Shan-shan, Fu
The common-used workflow technology is not flexible enough in dealing with concurrent emergency situations. The paper proposes a novel model for defining emergency plans, in which workflow segments appear as a constituent part. A formal abstraction, which contains four operations, is defined to compose workflow segments under constraint rule. The software system of the business process resources construction and composition is implemented and integrated into Emergency Plan Management Application System.
1994-09-01
report for the Properties of User Interface Software Architetures ", draft DISCUS Working Group, Programmers Tutorial, MITRE paper, SEI. Carnegie...execution that we have defined called asynchronous remote procedure call (ARPC) [15], which allows concurrency in amounts proportional to the amount of...demonstration project to use STARS DoD software budget and the proportion concepts. IBM is one of the prime is expected to be increased during the contractors
The Radio JOVE Project - An Inexpensive Introduction to Radio Astronomy
NASA Astrophysics Data System (ADS)
Thieman, J. R.; Higgins, C.
2004-12-01
The Radio JOVE project began over six years ago as an education-centered program to inspire secondary school students' interest in space science through hands-on radio astronomy. The project was begun on small grants from the Goddard Space Flight Center Director's Discretionary Fund, the Initiative to Develop Education through Astronomy and Space Science (IDEAS) program, and the American Astronomical Society. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. More than 600 of these kits have been distributed to students and interested observers (ages 10 through adult) in over 30 countries. For those who are not comfortable building their own kit, the Radio JOVE project has made it possible to monitor real-time data and streaming audio online from professional radio telescopes in Florida (http://jupiter.kochi-ct.jp) and Hawaii http://jupiter.wcc.hawaii.edu/newradiojove/main.html). Freely downloadable software called Radio-Skypipe (http://radiosky.com) emulates a chart recorder to monitor ones own radio telescope or the telescopes of other observers worldwide who send out their data over the Internet. Inexpensive spectrographs have been developed for the professional telescopes in Hawaii and Florida and freely downloadable spectrograph display software is available to receive this research-quality data. We believe the amateur network data to be of value to the research community and would like to have students more directly connected to ongoing research projects to enhance their interest in participating. Results of the project and plans for the future will be highlighted.
Simple simulation training system for short-wave radio station
NASA Astrophysics Data System (ADS)
Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi
2018-04-01
The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
R&D to Market Success: BTO-Supported Technologies Commercialized from 2010-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2017-04-01
Technology commercialization plays an essential role in almost every facet of the U.S. economy. It spurs private sector funding that supports innovative breakthroughs, drives growth through increased productivity and product development, increases American competitiveness, and creates domestic jobs. The BTO Technology Commercialization report is an annual publication offering the latest information on successfully commercialized technologies resulting in part from BTO’s research partnerships. This report defines a “commercialized technology” as a process, technique, design, machine, tool, material, or software that was developed with funds provided at least in part by BTO, and that has resulted in domestic sales or is inmore » use in the U.S. This definition also applies to open-source software products developed with support from BTO, all of which are currently distributed freely but are actively used for commercial purposes.« less
Tactical Level Command and Control and Decision Making Utilizing FBCB2-BFT
2010-09-01
area. Due to the inherent uncertainty of battle (fog of war) and the limited range of radio communications, mission type orders were issued that...existence 8 of a tactical level was simply a reflection of the practical issues that face commanders, and the control measures that they adopt to...overcome them. These “ issues ” included the “geography they operate in, the scale of forces involved, and the technology that defines the
Gobron, O; Jung, K; Galland, N; Predehl, K; Le Targat, R; Ferrier, A; Goldner, P; Seidelin, S; Le Coq, Y
2017-06-26
Frequency-locking a laser to a spectral hole in rare-earth doped crystals at cryogenic temperature has been shown to be a promising alternative to the use of high finesse Fabry-Perot cavities when seeking a very high short term stability laser (M. J. Thorpe et al., Nature Photonics 5, 688 (2011)). We demonstrate here a novel technique for achieving such stabilization, based on generating a heterodyne beat-note between a master laser and a slave laser whose dephasing caused by propagation near a spectral hole generate the error signal of the frequency lock. The master laser is far detuned from the center of the inhomogeneous absorption profile, and therefore exhibits only limited interaction with the crystal despite a potentially high optical power. The demodulation and frequency corrections are generated digitally with a hardware and software implementation based on a field-programmable gate array and a Software Defined Radio platform, making it straightforward to address several frequency channels (spectral holes) in parallel.
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.
2013-01-01
Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.
The deep space 1 extended mission
NASA Astrophysics Data System (ADS)
Rayman, Marc D.; Varghese, Philip
2001-03-01
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.
NASA Astrophysics Data System (ADS)
Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2018-03-01
This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.
Evolution paths for advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1990-01-01
As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.
Multiple IMU system development, volume 1
NASA Technical Reports Server (NTRS)
Landey, M.; Mckern, R.
1974-01-01
A redundant gimballed inertial system is described. System requirements and mechanization methods are defined and hardware and software development is described. Failure detection and isolation algorithms are presented and technology achievements described. Application of the system as a test tool for shuttle avionics concepts is outlined.
Knowledge-based reusable software synthesis system
NASA Technical Reports Server (NTRS)
Donaldson, Cammie
1989-01-01
The Eli system, a knowledge-based reusable software synthesis system, is being developed for NASA Langley under a Phase 2 SBIR contract. Named after Eli Whitney, the inventor of interchangeable parts, Eli assists engineers of large-scale software systems in reusing components while they are composing their software specifications or designs. Eli will identify reuse potential, search for components, select component variants, and synthesize components into the developer's specifications. The Eli project began as a Phase 1 SBIR to define a reusable software synthesis methodology that integrates reusabilityinto the top-down development process and to develop an approach for an expert system to promote and accomplish reuse. The objectives of the Eli Phase 2 work are to integrate advanced technologies to automate the development of reusable components within the context of large system developments, to integrate with user development methodologies without significant changes in method or learning of special languages, and to make reuse the easiest operation to perform. Eli will try to address a number of reuse problems including developing software with reusable components, managing reusable components, identifying reusable components, and transitioning reuse technology. Eli is both a library facility for classifying, storing, and retrieving reusable components and a design environment that emphasizes, encourages, and supports reuse.
A software engineering approach to expert system design and verification
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.; Goodwin, Mary Ann
1988-01-01
Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.
Liang, Wanjie; Cao, Jing; Fan, Yan; Zhu, Kefeng; Dai, Qiwei
2015-01-01
In recent years, traceability systems have been developed as effective tools for improving the transparency of supply chains, thereby guaranteeing the quality and safety of food products. In this study, we proposed a cattle/beef supply chain traceability model and a traceability system based on radio frequency identification (RFID) technology and the EPCglobal network. First of all, the transformations of traceability units were defined and analyzed throughout the cattle/beef chain. Secondly, we described the internal and external traceability information acquisition, transformation, and transmission processes throughout the beef supply chain in detail, and explained a methodology for modeling traceability information using the electronic product code information service (EPCIS) framework. Then, the traceability system was implemented based on Fosstrak and FreePastry software packages, and animal ear tag code and electronic product code (EPC) were employed to identify traceability units. Finally, a cattle/beef supply chain included breeding business, slaughter and processing business, distribution business and sales outlet was used as a case study to evaluate the beef supply chain traceability system. The results demonstrated that the major advantages of the traceability system are the effective sharing of information among business and the gapless traceability of the cattle/beef supply chain.
Liang, Wanjie; Cao, Jing; Fan, Yan; Zhu, Kefeng; Dai, Qiwei
2015-01-01
In recent years, traceability systems have been developed as effective tools for improving the transparency of supply chains, thereby guaranteeing the quality and safety of food products. In this study, we proposed a cattle/beef supply chain traceability model and a traceability system based on radio frequency identification (RFID) technology and the EPCglobal network. First of all, the transformations of traceability units were defined and analyzed throughout the cattle/beef chain. Secondly, we described the internal and external traceability information acquisition, transformation, and transmission processes throughout the beef supply chain in detail, and explained a methodology for modeling traceability information using the electronic product code information service (EPCIS) framework. Then, the traceability system was implemented based on Fosstrak and FreePastry software packages, and animal ear tag code and electronic product code (EPC) were employed to identify traceability units. Finally, a cattle/beef supply chain included breeding business, slaughter and processing business, distribution business and sales outlet was used as a case study to evaluate the beef supply chain traceability system. The results demonstrated that the major advantages of the traceability system are the effective sharing of information among business and the gapless traceability of the cattle/beef supply chain. PMID:26431340
NASA Astrophysics Data System (ADS)
Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip
2017-10-01
Context. The venerable NOD2 data reduction software package for single-dish radio continuum observations, which was developed for use at the 100-m Effelsberg radio telescope, has been successfully applied over many decades. Modern computing facilities, however, call for a new design. Aims: We aim to develop an interactive software tool with a graphical user interface for the reduction of single-dish radio continuum maps. We make a special effort to reduce the distortions along the scanning direction (scanning effects) by combining maps scanned in orthogonal directions or dual- or multiple-horn observations that need to be processed in a restoration procedure. The package should also process polarisation data and offer the possibility to include special tasks written by the individual user. Methods: Based on the ideas of the NOD2 package we developed NOD3, which includes all necessary tasks from the raw maps to the final maps in total intensity and linear polarisation. Furthermore, plot routines and several methods for map analysis are available. The NOD3 package is written in Python, which allows the extension of the package via additional tasks. The required data format for the input maps is FITS. Results: The NOD3 package is a sophisticated tool to process and analyse maps from single-dish observations that are affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. The "basket-weaving" tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. The new restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density. Conclusions: This software package is available under the open source license GPL for free use at other single-dish radio telescopes of the astronomical community. The NOD3 package is designed to be extendable to multi-channel data represented by data cubes in Stokes I, Q, and U.
Rasid, Mohd Fadlee A; Woodward, Bryan
2005-03-01
One of the emerging issues in m-Health is how best to exploit the mobile communications technologies that are now almost globally available. The challenge is to produce a system to transmit a patient's biomedical signals directly to a hospital for monitoring or diagnosis, using an unmodified mobile telephone. The paper focuses on the design of a processor, which samples signals from sensors on the patient. It then transmits digital data over a Bluetooth link to a mobile telephone that uses the General Packet Radio Service. The modular design adopted is intended to provide a "future-proofed" system, whose functionality may be upgraded by modifying the software.
Control of autonomous ground vehicles: a brief technical review
NASA Astrophysics Data System (ADS)
Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri
2017-07-01
This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.
Framework for the quality assurance of 'omics technologies considering GLP requirements.
Kauffmann, Hans-Martin; Kamp, Hennicke; Fuchs, Regine; Chorley, Brian N; Deferme, Lize; Ebbels, Timothy; Hackermüller, Jörg; Perdichizzi, Stefania; Poole, Alan; Sauer, Ursula G; Tollefsen, Knut E; Tralau, Tewes; Yauk, Carole; van Ravenzwaay, Ben
2017-12-01
'Omics technologies are gaining importance to support regulatory toxicity studies. Prerequisites for performing 'omics studies considering GLP principles were discussed at the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Workshop Applying 'omics technologies in Chemical Risk Assessment. A GLP environment comprises a standard operating procedure system, proper pre-planning and documentation, and inspections of independent quality assurance staff. To prevent uncontrolled data changes, the raw data obtained in the respective 'omics data recording systems have to be specifically defined. Further requirements include transparent and reproducible data processing steps, and safe data storage and archiving procedures. The software for data recording and processing should be validated, and data changes should be traceable or disabled. GLP-compliant quality assurance of 'omics technologies appears feasible for many GLP requirements. However, challenges include (i) defining, storing, and archiving the raw data; (ii) transparent descriptions of data processing steps; (iii) software validation; and (iv) ensuring complete reproducibility of final results with respect to raw data. Nevertheless, 'omics studies can be supported by quality measures (e.g., GLP principles) to ensure quality control, reproducibility and traceability of experiments. This enables regulators to use 'omics data in a fit-for-purpose context, which enhances their applicability for risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.
1988-01-01
The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.