Sample records for soil basic studies

  1. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial.

    PubMed

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea

    2017-12-01

    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg -1 year -1 and D, 2, 7 g kg -1 year -1 ) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca ++ and Mg ++ ) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A persuasive concept of research-oriented teaching in Soil Biochemistry

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Kuzyakova, Irina

    2013-04-01

    One of the main problems of existing bachelor programs is disconnection of basic and experimental education: even during practical training the methods learned are not related to characterization of soil field experiments and observed soil processes. We introduce a multi-level research-oriented teaching system involving Bachelor students in four-semesters active study by integration the basic knowledge, experimental techniques, statistical approaches, project design and it's realization.The novelty of research-oriented teaching system is based 1) on linkage of ongoing experiment to the study of statistical methods and 2) on self-responsibility of students for interpretation of soil chemical and biochemical characteristics obtained in the very beginning of their study by analysing the set of soil samples allowing full-factorial data treatment. This experimental data set is related to specific soil stand and is used as a backbone of the teaching system accelerating the student's interest to soil studies and motivating them for application of basic knowledge from lecture courses. The multi-level system includes: 1) basic lecture course on soil biochemistry with analysis of research questions, 2) practical training course on laboratory analytics where small groups of students are responsible for analysis of soil samples related to the specific land-use/forest type/forest age; 3) training course on biotic (e.g. respiration) - abiotic (e.g. temperature, moisture, fire etc.) interactions in the same soil samples; 4) theoretical seminars where students present and make a first attempt to explain soil characteristics of various soil stands as affected by abiotic factors (first semester); 5) lecture and seminar course on soil statistics where students apply newly learned statistical methods to prove their conclusions and to find relationships between soil characteristics obtained during first semester; 6) seminar course on project design where students develop their scientific projects to study the uncertainties revealed in soil responses to abiotic factors (second and third semesters); 7) Lecture, seminar and training courses on estimation of active microbial biomass in soil where students realize their projects applying a new knowledge to the soils from the stands they are responsible for (fourth semester). Thus, during four semesters the students continuously combine the theoretical knowledge from the lectures with their own experimental experience, compare and discuss results of various groups during seminars and obtain the skills in project design. The successful application of research-oriented teaching system in University of Göttingen allowed each student the early-stage revealing knowledge gaps, accelerated their involvement in ongoing research projects, and motivated them to begin own scientific career.

  3. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  4. Soil quality: Some basic considerations and case studies

    Treesearch

    Dale W. Johnson

    2010-01-01

    Some fundamental properties of soils that pertain to the concept of soil quality are discussed including a discussion of what can and cannot be changed with management.Case studies showing the effects of N-fixing vegetation and N-enrichment effects on invasive species are provided to illustrate the complications that may arise from applying one soil quality standard to...

  5. Introducing Field-Based Geologic Research Using Soil Geomorphology

    ERIC Educational Resources Information Center

    Eppes, Martha Cary

    2009-01-01

    A field-based study of soils and the factors that influence their development is a strong, broad introduction to geologic concepts and research. A course blueprint is detailed where students design and complete a semester-long field-based soil geomorphology project. Students are first taught basic soil concepts and to describe soil, sediment and…

  6. Basic Understanding of Earth Tunneling by Melting : Volume 1. Basic Physical Principles.

    DOT National Transportation Integrated Search

    1974-07-01

    A novel technique, which employs the melting of rocks and soils as a means of excavating or tunneling while simultaneously generating a glass tunnel lining and/or primary support, was studied. The object of the study was to produce a good basic under...

  7. A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature

    ERIC Educational Resources Information Center

    Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.

    2008-01-01

    Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…

  8. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  9. Development of a Multi-experience Approach in Introductory Soil and Vegetation Geography Courses.

    ERIC Educational Resources Information Center

    Limbird, Arthur

    1982-01-01

    Describes an introductory college level course in soil and vegetation which uses lecture, audiovisual tutorial, individualized instruction, field trips, films, and games. The course consists of three segments: basic concepts of soils, basic concepts of plants, and soil and vegetation concepts in a spatial context. (KC)

  10. Scientific background for soil monitoring on National Forests and Rangelands: workshop proceedings; April 29-30, 2008; Denver, CO

    Treesearch

    Deborah Page-Dumroese; Daniel Neary; Carl Trettin

    2010-01-01

    This workshop was developed to determine the state-of-the-science for soil monitoring on National Forests and Rangelands. We asked international experts in the field of soil monitoring, soil monitoring indicators, and basic forest soil properties to describe the limits of our knowledge and the ongoing studies that are providing new information. This workshop and the...

  11. Peatland and water in the northern Lake States.

    Treesearch

    Don H. Boelter; Elon S. Verry

    1977-01-01

    The North Central Forest Experiment Station expanded its watershed research program in 1960 to include basic peatland studies. This paper reviews and summarizes basic principles developed from these studies of peatland hydrology, organic soil characteristics, and streamflow chemistry.

  12. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  13. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  14. Molecular and microscopic insights into the persistence of soil organic matter in a red pine rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Microbially-derived carbon inputs to soils play an important role in stabilization of soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is lacking. This study aimed to investigat...

  15. Relationships between basic soils-engineering equations and basic ground-water flow equations

    USGS Publications Warehouse

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  16. [Soil macropore characteristics under typical vegetations in Liupan Mountains].

    PubMed

    Shi, Zhong-Jie; Wang, Yan-Hui; Xu, Li-Hong; Yu, Peng-Tao; Xiong, Wei; Xu, Da-Ping

    2007-12-01

    The radius and density of soil macropores under eight typical vegetations in Liupan Mountains of Northwest China were studied by using water breakthrough curves and Poiseuille equation. The results indicated that the radii of soil macropores ranged from 0.4 mm to 2.3 mm, and the weighted mean radii ranged from 0.57 mm to 1.21 mm, with a mean of 0.89 mm. The density of soil macropores ranged from 57 individuals per dm2 to 1 117 individuals per dm2, with a mean of 408 individuals per dm2. The macropores with radii bigger than 1.4 mm had a lower density, accounting for only 6.86% of the total. The area proportion of soil macropores ranged from 0.76% to 31.26%, with a mean of 10.82%. In study area, the density of soil macropores was higher in broadleaf forest than in coniferous forest, but basically the same in sub-alpine meadow and in broadleaf forest, as well as in shrubs and in coniferous forest. As for the area proportion of soil macropores, it was also higher in broadleaf forest than in coniferous forest, but basically the same in shrubs and in broadleaf forest soil, as well as in sub-alpine meadow and in coniferous forest.

  17. Basic Understanding of Earth Tunneling by Melting : Volume 2. Earth Structure and Design Solutions.

    DOT National Transportation Integrated Search

    1974-07-01

    A novel technique, which employs the melting of rocks and soils as a means of excavating or tunneling while simultaneously generating a glass tunnel lining and/or primary support, was studied. The object of the study was to produce a good basic under...

  18. Evaluation of the Feasibility of Biodegrading Explosives-Contaminated Soils and Groundwater at the Newport Army Ammunition Plant (NAAP)

    DTIC Science & Technology

    1991-06-01

    undamaged to its original location. 9 3 Biodegradation Studies The NAAP soils were used for both the basic microbiological studies and the bench scale...reactor studies. The microbiological studies were directed at measuring (1) the growth potential of bacteria present in the soil samples and (2) the...clear and odorless, and no TNT was detected in them. The detection limit for TNT in the water samples was 0.5 mg/L. Microbiological characterization

  19. Initiating Long-Term Soil Productivity Research in Missouri

    Treesearch

    Felix Ponder

    1997-01-01

    Management practices necessary for sustaining long-term soil productivity (LTSP) afforest lands are being defined from a network of coordinated, long-term experiments established in vartous ecosystems across the United States and British Columbia according to the same basic study plan. The study was established in the Ozark Region of southeastem Missouri in Shannon...

  20. Do We Need a New Definition of Soil?

    NASA Astrophysics Data System (ADS)

    Arnold, Richard W.; Brevik, Eric C.

    2014-05-01

    Effective communication is really desirable to better relate with politicians, an interested lay public, and others not involved in soil science. Soil survey programs are intended to help people understand how soils function in their landscapes to make ecosystems operate better without damaging the environment and to indicate different kinds of suitability for various purposes. The properties of soils as recognized, described, and mapped at detailed scales form the basis for developing diagnostics for a systematic taxonomy that enables scientists to interact with other. In the USA mapping done at scales of 1:15,840± made it possible to define and use so-called "soil series", initially as soil map units, but later as central concepts of a set of soils which could be segregated using phases to indicate important features, primarily for farming. Detailed soil surveys published using a standard format helps maintain uniformity across the country. Soil series are recognized as the basic units of soils within the evolving hierarchical soil taxonomy and diagnostic properties are defined, measured and used to update and modify the scientific classification. Concepts like soil quality and soil function are considered to be "attributes" and not basic properties of soils. They are the collective interpretation of the combination of properties thought to be relevant for communicating important aspects of using, managing, restoring, and protecting the lands of any locality, region, or country. A famous example in the US was the land capability system with classes and subclasses of suitability for agricultural land uses. An updated soil survey in California contains over 500 pages providing details about classes of 30 different functional soil classifications for 155 map units. Over the years soil extension agents were the interpreters of the science to the lay folks and could help them form mental pictures of soils and soil landscapes locally They were the early leaders of what we think of as "field guides to natural resources" such as trees, flowers, birds, and so forth. There were not such books to identify soils but the basics have always been there waiting for proper attention, preparation, and use. At smaller scales the map units are always combinations of the basic units, and now it is possible to use some higher category classes to indicate the central concepts of larger areas. Every year soil scientists around the world observe and describe features and properties of soils in landscapes that are getting more attention than previously. Soil genesis studies help us to better understand the complexity of landscape and soil evolution. Often they indicate that current soils are commonly being formed from parts of previous soils. We do not need a new definition of soil. We do need to work on developing and testing complete interpretive classifications of soils to better meet the needs of societies today. This means "soil quality", "soil functions", and other attributes of soils require more attention, now and in the near future to permit politicians and lay publics to better understand the significance of soils to the future of civilization. "After all is said and done, more is said than done" Aesop, Greek storyteller

  1. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance.

    PubMed

    Murrell, Ebony G; Cullen, Eileen M

    2014-10-01

    Few studies compare how different soil fertilization practices affect plant mineral content and insect performance in organic systems. This study examined: 1) The European corn borer, Ostrinia nubilalis (Hübner), larval response on corn (Zea mays L.) grown in field soils with different soil management histories; and 2) resilience of these plants to O. nubilalis herbivory. Treatments included: 1) standard organic--organically managed soil fertilized with dairy manure and 2 yr of alfalfa (Medicago sativa L.) in the rotation; 2) basic cation saturation ratio--organically managed soil fertilized with dairy manure and alfalfa nitrogen credits, plus addition of gypsum (CaSO4·2H2O) according to the soil balance hypothesis; and 3) conventional--conventionally managed soil fertilized with synthetic fertilizers. Corn plants were reared to maturity in a greenhouse, and then infested with 0-40 O. nubilalis larvae for 17 d. O. nubilalis exhibited negative competitive response to increasing larval densities. Mean development time was significantly faster for larvae consuming basic cation saturation ratio plants than those on standard organic plants, with intermediate development time on conventional plants. Neither total yield (number of kernels) nor proportion kernels damaged differed among soil fertility treatments. Soil nutrients differed significantly in S and in Ca:Mg and Ca:K ratios, but principal components analysis of plant tissue samples taken before O. nubilalis infestation showed that S, Fe, and Cu contributed most to differences in plant nutrient profiles among soil fertility treatments. Results demonstrate that different fertilization regimens can significantly affect insect performance within the context of organic systems, but the effects in this study were relatively minor compared with effects of intraspecific competition.

  2. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Plants in Your Ants: Using Ant Mounds to Test Basic Ecological Principles

    ERIC Educational Resources Information Center

    Zettler, Jennifer A.; Collier, Alexander; Leidersdorf, Bil; Sanou, Missa Patrick

    2010-01-01

    Urban students often have limited access to field sites for ecological studies. Ubiquitous ants and their mounds can be used to study and test ecology-based questions. We describe how soil collected from ant mounds can be used to investigate how biotic factors (ants) can affect abiotic factors in the soil that can, in turn, influence plant growth.

  4. Soil quality and water redistribution influences on plant production over low hillslopes on reclaimed mined land

    USDA-ARS?s Scientific Manuscript database

    A basic part of soils’ delivery of ecosystem services is the interaction between plant growth response to soil quality (SQ) factors at point scale and water redistribution effects at hillslope scale. To study the influence of SQ-indicator properties and water redistribution, we examined hillslope pr...

  5. Survey of L Band Tower and Airborne Sensor Systems Relevant to Upcoming Soil Moisture Missions

    USDA-ARS?s Scientific Manuscript database

    Basic research on the physics of microwave remote sensing of soil moisture has been conducted for almost thirty years using ground-based (tower- or truck-mounted) microwave instruments at L band frequencies. Early small point-scale studies were aimed at improved understanding and verification of mi...

  6. Comparison of basic laboratory test results with more sophisticated laboratory and in-situ tests methods on soils in southeastern Wisconsin : final report, March 21, 2009.

    DOT National Transportation Integrated Search

    2009-03-21

    This study investigates all of the generated soils data in an attempt to use the more 'routine' laboratory tests to determine geotechnical design parameters (such as phiangle, cohesion, wet unit weight, unconfined compression, consolidation character...

  7. THEORETICAL BACKGROUND AND DERIVATION OF SELECTED EQUATIONS FROM THE REPORT STUDY OF BLAST EFFECTS IN SOIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlers, O.K.; Grum, A.F.

    1959-03-27

    An amplification and clarification of the report Study of Blast Effects in Soil by M. A. Chaszeyka and F. B. Porzel of the Armour Research Foundation is presented. The basic thermodynamic relationships that are essential to the understanding of the Armour Report are given, and the more complex equations of the Armour Report are derived. (auth)

  8. [Interrelationships between soil fauna and soil environmental factors in China: research advance].

    PubMed

    Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei

    2010-09-01

    Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.

  9. Marginality principle

    USDA-ARS?s Scientific Manuscript database

    Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...

  10. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    PubMed

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  11. A Comparison of Soil Test Kits for Use in the Secondary Classroom

    ERIC Educational Resources Information Center

    Yusten, Jason; Gerber, D. Timothy; Beck, Judy

    2003-01-01

    Because soils provide water, minerals, and a medium to anchor the roots of plants, measuring the basic physical/chemical components of soils is important to maintaining healthy garden plants and agricultural crops. Historically, soil analysis has been practiced to determine fertilizer and lime applications, soil fertility, and soil improvement…

  12. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    NASA Technical Reports Server (NTRS)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  13. Site preparation burning to improve southern Appalachian pine-hardwood stands: nitrogen responses in soil, soil water, and streams

    Treesearch

    Jennifer D. Knoepp; Wayne T. Swank

    1993-01-01

    Few studies have examined the consequences of site preparation burning in an ecosystem context. As Swift et al. (1993) explain in detail, a major study is being conducted in the southern Appalachians to understand the effects of a fell and bum site preparation treatment on basic ecosystem processes and the integrated response to disturbance. The intent is to determine...

  14. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  15. Estimating prion adsorption capacity of soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS).

    PubMed

    Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.

  16. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  17. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  18. Retention behavior of hydrophobic organic chemicals as a function of temperature in soil leaching column chromatography.

    PubMed

    Liang, Xinmiao; Xu, Feng; Lin, Bingcheng; Su, Fan; Schramm, Karl-Werner; Kettrup, Antonius

    2002-11-01

    To study the transport mechanism of hydrophobic organic chemicals (HOCs) and the energy change in soil/solvent system, a soil leaching column chromatographic (SLCC) experiment at an environmental temperature range of 20-40 degrees C was carried out, which utilized a reference soil (SP 14696) packed column and a methanol-water (1:4 by volume ratio) eluent. The transport process quickens with the increase of column temperature. The ratio of retention factors at 30 and 40 degrees C (k'30/k'40) ranged from 1.08 to 1.36. The lower enthalpy change of the solute transfer in SLCC (from eluent to soil) than in conventional reversed-phase liquid chromatography (e.g., from eluent to C18) is consistent with the hypothesis that HOCs were dominantly and physically partitioned between solvent and soil. The results were also verified by the linear solvation energy relationships analysis. The chief factor controlling the retention was found to be the solute solvophobic partition, and the second important factor was the solute hydrogen-bond basicity, while the least important factors were the solute polarizability-dipolarity and hydrogen-bond acidity. With the increase of temperature, the contributions of the solute solvophobic partition and hydrogen-bond basicity gradually decrease, and the latter decreases faster than the former.

  19. Crown condition dynamics of oak in southern Sweden 1988-1999.

    PubMed

    Drobyshev, Igor; Anderson, Stefan; Sonesson, Kerstin

    2007-11-01

    Crown defoliation of oak (Quercus robur and Q. petraea) was analysed in 808 trees during three forest condition surveys (1988, 1993, and 1999) in the southern Sweden. From 1988 to 1999 crown defoliation increased by more than 20%. Changes in crown defoliation were related to the pH in the upper 20-30 cm of the mineral soils, which was closely connected to other measures of soil fertility (cation exchange capacity, CEC and C/N ratio). Trees growing on soils with a high pH (> or =4.00, in BaCl2 filtrate), high CEC and low C/N ratio had significantly lower crown defoliation than trees growing on more acid soils (pH <4.00), indicating that less favourable soil conditions may further enhance oak decline. Age did not differentiate trees with respect to crown defoliation, indicating that decline in crown condition was not due to an age-related increase in crown transparency. Considering only trees younger than 100 years, a significant interaction was observed between changes in crown defoliation and soil pH. Trees younger than 100 years old growing on more acidic soils had a greater increase in crown transparency than trees on more basic soils between 1988 and 1999. Trees > or =100 years old had significantly higher defoliation on more acidic than on more basic soils, however defoliation dynamics of these trees over 1988-99 was not related to soil acidity. Two biotic agents (insect and fungal leaf infections) evaluated in this study did not prove to be important drivers of defoliation dynamics.

  20. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  1. Physical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...

  2. Multimodeling with Pedotransfer functions. Documentation and user Manual for PTF Calculator (CalcPTF)

    USDA-ARS?s Scientific Manuscript database

    Simulations of soil water flow are often carried out with parameters estimated using pedotransfer functions (PTFs), which are empirical relationships between the soil hydraulic properties and more easily obtainable basic soil properties available, for example, from soil surveys. The use of pedotrans...

  3. Thermal Properties of Soils

    DTIC Science & Technology

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  4. Superfund Innovative Technology Evaluation - Demonstration Bulletin: In-Situ Soil Stabilization

    EPA Science Inventory

    In-situ stabilization technology immobilizes organics and inorganic compounds in wet or dry soils by using reagents (additives) to polymerize with the soils and sludges producing a cement-like mass. Two basic components of this technology are the Geo-Con/DSM Deep Soil Mixing Sy...

  5. Effects of afforestation on soil structure formation in two climatic regions of the Czech Republic

    Treesearch

    V. Podrazsky; O. Holubik; J. Vopravil; T. Khel; W. K. Moser; H. Prknova

    2015-01-01

    The aim of this study was to determine the effect of agricultural land afforestation on soil characteristics. Two sites in two regions of the Czech Republic were evaluated, at lower as well as higher submountain elevations: in the regions of the Orlicke hory Mts. and Kostelec nad Cernymi lesy, afforested, arable and pasture lands were compared for basic chemical and...

  6. The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.

    ERIC Educational Resources Information Center

    Cattle, S. R.; And Others

    1995-01-01

    A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)

  7. FOREST SOIL INFORMATION FOR ENVIRONMENTAL ASSESSMENT IN THE WESTERN OREGON CASCADES BASED ON LANDTYPE MAPPING

    EPA Science Inventory

    Forest health monitoring and other environmental assessments require information on the spatial distribution of basic soil physical and chemical properties. Traditional soil surveys are not available for large areas of forestland in the western US but there are some soil resour...

  8. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    DOT National Transportation Integrated Search

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  9. Application of the digital image correlation method in the study of cohesive coarse soil deformations

    NASA Astrophysics Data System (ADS)

    Kogut, Janusz P.; Tekieli, Marcin

    2018-04-01

    Non-contact video measurement methods are used to extend the capabilities of standard measurement systems, based on strain gauges or accelerometers. In most cases, they are able to provide more accurate information about the material or construction being tested than traditional sensors, while maintaining a high resolution and measurement stability. With the use of optical methods, it is possible to generate a full field of displacement on the surface of the test sample. The displacement value is the basic (primary) value determined using optical methods, and it is possible to determine the size of the derivative in the form of a sample deformation. This paper presents the application of a non-contact optical method to investigate the deformation of coarse soil material. For this type of soil, it is particularly difficult to obtain basic strength parameters. The use of a non-contact optical method, followed by a digital image correlation (DIC) study of the sample obtained during the tests, effectively completes the description of the behaviour of this type of material.

  10. Pedodiversity and Its Significance in the Context of Modern Soil Geography

    NASA Astrophysics Data System (ADS)

    Krasilnikov, P. V.; Gerasimova, M. I.; Golovanov, D. L.; Konyushkova, M. V.; Sidorova, V. A.; Sorokin, A. S.

    2018-01-01

    Methodological basics of the study and quantitative assessment of pedodiversity are discussed. It is shown that the application of various indices and models of pedodiversity can be feasible for solving three major issues in pedology: a comparative geographical analysis of different territories, a comparative historical analysis of soil development in the course of landscape evolution, and the analysis of relationships between biodiversity and pedodiversity. Analogous geographic concepts of geodiversity and landscape diversity are also discussed. Certain limitations in the use of quantitative estimates of pedodiversity related to their linkage to the particular soil classification systems and with the initial soil maps are considered. Problems of the interpretation of the results of pedodiversity assessments are emphasized. It is shown that scientific explanations of biodiversity cannot be adequately applied in soil studies. Promising directions of further studies of pedodiversity are outlined. They include the assessment of the functional diversity of soils on the basis of data on their properties, integration with geostatistical methods of evaluation of soil variability, and assessment of pedodiversity on different scales.

  11. Permanent Ground Anchors : Nicholson Design Criteria

    DOT National Transportation Integrated Search

    1982-09-01

    This study discusses the methods used by Nicholson Construction Company in the design of permanent ground anchors specifically as related to retaining walls. Basic soil parameters, design concepts, drilling and grouting methods for ground anchors are...

  12. Three-phase Discussion Sessions.

    ERIC Educational Resources Information Center

    Karr, M. C.; And Others

    1988-01-01

    Describes the procedures, organizational pattern and design of basic soils course used by teaching assistants. Cites studies which support small-group discussion for promoting higher levels of intellectual functioning. Presents tables showing survey evaluation results of this method. (RT)

  13. Improved δ(13)C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry.

    PubMed

    Dippold, Michaela A; Boesel, Stefanie; Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2014-03-30

    Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    ERIC Educational Resources Information Center

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  15. Properties of 91 Southern Soil Series

    Treesearch

    Basil D. Doss; W. M. Broadfoot

    1956-01-01

    From June 1954 to July 1955 the Vicksburg Infiltration Project collected and analyzed samples of 91 soil series in 7 southern states. The purpose was to supply the U. S. Army with information needed for specialized research on military trafficability, but the basic data on soil properties should be of interest to soil scientists generally. The 91 series may be...

  16. Spatial distribrrtion of soil carbon in southern New England hardwood forest landscapes

    Treesearch

    Aletta A. Davis; Mark H. Stolt; Jana E. Compton

    2004-01-01

    Understanding soil organic C (SOC) spatial variability is critical when developing C budgets, explaining the cause and effects of climate change, and for basic ecosystem characterization. We investigated delineations of four soil series to elucidate teh factors that affect the size, distribution, and varibility of SOC pools from horizon to landscape scales. These soils...

  17. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  18. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  19. Soil Science. III-A-1 to III-D-4. Basic V.A.I.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains four units of informational materials and transparency masters, with accompanying scripts, for teachers to use in a soil science course in vocational agriculture. Designed especially for use in Texas, the first unit discusses the importance of soils. In the second unit, the nature and properties of soils are discussed,…

  20. High yield of functional metagenomic library from mangroves constructed in fosmid vector.

    PubMed

    Gonçalves, A C S; dos Santos, A C F; dos Santos, T F; Pessoa, T B A; Dias, J C T; Rezende, R P

    2015-10-02

    In the present study, metagenomic technique and fosmid vectors were used to construct a library of clones for exploring the biotechnological potential of mangrove soils by isolation of functional genes encoding hydrolytic enzymes. The library was built with genomic DNA from the soil samples of mangrove sediments and the functional screening of 1824 clones (~64 Mbp) was performed to detect the hydrolytic activity specific for cellulases, amylases (at acidic, neutral and basic pH), lipases/esterases, proteases, and nitrilases. Significant numbers of clones, positive for the tested enzyme activities were obtained. Our results indicate the importance and biotechnological potential of mangrove soils especially when compared to those obtained using other soil metagenomic libraries.

  1. Effect of addition of GGBS and lime in soil stabilisation for stabilising local village roads in Thanjavur region

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Udhayakumar, T.; Dinesh, S.; Venkatasubramanian, C.; Muthu, D.

    2017-07-01

    Construction of pavements uses various filling materials and due to the cost factor, the local soil is used for pavement construction. The strength of the soil is improved by stabilisation. This stabilisation increases the load bearing capacities of soil for heavy wheeled vehicle traffic. GGBS, silica fume, rice husk are the basic waste materials used as a waste material, which improves the quality of soil and reduces the cost of pavements. In this study, a detailed investigation is made on the Ground Granulated Blast-furnace Slag (GGBS), activated by lime, in the stabilisation of low bearing capacity sand and clay soils collected from Thanjavur district (Budalur, Sengipatti, Vallam and Palliahgraharam villages). The tests are carried out as per Indian Standards. The test procedures separated into two phases, namely Stage-I and Stage-II. In Stage-I the soil tests include soil type, particle size distribution, soil index properties, standard proctor tests, shear tests and CBR test. In Stage-II the soil tests include shear tests and CBR test for the suitable required proportions of GGBS along with lime in the collected soil samples. The test results from stage-I and stage-II are compared and from the study, it is inferred that the application of GGBS is a useful material for soil stabilisation.

  2. DEMONSTRATION BULLETIN: BESCORP SOIL WASHING SYSTEM ALASKAN BATTERY ENTERPRISES SITE - BRICE ENVIRONMENTAL SERVICES CORPORATION

    EPA Science Inventory

    The BESCORP Soil Washing System is an aqueous volume reduction system that utilizes trommel agitation, high-pressure washing, sizing, and density separation to remove lead, lead compounds, and battery casing chips from soil contaminated by broken lead batteries. The basic concept...

  3. Raising awareness about soil diversity: The Education Programme of the Earth Sciences Museum Alexis Dorofeef, Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Muggler, C.

    2012-04-01

    Soils are usually overlooked as part of geodiversity and geoheritage. Increasing the public awareness about soils is a key issue in our changing world. Furthering public awareness involves developing a better understanding of soils, their functions, importance for environment and society, as well as a personal and collective commitment in the stewardship and protection from degradation and loss. This presentation describes the Soil and Environmental Education and Outreach Programme of the Alexis Dorofeef Earth Sciences Museum of the Soil University Department in Viçosa, Brazil. The program has developed different activities linked to formal and non formal education and its main audience are basic education teachers, school children and the general public. The museum acts in different and diverse fronts, supported on a pedagogical background based on Paulo Freire's educational approach, the social-constructivism, which considers social inclusion, knowledge building, horizontal learning and collective action. In its early years, the museum was mainly focused on formal education and this changed with time as our action was reshaped into a broader outreach action stimulated by the new Brazilian government. The museum's indoor activities consist of accompanied thematic visits, hands on experiments, basic school teacher's courses, development of learning materials and methods and professional training. Beyond of the Museum space local interdisciplinary projects with basic education schools are run along with temporary expositions coupled with short courses and workshops with farmers and social movements. We present the results of the changes in awareness about soils among three main groups: school teachers, basic education children and general public. After 10 years of activities, the Soil Education action of the Museum is recognized and well spread among school communities in the town and its neighbourhood. Many school teachers approach the contents and methodologies they learned at the museum, as well as many of the students that did their practical's at the museum do. As a side result, the Soil Education Program triggered the broadening of the museum themes into three main conceptual lines: Earth's dynamics, Natural resources: use and environmental impacts and, Soils: know to conserve. Today the Museum is spreading its knowledge about soil throughout the region, by means of temporary expositions and educational activities. Despite its achievements, the Museum still faces the challenge to broaden its action, reaching different and wider publics, making both the idea of visiting a museum and the knowledge about soils more popular.

  4. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.

    PubMed

    Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid

    2016-04-01

    It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study. This study provides the basic information to develop policies for controlling the trace elements inputs into agricultural soils of the study area.

  5. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  6. Study on stability of rake teeth inserting soil of chain rake type mulching film recovery machine based on Adams

    NASA Astrophysics Data System (ADS)

    Guo, Wensong; Jian, Jianming; San, Yunlong; Lui, Rui; Li, Gang; Hou, Shulin

    2017-08-01

    Traditional rake type mulching film recycling machine has the problem of difficulty in unloading and packing film, poor continuity of the work. In order to solve such problems, this paper designs a kind of chain rake type mulching film recycling machine which can realize continuous raking film, collecting film, transporting film, shaking off soil, unloading film. Rake teeth is the basic part of chain rake mulching recycling machine. The stability of rake teeth's inserting soil is an important factor to ensure recovery efficiency of the plastic film recovery. By virtual prototype simulation, this paper study the influence of different factors on the stability of rake teeth inserting soil. The results are as follows: The speed of chain rake has no significant effect on the stability of rake teeth inserting soil; Reducing resistance of rake teeth in the process of working, is conducive to improve the stability of rake teeth inserting soil; Appropriate increasing elastic modulus of chain rake, is helpful to enhance the stability of rake teeth inserting soil.

  7. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil.

    PubMed

    Ramadan, Bimastyaji Surya; Sari, Gina Lova; Rosmalina, Raden Tina; Effendi, Agus Jatnika; Hadrah

    2018-07-15

    Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  9. Valorisation of N and P from waste water by using natural reactive hybrid sorbents: Nutrients (N,P,K) release evaluation in amended soils by dynamic experiments.

    PubMed

    Guaya, Diana; Valderrama, César; Farran, Adriana; Sauras, Teresa; Cortina, José Luis

    2018-01-15

    The removal of nutrients (nitrogen (N), phosphorous (P)) from waste water has become a resource recovery option in recent regulations worldwide, as observed in the European Union. Although both of these nutrients could be recovered from the sludge line, >70-75% of the N and P is discharged into the water line. Efforts to improve the nutrient recovery ratios have focused on developing low-cost technologies that use sorption processes. In this study, a natural zeolite (clinoptilolite type) in its potassium (K) form was impregnated with hydrated metal oxides and used to prepare natural hybrid reactive sorbents (HRS) for the simultaneous recovery of ammonium (NH 4 + ) and phosphate (PO 4 3- ) from treated urban waste water. Three unfertile soils (e.g., one acidic and two basic) amended with N-P-K charged HRS were leached with deionized water (e.g. to simulate infiltration in the field) at two- and three-day time intervals over 15 different leaching cycles (equivalent to 15 bed volumes). The N-P-K leaching profiles for the three charged hybrid sorbents exhibited continuous nutrient release, with their values dependent on the composition of minerals in the soils. In the basic soil that is rich in illite and calcite, the release of potassium (K + ) and ammonium (NH 4 + ) is favoured by-ion exchange with calcium (Ca 2+ ) and accordingly diminishes the release of phosphate (PO 4 3- ) due to its limited solubility in saturated calcite solutions (pH8 to 9). The opposite is true for sandy soils that are rich in albite (both acidic and basic), whereas the release of NH 4 + and K + was limited and the values of both ions measured in the leaching solutions were below 1mg/L. Their leaching solutions were poor in Ca 2+ , and the release of PO 4 3- was higher (up to 12mgP-PO 4 3- /L). The nutrient releases necessary for plant growth were provided continuously and were controlled primarily by the soil mineral dissolution rates fixing the soil aqueous solution composition (e.g. pH and ionic composition; in particular, the presence of calcite is a determinant for nutrient release, especially in alkaline soils). The N-P-K charged HRS sorbents that were used for soil amendment may be an alternative for avoiding nutrient leaching and reaching the goals of soil sustainability in agriculture and reducing the nutrient overloading of surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Forest Soil Disturbance Monitoring Protocol: Volume II: Supplementary methods, statistics, and data collection

    Treesearch

    Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice

    2009-01-01

    Volume I and volume II of the Forest Soil Disturbance Monitoring Protocol (FSDMP) provide information for a wide range of users, including technicians, field crew leaders, private landowners, land managers, forest professionals, and researchers. Volume I: Rapid Assessment includes the basic methods for establishing forest soil monitoring transects and consistently...

  11. Measuring soil and tree temperatures during prescribed fires with thermocouple probes

    Treesearch

    Stephen S. Sackett; Sally M. Haase

    1992-01-01

    Soil and cambium temperatures must be known to ascertain certain effects of prescribed fires on trees. Thermocouple-based systems were devised for measuring soil and cambium temperatures during prescribed fires. The systems, which incorporate both commercially available and custom components, perform three basic functions: data collection, data retrieval, and data...

  12. THE DIRT ON SOILS

    EPA Science Inventory

    This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.

  13. Performance evaluation of a second-generation elastic loop mobility system

    NASA Technical Reports Server (NTRS)

    Melzer, K. J.; Swanson, G. D.

    1974-01-01

    Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode.

  14. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  15. Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients.

    PubMed

    Duchesne, Louis; Ouimet, Rock; Houle, Daniel

    2002-01-01

    Previous studies have shown in noncalcareous soils that acid deposition may have increased soil leaching of basic cations above the input rate from soil weathering and atmospheric depositions. This phenomenon may have increased soil acidity levels, and, as a consequence, may have reduced the availability of these essential nutrients for forest growth. Fourteen plots of the Forest Ecosystem Research and Monitoring Network in Québec were used to examine the relation between post-industrial growth trends of sugar maple (Acer saccharum Marsh.) and acid deposition (N and S), stand decline rate, and soil exchangeable nutrient concentrations. Atmospheric N and S deposition and soil exchangeable acidity were positively associated with stand decline rate, and negatively with the average tree basal area increment trend. The growth rate reduction reached on average 17% in declining stands compared with healthy ones. The results showed a significant sugar maple growth rate reduction since 1960 on acid soils. The appearance of the forest decline phenomenon in Québec can be attributed, at least partially, to soil acidification and acid deposition levels.

  16. Considering the spatial-scale factor when modelling sustainable land management.

    NASA Astrophysics Data System (ADS)

    Bouma, Johan

    2015-04-01

    Considering the spatial-scale factor when modelling sustainable land management. J.Bouma Em.prof. soil science, Wageningen University, Netherlands. Modelling soil-plant processes is a necessity when exploring future effects of climate change and innovative soil management on agricultural productivity. Soil data are needed to run models and traditional soil maps and the associated databases (based on various soil Taxonomies ), have widely been applied to provide such data obtained at "representative" points in the field. Pedotransferfunctions (PTF)are used to feed simulation models, statistically relating soil survey data ( obtained at a given point in the landscape) to physical parameters for simulation, thus providing a link with soil functionality. Soil science has a basic problem: their object of study is invisible. Only point data are obtained by augering or in pits. Only occasionally roadcuts provide a better view. Extrapolating point to area data is essential for all applications and presents a basic problem for soil science, because mapping units on soil maps, named for a given soil type,may also contain other soil types and quantitative information about the composition of soil map units is usually not available. For detailed work at farm level ( 1:5000-1:10000), an alternative procedure is proposed. Based on a geostatistical analysis, onsite soil observations are made in a grid pattern with spacings based on a geostatistical analysis. Multi-year simulations are made for each point of the functional properties that are relevant for the case being studied, such as the moisture supply capacity, nitrate leaching etc. under standardized boundary conditions to allow comparisons. Functional spatial units are derived next by aggregating functional point data. These units, which have successfully functioned as the basis for precision agriculture, do not necessarily correspond with Taxonomic units but when they do the Taxonomic names should be noted . At lower landscape and watershed scale ( 1:25.000 -1:50000) digital soil mapping can provide soil data for small grids that can be used for modeling, again through pedotransferfunctions. There is a risk, however, that digital mapping results in an isolated series of projects that don't increase the knowledge base on soil functionality, e.g.linking Taxonomic names ( such as soil series) to functionality, allowing predictions of soil behavior at new sites where certain soil series occur. We therefore suggest that aside from collecting 13 soil characteristics for each grid, as occurs in digital soil mapping, also the Taxonomic name of the representative soil in the grid is recorded. At spatial scales of 1:50000 and smaller, use of Taxonomic names becomes ever more attractive because at such small scales relations between soil types and landscape features become more pronounced. But in all cases, selection of procedures should not be science-based but based on the type of questions being asked including their level of generalization. These questions are quite different at the different spatial-scale levels and so should be the procedures.

  17. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    NASA Astrophysics Data System (ADS)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, p<0.001), whereas increasing temperature significantly increased soil pH (0.13 for every degree centigrade, p<0.001). Nitrogen deposition, especially nitrate nitrogen, significantly decreased soil pH (p<0.01). All these factors impact soil pH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  18. Improving watershed management practices in humid regions

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. To improve the understanding we used watershed studies on three continents. The results show that in well vegetated (sub) humid and temperate watersheds ...

  19. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Heavy metals in garden soils along roads in Szeged, Hungary

    NASA Astrophysics Data System (ADS)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil, dermal contact, consumption of vegetables) has not exceeded the moderate level in normal case. However, the degree of risk has considerably increased if you consume exclusively vegetables in contaminated garden soils. In this case the risk can be relatively high for the more sensitive children.

  1. Relationship between assimilable-nutrient content and physicochemical properties of topsoil

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Przemysław; Bednarek, Wiesław; Dresler, Sławomir; Krzyszczak, Jaromir; Baranowski, Piotr; Sławiński, Cezary

    2017-10-01

    In the years 2008-2011, an environmental study was conducted for Polish soils, focusing on the south-eastern Poland soils, as they exhibit significant acidification. This study aimed at assessing the current pHKCl and the supply of basic macro- (P, K, Mg and S-SO4) and microelements (B, Cu, Fe, Mn and Zn) in the collected soil samples, and also at determining their relationship with the soil agronomic category, humus content and pH class. Soil reaction and humus and macronutrient content were positively correlated with the amount of colloidal clay and particles < 0.02 mm. In the majority of cases, the macro-element content in the soil was positively correlated with soil pH and humus content. As for microelements, a usually significant and positive correlation was found between the soil agronomic category and the content of manganese, iron and zinc, whereas for the content of boron and copper, no such relationship was observed. A significant and positive correlation between soil reaction and the content of manganese, iron and boron was also found. Such correlations were not observed in relation to copper and zinc content. Statistical analysis indicated that the content of boron and manganese depended to the greatest extent on the investigated physicochemical properties.

  2. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  3. Materials Testing and Quality Control Soils, 3-28. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…

  4. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    PubMed

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  5. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.

  6. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  7. Steam Injection For Soil And Aquifer Remediation

    EPA Pesticide Factsheets

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by...

  8. Bradyrhizobium-Lupinus mariae-josephae: a unique symbiosis endemic of a basic soil in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Durán, D.; Sánchez-Cañizares, C.; Navarro, A.; Rey, L.; Imperial, J.; Ruiz-Argüeso, T.

    2012-04-01

    Lupinus mariae-josephae is an intriguing lupine species recently discovered in the Mediterranean region and constitutes an endemism of a small area of Eastern Spain (Valencia province; Pascual, 2004; Mahé et al. 2011). It opens new perspectives for ecological and agronomic interests, as it represents the sole lupine species that preferentially grows in basic soils, while almost all other lupine species occur in acid to neutral soils. The L. mariae-josephae symbionts isolated from soils of calcareous areas of Valencia are extremely slow-growing bacteria belonging to the Bradyrhrizobium genus and showing symbiotic specificity that prevents nodulation of other Lupinus spp. such as L. angustifolius or L. luteus typically thriving in acid soils (Sanchez-Cañizares et al, 2011). Their phylogenetic analysis based on housekeeping and symbiotic genes showed that L. mariae-josephae symbionts belong to an evolutionary lineage that also includes endosymbiotic bacteria from Retama spp. of Northern Algeria basic soils (Boulila et al. 2009). Conversely, this new lineage is phylogenetically distinct from that of endosymbiotic bacteria from other Lupinus spp. native of the Iberian Peninsula, which were nested mainly within B. canariense and B. japonicum lineages. A genomic diversity study of the indigenous bradyrhizobia population of the calcareous areas in Valencia, based on fingerprint and phylogenetic analysis, showed the existence of a large diversity of genotypes, some of which are related to bacteria from the Retama spp. symbiosis in Algeria. This singular genomic divergence of L. mariae-josephae symbiotic bacteria in such a small geographical area fosters attractive studies on the origin, ecology and evolution of both partners of the symbiosis. Furthermore, it is expected that ongoing seed inoculation experiments with selected strains will allow us to extend the extant distribution spots of L. mariae-josephae plants in Valencia area, and also to determine whether the observed edaphic restrictions represent a limitation to the expansion of L. mariae-josephae crops to wide areas of poor calcareous soils in the Mediterranean region. Work supported by FBBVA Contract BIOCON08-078 to TRA and MICINN Project CGL2011-26932 to JI. Mahé et al. 2010 Genet Resour Crop Evol 58, 101-114. Pascual, H. 2004 Anal Jardín Botán Madrid 61(1): 69-72. Sánchez-Cañizares et al 2011 Syst Appl Microbiol 34 207-215 Boulila et al 2009 Syst. Appl. Microbiol. 32, 245-255.

  9. Comparative study of soil erodibility and critical shear stress between loess and purple soils

    NASA Astrophysics Data System (ADS)

    Xing, Hang; Huang, Yu-han; Chen, Xiao-yan; Luo, Bang-lin; Mi, Hong-xing

    2018-03-01

    Loess and purple soils are two very important cultivated soils, with the former in the loess region and the latter in southern sub-tropical region of China, featured with high-risks of erosion, considerable differences of soil structures due to differences in mineral and nutrient compositions. Study on soil erodibility (Kr) and critical shear stress (τc) of these two soils is beneficial to predict soil erosion with such models as WEPP. In this study, rill erosion experimental data sets of the two soils are used for estimating their Kr and τc before they are compared to understand their differences of rill erosion behaviors. The maximum detachment rates of the loess and purple soils are calculated under different hydrodynamic conditions (flow rates: 2, 4, 8 L/min; slope gradients: 5°, 10°, 15°, 20°, 25°) through analytical and numerical methods respectively. Analytical method used the derivative of the function between sediment concentration and rill length to estimate potential detachment rates, at the rill beginning. Numerical method estimated potential detachment rates with the experimental data, at the rill beginning and 0.5 m location. The Kr and τc of these two soils are determined by the linear equation based on experimental data. Results show that the methods could well estimate the Kr and τc of these two soils as they remain basically unchanged under different hydrodynamic conditions. The Kr value of loess soil is about twice of the purple soil, whereas the τc is about half of that. The numerical results have good correlations with the analytical values. These results can be useful in modeling rill erosion processes of loess and purple soils.

  10. What is the philosophy of modelling soil moisture movement?

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wu, Y.

    2009-12-01

    In laboratory, the soil moisture movement in the different soil textures has been analysed. From field investigation, at a spot, the soil moisture movement in the root zone, vadose zone and shallow aquifer has been explored. In addition, on ground slopes, the interflow in the near surface soil layers has been studied. Along the regions near river reaches, the expansion and shrink of the saturated area due to rainfall occurrences have been observed. From those previous explorations regarding soil moisture movement, numerical models to represent this hydrologic process have been developed. However, generally, due to high heterogeneity and stratification of soil in a basin, modelling soil moisture movement is rather challenging. Normally, some empirical equations or artificial manipulation are employed to adjust the soil moisture movement in various numerical models. In this study, we inspect the soil moisture movement equations used in a watershed model, SWAT (Soil and Water Assessment Tool) (Neitsch et al., 2005), to examine the limitations of our knowledge in such a hydrologic process. Then, we adopt the features of a topographic-information based on a hydrologic model, TOPMODEL (Beven and Kirkby, 1979), to enhance the representation of soil moisture movement in SWAT. Basically, the results of the study reveal, to some extent, the philosophy of modelling soil moisture movement in numerical models, which will be presented in the conference. Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrol. Science Bulletin, 24: 43-69. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and Water Assessment Tool Theoretical Documentation, Grassland, soil and research service, Temple, TX.

  11. Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays.

    PubMed

    Loureiro, Susana; Ferreira, Abel L G; Soares, Amadeu M V M; Nogueira, António J A

    2005-10-01

    Soil contamination can be one path for streams and groundwater contamination. As a complement of chemical analysis and total contaminants determination, bioassays can provide information on the bioavailable fraction of chemical compounds, focusing on the retention and habitat function of soils. In this study the evaluation of the toxicity of two soils from the abandoned Jales Mine (Portugal) regarded both functions. The buffer capacity of soils was tested with bioassays carried out using the cladoceran Daphnia magna and the marine bacteria Vibrio fischeri. The habitat function of soils was evaluated with the reproduction bioassay with the collembolan Folsomia candida. The Microtox solid-phase test was performed with V. fischeri using soil as test medium, and soil elutriates were extracted to perform the Microtox basic test, and an immobilization and reproduction bioassay with D. magna. The marine bacteria showed high sensitivity to the soil with low heavy metal content (JNC soil) and to JNC soil elutriates, while the soil with highest heavy metal content (JC soil) or soil elutriates exposure did not cause any toxic effect. In the bioassays with D. magna, organisms showed sensitivity to JNC and also to JC soil elutriates. Both mobilization and reproduction features were inhibited. The bioassay with F. candida did not reflect any influence of the contaminants on their reproduction. Although JNC soil presented lower heavy metal contents, elutriates showed different patterns of contamination when compared to JC soil and elutriates, which indicates different retention and buffer capacities between soils. Results obtained in this study underlined the sensitivity and importance of soil elutriate bioassays with aquatic organisms in the evaluation strategy in soil ERA processes.

  12. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  13. Application of a combined approach including contamination indexes, geographic information system and multivariate statistical models in levels, distribution and sources study of metals in soils in Northern China

    PubMed Central

    Huang, Kuixian; Luo, Xingzhang

    2018-01-01

    The purpose of this study is to recognize the contamination characteristics of trace metals in soils and apportion their potential sources in Northern China to provide a scientific basis for basic of soil environment management and pollution control. The data set of metals for 12 elements in surface soil samples was collected. The enrichment factor and geoaccumulation index were used to identify the general geochemical characteristics of trace metals in soils. The UNMIX and positive matrix factorizations (PMF) models were comparatively applied to apportion their potential sources. Furthermore, geostatistical tools were used to study the spatial distribution of pollution characteristics and to identify the affected regions of sources that were derived from apportionment models. The soils were contaminated by Cd, Hg, Pb and Zn to varying degree. Industrial activities, agricultural activities and natural sources were identified as the potential sources determining the contents of trace metals in soils with contributions of 24.8%–24.9%, 33.3%–37.2% and 38.0%–41.8%, respectively. The slightly different results obtained from UNMIX and PMF might be caused by the estimations of uncertainty and different algorithms within the models. PMID:29474412

  14. General statistical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhardt, L L; Gilbert, R O

    From NAEG plutonium environmental studies program meeting; Las Vegas, Nevada, USA (2 Oct 1973). The high sampling variability encountered in environmental plutonium studies along with high analytical costs makes it very important that efficient soil sampling plans be used. However, efficient sampling depends on explicit and simple statements of the objectives of the study. When there are multiple objectives it may be difficult to devise a wholly suitable sampling scheme. Sampling for long-term changes in plutonium concentration in soils may also be complex and expensive. Further attention to problems associated with compositing samples is recommended, as is the consistent usemore » of random sampling as a basic technique. (auth)« less

  15. The soil education technical commission of the Brazilian Soil Science Society: achievements and challenges

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Aparecida de Mello, Nilvania

    2013-04-01

    The Soil Education and public awareness technical commission of the Brazilian Soil Science Society was created in 1987 as Soil Science teaching commission at that time. In the 90's of the last century the commission was very active and realized three national symposia in the years 1994 to 1996: in Viçosa, Minas Gerais; Santa Maria, Rio Grande do Sul and Pato Branco, Paraná. The following symposium scheduled to happen in Brasilia, 1997 could not be realized and was followed by a weakening and reduction of the involved group. Those three symposia were focused on the aspects of soil science taught at the university educational level, mainly in agrarian sciences. The concern about what was going on at basic education and perception by society was not much present. The commission was revitalized in 2005 and in 2007 realized its first meeting at the Brazilian Congress of Soil Science in Gramado, Rio Grande do Sul. At that meeting it was already an urge to assume the approach of soil education instead of soil science teaching, within a major concern how society consider soils. It was accepted and adequate under the structural reorganization undergone by the national society following the IUSS main lines. The commission was renamed and got two new mates at the newly created Division IV, Soils, Environment and Society, of the Brazilian Soil Science Society: Soils and Food Safety and History, Epistemology and Sociology of Soil Science. The national symposia were relaunched to happen biannually. An inventory of the soil education experiences around the country started and the geographic distribution of the future symposia intended to rescue and bring together experiences in different parts of the country that would not be known by other means. Three symposia were already realized: Piracicaba, Sao Paulo, 2008 (southeast); Curitiba, Paraná, 2010 (south) and Sobral, Ceará, 2012 (northeast). The next is planned to happen in Recife, Pernambuco in April 2014. The scope of the last three symposia was dramatically changed compared to the former ones, considering both participants and papers: basic school teachers, science mediators instead of university docents and a prevalence of papers on soil education in basic schools and non-formal education. The main challenge for soil scientists remains in how to spread the knowledge about the importance of soil and its care among individuals and society in general. Diversified experiences, strategies and instruments are on the move, still soils are overlooked in the present environmental issues. Within the commission the challenge remains with the popularity of the subject in the academic world: it is marginal, it is an interface between knowledge areas and it is commonly the second subject of researchers, easily abandoned when work pressure grows.

  16. How to feed environmental studies with soil information to address SDG 'Zero hunger'

    NASA Astrophysics Data System (ADS)

    Hendriks, Chantal; Stoorvogel, Jetse; Claessens, Lieven

    2017-04-01

    As pledged by UN Sustainable Development Goal (SDG) 2, there should be zero hunger, food security, improved food nutrition and sustainable agriculture by 2030. Environmental studies are essential to reach SDG 2. Soils play a crucial role, especially in addressing 'Zero hunger'. This study aims to discuss the connection between the supply and demand of soil data for environmental studies and how this connection can be improved illustrating different methods. As many studies are resource constrained, the options to collect new soil data are limited. Therefore, it is essential to use existing soil information, auxiliary data and collected field data efficiently. Existing soil data are criticised in literature as i) being dominantly qualitative, ii) being often outdated, iii) being not spatially exhaustive, iv) being only available at general scales, v) being inconsistent, and vi) lacking quality assessments. Additional field data can help to overcome some of these problems. Outdated maps can, for example, be improved by collecting additional soil data in areas where changes in soil properties are expected. Existing soil data can also provide insight in the expected soil variability and, as such, these data can be used for the design of sampling schemes. Existing soil data are also crucial input for studies on digital soil mapping because they give information on parent material and the relative age of soils. Digital soil mapping is commonly applied as an efficient method to quantitatively predict the spatial variation of soil properties. However, the efficiency of digital soil mapping may increase if we look at functional soil properties (e.g. nutrient availability, available water capacity) for the soil profile that vary in a two-dimensional space rather than at basic soil properties of individual soil layers (e.g. texture, organic matter content, nitrogen content) that vary in a three-dimensional space. Digital soil mapping techniques are based on statistical relations between soil properties and environmental variables. However, in some cases a more mechanistic approach, based on pedological knowledge, might be more convincing to predict soil properties. This study showed that the soil science community is able to provide the required soil information for environmental studies. However, there is not a single solution that provides the required soil data. Case studies are needed to prove that certain methods meet the data requirements, whereafter these case studies function as a lighthouse to other studies. We illustrate data availability and methodological innovations for a case study in Kenya, where the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) aims to contribute to SDG 2.

  17. Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollutants.

    PubMed

    Haapala, H; Goltsova, N; Lodenius, M

    2001-01-01

    The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.

  18. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan

    2015-04-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. It is undergoing degradation under the background of global climate change, human activities and overgrazing. Soil moisture is important to alpine meadow ecology for its water and energy transfer processes, therefore soil hydraulic properties become key parameters for local eco-hydrological processes studies. However, little research focus on the changes and it's mechanisms of soil hydraulic properties during the degradation processes. In this study, soil basic and hydraulic properties at 0-10 cm and 40-50 cm soil layer depths under different degraded alpine meadow were analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil saturated hydraulic conductivity (Ks) as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. For soil unsaturated hydraulic conductivity, it reduced more slowly with decreasing pressure head under degraded conditions than non-degraded conditions. However, soil moisture showed no significant changes with increasing degradation. Soil Ks was significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for the macropores in the 0-10 cm soil layer. The substantial decrease of macropores caused a cut in soil moisture and hydraulic conductivity.

  19. Physical properties of 134 soils in six northeastern states

    Treesearch

    A. R. Eschner; B. O. Jones; R. C. Moyle

    1957-01-01

    From June 1954 to July 1955 the Vicksburg Infiltration Project collected and analyzed samples from 134 sites in six Northeastern States; the samples included 79 soil series and 114 soil types. This work was done to supply the U. S. Army with information needed for specialized research on military traffic ability. The basic data are herein presented because of their...

  20. Keys to soil taxonomy by soil survey staff (sixth edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This publication, Keys to Soil Taxonomy, serves two purposes. It provides the taxonomic keys necessary for the classification of soils according to Soil Taxonomy in a form that can be used easily in the field, and it also acquaints users of Soil Taxonomy with recent changes in the classification system. This volume includes all revisions of the keys that have so far been approved, replacing the original keys in Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys (1975), the work on which this abridged version, first published in 1983, is based. This publication incorporatesmore » all amendments approved to date and published in National Soil Taxonomy Handbook (NSTH) Issues 1-17.« less

  1. Drought tolerance in cacao is mediated by root phenotypic plasticity

    USDA-ARS?s Scientific Manuscript database

    This study aimed to evaluate phenotypic relationships and their direct and indirect effects through path analysis, and evaluate the use of the phenotypic plasticity index as criteria for the estimation of the basic and explanatory variables used to analysis several cacao progenies subjected to soil ...

  2. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass.

    PubMed

    Zhou, Tongtong; Wang, Jun; Ma, Zhiqiang; Du, Zhongkun; Zhang, Cheng; Zhu, Lusheng; Wang, Jinhua

    2018-05-01

    Ionic liquids (ILs), also called room temperature ILs, are widely applied in many fields on the basis of their unique physical and chemical properties. However, numerous ILs may be released into and gradually accumulate in the environment due to their extensive use and absolute solubility. The effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 , n = 4, 6, 8) on soil pH, conductivity, cation exchange capacity, microbial biomass carbon, and microbial biomass nitrogen were examined at the doses of 1, 10, and 100 mg/kg on days 10, 20, 30, and 40. The results demonstrated that the soil pH decreased and the conductivity increased with increasing IL doses. No significant differences were observed in the soil cation-exchange capacity. All three of the tested ILs decreased the soil microbial biomass carbon and nitrogen. Additionally, there were few differences among the ILs with different alkyl chain lengths on the tested indicators except for the microbial biomass nitrogen. The present study addressed a gap in the literature regarding the effects of the aforementioned ILs with different alkyl side chains on the physicochemical properties of soil, and the results could provide the basic data for future studies on their toxicity to soil organisms, such as earthworms and soil microbes.

  3. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  4. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  5. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  6. Kinetics of heterogeneous chemical reactions: a theoretical model for the accumulation of pesticides in soil.

    PubMed

    Lin, S H; Sahai, R; Eyring, H

    1971-04-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method.

  7. Kinetics of Heterogeneous Chemical Reactions: A Theoretical Model for the Accumulation of Pesticides in Soil

    PubMed Central

    Lin, S. H.; Sahai, R.; Eyring, H.

    1971-01-01

    A theoretical model for the accumulation of pesticides in soil has been proposed and discussed from the viewpoint of heterogeneous reaction kinetics with a basic aim to understand the complex nature of soil processes relating to the environmental pollution. In the bulk of soil, the pesticide disappears by diffusion and a chemical reaction; the rate processes considered on the surface of soil are diffusion, chemical reaction, vaporization, and regular pesticide application. The differential equations involved have been solved analytically by the Laplace-transform method. PMID:5279519

  8. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    NASA Technical Reports Server (NTRS)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  9. Tungstate adsorption onto Italian soils with different characteristics.

    PubMed

    Petruzzelli, Gianniantonio; Pedron, Francesca

    2017-08-01

    The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg -1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg -1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.

  10. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils.

    PubMed

    Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth

    2017-08-01

    Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.

  11. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site

    NASA Astrophysics Data System (ADS)

    Kanmani, S.; Gandhimathi, R.

    2013-03-01

    The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, W.G.

    Scapteriscus vicinus is the most important pest of turf and pasture grasses in Florida. This study develops a method of correlating sample results with true population density and provides the first quantitative information on spatial distribution and movement patterns of mole crickets. Three basic techniques for sampling mole crickets were compared: soil flushes, soil corer, and pitfall trapping. No statistical difference was found between the soil corer and soil flushing. Soil flushing was shown to be more sensitive to changes in population density than pitfall trapping. No technique was effective for sampling adults. Regression analysis provided a means of adjustingmore » for the effects of soil moisture and showed soil temperature to be unimportant in predicting efficiency of flush sampling. Cesium-137 was used to label females for subsequent location underground. Comparison of mean distance to nearest neighbor with the distance predicted by a random distribution model showed that the observed distance in the spring was significantly greater than hypothesized (Student's T-test, p < 0.05). Fall adult nearest neighbor distance was not different than predicted by the random distribution hypothesis.« less

  13. Impacts of acidic deposition: context and case studies of forest soils in the southeastern US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binkley, D.; Driscoll, C.T.; Allen, H.L.

    1988-12-01

    The authors designed their assessment to include both the basic foundation needed by non-experts and the detailed information needed by experts. Their assessment includes background information on acidic deposition (Chap. 1), an in-depth discussion of the nature of soil acidity and ecosystem H(1+) budgets (Chap. 2), and a summary of rates of deposition in the Southeastern U.S. (Chap. 3). A discussion of the nature of forest soils in the region (Chap. 4) is followed by an overview of previous assessments of soil sensitivity to acidification (Chap. 5). The potential impacts of acidic deposition on forest nutrition are described in themore » context of the degree of current nutrient limitation on forest productivity (Chap. 6). The results of simulations with the MAGIC model provided evaluations of the likely sensitivity of a variety of soils representative of forest soils in the South (Chap. 7), as well as a test of soil sensitivity criteria. The authors' synthesis and recommendations for research (Chap. 8) also serve as an executive summary.« less

  14. Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.

    PubMed

    Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar

    2015-07-15

    It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional research is required to incorporate principal component analysis for improving the SQI and site potential assessment. It is also important to evaluate the minimum data set (MDS) required for SQI and productivity assessment in agroforestry systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.

  16. Observation and difference analysis of carbon fluxes in different types of soil in Tianjin coastal zone

    NASA Astrophysics Data System (ADS)

    Li, Ya-Juan; Wang, Ting-Feng; Mao, Tian-Yu

    2018-02-01

    Tianjin Coastal Zone is located in the coastal area of the Bohai Sea, belonging to the typical coastal wetland, with high carbon value. Over the past decade the development of great intensity, there are obvious characteristics of artificial influence. This study focuses on observing the carbon fluxes of different soil types in the coastal area under strong artificial disturbance, summarizing the carbon sink calculation formula according to the soil type, and analyzing the main influencing factors affecting the carbon flux. The results show that there are representative intertidal zones in Tianjin, and the respiration of soil and secondary soil are different. The main influencing factors are soil surface temperature or air temperature. Coastal zones with different ecosystems can basically establish the relationship between temperature and soil carbon flux. (R2 = 0.5990), the relationship between artificial backfill is Q = 0.2061 - 0.2129T - 0.0391T2 (R2 = 0.7469), and the artificial soil is restored by artificial soil and the herbaceous greening is carried out., The relationship is Q = -0.1019 + 0.0327T‧ (R2 = 0.6621), T-soil temperature, T’-air temperature. At the same temperature, soil carbon fluxes in shoal wetlands are generally stronger than artificial backfill, showing more carbon source emissions.

  17. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    PubMed

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  18. Rich in life but poor in data: the known knowns and known unknowns of modelling how soil biology drives soil structure

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Ogden, Mike

    2015-04-01

    Soil biology has a fascinating capacity to manipulate pore structure by altering or overcoming hydrological and mechanical properties of soil. Many have postulated, quite rightly, that this capacity of soil biology to 'engineer' its habitat drives its diversity, improves competitiveness and increases resilience to external stresses. A large body of observational research has quantified pore structure evolution accompanied by the growth of organisms in soil. Specific compounds that are exuded by organisms or the biological structures they create have been isolated and found to correlate well with observed changes to pore structure or soil stability. This presentation will provide an overview of basic mechanical and hydrological properties of soil that are affected by biology, and consider missing data that are essential to model how they impact soil structure evolution. Major knowledge gaps that prevent progress will be identified and suggestions will be made of how research in this area should progress. We call for more research to gain a process based understanding of structure formation by biology, to complement observational studies of soil structure before and after imposed biological activity. Significant advancement has already been made in modelling soil stabilisation by plant roots, by combining data on root biomechanics, root-soil interactions and soil mechanical properties. Approaches for this work were developed from earlier materials science and geotechnical engineering research, and the same ethos should be adopted to model the impacts of other biological compounds. Fungal hyphae likely reinforce soils in a similar way to plant roots, with successful biomechanical measurements of these micron diameter structures achieved with micromechanical test frames. Extending root reinforcement models to fungi would not be a straightforward exercise, however, as interparticle bonding and changes to pore water caused by fungal exudates could have a major impact on structure formation and stability. Biological exudates from fungi, bacteria or roots have been found to decrease surface tension and increase viscosity of pore water, with observed impacts to soil strength and water retention. Modelling approaches developed in granular mechanics and geotechnical engineering could be built upon to incorporate biological transformations of hydrological and mechanical properties of soil. With new testing approaches, adapted from materials science, pore scale hydromechanical impacts from biological exudates can be quantified. The research can be complemented with model organisms with differences in biological structures (e.g. root hair mutants), exudation or other properties. Coupled with technological advances that provide 4D imaging of soil structure at relatively rapid capture rates, the potential opportunities to disentangle and model how biology drives soil structure evolution and stability are vast. By quantifying basic soil hydrological and mechanical processes that are driven by soil biology, unknown unknowns may also emerge, providing new insight into how soils function.

  19. Aggregate Stability and Erodibility of Purple Soil on Sloping Farmland as affected by different Soil Thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed

    2017-04-01

    Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility

  20. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils.

    PubMed

    Di Marsico, A; Scrano, L; Amato, M; Gàmiz, B; Real, M; Cox, L

    2018-06-01

    The objective of this work was to determine the effect of the mucilage extracted from Chia seeds (Salvia hispanica L.) as soil amendment on soil physical properties and on the sorption-desorption behaviour of four herbicides (MCPA, Diuron, Clomazone and Terbuthylazine) used in cereal crops. Three soils of different texture (sandy-loam, loam and clay-loam) were selected, and mercury intrusion porosimetry and surface area analysis were used to examine changes in the microstructural characteristics caused by the reactions that occur between the mucilage and soil particles. Laboratory studies were conducted to characterise the selected herbicides with regard their sorption on tested soils added or not with the mucilage. Mucilage amendment resulted in a reduction in soil porosity, basically due to a reduction in larger pores (radius>10μm) and an important increase in finer pores (radius<10μm) and in partcles' surface. A higher herbicide sorption in the amended soils was ascertained when compared to unamended soils. The sorption percentage of herbicides in soils treated with mucilage increased in the order; sandy-loam

  1. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  2. SPILL ALERT DEVICE FOR EARTH DAM FAILURE WARNING

    EPA Science Inventory

    A spill alert device for determining earth dam safety based on the monitoring of the acoustic emissions generated in a deforming soil mass was developed and field-tested. The acoustic emissions are related to the basic mechanisms from which soils derive their strength. Laboratory...

  3. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils.

    PubMed

    Yang, Fan; Zhang, Wei; Li, Jinmei; Wang, Shuyao; Tao, Yue; Wang, Yifan; Zhang, Ying

    2017-12-01

    Generally, biochar plays an important role in controlling migration and accumulation of pollutants in soil. In this dissertation, biochars derived from wheat straws at various pyrolysis temperatures are used to investigate how biochar amendment affects adsorption and microbial degradation of atrazine (typical diffuse herbicide) in soils. In order to explore the influence of soil components, soil samples with different organic matter content are collected from typical agricultural sites, which are characterized as black soils in the northeast region of China. The basic sorption characteristics of biochars from wheat straws prepared at diverse pyrolysis temperature are analyzed, along with the comparisons of the sorption difference in the raw soil and soil amended with biochars at four levels of ratio (0.1%, 0.5%, 1.0% and 2.0%). By incubation experiments, atrazine degradation in non-sterile and sterile soils and effects of atrazine degradation rate after biochar amendment are also studied. Atrazine degradation is significantly enhanced in biochar amended soils, which may be because that biochar supplement can promote the growth and metabolism of microorganisms in the soil. Our findings reveal that wheatstraw- derived biochars may be effective remediation reagents for activating degradation of the soil functional microorganism and enhancing sorption of organic matter content, which can be applied to environmental-friendly accelerate the remediation of atrazine contaminated black soils. Copyright © 2017. Published by Elsevier Ltd.

  4. Research progress on expansive soil cracks under changing environment.

    PubMed

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  5. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    PubMed

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  6. Physical and chemical properties of soils under some wild Pistachio (Pistacia atlantica Desf) canopies in a semi-arid ecosystem, southwestern Iran.

    NASA Astrophysics Data System (ADS)

    Owliaie, Hamidreza

    2010-05-01

    Pistacia atlantica Desf. is one of the most important wild species in Zagros forests which is of high economical and environmental value. Sustainability of these forests primarily depends on soil quality and water availability. Study the relationships between trees and soil is one of the basic factors in management and planning of forests. Hence, this study was undertaken with the objective of assessing the effect of tree species on soil physical and chemical properties in a semi-arid region (Kohgilouye Province) in the southwestern part of Iran. The experimental design was a factorial 4×2 (4 depths and 2 distances) in a randomized complete block design with six replications. Soil samples (0-20, 20-40, 40-60 and 60-80 cm depth) were taken from beneath the tree crowns and adjacent open areas. Soil samples were analyzed for physical and chemical properties. The results showed that wild pistachio canopy increased mostly organic carbon, hydraulic conductivity, total N, SP, available K+, P (olsen), EC, EDTA extractable Fe2+ and Mn2+, while bulk density, CCE and DTPA extractable Cu2+ were decreased. Pistachio canopy had no significant effect on soil texture, Zn2+ and pH.

  7. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang

    PubMed Central

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-01-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679

  8. Soil Organic Matter Content Effects on Dermal Pesticide ...

    EPA Pesticide Factsheets

    Agricultural landscapes serve as active amphibian breeding grounds despite their seemingly poor habitat value. Activity of adults and dispersal of metamorphs to and from agricultural ponds occurs in most species from spring through late summer or early fall, a time that coincides with pesticide applications on farm fields and crops. In terrestrial landscapes, dermal contact with contaminated soil and plant matter may lead to bioconcentration as well as lethal and sublethal effects in amphibians.Although the physiological structure of the amphibian dermis may facilitate pesticide uptake, soil properties may ultimately dictate bioavailability of pesticides in terrestrial habitats. The organic matter fraction of soil readily binds to pesticides, potentially decreasing the availability of pesticides adhering to biological matter. Soil partition coefficient

  9. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    PubMed Central

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  10. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  11. Sorption ability of the soil and its impact on environmental contamination

    PubMed Central

    Gargošová, Helena Zlámalová; Vávrová, Milada

    2014-01-01

    From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897

  12. Integrated watershed management for saturation excess generated runoff, erosion and nutrient control

    USDA-ARS?s Scientific Manuscript database

    Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...

  13. GROUND WATER ISSUE: STEAM INJECTION FOR SOIL AND AQUIFER REMEDIATION

    EPA Science Inventory

    The purpose of this Issue Paper is to provide to those involved in assessing remediation technologies for specific sites basic technical information on the use of steam injection for the remediation of soils and aquifers that are contaminated by volatile or semivolatile organic c...

  14. The Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Meloy, Thomas P.; Marshall, John; Hecht, Michael

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).

  15. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  17. Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Hausner, C.; Sisák, I.

    2009-04-01

    Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.

  18. Assessment of land use in protected areas of the state of Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Iori, P.; da Silva, R. B.; Dias Junior, M. S.; Paz González, A.

    2012-04-01

    It is of universal knowledge that the soil, a basic natural resource, is renewable only if conserved or used correctly(Primavesi, 2002). It is salient for Araújo et al. (2007) that the establishment of index of soil quality is an important tool in the functions of control, supervision and monitoring of areas for environmental protection. The objective of this study was to compare the quality of the soil by means of a comparative diagram in different soil uses in permanent preservation areas (APP). The study was conducted in areas near the Ribeira de Iguape river in the city of Registro - São Paulo - Brazil, belonging to the Atlantic Forest domain, a Haplic Cambisol. The following uses of the soil had been evaluated: a) banana culture (CBAN) without agricultural traffic of machines; b) degraded pasture (PDEG) with extensive system predominantly Brachiaria decumbens L. c) use silvopastoral (MPIs), consisted in a kills with a traffic free for the animals, and d) native vegetation (MNAT), proposed in this study as a reference area.The following physical indicators were analyzed: bulk density (BD), total soil porosity (TP), macroporosity (Ma), microporosity (Mi), water dispersible clay (ADA), flocculation index (FI), preconsolidation pressure (PP), soil shear strength (SS), soil resistance to penetration (RP). To construct the comparative diagram the values for each attribute of the soil in each land use were related to the values of the native forest. It was feasible to use the comparative model in the qualitative evaluation of soil use, allowing separate environments under different uses. According to the comparative diagram of banana culture is the use that most negatively impacts the physical and mechanical soil due to the smaller size of the lower polygon.

  19. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion

    PubMed Central

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.

    2017-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564

  20. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    PubMed

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  1. An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Šimūnek, Jiří; Sławiński, Cezary; Lamorska, Joanna

    2017-02-01

    In this paper, we estimated using the machine learning methodology the main wetting branch of the soil water retention curve based on the knowledge of the main drying branch and other, optional, basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific surface). The support vector machine algorithm was used for the models' development. The data needed by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples. Models relying on different sets of input parameters were developed and validated. The analysis showed that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter content, or soil specific surface) than information about the drying branch of the SWRC has essentially no impact on the models' estimations. Developed models are validated and compared with well-known models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker (1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation errors (RMSE = 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE = 0.025 m3/m3) or KP87 (RMSE = 0. 047 m3/m3) models.

  2. Protect Minnesota's Agricultural Land: Components and Activities for Elementary Students.

    ERIC Educational Resources Information Center

    Noy, Laura

    An endeavor to alert elementary teachers and students to the need to protect and conserve one of Minnesota's basic resources, soil, these supplementary instructional activities are designed for easy integration into science, social studies, language arts, mathematics, and art subject and skill areas. Each activity includes a brief description of…

  3. Mapping Soil Water-Holding Capacity Index to Evaluate the Effectiveness of Phytoremediation Protocols and ExposureRisk to Contaminated Soils in a National Interest Priority Site of the Campania Region (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Romano, N.

    2015-12-01

    Soil moisture is an important state variable that influences water flow and solute transport in the soil-vegetation-atmosphere system, and plays a key role in securing agricultural ecosystem services for nutrition and food security. Especially when environmental studies should be carried out at relatively large spatial scales, there is a need to synthesize the complex interactions between soil, plant behavior, and local atmospheric conditions. Although it relies on the somewhat loosely defined concepts of "field capacity" and "wilting point", the soil water-holding capacity seems a suitable indicator to meet the above-mentioned requirement, yet easily understandable by the public and stakeholders. This parameter is employed in this work to evaluate the effectiveness of phytoremediation protocols funded by the EU-Life project EcoRemed and being implemented to remediate and restore contaminated agricultural soils of the National Interest Priority Site Litorale Domizio-Agro Aversano. The study area is located in the Campania Region (Southern Italy) and has an extent of about 200,000 hectares. A high-level spotted soil contamination is mostly due to the legal or outlaw industrial and municipal wastes, with hazardous consequences also on groundwater quality. With the availability of soil and land systems maps for this study area, disturbed and undisturbed soil samples were collected at two different soil depths to determine basic soil physico-chemical properties for the subsequent application of pedotransfer functions (PTFs). Soil water retention and hydraulic conductivity functions were determined for a number of soil cores, in the laboratory with the evaporation experiments, and used to calibrate the PTFs. Efficient mapping of the soil hydraulic properties benefitted greatly from the use of the PTFs and the physically-based scaling procedure developed by Nasta et al. (2013, WRR, 49:4219-4229).

  4. Classification of anthropogenic soils by new diagnostic criteria involved in the Slovak Soil Classification System (2014)

    NASA Astrophysics Data System (ADS)

    Sobocká, Jaroslava; Balkovič, Juraj; Bedrna, Zoltán

    2017-04-01

    Anthropogenic soils can be found mostly in SUITMA areas. The issue of adequate and correct description and classification of these soils occurs very often and can result in inconsistent even in contradictory opinions. In the new version of the anthropogenic soil classification system in Slovakia some new diagnostics criteria were involved and applied for better understanding the inherent nature of these soils. The group of the former anthropogenic soils was divided following scheme of soil reference groups in the WRB 2014 (Anthrozem and Technozem). According to the new version of the Slovak anthropogenic soils classification (2014) there have been distinguished 2 groups of anthropogenic soils: 1) cultivated soils group including 2 soil types (in Slovak terminology): Kultizem and Hortizem and 2) technogenic soils group having 2 soil types: Antrozem and Technozem. Cultivated soil group represents soils developing or forming "in-situ" with diagnostic horizons characterized by human deeply influenced cultivated processes. Technogenic soil group are soils developing like "ex-situ" soils. The key features recognizing technogenic soil group are human-transported and altered material (HTAM = ex-situ aspect), and artefacts content. Diagnostic horizons (top and subsoil) were described as various material affected by physical-mechanical excavation, transportation and spread, mixing, and containing artefacts (the new diagnostic feature). Kultizems are differentiated by cultivated horizon(s) and Technozems by anthropogenic horizon(s). Cultivated horizons are mostly well-known described horizon in many scientific references. Anthropogenic horizons for Technozem are developed from the human-induced transported and altered material which origin is from the other ecological locality that adjacent area. Materials (or substrates) can consist of various material (natural, technogenic or their mixing) with thickness ≥ 60 cm. Artefacts are the second diagnostic feature which presence authenticates the "artificial origin" of the soil. Natural material contains ≤ 10 % artefacts; natural-technogenic 10-40 % artefacts; and technogenic ≥ 40 %. In the soil survey anthropogenic transported or altered layer is very simply recognizable in soil profile if it is compared with adjacent natural horizons. The classification problem is to define and distinguish not only artefacts in soil profile but recognize the origin of the material. The completed manual for these issues is missing. In the contribution, there graphically individual basic soil types of Antrozems and Technozems with some subtypes will be illustrated. Also the basic schema of classification units in Slovakia will be depicted.

  5. Soil awareness raising - activities in schools and for the general public in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Sigbert; Birli, Barbara; Schwarz, Sigrid; Tulipan, Monika; Berthold, Helene; Englisch, Michael; Foldal, Cecilie

    2017-04-01

    Too few people know just how important soil really is and how to manage it properly. This is why a number of activities have been launched by the Austrian Soil Science Society and its members to provide basic soil information to "non-soil experts" promoting the various services soil provides for society and raising awareness as to what each individual can do to protect and manage soil. Environment Agency Austria and Umweltdachverband [1] have developed teaching material based on the principles of "Education for Sustainable Development". These booklets provide basic knowledge about soil combined with appealing and creative tasks. These tasks were developed to fit into biology or geography courses as well as into other courses such as mathematics, language training, chemistry, history, informatics, etc. Pupils and students may actively explore soil properties, soil formation, soil functions and soil organisms in the course of workshops (called "Boden macht Schule") in schools and in kindergartens [2],[3]. Key elements are the identification of soil animals, creative tasks and experiments appropriate to the pupils' age showing soiĺs ability to clean and retain water. The workshops for kindergartens revolve around feeling the soil texture, exploring soil biota and drawing. A special challenge for students is the Soil Orientation Run, a combination of physical effort, testing onés own soil knowledge and cooperating as a team. At the Vienna Zzoo many people get in touch with soil and its properties during the Vienna species conservation days. 2017 a new soil trail with 13 boards will open in Vienna, focusing on the genesis, geology, biology and important functions of the Viennese urban soil. A team of 10 scientists worked on the implementation of this soil trail which will raise soil awareness of the citizens and visitors of Vienna. The Soil Awareness Guide as a tool of the Austrian Soil Platform shows activities and materials to raise awareness in Austria. Due to these activities up to now several thousand people were able to get an idea of the importance of soil for our life. By asking children to discuss these topics with their parents, we hope to reach also todaýs decision makers and land users while teaching those of tomorrow. Footnotes: [1] http://www.umweltdachverband.at/ [2] https://bodenschutz.wordpress.com/ [3] http://www.umweltbundesamt.at/umweltsituation/boden/schule/

  6. From agricultural geology to hydropedology: Forging links within the twenty-first-century geoscience community

    USGS Publications Warehouse

    Landa, E.R.; ,

    2006-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late-twentieth century. The shift in recent decades within both disciplines, towards greater emphasis on environmental-quality issues and a systems approach, has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere and lithosphere, introductory and advanced soil-science classes are now taught in a number of Earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface to groundwater 'critical zone' requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable Earth-science specialty area for graduate study. ?? The Geological Society of London 2006.

  7. The effect of aging on sequestration and bioaccessibility of oxytetracycline in soils.

    PubMed

    Liu, Yuxia; Bao, Yanyu; Cai, Zhang; Zhang, Zhenzihao; Cao, Peilin; Li, Xinqian; Zhou, Qixing

    2015-07-01

    Veterinary antibiotics introduced into soil environment may change the composition and functioning of soil microbial communities and promote the spreading of antibiotic resistance. Actual risks depend on the antibiotic's bioaccessibility and sequestration in soils, which may vary with contact time and soil properties. We elucidated changes in the horsebean plant's bioaccessible oxytetracycline with increasing contact time in three different soils (cinnamon, red, and brown soil) and observed discrepancy in oxytetracycline dissipation using sequential extractions with H2O-, 0.01 M CaCl2-, and Mcllvaine- in the same three soils. The results showed lower quantities of oxytetracycline with increasing contact time over 20 days than the level in freshly contaminated soils but hugely discrepant quantities among the three tested soils. In addition, aging largely reduced dissipation of H2O-, 0.01 M CaCl2-, and Mcllvaine- extracted oxytetracycline in soils before planting. However, bioturbation helped increase the H2O-, CaCl2-, and Mcllvaine- extracted oxytetracyline from cinnamon and brown soils with aging. Lastly, correlation analysis indicated that bioaccessibility of oxytetracycline significantly correlates with the total of H2O-, CaCl2-, and Mcllvaine- extracted oxytetracycline (0.676**, p < 0.01) in soils, especially the H2O- (0.789**, p < 0.01) and Mcllvaine- (0.686**, p < 0.01) extracted oxytetracycline with aging. Overall, this study provides some basic understanding of the aging effect on sequestration and bioaccessibility of veterinary antibiotics in soils.

  8. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Kalbitz, Karsten; Cerli, Chiara; Hernes, Peter J.; Kaiser, Klaus

    2016-07-01

    Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. In the present opinion paper, we summarize and discuss the inconsistencies and propose research options to clear them. Lignin degradation takes place stepwise, starting with (i) depolymerization and followed by (ii) transformation of the water-soluble depolymerization products. The long-term fate of the depolymerization products and other soluble aromatics, e.g., tannins, in the mineral soils is still a mystery. Research on dissolved organic matter (DOM) composition and fluxes indicates dissolved aromatics are important precursors of stable SOM attached to mineral surfaces and persist in soils for centuries to millennia. Evidence comes from flux analyses in soil profiles, biodegradation assays, and sorption experiments. In contrast, studies on composition of mineral-associated SOM indicate the prevalence of non-aromatic microbial-derived compounds. Other studies suggest the turnover of lignin in soil can be faster than the turnover of bulk SOM. Mechanisms that can explain the apparent fast disappearance of lignin in mineral soils are, however, not yet identified. The contradictions might be explained by analytical problems. Commonly used methods probably detect only a fraction of the aromatics stored in the mineral soil. Careful data interpretation, critical assessment of analytical limitations, and combined studies on DOM and solid-phase SOM could thus be ways to unveil the issues.

  9. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Kalbitz, Karsten; Cerli, Chiara; Hernes, Peter; Kaiser, Klaus

    2016-04-01

    Uncertainties concerning stabilization of organic compounds in soil limit our basic understanding on soil organic matter (SOM) formation and our ability to model and manage effects of global change on SOM stocks. One controversially debated aspect is the contribution of aromatic litter components, such as lignin and tannins, to stable SOM forms. Here we summarize and discuss the inconsistencies and propose research options to clear them. Lignin degradation takes place step-wise, starting with (i) depolymerisation, followed by (ii) transformation of the water-soluble depolymerization products. The long-term fate of the depolymerization products and other soluble aromatics, e.g., tannins, in the mineral soils is still a mystery. Research on dissolved organic matter (DOM) composition and fluxes indicates dissolved aromatics are important precursors of stable SOM attached to mineral surfaces and persist in soils for centuries to millennia. Evidence comes from flux analyses in soil profiles, biodegradation assays, and sorption experiments. In contrast, studies on composition of mineral-associated SOM indicate the prevalence of non-aromatic microbial-derived compounds. Other studies suggest the turnover of lignin in soil can be faster than the turnover of bulk SOM. Mechanisms that can explain the apparent fast disappearance of lignin in mineral soils are, however, not yet identified. The contradictions might be explained by analytical problems. Commonly used methods probably detect only a fraction of the aromatics stored in the mineral soil. Careful data interpretation, critical assessment of analytical limitations, and combined studies on DOM and solid-phase SOM could thus be ways to unveil the issues.

  10. Chiral separation and enantioselective degradation of vinclozolin in soils.

    PubMed

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  11. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  12. A radiosity-based model to compute the radiation transfer of soil surface

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  13. Response of soil bacterial communities to lead and zinc pollution revealed by Illumina MiSeq sequencing investigation.

    PubMed

    Xu, Xihui; Zhang, Zhou; Hu, Shunli; Ruan, Zhepu; Jiang, Jiandong; Chen, Chen; Shen, Zhenguo

    2017-01-01

    Soil provides a critical environment for microbial community development. However, microorganisms may be sensitive to substances such as heavy metals (HMs), which are common soil contaminants. This study investigated bacterial communities using 16S ribosomal RNA (rRNA) gene fragment sequencing in geographic regions with and without HM pollution to elucidate the effects of soil properties and HMs on bacterial communities. No obvious changes in the richness or diversity of bacterial communities were observed between samples from mining and control areas. Significant differences in bacterial richness and diversity were detected between samples from different geographic regions, indicating that the basic soil characteristics were the most important factors affecting bacterial communities other than HMs. However, the abundances of several phyla and genera differed significantly between mining and control samples, suggesting that Zn and Pb pollution may impact the soil bacterial community composition. Moreover, regression analyses showed that the relative abundances of these phyla and genera were correlated significantly with the soil-available Zn and Pb contents. Redundancy analysis indicated that the soil K, ammoniacal nitrogen (NH 4 + -N), total Cu, and available Zn and Cu contents were the most important factors. Our results not only suggested that the soil bacteria were sensitive to HM stresses but also indicated that other soil properties may affect soil microorganisms to a greater extent.

  14. DEMONSTRATION BULLETIN: THE BASIC EXTRACTIVE SLUDGE TREATMENT (B.E.S.T.) RESOURCES CONSERVATION COMPANY (RCC)

    EPA Science Inventory

    The Basic Extractive Sludge Treatment (B.E.S.T.®) process is a solvent extraction system that separates organic contaminants from sludges, soils, and sediments. The primary distinguishing feature of the process is the extraction agent, triethylamine. The key to the success of tri...

  15. Influence of soil moisture on soil respiration

    NASA Astrophysics Data System (ADS)

    Fer, Miroslav; Kodesova, Radka; Nikodem, Antonin; Klement, Ales; Jelenova, Klara

    2015-04-01

    The aim of this work was to describe an impact of soil moisture on soil respiration. Study was performed on soil samples from morphologically diverse study site in loess region of Southern Moravia, Czech Republic. The original soil type is Haplic Chernozem, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). Soil samples were collected from topsoils at 5 points of the selected elevation transect and also from the parent material (loess). Grab soil samples, undisturbed soil samples (small - 100 cm3, and large - 713 cm3) and undisturbed soil blocks were taken. Basic soil properties were determined on grab soil samples. Small undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. During experiments performed in greenhouse dry large undisturbed soil samples were wetted from below using a kaolin tank and cumulative water inflow due to capillary rise was measured. Simultaneously net CO2 exchange rate and net H2O exchange rate were measured using LCi-SD portable photosynthesis system with Soil Respiration Chamber. Numerical inversion of the measured cumulative capillary rise data using the HYDRUS-1D program was applied to modify selected soil hydraulic parameters for particular conditions and to simulate actual soil water distribution within each soil column in selected times. Undisturbed soil blocks were used to prepare thin soil sections to study soil-pore structure. Results for all soil samples showed that at the beginning of soil samples wetting the CO2 emission increased because of improving condition for microbes' activity. The maximum values were reached for soil column average soil water content between 0.10 and 0.15 cm3/cm3. Next CO2 emission decreased since the pore system starts filling by water (i.e. aggravated conditions for microbes, closing soil gas pathways etc.). In the case of H2O exchange rate, values increased with increasing soil water contents (up to 0.15-0.20 cm3/cm3) and then remained approximately constant. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  16. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    PubMed

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  17. Effect on physical properties of laterite soil with difference percentage of sodium bentonite

    NASA Astrophysics Data System (ADS)

    Kasim, Nur Aisyah; Azmi, Nor Azizah Che; Mukri, Mazidah; Noor, Siti Nur Aishah Mohd

    2017-08-01

    This research was carried out in an attempt to know the physical properties of laterite soil with the appearance of difference percentage of sodium bentonite. Lateritic soils usually develop in tropical and other regions with similar hot and humid climate, where heavy rainfall, warm temperature and well drainage lead to the formation of thick horizons of reddish lateritic soil profiles rich in iron and aluminium. When sodium predominates, a large amount of water can be absorbed in the interlayer, resulting in the remarkable swelling properties observed with hydrating sodium bentonite. There are some basic physical properties test conducted in this research which are Specific Gravity Test, pH Test, Sieve Analysis, Hydrometer Test, Shrinkage Limit and Atterberg Limit. The test will be conducted with 0%, 5%, 10%, 15% and 20% of sodium bentonite. Each test will be repeated three times for the accuracy of the result. From the physical properties test the soil properties characteristic react with the sodium bentonite can be determine. Therefore the best percentage of sodium bentonite admixture can be determined for laterite soil. The outcomes of this study give positive results due to the potential of sodium bentonite to improve the laterite soil particle.

  18. Soil Structure - A Neglected Component of Land-Surface Models

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.

  19. Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil.

    PubMed

    Schmidt, Kathrin R; Chand, Shivangini; Gostomski, Peter A; Boyd-Wilson, Kirsty S H; Ford, Chris; Walter, Monika

    2005-01-01

    The effect of fungal inoculum properties on colonization of nonsterile soil by three isolates of the white-rot fungus Trametes versicolor was investigated. Fungal inoculum properties were examined in separate experiments and were fungal inoculum composition, age of fungal inoculum, concentration of the inoculum and inoculation method. The fungal inoculum composition study compared pine versus poplar sawdust as the basic carrier with varying amounts of corn grit, corn meal and starch. The age of the fungal inoculum studied ranged from 3 to 21 days. The inoculum concentration gradually increased from 0 to 50% (v/v). The study assessing inoculation method compared mixing with layering techniques. The effect of moisture conditions of soil, sawdust and sand in combination with two inoculation methods (mixing versus point source inoculation) on colonization by T. versicolor was also determined. Colonization of soil was always assessed visually and enzymatically monitoring mycelial growth, biological potential (fluorescein diacetate assay) and laccase levels. Generally, the three different assessment methods correlated (P < 0.05) with each other. A fungal inoculum based on pine sawdust supported white-rot fungal growth in soil better than a poplar sawdust basis. Colonization of soil by T. versicolor was improved by increasing the corn content of the fungal inoculum. Younger (<7 days old) fungal inoculum resulted in better soil colonization than older (>10 days). A strong correlation (P < 0.001) was observed between the amount of fungal inoculum used in the soil augmentation and white-rot fungal colonization of soil. Inoculation of the fungal inoculum into soil by mixing was preferable over application in layers or point source inoculation. Moisture level did not influence biological potential measurements, but affected mycelial growth and laccase expression.

  20. Research of the diurnal soil respiration dynamic in two typical vegetation communities in Tianjin estuarine wetland

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Meng, W. Q.; Li, H. Y.

    2016-08-01

    Understanding the differences and diurnal variations of soil respiration in different vegetation communities in coastal wetland is to provide basic reliable scientific evidence for the carbon "source" function of wetland ecosystems in Tianjin.Measured soil respiration rate which changed during a day between two typical vegetation communities (Phragmites australis, Suaeda salsa) in coastal wetland in October, 2015. Soil temperature and moisture were measured at the same time. Each of the diurnal curves of soil temperature in two communities had a single peak value, and the diurnal variations of soil moisture showed a "two peak-one valley" trend. The diurnal dynamic of soil respiration under the two communities had obvious volatility which showed a single peak form with its maximum between 12:00-14:00 and minimum during 18:00. The diurnal average of soil respiration rate in Phragmites australis communities was 3.37 times of that in Suaeda salsa communities. Significant relationships were found by regression analysis among soil temperature, soil moisture and soil respiration rate in Suaeda salsa communities. There could be well described by exponential models which was y = -0.245e0.105t between soil respiration rate and soil temperature, by quadratic models which was y = -0.276×2 + 15.277× - 209.566 between soil respiration rate and soil moisture. But the results of this study showed that there were no significant correlations between soil respiration and soil temperature and soil moisture in Phragmites australis communities (P > 0.05). Therefore, under the specific wetland environment conditions in Tianjin, soil temperature and moisture were not main factors influencing the diurnal variations of soil respiration rate in Phragmites australis communities.

  1. A versatile system for biological and soil chemical tests on a planetary landing craft. II - Hardware development

    NASA Technical Reports Server (NTRS)

    Martin, J. P.; Kok, B.; Radmer, R.

    1976-01-01

    A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.

  2. Physicochemical properties of soils in the sago palm (Metroxylon spp.) growing area of Surat Thani province Thailand

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Sparrow, E. B.; Fochesatto, G. J.

    2016-12-01

    Sago palm is one of the most important plants for sustainable agriculture and rural development in tropical swampy and peaty soils. Where no major crops can grow without drainage or soil improvement. It stores large quantities of starch which can be further processed into various basic raw materials for food, animal feed, industrial uses and alternative energy. This study aims to investigate the physicochemical properties of soil across the sago palm growing areas at Surat Thani province Thailand, where major of sago palms growth naturally exists. The soil samples from three districts Khiri Rat Nikhom (KR; 9 sampling sites), Kanchanadit (KD; 5 sampling sites), and Khian Sa (KS; 2 sampling sites) were studied and compared at 0-15 cm depth during March to June 2016. Observations indicated that the physicochemical properties of soil varied in each growing area. Soil bulk densities averages were lower in KD (0.52 g cm-3) than those in KR (0.58 g cm-3) and KS (0.57 g cm-3). Soil texture around KD and KS were dominated by silty loam. While in KR soil texture was dominated by sandy loam. The average soil conductivity in KS (5.68 mS m-1) was higher than KR (2.62 mS m-1) and KD (1.65 mS m-1). Furthermore, we found the sago palms grow well in a range of soil pH from 5.52 to 7.15, average soil pH: KS (6.8) and KD (6.96), while acid in KR (5.84). We also discuss the conservation activities to adequately protect sago palm, most of which are significantly threatened by habitat destruction and unsustainable harvesting.

  3. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    NASA Astrophysics Data System (ADS)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  4. Water Intake by Soil, Experiments for High School Students.

    ERIC Educational Resources Information Center

    1969

    Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…

  5. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    USDA-ARS?s Scientific Manuscript database

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  6. Soil Nutrients and pH in Southern Hardwood Nurseries

    Treesearch

    F. T. Bonner; W. M. Broadfoot

    1964-01-01

    The rapidly expanding interest in hardwoods in the South has caused many forest nurseries, to begin growing hardwood as well as pine seedlings. Apparently most nurserymen have been able to accomplish this change without great difficulty. Nursery sites and soil conditions suitable for pines should be basically satisfactory for hardwoods also.

  7. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    NASA Astrophysics Data System (ADS)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  8. The hidden impact of forest management on the decomposition of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schöning, Ingo; Schrumpf, Marion

    2017-04-01

    Decomposition in soils is a key ecosystem function. Extracellular enzymes mediate the decomposition of soil organic matter and the mineralization of carbon (C), nitrogen (N), sulfur (S) and phosphorus (P). Forest management is assumed to affect decomposition processes through tree species selection, thinning and harvesting. In this study, we assessed the impact of forest management on the magnitude of soil enzymatic activities and soil respiration using the silvicultural management intensity indicator (SMI) introduced by Schall & Ammer (2013). We collected mineral soil samples (0-10 cm) from 150 forest plots in three different German regions (Schorfheide-Chorin, Hainich-Dün, Schwäbische Alb) and determined basic properties such as pH, soil texture, soil C and N contents. An aliquot of each soil sample was used to determine potential activities of enzymes involved in the C, N, P and S cycle (ß-glucosidase, N-actyl-glucosaminidase, phosphatase, sulfatase). Another aliquot was incubated (20 ̊C, 60% WHC) for 14 days and the evolving CO2 was determined. The main drivers of potential enzymatic activities and soil respiration were the site conditions such as clay contents and pH values. The effects of forest management were much lower but still significant. This shows that forest management has an impact on decomposition which is only detectable with high number of replicates.

  9. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    PubMed

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes.

  10. Chromated copper arsenate-treated fence posts in the agronomic landscape: soil properties controlling arsenic speciation and spatial distribution.

    PubMed

    Schwer Iii, Donald R; McNear, David H

    2011-01-01

    Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Spatial variability and temporal changes in the trace metal content of soils: implications for mine restoration plan.

    PubMed

    Chandra, Rachna; Prusty, B Anjan Kumar; Azeez, P A

    2014-06-01

    Trace metals in soils may be inherited from the parent materials or added to the system due to anthropogenic activities. In proposed mining areas, trace metals become an integral part of the soil system. Usually, researchers undertake experiments on plant species selection (for the restoration plan) only after the termination of mining activities, i.e. without any pre-mining information about the soil-plant interactions. Though not shown in studies, it is clear that several recovery plans remain unsuccessful while carrying out restoration experiments. Therefore, we hypothesize that to restore the area effectively, it is imperative to consider the pre-mining scenario of metal levels in parent material as well as the vegetation ecology of the region. With these specifics, we examined the concentrations of trace metals in parent soils at three proposed bauxite locations in the Eastern Ghats, India, and compared them at a spatio-temporal scale. Vegetation quantification and other basic soil parameters accounted for establishing the connection between soil and plants. The study recorded significant spatial heterogeneity in trace metal concentrations and the role of vegetation on metal availability. Oxidation reduction potential (ORP), pH and cation exchange capacity (CEC) directly influenced metal content, and Cu and Ni were lithogenic in origin. It implies that for effective restoration plant species varies for each geological location.

  12. The Area IV Soil Conservation Districts Cooperative Research Farm: Thirty years of collaborative research to improve cropping system sustainability in the Northern Plains

    USDA-ARS?s Scientific Manuscript database

    Findings and interpretations generated from long-term cropping system studies serve to inform the status and trajectory of ecosystem services, while concurrently providing opportunities for further inquiry related to basic/fundamental research. Recent calls for increased investment in long-term cro...

  13. Recent advances in radar applications to agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1970-01-01

    A series of remote radar sensing studies are summarized. These efforts comprise geoscience interpretations of such complex phenomena as those manifested in agricultural patterns. Considered are basic remote sensing needs in agriculture and the design and implementation of radar keys in the active microwave region as well as fine resolution radar imagery techniques for agriculture determinations and soil mapping.

  14. Sampling Soil for Characterization and Site Description

    NASA Technical Reports Server (NTRS)

    Levine, Elissa

    1999-01-01

    The sampling scheme for soil characterization within the GLOBE program is uniquely different from the sampling methods of the other protocols. The strategy is based on an understanding of the 5 soil forming factors (parent material, climate, biota, topography, and time) at each study site, and how each of these interact to produce a soil profile with unique characteristics and unique input and control into the atmospheric, biological, and hydrological systems. Soil profile characteristics, as opposed to soil moisture and temperature, vegetative growth, and atmospheric and hydrologic conditions, change very slowly, depending on the parameter being measured, ranging from seasonally to many thousands of years. Thus, soil information, including profile description and lab analysis, is collected only one time for each profile at a site. These data serve two purposes: 1) to supplement existing spatial information about soil profile characteristics across the landscape at local, regional, and global scales, and 2) to provide specific information within a given area about the basic substrate to which elements within the other protocols are linked. Because of the intimate link between soil properties and these other environmental elements, the static soil properties at a given site are needed to accurately interpret and understand the continually changing dynamics of soil moisture and temperature, vegetation growth and phenology, atmospheric conditions, and chemistry and turbidity in surface waters. Both the spatial and specific soil information can be used for modeling purposes to assess and make predictions about global change.

  15. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  16. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    USGS Publications Warehouse

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  17. Investigations of vegetation and soils information contained in LANDSAT Thematic Mapper and Multispectral Scanner data

    NASA Technical Reports Server (NTRS)

    Crist, E. P.; Laurin, R.; Colwell, J. E.; Kauth, R. J.

    1984-01-01

    An extension of the TM tasseled cap transformation to reflectance factor data is presented, and the basic concepts underlying the tasseled cap transformations are described. The ratio of TM bands 5 and 7, and TM tasseled cap wetness, are both shown to offer promise of direct detection of available soil moisture. Some effects of organic matter and other soil characteristics or constituents on TM tasseled cap spectral response are also considered.

  18. Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture II.

    ERIC Educational Resources Information Center

    Albracht, James, Ed.

    This second horticulture guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Leadership, (2) Supervised Occupational Experience, (3) Plant Propagation, (4) Soil and Plant Growth Media, (5) Fertilizers, (6) Greenhouse, (7) Plant…

  19. Uncertainty in Pedotransfer Functions from Soil Survey Data

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Rawls, W. J.

    2002-05-01

    Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty

  20. Leachate characteristics as influenced by application of anaerobic baffled reactor effluent to three soils: a soil column study.

    PubMed

    Bame, I B; Hughes, J C; Titshall, L W; Buckley, C A

    2013-11-01

    A soil column study was undertaken in the laboratory with three contrasting soil types namely a sandy soil (Longlands (Typic Plinthaquult), E horizon), an organic soil (Inanda (Rhodic Hapludox), A horizon) and a clayey soil (Sepane (Aquic Haplustalf), A horizon). Anaerobic baffled reactor (ABR) effluent was leached through the soil and distilled water was concurrently used as a control. The effluent was slightly basic (pH 7.4-7.6), had heavy metal concentrations below permissible limits for irrigation purposes and contained plant nutrients such as P, S, Ca, Mg, and K. Results indicated that after application of 16 pore volumes, the concentrations of Ca(2+) and Mg(2+) were lower in the leachates than in the original effluent indicating adsorption by the soils and Mg(2+) was preferentially adsorbed to Ca(2+). Phosphorus was strongly adsorbed in all soils. While its adsorption in the Inanda could be attributed to organic matter and the presence of iron oxides and oxyhydroxides, the clay type and amount in the Sepane was likely responsible for P adsorption. The NO3(-)-N, which was initially low in the effluent, increased as leaching progressed while the NH4-N decreased. A chemical balance to ascertain loss or gain of major elements from the effluent application indicated P to be strongly immobilised from the effluent representing 41, 6 and 10 fold the fertilizer needs for maize in the Inanda, Longlands and Sepane, respectively. Results obtained indicated that the chemical composition of ABR effluent is significantly altered when leached through soils with distinct properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  2. Assessment of Soil Moisture Data Requirements by the Potential SMAP Data User Community: Review of SMAP Mission User Community

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.

    2013-01-01

    NASA's Soil Moisture Active and Passive (SMAP) mission is planned for launch in October 2014 and will provide global measurements of soil moisture and freeze thaw state. The project is driven by both basic research and applied science goals. Understanding how application driven end-users will apply SMAP data, prior to the satellite's launch, is an important goal of NASA's applied science program and SMAP mission success. Because SMAP data are unique, there are no direct proxy data sets that can be used in research and operational studies to determine how the data will interact with existing processes. The objective of this study is to solicit data requirements, accuracy needs, and current understanding of the SMAP mission from the potential user community. This study showed that the data to be provided by the SMAP mission did substantially meet the user community needs. Although there was a broad distribution of requirements stated, the SMAP mission fit within these requirements.

  3. Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1978-01-01

    Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.

  4. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    NASA Astrophysics Data System (ADS)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  5. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Pingjiu; Li, Lianqing; Pan, Genxing; Ren, Jingchen

    2006-12-01

    Not only the nutritional status and biological activity but also the soil ecological functioning or soil health has been impacted profoundly by land degradation in the karst area of southwest China where the karst ecosystems are generally considered as extremely vulnerable to land degradation under intensified land-use changes. The objectives of this study are to elucidate the changes in overall soil quality by a holistic approach of soil nutritional, biological activity, and soil health indicators in the karst area as impacted by intense cultivation and vegetation degradation. Topsoil samples were collected on selected eco-tesserae in a sequence of land degradation in a karst area of southwest Guizhou in 2004. The soil nutrient pools of organic carbon (Corg), extractable extracellular carbon (Cext), total soil nitrogen (Nt), alkali-hydrolyzable nitrogen (Nah), total phosphorus (Pt), available phosphorus (Pa) were analyzed by wet soil chemistry. The soil biological properties were studied by means of measurements of microbial biomass carbon (both by fumigation-extraction, FE-Cmic, and by calculation from substrate-incubation respiration, SIR-Cmic) of respiration [respiration without addition of substrates, basal respiration (BR), and potential respiration (PR) with substrate-incubation] and of soil enzyme activities (invertase, urease, and alkaline phosphatase). Soil health status was assessed by simple indices of Cmic/Corg and BR/Cmic in conjunction with bacterial community structures determined by polymerase chain reaction and denaturing gradient gel electrophoresis. While the nutritional pool parameters, such as Corg and Cext, described basically the changes in soil life-supporting capacity with cultivation interference and vegetation declined, those parameters of biological activity such as FE-Cmic, SIR, and SIR-Cmic as well as bacterial community structures measured by molecular method evidenced well the changes in soil functioning for ecosystem health with the land degradation.

  6. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    PubMed

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  7. Migration of trace elements from pyrite tailings in carbonate soils.

    PubMed

    Dorronsoro, C; Martin, F; Ortiz, I; García, I; Simón, M; Fernández, E; Aguilar, J; Fernández, J

    2002-01-01

    In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.

  8. Long-term impacts of grazing intensity on soil carbon sequestration and selected soil properties in the arid Eastern Cape, South Africa.

    PubMed

    Talore, Deribe G; Tesfamariam, Eyob H; Hassen, Abubeker; Du Toit, J C O; Klampp, Katja; Jean-Francois, Soussana

    2016-04-01

    Little is known about how basic soil properties respond to contrasting grazing intensities in the Karoo biome, South Africa. The aim of this study was to investigate impacts of long-term (>75 years) grazing at 1.18 heads ha(-1) (heavy; CGH), 0.78 heads ha(-1) (light; CGL), and exclosure on selected soil properties. Soil samples were collected to a depth of 60 cm from the long-term experimental site of Grootfontein Agricultural Development Institute, Eastern Cape. The samples were analyzed for C, N, bulk density and infiltration rate, among others. Generally, heavy and light grazing reduced soil N storage by 27.5% and 22.6%, respectively, compared with the exclosure. Animal exclusion improved water infiltration rate and C stocks significantly (P < 0.05), which was 0.128, 0.097, and 0.093 Mg ha(-1) yr(-1) for exclosure, CGL and CGH, respectively. Soil penetration resistance was higher for grazing treatments in the top 3-7 cm soil layer but for exclosure at the top 1 cm soil surface. Although livestock exclusion has the potential to improve C sequestration, a sufficient resting period for 1-2 years followed by three consecutive grazing years at light stocking rate would be ideal for sustainable livestock production in this arid region of South Africa. © 2015 Society of Chemical Industry.

  9. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil.

  10. BDEN: A timesaving computer program for calculating soil bulk density and water content.

    Treesearch

    Lynn G. Starr; Michael J. Geist

    1983-01-01

    This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.

  11. Soils. Science Education Research Unit. Working Paper 201.

    ERIC Educational Resources Information Center

    Happs, John C.

    The Learning in Science Project has adopted the view that science teaching might be improved if teachers can be given some appreciation of students' views of the world and the beliefs, expectations, and language that learners bring to new learning situations. This investigation looks at the topic of soil, one of the basic resources of New Zealand…

  12. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  13. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    DTIC Science & Technology

    1985-06-01

    ELEMENT. PROJECT, TASK U Oklahomar OK AREA A WORK UNIT NUMBERS and I-M-4657-10-D49 Technical Analysis & Info Office, DPG It. CONTROLLING OFFICE NAME AND...and fragmented. The data that were found resulted from research that showed evidence of a lack of understanding of the basic concepts of soil...organic matter after exhaus- tive extraction with polar and non -polar solvents." Rowever, these residues are not necessarily restricted to the organic

  14. Superabsorbent hydrogels coating increased degradation and decreased bound residues formation of carbendazim in soil.

    PubMed

    Yang, Yatian; Zhang, Sufen; Yang, Jingying; Bai, Chan; Tang, Shenghua; Ye, Qingfu; Wang, Haiyan

    2018-07-15

    The intensive use of pesticides has caused serious environmental pollution and ecological issues. Thus, it is imperative to explore an efficient way to minimize the pesticide residues and pollution. In the present study, we employed the superabsorbent hydrogels (SHs)-coated pesticide 14 C-carbendazim (H- 14 C-MBC) to investigate the fate of MBC in aerobic soils and to assess the soil microbial state during incubation. The results showed that after coating with SHs, MBC dissipation was improved significantly by 34.2-54.1% compared with that in the control (p<0.05), reducing the persistence of MBC in soil matrix. At 100d, the release of 14 C-CO 2 was enhanced by 68.0% and 46.6% in neutral loamy soil and basic saline soil, respectively, with respect to the control, resulting in more complete degradation and detoxification of MBC. Additionally, the bound residue in soils, which was associated with potential environmental risk and pollution, was reduced by 15.2% and 14.2%, respectively, compared with that in control soils. The microbial diversity of post-H- 14 C-MBC soil varied, and microbial composition and abundance remained different from the control, even with the refreshment of soil stability and fertility compared with the blank soil. These results demonstrate the environmental behavior of SHs-coated MBC in soils, and illustrate that SHs-encapsulated formulations would be a promising measure for reducing the soil-residue pollution and environmental risk of pesticides. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  16. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    PubMed

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  17. Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades

    NASA Astrophysics Data System (ADS)

    Fang, Kai; Kou, Dan; Wang, Guanqin; Chen, Leiyi; Ding, Jinzhi; Li, Fei; Yang, Guibiao; Qin, Shuqi; Liu, Li; Zhang, Qiwen; Yang, Yuanhe

    2017-11-01

    Cation exchange capacity (CEC) helps soils hold nutrients and buffer pH, making it vital for maintaining basic function of terrestrial ecosystems. However, little is known about the temporal dynamics of CEC over broad geographical scales. In this study, we used random forest method to compare historical CEC data from the 1980s with new data from the 2010s across northern China's grasslands. We found that topsoil CEC in the 2010s was significantly lower than in the 1980s, with an overall decline of about 14%. Topsoil CEC decreased significantly in alpine meadow, alpine steppe, meadow steppe, and typical steppe by 11%, 20%, 27%, and 9%, respectively. Desert steppe was the only ecosystem type that experienced no significant change. CEC was positively related to soil carbon content, silt content, and mean annual precipitation, suggesting that the decline was potentially associated with soil organic carbon loss, soil degradation, soil acidification, and extreme precipitation across northern China's grasslands since the 1980s. Overall, our results demonstrate topsoil CEC loss due to environmental changes, which may alter the vegetation community composition and its productivity and thus trigger grassland dynamics under a changing environment.

  18. Experimental evaluation of four infiltration models for calcareous soil irrigated with treated untreated grey water and fresh water

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Eltaif, N. I.; Alrababah, M. A.; Alhamad, M. N.

    2009-04-01

    Infiltration is vital for both irrigated and rainfed agriculture. The knowledge of infiltration characteristics of a soil is the basic information required for designing an efficient irrigation system. The objective of the present study was to model soil infiltration using four models: Green and Ampt, Horton, Kostaikov and modified Kostiakov. Infiltration tests were conducted on field plot irrigated with treated, untreated greywater and fresh water. The field water infiltration data used in these models were based on double ring infiltrometer tests conducted for 4 h. The algebraic parameters of the infiltration models and nonlinear least squares regression were fitted using measured infiltration time [I (t)] data. Among process-based infiltration models, the Horton model performed best and matched the measured I (t) data with lower sum of squares (SS).

  19. Characteristics and engineering properties of residual soil of volcanic deposits

    NASA Astrophysics Data System (ADS)

    Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.

    2018-02-01

    Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.

  20. Litter fall in a young Douglas-fir stand as influenced by thinning

    Treesearch

    Donald L. Reukema

    1964-01-01

    Litter fall plays a fundamental role in soil formation and fertility and thus has a basic influence on forest productivity. To determine amount and timing of litter fall and how these factors are influenced by thinning, a study was begun in 1950 on Voight Creek Experimental Forest. 1 in western Washington, Resulting information is of considerable...

  1. U.S. Geological Survey programs and investigations related to soil and water conservation

    USGS Publications Warehouse

    Osterkamp, W.R.; Gray, J.R.

    2001-01-01

    The U.S. Geological Survey has a rich tradition of collecting hydrologic data, especially for fluxes of water and suspended sediment, that provide a foundation for studies of soil and water conservation. Applied and basic research has included investigations of the effects of land use on rangelands, croplands, and forests; hazards mapping; derivation of flood and drought frequency, and other statistics related to streamflow and reservoir storage; development and application of models of rainfall-runoff relations, chemical quality, and sediment movement; and studies of the interactive processes of overland and channel flow with vegetation. Networks of streamgaging stations and (or) sampling sites within numerous drainage basins are yielding information that extends databases and enhances the ability to use those data for interpretive studies.

  2. Net ecosystem exchange in a sedge-sphagnum fen at the South of West Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Dyukarev, Egor

    2017-04-01

    The model of net ecosystem exchange was used to study the influence of different environmental factors and to calculate daily and growing season carbon budget for minerotrophic fen at South of West Siberia, Russia. Minerotrophic sedge-sphagnum fen occupies the central part of the Bakcharskoe bog. The model uses air and soil temperature, incoming photosynthetically active radiation, and leaf area index as the explanatory factors for gross primary production, heterotrophic and autotrophic respiration. The model coefficients were calibrated using data collected by automated soil CO2 flux system with clear long-term chamber. The studied ecosystem is a sink of carbon according to modelling and observation results. This study was supported by Russian Foundation for Basic Researches (grant numbers 16-07-01205 and 16-45-700562.

  3. Buckingham (1907): An appreciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    2004-11-17

    Nearly a century ago, Edgar Buckingham (1907) published a seminal work on the movement of soil moisture which is part of the foundation of modern soil physics. It also constitutes a pioneering contribution in the study of multi-phase flow in porous media. A physicist, Buckingham took on an earth science issue of importance to society, and produced superb basic science as a byproduct. Buckingham impresses us with his ability to combine experiment and theory, and his capacity to intuitively explain difficult ideas to a wide audience. Science progresses both by gradual accretion of knowledge, and by sudden influx of ideas.more » Buckingham's contribution belongs in the latter category. After a brief, four-year rendezvous with soil science, he went on to pursue a long and distinguished career in physics with the National Bureau of Standards. This paper is an appreciation of Buckingham's contribution on soil moisture in the context of contemporary developments in diffusion theory, and the rapid growth of science in America at the turn of the twentieth century.« less

  4. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  5. Design of a Horizontal Penetrometer for Measuring On-the-Go Soil Resistance

    PubMed Central

    Topakci, Mehmet; Unal, Ilker; Canakci, Murad; Celik, Huseyin Kursat; Karayel, Davut

    2010-01-01

    Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System). The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on-line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications. PMID:22163410

  6. Design of a horizontal penetrometer for measuring on-the-go soil resistance.

    PubMed

    Topakci, Mehmet; Unal, Ilker; Canakci, Murad; Celik, Huseyin Kursat; Karayel, Davut

    2010-01-01

    Soil compaction is one of the main negative factors that limits plant growth and crop yield. Therefore, it is important to determine the soil resistance level and map it for the field to find solutions for the negative effects of the compaction. Nowadays, high powered communication technology and computers help us on this issue within the approach of precision agriculture applications. This study is focused on the design of a penetrometer, which can make instantaneous soil resistance measurements in the soil horizontally and data acquisition software based on the GPS (Global Positioning System). The penetrometer was designed using commercial 3D parametric solid modelling design software. The data acquisition software was developed in Microsoft Visual Basic.NET programming language. After the design of the system, manufacturing and assembly of the system was completed and then a field experiment was carried out. According to the data from GPS and penetration resistance values which are collected in Microsoft SQL Server database, a Kriging method by ArcGIS was used and soil resistance was mapped in the field for a soil depth of 40 cm. During operation, no faults, either in mechanical and software parts, were seen. As a result, soil resistance values of 0.2 MPa and 3 MPa were obtained as minimum and maximum values, respectively. In conclusion, the experimental results showed that the designed system works quite well in the field and the horizontal penetrometer is a practical tool for providing on-line soil resistance measurements. This study contributes to further research for the development of on-line soil resistance measurements and mapping within the precision agriculture applications.

  7. Soil-vegetation relationships on a banded ironstone 'island', Carajás Plateau, Brazilian Eastern Amazonia.

    PubMed

    Nunes, Jaquelina A; Schaefer, Carlos E G R; Ferreira Júnior, Walnir G; Neri, Andreza V; Correa, Guilherme R; Enright, Neal J

    2015-01-01

    Vegetation and soil properties of an iron-rich canga (laterite) island on the largest outcrop of banded-iron formation in Serra de Carajás (eastern Amazonia, Brazil) were studied along a topographic gradient (738-762 m asl), and analyzed to test the hypothesis that soil chemical and physical attributes play a key role in the structure and floristic composition of these plant communities. Soil and vegetation were sampled in eight replicate plots within each of the four vegetation types. Surface (0-10 cm) soil samples from each plot were analyzed for basic cations, N, P and plant species density for all species was recorded. CCA ordination analysis showed a strong separation between forest and non-forest sites on the first axis, and between herbaceous and shrubby campo rupestre on the second axis. The four vegetation types shared few plant species, which was attributed to their distinctive soil environments and filtering of their constituent species by chemical, physical and hydrological constraints. Thus, we can infer that Edaphic (pedological) factors are crucial in explaining the types and distributions of campo rupestre vegetation associated with ferruginous ironstone uplands (Canga) in Carajás, eastern Amazonia, therefore the soil properties are the main drivers of vegetation composition and structure on these ironstone islands.

  8. A microwave systems approach to measuring root zone soil moisture

    NASA Technical Reports Server (NTRS)

    Newton, R. W.; Paris, J. F.; Clark, B. V.

    1983-01-01

    Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.

  9. Use of planetary soils within CELSS: The plant viewpoint

    NASA Astrophysics Data System (ADS)

    Art Spomer, L.

    1994-11-01

    The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.

  10. Effects of imidacloprid on soil microbial communities in different saline soils.

    PubMed

    Zhang, Qingming; Xue, Changhui; Wang, Caixia

    2015-12-01

    The effects of imidacloprid in the soil environment are a worldwide concern. However, the impact of imidacloprid on soil microorganisms under salt stress is almost unknown. Therefore, an indoor incubation test was performed, and the denaturing gradient gel electrophoresis (DGGE) approach was used to determine the response of different saline soil bacterial and fungal community structures to the presence of imidacloprid (0.4, 2, 10 mg kg(-1)). The results showed that the soil bacterial diversity slightly declined with increasing imidacloprid concentration in soils with low salinity. In moderately saline soils, a new band in the DGGE profile suggested that imidacloprid could improve the soil bacterial diversity to some degree. An analysis of variance indicated that the measured soil bacterial diversity parameters were significantly affected by dose and incubation time. Compared with the control, the soil fungal community structure showed no obvious changes in low and moderately saline soils treated with imidacloprid. The results of these observations provide a basic understanding of the potential ecological effects of imidacloprid on different microorganisms in saline soils.

  11. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  12. Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm Eisenia andrei.

    PubMed

    Romero-Freire, Ana; Lofts, Stephen; Martín Peinado, Francisco J; van Gestel, Cornelis A M

    2017-01-01

    To assess the influence of soil properties and aging on the availability and toxicity of zinc (Zn) applied as nanoparticles (Zn oxide [ZnO]-NPs) or as Zn 2+ ions (Zn chloride [ZnCl 2 ]), 3 natural soils were individually spiked with either ZnO-NPs or ZnCl 2 and incubated for up to 6 mo. Available Zn concentrations in soil were measured by porewater extraction (ZnPW), whereas earthworms (Eisenia andrei) were exposed to study Zn bioavailability. Porewater extraction concentrations were lower when Zn was applied as NPs compared to the ionic form and decreased with increasing soil pH. For both Zn forms and Zn-PW values were affected by aging, but they varied among the tested soils, highlighting the influence of soil properties. Internal Zn concentration in the earthworms (ZnE) was highest for the soil with high organic carbon content (5.4%) and basic pH (7.6) spiked with Zn-NPs, but the same soil spiked with ZnCl 2 showed the lowest increase in ZnE compared to the control. Survival, weight change, and reproduction of the earthworms were affected by both Zn forms; but differences in toxicity could not be explained by soil properties or aging. This shows that ZnO-NPs and ZnCl 2 behave differently in soils depending on soil properties and aging processes, but differences in earthworm toxicity remain unexplained. Environ Toxicol Chem 2017;36:137-146. © 2016 SETAC. © 2016 SETAC.

  13. Soil biogeochemistry in the age of big data

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre; Coissac, Eric; Plante, Alain; Rasse, Daniel

    2015-04-01

    Data is becoming one of the key resource of the XXIst century. Soil biogeochemistry is not spared by this new movement. The conservation of soils and their services recently came into the political agenda. However, clear knowledge on the links between soil characteristics and the various processes ensuring the provision of soil services is rare at the molecular or the plot scale, and does not exist at the landscape scale. This split between society's expectations on its natural capital, and scientific knowledge on the most complex material on earth has lead to an increasing number of studies on soils, using an increasing number of techniques of increasing complexity, with an increasing spatial and temporal coverage. From data scarcity with a basic data management system, soil biogeochemistry is now facing a proliferation of data, with few quality controls from data collection to publication and few skills to deal with them. Based on this observation, here we (1) address how big data could help in making sense of all these soil biogeochemical data, (2) point out several shortcomings of big data that most biogeochemists will experience in their future career. Massive storage of data is now common and recent opportunities for cloud storage enables data sharing among researchers all over the world. The need for integrative and collaborative computational databases in soil biogeochemistry is emerging through pioneering initiatives in this direction (molTERdb; earthcube), following soil microbiologists (GenBank). We expect that a series of data storage and management systems will rapidly revolutionize the way of accessing raw biogeochemical data, published or not. Data mining techniques combined with cluster or cloud computing hold significant promises for facilitating the use of complex analytical methods, and for revealing new insights previously hidden in complex data on soil mineralogy, organic matter and biodiversity. Indeed, important scientific advances have already been made thanks to meta-analysis, chemometrics, machine-learning systems and bioinformatics. Some techniques like structural equation modeling eventually propose to explore causalities opening a way towards the mechanistic understanding of soil big data rather than simple correlations. We claim that data science should be fully integrated into soil biogeochemists basic education schemes. We expect the blooming of a new generation of soil biogeochemists highly skilled in manipulating big data. Will big data represent a net gain for soil biogeochemistry? Increasing the amount of data will increase associated biases that may further be exacerbated by the increasing distance between data manipulators, soil sampling and data acquisition. Integrating data science into soil biogeochemistry should thus not be done at the expenses of pedology and metrology. We further expect that the more data, the more spurious correlations will appear leading to possible misinterpretation of data. Finally, big data on soils characteristics and processes will always need to be confronted to biogeochemical theories and socio-economic knowledge to be useful. Big data could revolutionize soil biogeochemistry, fostering new scientific and business models around the conservation of the soil natural capital, but our community should go into this new era with clear-sightedness and discernment.

  14. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  15. Temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Tejnecky, V.; Bradová, M.; Boruvka, L.; Vasat, R.; Nemecek, K.; Ash, C.; Sebek, O.; Rejzek, J.; Drabek, O.

    2012-12-01

    Acidification of forest soils is a natural degradation process which can be significantly enhanced by anthropogenic activities. Inputs of basic cations (BC - Ca, Mg and K) via precipitation, litter and soil organic matter decomposition and also via inter-soil weathering may partially mitigate the consequences of this degradation process. The aim of this study is to assess the temporal variation of aqueous-extractable Ca, Mg and K in acidified forest mountainous soils under different vegetation cover. The Jizera Mountains region (Czech Republic, northern Bohemia) was chosen as a representative soil mountainous ecosystem strongly affected by acidification. Soil and precipitation samples were collected at monthly basis from April till October/ November during the years 2009-2011. Study spots were delimited under two contrasting vegetation covers - beech and spruce monoculture. Prevailing soil types were classified as Alumic Cambisols under beech and Entic Podzols under spruce stands (according to FAO classification). Soil samples were collected from surface fermentation (F) and humified (H) organic horizons and subsurface B horizons (cambic or spodic). The collected soil samples were analyzed immediately under laboratory condition in a "fresh" state. Unsieved fresh samples were extracted by deionised water. The content of main elements (Ca, Mg, K, Al and Fe) was determined by ICP-OES. The content of major anions (SO42-, NO3-, Cl- and F-) was determined by ion-exchange chromatography (IC). Content of major anions and main elements were determined in the precipitation samples (throughfall, stemflow and bulk) as well. Besides computing the basic statistical parameters (mean, median, variance, maximum, minimum, etc.) we also employed other statistical methods such as T-test and ANOVA to assess the differences between beech and spruce vegetation spots. To carry out the temporal variability in the data we used the time series analysis and short-term forecasting by Holt-Winters exponential smoothing and ARIMA models. Our results clearly exhibit differences in the horizontal and spatial distribution of BC. The influences of the study spot, i.e. the influence of stand factors e.g. vegetation covers on BC distribution are well pronounced. The highest amounts of aqueous extractable BC were identified in the F and H organic horizons. The contents of Ca and Mg were significantly higher under beech cover than under spruce cover. The influence of seasonality on BC content and distribution was the strongest in the upper organic horizons. The annual changes are less pronounced in inner mineral B horizons. We have observed a significant influence of the snow melting period - after this event the content of BC was the lowest. In contrast, the BC content rises during the summer period - the time of high biological activity and accelerated organic matter decomposition. This period is again followed by a BC content decrease during the fall period - the time of gradually decreasing biological activity and high precipitation. Generally, we can conclude that the seasonal variations are higher than annual and spatial for both sites.

  16. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians

    Treesearch

    Barton D. Clinton

    2003-01-01

    Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...

  17. Transport of microplastics by two collembolan species.

    PubMed

    Maaß, Stefanie; Daphi, Daniel; Lehmann, Anika; Rillig, Matthias C

    2017-06-01

    Plastics, despite their great benefits, have become a ubiquitous environmental pollutant, with microplastic particles having come into focus most recently. Microplastic effects have been intensely studied in aquatic, especially marine systems; however, there is lack of studies focusing on effects on soil and its biota. A basic question is if and how surface-deposited microplastic particles are transported into the soil. We here wished to test if soil microarthropods, using Collembola, can transport these particles over distances of centimeters within days in a highly controlled experimental set-up. We conducted a fully factorial experiment with two collembolan species of differing body size, Folsomia candida and Proisotoma minuta, in combination with urea-formaldehyde particles of two different particle sizes. We observed significant differences between the species concerning the distance the particles were transported. F. candida was able to transport larger particles further and faster than P. minuta. Using video, we observed F. candida interacting with urea-formaldehyde particles and polyethylene terephthalate fibers, showing translocation of both material types. Our data clearly show that microplastic particles can be moved and distributed by soil microarthropods. Although we did not observe feeding, it is possible that microarthropods contribute to the accumulation of microplastics in the soil food web. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland

    NASA Astrophysics Data System (ADS)

    Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong

    2017-12-01

    Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.

  19. Soil hazards related to shale gas activities

    NASA Astrophysics Data System (ADS)

    Konieczyńska, Monika; Lipińska, Olga

    2017-04-01

    In 2010-2015 dozen of unconventional hydrocarbons wells were drilled in Poland. These earliest cases of new industrial activity in Europe were carefully observed and monitored both by the society and scientific community. One of the biggest and most comprehensive researches on environmental impact posed by the activity was the one conducted by a scientific consortium led by the PGI-NRI. The outcomes of this study are still relevant as a basic data for environmental impact assessment and ought to be more widely used for analysis and comparisons as they documented real case studies involving local factors and conditions. With this presentation, issues related to soil will be discussed, including sub-soil compaction (due to overburden from infrastructure and topsoil temporary storage heaps) as well as contamination by accidental spills of chemicals and technological fluids. Both chemical and agricultural properties of soils have been tested. Within the study, contents of methane and others light hydrocarbons in soil gas were considered as possible indicators of stray gases migration towards the land surface from deeper formations. Thus, such gases survey was conducted with concentrations as well as isotopic characteristics analysis. According to the results a peculiar and unexpected phenomenon of increased methane concentration under site protective impermeable coverage were observed. It is supposed to be caused by a mix of local geological conditions and land-use pattern. Based on real study results a need for baseline conditions establishment as well as continuous soil properties monitoring is needed in order to protect the soil itself as well as to have a tool for unwanted substances migration indicator. For both purposes proper sampling strategy recommendation need to be elaborated.

  20. How morphometric characteristics affect flow accumulation values

    NASA Astrophysics Data System (ADS)

    Farek, Vladimir

    2014-05-01

    Remote sensing methods (like aerial based LIDAR recording, land-use recording etc.) become continually more available and accurate. On the other hand in-situ surveying is still expensive. Above all in small, anthropogenically uninfluenced catchments, with poor, or non-existing surveying network could be remote sensing methods extremely useful. Overland flow accumulation (FA) values belong to important indicators of higher flash floods or soil erosion exposure. This value gives the number of cells of the Digital Elevation Model (DEM) grid, which are drained to each point of the catchment. This contribution deals with relations between basic geomorphological and morphometric characteristics (like hypsometric integral, Melton index of subcatchment etc.) and FA values. These relations are studied in the rocky sandstone landscapes of National park Ceské Svycarsko with the particular occurrence of broken relief. All calculations are based on high-resolution LIDAR DEM named Genesis created by TU Dresden. The main computational platform is GIS GRASS . The goal of the conference paper is to submit a quick method or indicators to estimate small particular subcatchments threatened by higher flash floods or soil erosion risks, without the necessity of using sophisticated rainfall-runoff models. There is a possibility to split catchments easily to small subcatchments (or use existing disjunction), compute basic characteristics and (with knowledge of links between this characteristics and FA values) identify, which particular subcatchment is potentially threatened by flash floods or soil erosion.

  1. Lesson Plans for Teaching Basic Vocational Agriculture. Section III. Introduction to Soil Management and Classification.

    ERIC Educational Resources Information Center

    McCully, James S., Jr., Comp.

    This publication, one of five sections, was developed for use in first and second year basic agriculture courses in secondary schools in Mississippi. The five lessons focus on the measurement and description of property and the classification of land. The purposes of the lessons are to (1) introduce the units and methods used to measure distance…

  2. In-situ carbon and nitrogen turnover dynamics and the role of soil functional biodiversity therein; a climate warming simulation study in Alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Djukic, Ika

    2010-05-01

    Climate change affects a variety of soil properties and processes. Alpine soils take an extraordinary position in this context because of the vulnerability of mountain regions to climatic changes. We used altitudinal soil translocation to simulate the combined effects of changing climatic conditions and shifting vegetation zones in order to study short- to medium-term soil changes in the Austrian Limestone Alps. We translocated 160 soil cores from an alpine grassland site (1900 m asl) down to a sub-alpine spruce forest (1300 m asl) and a montane beech forest site (900m asl), including reference soil cores at each site to estimate artifacts arising from the method. 15N-labeled maize straw was added (1 kg/m2) to translocated and control soil cores and sampled over a period of 2 years for the analysis of δ13C and δ15N in the bulk soil and extracted phospholipid fatty acids (PLFAs). Additionally, 20 litter bags (at each of the three climatic zones) containing Fagus sylvatica or Pinus nigra litter were inserted into the soil, and decomposition was studied over a two-year period. The basic soil parameters (organic C, total N and pH) were unaffected by translocation within the observation time. Overall, decomposition of Pinus nigra litter was significantly slower compared to Fagus sylvatica, and the decomposition rate of both litter types was inversely related to elevation. The decomposition of the maize straw carbon was significantly faster in the translocated soil cores (sites at 900 and 1300 m asl) than at the original site (1900 m asl). The labelled nitrogen contents in the translocated soil cores showed just marginal differences to the soil cores at the original site. The maize straw application promptly increased the amount of bacterial and fungal PLFAs at all studied sites. Downslope translocated soil cores showed an increase in total microbial biomass and sum of bacteria. The fungal PLFA biomarker 18:2ω6,9 was slightly lower at the new (host) sites compared to the original site. The bacterial to fungal ratio of the translocated soil cores showed a rapid acclimatization to the new (host) soil conditions. Our study demonstrates that rising temperatures in Alpine ecosystems will accelerate decomposition of fresh C pools but also lead to rapid adaptation of the microbial community to the new conditions.

  3. McMurdo Dry Valleys, Antarctica - A Mars Phoenix Mission Analog

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Anderson, R. M.; Archer, D.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Ming, Douglas W.; Moore, Q.; Quinn, J. E.; Smith, P. H.; hide

    2010-01-01

    The Phoenix mission (PHX; May 25 - Nov. 2, 2008) studied the north polar region of Mars (68deg N) to understand the history of water and potential for habitability. Phoenix carried with it a wet chemistry lab (WCL) capable of determining the basic solution chemistry of the soil and the pH value, a thermal and evolved-gas analyzer capable of determining the mineralogy of the soil and detecting ice, microscopes capable of seeing soil particle shapes, sizes and colors at very high resolution, and a soil probe (TECP) capable of detecting unfrozen water in the soil. PHX coincided with an international effort to study the Earth s polar regions named the International Polar Year (IPY; 2007-2008). The best known Earth analog to the Martian high-northern plains, where Phoenix landed, are the McMurdo Dry Valleys (MDV), Antarctica (Fig. 1). Thus, the IPY afforded a unique opportunity to study the MDV with the same foci - history of water and habitability - as PHX. In austral summer 2007, our team took engineering models of WCL and TECP into the MDV and performed analgous measurements. We also collected sterile samples and analyzed them in our home laboratories using state-of-the-art tools. While PHX was not designed to perform biologic analyses, we were able to do so with the MDV analog samples collected.

  4. Modeling multiple resource limitation in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  5. Thermal removal of pyrene contamination from soil: basic studies and environmental health implications.

    PubMed Central

    Saito, H H; Bucalá, V; Howard, J B; Peters, W A

    1998-01-01

    Effects of temperature (400-1000 degrees C) and rate of heating to 550 degrees C (100, 1000, 5000 degrees C/sec) on reduction of pyrene contamination in a Superfund-related soil and on yields of volatile products (tars, CO, CO2, methane, acetylene, ethylene) have been measured. Fifty (+/- 3)-milligram thin layers (less than or equal to 150 micron) of 63- to 125-micron soil particles, neat (i.e., without exogenous chemicals), or pretreated with 4.75 wt% of pyrene, were heated for about 1 to 6 sec, under 3 psig (pounds per in.(2) gauge) of helium in a 12-liter sealed chamber. Pyrene removal, defined as the difference in weight loss of neat versus contaminated soil, was virtually immune to heating rate but increased strongly with increasing temperature, approaching 100% at about 530 degrees C. However, for pyrenepolluted soil, excess soil weight loss and modified CO yields were observed above about 500 degrees C for a 1000 degrees C/sec heating rate. These observations suggest that soil chemical reactions with pyrene or pyrene decomposition products augment soil volatilization. Consequently at elevated temperatures, the difference in weight loss protocol may overestimate polycyclic aromatic hydrocarbon (PAH) removal from soil. Increasing heating rate caused yields of CO, CO(2), and acetylene from pyrene-polluted soil to pass through maxima. Heating neat or contaminated soil resulted in at least two gaseous products of particular environmental interest:acetylene, a precursor to PAH in thermal synthesis, and CO, a toxin to human hemoglobin. Images Figure 1 Figure 2 PMID:9703498

  6. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  7. Dialogic and integrated approach to promote soils at different school levels: a Brazilian experience

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole

    2017-04-01

    From ancient civilizations to present technological societies, soil is the material and immaterial ground of our existence. Soil is essential to life as are water, air and sun light. Nevertheless, it is overlooked and has its functions and importance not known and recognized by people. In formal education and in most school curricula, soil contents are not approached in the same way and intensity other environmental components are. In its essence, soils are an interdisciplinary subject, crossing over different disciplines. It has a great potential as unifying theme that links and synthesizes different contents and areas of knowledge, especially hard sciences as physics, chemistry and biology. Furthermore, soils are familiar and tangible to everyone, making them a meaningful subject that helps to build an efficient learning process. The challenge remains on how to bring such teaching-learning possibilities to formal education at all levels. Soil education deals with the significance of soil to people. What makes soil meaningful? What are the bases for effective learning about soil? The answers are very much related with subjective perceptions and life experiences carried by each individual. Those dimensions have been considered by the pedagogical approach based on Paulo Freire's socio constructivism which considers social inclusion, knowledge building, horizontal learning and collective action. This approach has been applied within the soil (science) education spaces of the Federal University of Viçosa, Minas Gerais, Brazil, both with university students and basic education pupils. At the university an average of 200 students per semester follow a 60 hours Soil Genesis course. With primary and secondary schools the activities are developed through the Soil Education Programme (PES) of the Earth Sciences Museum. In the classes and activities, materials, methods and learning strategies are developed to stimulate involvement, dialogues and exchange of experiences and knowledge between students themselves and between students and teachers in order to build and re-build their understanding of soils. Those strategies include hands-on activities, field visits, landscape observations, collective productions and artistic works among other strategies. They are done in a dialogic and horizontal way where each ones' perceptions and experiences is valued and considered for the building of knowledge on soils. Good achievements have been obtained when university students are involved in outreach activities aimed to basic education schools and to general public, in a "teach to learn" approach.

  8. Granular Mechanics and Surface Systems Lab

    NASA Technical Reports Server (NTRS)

    Randle, Leah

    2007-01-01

    The cratering of sand under gas jets is observed to further understanding of soil in hopes to further understand lunar soil. Lunar soil is important to understand because it is causing problems with the materials taken into space including the shuttle. Lunar soil is not rounded like beach sand. Lunar soil is sharp like little particles of glass, and some times when blown they can hook on to one another and become bigger particles. The experiments are designed to help to understand some of the basic physics in how the shuttle jets will interact with lunar soil and how to control the lunar soil. These experiments investigate the diameter of the gas jet and the size of the sand grains to determine how these parameters affect the erosion rate and the cratering processes. Therefore, the experiments preformed will point out what is dependent and what is independent.

  9. Martian (and Cold Region Lunar) Soil Mechanics Considerations

    NASA Astrophysics Data System (ADS)

    Chua, Koon Meng; Johnson, Stewart W.

    1998-01-01

    The exploration of Mars has generated a lot of interest in recent years. With the completion of the Pathfinder Mission and the commencement of detailed mapping by Mars Global Surveyor, the possibility of an inhabited outpost on the planet is becoming more realistic. In spite of the upbeat mood, human exploration of Mars is still many years in the future. Additionally, the earliest return of any martian soil samples will probably not be until 2008. So why the discussion about martian soil mechanics when there are no returned soil samples on hand to examine? In view of the lack of samples, the basis of this or any discussion at this time must necessarily be one that involves conjecture, but not without the advantage of our knowledge of regolith mechanics of the Moon and soil mechanics on Earth. The objective of this presentation/discussion is fourfold: (1) Review some basic engineering-related information about Mars that may be of interest to engineers, and scientists - including characteristics of water and C02 at low temperature; (2) review and bring together principles of soil mechanics pertinent to studying and predicting how martian soil may behave, including the morphology and physical characteristics of coarse-grained and fine-grained soils (including clays), the characteristics of collapsing soils, potentials and factors that affect migration of water in unfrozen and freezing/frozen soils, and the strength and stiffness characteristics of soils at cold temperatures; (3) discuss some preliminary results of engineering experiments performed with frozen lunar soil simulants, JSC-1, in the laboratory that show the response to temperature change with and without water, effects of water on the strength and stiffness at ambient and at below freezing temperatures; and (4) discuss engineering studies that could be performed prior to human exploration and engineering research to be performed alongside future scientific missions to that planet.

  10. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil.

    PubMed

    Peel, Hannah R; Martin, David P; Bednar, Anthony J

    2017-06-01

    Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.

  11. Determination of chlorinated acid herbicides in vegetation and soil by liquid chromatography/electrospray-tandem mass spectrometry.

    PubMed

    Schaner, Angela; Konecny, Jaclyn; Luckey, Laura; Hickes, Heidi

    2007-01-01

    The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge. Two precursor product ion transitions per analyte are measured and evaluated to provide the maximum degree of confidence in results. Average recoveries for 3 different soil types tested ranged from 72 to 107% for all compounds with the exception of 2,4-DB at 56-99%. Average recoveries for the 3 different vegetation types studied were lower and ranged from 53 to 80% for all compounds.

  12. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on magnetic extracts indicated the presence of magnetite/maghemite in the uppermost layers, and strong mineralogical transformation of iron oxyhydroxides during heating. Magnetic techniques give valuable information about the soil Fe oxides, which are useful for investigation of the environmental effects in soil. Key words: magnetic methods, Fe oxides, pollution, alluvial soils.

  13. [M.S. Gilyarov's Scientific School of Soil Zoology].

    PubMed

    Chesnova, L V

    2005-01-01

    The role of M.S. Gilyarov's scientific school in the development of the subject and methodology of a new complex discipline formed in the mid-20th century--soil zoology--was considered. The establishment and evolution of the proper scientific school was periodized. The creative continuity and development of the basic laws and technical approaches included in the teacher's scientific program was demonstrated by scientific historical analysis.

  14. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the present study, from a 20% accumulated rainfall of the total mean, not considerable incidences can be found. Furthermore, after the dry season, rainfall event higher than 0.5 mm are necessary in order to observe changes in soil wetting profile. However, for intense rainfall episodes, the hydrological soil response -observe by its wetting profile- in bare soil is 24 hours, and 48 hours in soils vegetation cover. Secondly, soil hydraulic conductivity - measured with a minidisc infiltrometer at different distances from the selected plants- shows that soil infiltration capacity does not follow a determined patter. This could be due to the significant stony character of the studied area soil/presence of stones in of the studied area soil. Finally, not major differences regarding soil organic matter have been observed, either at species level or temporal level, from the selected plant.

  15. Basic Aspects of Deep Soil Mixing Technology Control

    NASA Astrophysics Data System (ADS)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  16. Removal of an apex predator initiates a trophic cascade that extends from herbivores to vegetation and the soil nutrient pool

    PubMed Central

    2017-01-01

    It is widely assumed that organisms at low trophic levels, particularly microbes and plants, are essential to basic services in ecosystems, such as nutrient cycling. In theory, apex predators' effects on ecosystems could extend to nutrient cycling and the soil nutrient pool by influencing the intensity and spatial organization of herbivory. Here, we take advantage of a long-term manipulation of dingo abundance across Australia's dingo-proof fence in the Strzelecki Desert to investigate the effects that removal of an apex predator has on herbivore abundance, vegetation and the soil nutrient pool. Results showed that kangaroos were more abundant where dingoes were rare, and effects of kangaroo exclusion on vegetation, and total carbon, total nitrogen and available phosphorus in the soil were marked where dingoes were rare, but negligible where dingoes were common. By showing that a trophic cascade resulting from an apex predator's lethal effects on herbivores extends to the soil nutrient pool, we demonstrate a hitherto unappreciated pathway via which predators can influence nutrient dynamics. A key implication of our study is the vast spatial scale across which apex predators' effects on herbivore populations operate and, in turn, effects on the soil nutrient pool and ecosystem productivity could become manifest. PMID:28490624

  17. Long-Term Exposure of Tropical Soils to Pressure Treated Lumber, Barro Colorado Island, Panama: Impacts on Soil Metal Mobility and Microbial Community Structure

    NASA Astrophysics Data System (ADS)

    Marietta, M. L.; Fowle, D. A.; Roberts, J. A.

    2008-12-01

    Pressure treated lumber (CCA) has been used in a variety of structures for over seven decades, but recent concerns have been raised about leaching of metals such as chromium (Cr) and arsenic (As) into proximal soils and water supplies. Pressure treated lumber abundance and its continued use necessitate a thorough understanding of metal release and sequestration in the subsurface. To date, no long-term, in situ study on the migration of CCA compounds from lumber has been performed. Barro Colorado Island, Panama is the site of several previous CCA studies and provides an opportunity to investigate the long-term (>70 years) effects of pressure treated lumber in oxisols, where high rainfall and warm temperatures may represent an end-member condition for the leaching and mobility of these metals. Soil samples from CCA and control sites were measured for Cr, As, Cu, Zn, and Fe abundances, microbial biomass and community structure via phospholipid fatty acid analysis, along with basic soil properties. CCA lumber samples were also characterized for their metal abundance. Lumber treated with zinc meta-arsenite displayed advanced decay with elevated As, Cu, and Zn concentrations observed in the adjacent soil. Increased soil organic matter and microbial biomass correlate to decreases in Fe and Fe-associated metals compared to the control. High As concentrations persist to <1 m of the source. Lumber treated with potassium dichromate contained high chromium concentrations and displayed little decay, however, soil concentrations of Cr, Fe, and Cu were generally less than control soils. Over these same intervals, soil organic matter and microbial biomass increased, particularly the fraction of metal reducing bacteria (MRB). We hypothesize that organic carbon loading from lumber stimulates MRB, leading to mobilization of Fe and Fe-associated metals from these oxide-rich soils. Principal component analysis of PLFA data confirms a distinction between controls and samples with elevated metal abundance at each site. This study provides fundamental insight into the long-term persistence of CCA compounds in Fe-rich soils and could serve in practical applications related to CCA contamination.

  18. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Tao; Hou, Shuai; Wu, Shaohong; Liu, Yujie; Liu, Yanhua; Zou, Xintong; Herzberger, Anna; Liu, Jianguo

    2017-05-01

    Ecosystems in alpine mountainous regions are vulnerable and easily disturbed by global environmental change. Alpine swamp meadow, a unique grassland type in the eastern Tibetan Plateau that provides important ecosystem services to the upstream and downstream regions of international rivers of Asia and other parts of the world, is undergoing severe degradation, which can dramatically alter soil hydraulic properties and water cycling processes. However, the effects of alpine swamp meadow degradation on soil hydraulic properties and the corresponding influencing mechanisms are still poorly understood. In this study, soil moisture content (SMC), field capacity (FC) and saturated hydraulic conductivity (Ks) together with several basic soil properties under lightly degraded (LD), moderately degraded (MD) and severely degraded (SD) alpine swamp meadow were investigated; the variations in SMC, FC and Ks with alpine swamp meadow degradation and their dominant influencing factors were analysed. The results showed that SMC and FC decreased consistently from LD to SD, while Ks decreased from LD to MD and then increased from MD to SD, following the order of LD > SD > MD. Significant differences in soil hydraulic properties between degradation degrees were found in the upper soil layers (0-20 cm), indicating that the influences of degradation were most pronounced in the topsoils. FC was positively correlated with capillary porosity, water-stable aggregates, soil organic carbon, and silt and clay content; Ks was positively correlated with non-capillary porosity (NCP). Relative to other soil properties, soil porosity is the dominant factor influencing FC and Ks. Capillary porosity explained 91.1 % of total variance in FC, and NCP explained 97.3 % of total variance in Ks. The combined effect of disappearing root activities and increasing sand content was responsible for the inconsistent patterns of NCP and Ks. Our findings suggest that alpine swamp meadow degradation would inevitably lead to reduced water holding capacity and rainfall infiltration. This study provides a more comprehensive understanding of the soil hydrological effects of vegetation degradation. Further hydrological modelling studies in the Tibetan Plateau and similar regions are recommended to understand the effects of degraded alpine swamp meadows on soil hydraulic properties.

  19. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  20. Evolution of an interfacial crack on the concrete-embankment boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, Lee; Antoun, Tarabay; Kanarska, Yuliya

    2013-07-10

    Failure of a dam can have subtle beginnings. A small crack or dislocation at the interface of the concrete dam and the surrounding embankment soil initiated by, for example, a seismic or an explosive event can lead to a catastrophic failure of the dam. The dam may ‘self-rehabilitate’ if a properly designed granular filter is engineered around the embankment. Currently, the design criteria for such filters have only been based on experimental studies. We demonstrate the numerical prediction of filter effectiveness at the soil grain scale. This joint LLNL-ERDC basic research project, funded by the Department of Homeland Security’s Sciencemore » and Technology Directorate (DHS S&T), consists of validating advanced high performance computer simulations of soil erosion and transport of grain- and dam-scale models to detailed centrifuge and soil erosion tests. Validated computer predictions highlight that a resilient filter is consistent with the current design specifications for dam filters. These predictive simulations, unlike the design specifications, can be used to assess filter success or failure under different soil or loading conditions and can lead to meaningful estimates of the timing and nature of full-scale dam failure.« less

  1. Environmental isolation explains Iberian genetic diversity in the highly homozygous model grass Brachypodium distachyon.

    PubMed

    Marques, Isabel; Shiposha, Valeriia; López-Alvarez, Diana; Manzaneda, Antonio J; Hernandez, Pilar; Olonova, Marina; Catalán, Pilar

    2017-06-15

    Brachypodium distachyon (Poaceae), an annual Mediterranean Aluminum (Al)-sensitive grass, is currently being used as a model species to provide new information on cereals and biofuel crops. The plant has a short life cycle and one of the smallest genomes in the grasses being well suited to experimental manipulation. Its genome has been fully sequenced and several genomic resources are being developed to elucidate key traits and gene functions. A reliable germplasm collection that reflects the natural diversity of this species is therefore needed for all these genomic resources. However, despite being a model plant, we still know very little about its genetic diversity. As a first step to overcome this gap, we used nuclear Simple Sequence Repeats (nSSR) to study the patterns of genetic diversity and population structure of B. distachyon in 14 populations sampled across the Iberian Peninsula (Spain), one of its best known areas. We found very low levels of genetic diversity, allelic number and heterozygosity in B. distachyon, congruent with a highly selfing system. Our results indicate the existence of at least three genetic clusters providing additional evidence for the existence of a significant genetic structure in the Iberian Peninsula and supporting this geographical area as an important genetic reservoir. Several hotspots of genetic diversity were detected and populations growing on basic soils were significantly more diverse than those growing in acidic soils. A partial Mantel test confirmed a statistically significant Isolation-By-Distance (IBD) among all studied populations, as well as a statistically significant Isolation-By-Environment (IBE) revealing the presence of environmental-driven isolation as one explanation for the genetic patterns found in the Iberian Peninsula. The finding of higher genetic diversity in eastern Iberian populations occurring in basic soils suggests that these populations can be better adapted than those occurring in western areas of the Iberian Peninsula where the soils are more acidic and accumulate toxic Al ions. This suggests that the western Iberian acidic soils might prevent the establishment of Al-sensitive B. distachyon populations, potentially causing the existence of more genetically depauperated individuals.

  2. Accumulation, interaction and fractionation of fluoride and cadmium in sierozem and oilseed rape (Brassica napus L.) in northwest China.

    PubMed

    Li, Yepu; Wang, Shengli; Zhang, Qian; Zang, Fei; Nan, Zhongren; Sun, Huiling; Huang, Wen; Bao, Lili

    2018-06-01

    Soil fluoride (F) and cadmium (Cd) pollution are of great concern in recently years, due to the fact that considerable amounts of wastewater, gas and residue, containing F and Cd, have been discharged into the environment through ore smelting. Soil F and Cd contamination may result in their interaction in soil and plant, which affects their fractionation distribution in soil and accumulation in oilseed rape. Oilseed rape, which is widely planted and consumed as a popular vegetable in arid and semi-arid land of northwest China, has been believed to a hyperaccumulator for Cd. However, there is limited information about the accumulation, interaction and fractionation of F and Cd in soil-oilseed rape system under F-Cd stresses. A pot-culture experiment, with single (F or Cd) or double elements (F-Cd) being added to soil, was carried out study the accumulation, interaction and fractionation of F and Cd in sierozem and oilseed rape. We found that soil F applications increased the contents of Cd in exchangeable fraction (EX-Cd), the bound to carbonate fraction (CAB-Cd) and the bound to iron and manganese oxides fraction (FMO-Cd) in soil and also increased plant Cd accumulation. Therefore, we suggest that the permitted level of F should be confined within soil quality standards for farmland of China in order to upset the effect of high F concentration on bioavailability of soil Cd. However, soil Cd applications showed negative effects on the content of F in water soluble fraction (Water-F), hence decreased plant F accumulation. A better understanding of the accumulation, interaction and fractionation of F and Cd in sierozem-oilseed rape system are of great importance for environmental protection and for human health. The present study may serve as a basic understanding of the accumulation, interaction and fractionation of F and Cd in sierozem-oilseed rape system, and provide a suggestion for the environmental management. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays.

    PubMed

    Revault, M; Quiquampoix, H; Baron, M H; Noinville, S

    2005-08-05

    Studying the mechanism of retention of ovine prion protein in soils will tackle the environmental aspect of potential dissemination of scrapie infectious agent. We consider the surface-induced conformational changes that the recombinant ovine prion protein (ovPrP) may undergo under different pH conditions when interacting with soil minerals of highly adsorptive capacities such as montmorillonite. The conformational states of the full-length ovine prion protein adsorbed on the electronegative clay surface are compared to its solvated state in deuterated buffer in the pD range 3.5-9, using FTIR spectroscopy. The in vitro pH-induced conversion of the alpha-helical monomer of ovPrP into oligomers of beta-like structure prone to self-aggregation does not occur when the protein is adsorbed on the clay surface. The conformation of the trapped ovPrP molecules on montmorillonite is pH-independent and looks like that of the ovPrP solvated state at pD higher than 7, suggesting the major role of Arg and Lys residues in the electrostatic origin of adsorption. The uneven distribution of positively and negatively charged residues of the ovPrP protein would promote a favored orientation of the protein towards the clay, so that not only the basic residues embedded in the N-terminal flexible part but also external basic residues in the globular part of the protein might participate to the attractive interaction. From these results, it appears unlikely that the interaction of normal prions (PrP(C)) with soil clay surfaces could induce a change of conformation leading to the pathogenic form of prions (PrP(Sc)).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report was prepared at the request of the Lawrence Livermore Laboratory (LLL) to provide background information for analyzing soil-structure interaction by the frequency-independent impedance function approach. LLL is conducting such analyses as part of its seismic review of selected operating plants under the Systematic Evaluation Program for the US Nuclear Regulatory Commission. The analytical background and basic assumptionsof the impedance function theory are briefly reviewed, and the role of radiation damping in soil-structure interaction analysis is discussed. The validity of modeling soil-structure interaction by using frequency-independent functions is evaluated based on data from several field tests. Finally, the recommendedmore » procedures for performing soil-structure interaction analyses are discussed with emphasis on the modal superposition method.« less

  5. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  6. Hanford Soil Inventory Model (SIM-v2) Calculated Radionuclide Inventory of Direct Liquid Discharges to Soil in the Hanford Site's 200 Areas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, William E.; Zaher, U.; Agnew, S.

    The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).

  7. From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology

    USGS Publications Warehouse

    Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.

    2015-01-01

    In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.

  8. Are biodiversity indices of spontaneous grass covers in olive orchards good indicators of soil degradation?

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Arroyo, C.; Lora, A.; Guzmán, G.; Vanderlinden, K.; Gómez, J. A.

    2015-03-01

    Spontaneous grass covers are an inexpensive soil erosion control measure in olive orchards. Olive farmers allow grass to grow on sloping terrain to comply with the basic environmental standards derived from the Common Agricultural Policy (CAP). However, to date there are very few studies assessing the environmental quality and extent of such covers. In this study, we described and compared the biodiversity indicators associated to herbaceous vegetation in two contrasting olive orchards in order to evaluate its relevance and quality. In addition, biodiversity patterns and their relationships with environmental factors such as soil type and properties, precipitation, topography and soil management were analyzed. Different grass cover biodiversity indices were evaluated in two olive orchard catchments under conventional tillage and no tillage with grass cover, during 3 hydrological years (2011-2013). Seasonal samples of vegetal material and pictures in a permanent grid (4 samples ha-1) were taken to characterize the temporal variations of the number of species, frequency, diversity and transformed Shannon's and Pielou's indices. Sorensen's index obtained in the two olive orchard catchments showed notable differences in composition, probably linked with the different site conditions. The catchment with the best site conditions (deeper soil and higher precipitation), with average annual soil losses over 10 t ha-1 and a more intense management, presented the highest biodiversity indices. In absolute terms, the diversity indices were reasonably high in both catchments, despite the fact that agricultural activity usually severely limits the landscape and the variety of species. Finally, a significantly higher content of organic matter in the first 10 cm of soil was found in the catchment with the worst site conditions, average annual soil losses of 2 t ha-1 and the least intense management. Therefore, the biodiversity indicators associated to weeds were not found to be suitable for describing the soil degradation in the study catchments.

  9. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently implementing and testing an EKF for combining conventional observations and remote sensed soil moisture data in order to produce a more accurate analysis. In the present work verification skills (RMSE, BIAS, correlation) of both control and test run are presented using observed data collected by International Soil Moisture Network. Moreover improvements in temperature predictions are evaluated.

  10. Mapping soil particle-size fractions: A comparison of compositional kriging and log-ratio kriging

    NASA Astrophysics Data System (ADS)

    Wang, Zong; Shi, Wenjiao

    2017-03-01

    Soil particle-size fractions (psf) as basic physical variables need to be accurately predicted for regional hydrological, ecological, geological, agricultural and environmental studies frequently. Some methods had been proposed to interpolate the spatial distributions of soil psf, but the performance of compositional kriging and different log-ratio kriging methods is still unclear. Four log-ratio transformations, including additive log-ratio (alr), centered log-ratio (clr), isometric log-ratio (ilr), and symmetry log-ratio (slr), combined with ordinary kriging (log-ratio kriging: alr_OK, clr_OK, ilr_OK and slr_OK) were selected to be compared with compositional kriging (CK) for the spatial prediction of soil psf in Tianlaochi of Heihe River Basin, China. Root mean squared error (RMSE), Aitchison's distance (AD), standardized residual sum of squares (STRESS) and right ratio of the predicted soil texture types (RR) were chosen to evaluate the accuracy for different interpolators. The results showed that CK had a better accuracy than the four log-ratio kriging methods. The RMSE (sand, 9.27%; silt, 7.67%; clay, 4.17%), AD (0.45), STRESS (0.60) of CK were the lowest and the RR (58.65%) was the highest in the five interpolators. The clr_OK achieved relatively better performance than the other log-ratio kriging methods. In addition, CK presented reasonable and smooth transition on mapping soil psf according to the environmental factors. The study gives insights for mapping soil psf accurately by comparing different methods for compositional data interpolation. Further researches of methods combined with ancillary variables are needed to be implemented to improve the interpolation performance.

  11. On the role of "internal variability" on soil erosion assessment

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  12. Effect of soil nursery mixtures and hormone on the growth of Tetrastigma rafflesiae (Miq.) planch

    NASA Astrophysics Data System (ADS)

    Arshad, Syamsurina; Talip, Noraini; Adam, Jumaat

    2018-04-01

    Tetrastigma rafflesiae (Miq.) Planch is one of the sole host species of parasitic plants in the family Rafflesiaceae. A study was conducted in order to propagate this species using vegetative propagation. This propagation technique was done using stem cuttings and was conducted in the nursery at the National University of Malaysia (UKM). The propagation medium were made using four types of soil nursery mixtures of topsoil, organic matter and sand (7:3:1, 3:2:1, 2:1:1 and 1:1:1), mixture of topsoil, organic matter, sand and three different hormones treatments (0:0:IAA, 0:0:IBA and 0:0:NAA) and without any hormone treatment in basic soil (1:0:0, 0:1:0 and 0:0:1) was treated as a control. Approximately, stem cutting was used in 15 cm length. The base of each cutting was treated with root powdered hormones before being planted in soil. After 180 days of planting, the high number of leaf quantity (>12 leaves) was produced from stem cutting planted in 3:2:1 soil mixtures and the same results was obtained from stem cutting more than 15 cm to 18.78 cm in length, significantly. Soil mixture with 7:3:1 has significantly increased the leaf chlorophyll contents (10.22 nm) and also increased in leaf area index (16.375 cm²). Treatment hormones do not have any significant result in this study. The study has showed that T. rafflesiae can be propagated using cuttings as alternative source of planting materials for conservation purposes.

  13. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics

    NASA Astrophysics Data System (ADS)

    Wösten, J. H. M.; Pachepsky, Ya. A.; Rawls, W. J.

    2001-10-01

    Water retention and hydraulic conductivity are crucial input parameters in any modelling study on water flow and solute transport in soils. Due to inherent temporal and spatial variability in these hydraulic characteristics, large numbers of samples are required to properly characterise areas of land. Hydraulic characteristics can be obtained from direct laboratory and field measurements. However, these measurements are time consuming which makes it costly to characterise an area of land. As an alternative, analysis of existing databases of measured soil hydraulic data may result in pedotransfer functions. In practise, these functions often prove to be good predictors for missing soil hydraulic characteristics. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict parameters in these equations. Grouping of data prior to pedotransfer function development is discussed as well as the use of different soil properties as predictors. In addition to regression analysis, new techniques such as artificial neural networks, group methods of data handling, and classification and regression trees are increasingly being used for pedotransfer function development. Actual development of pedotransfer functions is demonstrated by describing a practical case study. Examples are presented of pedotransfer function for predicting other than hydraulic characteristics. Accuracy and reliability of pedotransfer functions are demonstrated and discussed. In this respect, functional evaluation of pedotransfer functions proves to be a good tool to assess the desired accuracy of a pedotransfer function for a specific application.

  14. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  15. [Classification of Priority Area for Soil Environmental Protection Around Water Sources: Method Proposed and Case Demonstration].

    PubMed

    Li, Lei; Wang, Tie-yu; Wang, Xiaojun; Xiao, Rong-bo; Li, Qi-feng; Peng, Chi; Han, Cun-liang

    2016-04-15

    Based on comprehensive consideration of soil environmental quality, pollution status of river, environmental vulnerability and the stress of pollution sources, a technical method was established for classification of priority area of soil environmental protection around the river-style water sources. Shunde channel as an important drinking water sources of Foshan City, Guangdong province, was studied as a case, of which the classification evaluation system was set up. In detail, several evaluation factors were selected according to the local conditions of nature, society and economy, including the pollution degree of heavy metals in soil and sediment, soil characteristics, groundwater sensitivity, vegetation coverage, the type and location of pollution sources. Data information was mainly obtained by means of field survey, sampling analysis, and remote sensing interpretation. Afterwards, Analytical Hierarchy Process (AHP) was adopted to decide the weight of each factor. The basic spatial data layers were set up respectively and overlaid based on the weighted summation assessment model in Geographical Information System (GIS), resulting in a classification map of soil environmental protection level in priority area of Shunde channel. Accordingly, the area was classified to three levels named as polluted zone, risky zone and safe zone, which respectively accounted for 6.37%, 60.90% and 32.73% of the whole study area. Polluted zone and risky zone were mainly distributed in Lecong, Longjiang and Leliu towns, with pollutants mainly resulted from the long-term development of aquaculture and the industries containing furniture, plastic constructional materials and textile and clothing. In accordance with the main pollution sources of soil, targeted and differentiated strategies were put forward. The newly established evaluation method could be referenced for the protection and sustainable utilization of soil environment around the water sources.

  16. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  17. Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g-1. The texture of soils is mostly sandy loam with few samples being 100 % silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  18. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  19. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Arroyo, C.; Lora, A.; Guzmán, G.; Vanderlinden, K.; Gómez, J. A.

    2015-11-01

    Spontaneous grass covers are an inexpensive soil erosion control measure in olive orchards. Olive farmers allow grass to grow on sloping terrain to comply with the basic environmental standards derived from the Common Agricultural Policy (CAP, European Commission). However, to date there are few studies assessing the environmental quality considering such covers. In this study, we measured biodiversity indices for spontaneous grass cover in two olive orchards with contrasting site conditions and management regimes in order to evaluate the potential for biodiversity metrics to serve as an indicator of soil degradation. In addition, the differences and temporal variability of biodiversity indicators and their relationships with environmental factors such as soil type and properties, precipitation, topography and soil management were analysed. Different grass cover biodiversity indices were evaluated in two olive orchard catchments under conventional tillage and no tillage with grass cover, during 3 hydrological years (2011-2013). Seasonal samples of vegetal material and photographs in a permanent grid (4 samples ha-1) were taken to characterize the temporal variations of the number of species, frequency of life forms, diversity and modified Shannon and Pielou indices. Sorensen's index showed strong differences in species composition for the grass covers in the two olive orchard catchments, which are probably linked to the different site conditions. The catchment (CN) with the best site conditions (deeper soil and higher precipitation) and most intense management presented the highest biodiversity indices as well as the highest soil losses (over 10 t ha-1). In absolute terms, the diversity indices of vegetation were reasonably high for agricultural systems in both catchments, despite the fact that management activities usually severely limit the landscape and the variety of species. Finally, a significantly higher content of organic matter in the first 10 cm of soil was found in the catchment with worse site conditions in terms of water deficit, average annual soil losses of 2 t ha-1 and the least intense management. Therefore, the biodiversity indices considered in this study to evaluate spontaneous grass cover were not found to be suitable for describing the soil degradation in the study catchments.

  20. Soil Moisture Processes in the Near Surface Unsaturated Zone: Experimental Investigations in Multi-scale Test Systems

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.

    2008-12-01

    Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.

  1. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    Treesearch

    Katie P. Gaines; Jane W. Stanley; Frederick C. Meinzer; Katherine A. McCulloh; David R. Woodruff; Weile Chen; Thomas S. Adams; Henry Lin; David M. Eissenstat; Nathan Phillips

    2015-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process...

  2. Soil Conservation Techniques for Hillside Farms. A Guide for Peace Corps Volunteers. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Reprint Series No. R-62.

    ERIC Educational Resources Information Center

    Crozier, Carl

    This guide provides agricultural extensionists with basic information that will help them design plans for the conservation of soils and the management of water runoff in specific agricultural plots. It is based on experiences with small hillside farms in Honduras and takes into account the resources and constraints commonly encountered there.…

  3. CO2 dinamics and priming effect of different Hungarian soils based on laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Zacháry, Dóra; Szalai, Zoltán; Filep, Tibor; Kovács, József; Jakab, Gergely

    2017-04-01

    Soil processes are particularly important in terms of global carbon cycle, as soils globally contain approximately 2000 Gt carbon, which is higher than the carbon stock of the atmosphere and the terrestrial ecosystem together. Therefore small alterations in the soils' carbon sequestration potential can generate rapid and significant changes in the atmosphere carbon concentration. Soil texture is one of the most important soil parameters which plays a significant role in soil carbon sequestration. Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. Our aim was to investigate the influence of the basic soil properties (texture, pH, organic matter content, etc.) on the biological and physicochemical processes determining the soil CO2 emission. Thirteen Hungarian soil samples (depth of 0-20 cm) were incubated during six months. The samples are mainly high clay and organic matter content forest soils, but two forest soils developed on sand were also collected. The soils are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues were added to the soils in order to get natural 13C enrichment for stable isotope measurement purposes and for quantifying the priming effect caused by the crop residue addition. The temperature (20°C) and humidity (70% field capacity) conditions were kept constant in an incubator. The soil respiration was measured at specified intervals (on day 3, 8, 15, 30, 51, 79, 107, 135 and 163) and trapped in 2M NaOH and quantified by titration with 1M HCl. Our first results based on the cumulative CO2 respiration values show positive priming for all type of soils. Results confirm the statement that in certain cases fine textured soils release more CO2. To determine which soil properties influence the most the soil CO2 emission, the linking among the mathematical model parameters and the soil properties would be useful. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledge.

  4. Swelling soils in the road structures

    NASA Astrophysics Data System (ADS)

    Pruška, Jan; Šedivý, Miroslav

    2017-09-01

    There are frequent problems with the soil swelling in the road construction in the past time. This phenomenon is known for decades. This situation is notably given by insufficient knowledge of this problem and difficulties with input parameters describing the swelling process. The paper in the first part proposed regression relations to predict swelling pressure, time of swelling and swelling strain for different initial water contents for soils and improvement soils. The relations were developed by using artificial neural network and QCExpert Professional software (on the data from site investigations by GeoTec-GS, a.s. and experimental data from CTU in Prague). The advantage of the relations is based on using the results of the basic soil tests (plasticity index, consistency index and colloidal activity) as input parameters. The authors inform the technical public with their current knowledge of the problems with the soil swelling on the motorway in the second part of the paper.

  5. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  6. The impact of warfare on the soil environment

    NASA Astrophysics Data System (ADS)

    Certini, Giacomo; Scalenghe, Riccardo; Woods, William I.

    2013-12-01

    One of the most dramatic ways humans can affect soil properties is through the performance of military activities. Warfare-induced disturbances to soil are basically of three types - physical, chemical, and biological - and are aimed at causing direct problems to enemies or, more often, are indirect, undesired ramifications. Physical disturbances to soil include sealing due to building of defensive infrastructures, excavation of trenches or tunnels, compaction by traffic of machinery and troops, or cratering by bombs. Chemical disturbances consist of the input of pollutants such as oil, heavy metals, nitroaromatic explosives, organophosphorus nerve agents, dioxins from herbicides, or radioactive elements. Biological disturbances occur as unintentional consequences of the impact on the physical and chemical properties of soil or the deliberate introduction of microorganisms lethal to higher animals and humans such as botulin or anthrax. Soil represents a secure niche where such pathogens can perpetuate their virulence for decades.

  7. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  8. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618—1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

  9. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China.

    PubMed

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618-1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

  10. A semester-long soil mapping project for an undergraduate pedology course

    NASA Astrophysics Data System (ADS)

    Brown, David J.

    2015-04-01

    Most students taking a pedology course will never work as soil mappers. But many will use soil maps at some point in their careers. At Montana State University, students spent 3 "lab" hours a week, complementing two lectures a week, in the field learning how to study soils literally from the ground up. The only prerequisites for enrollment were completion of an introductory soil science class and 3rd year standing at the university. The area to be mapped, just a km from campus, included a steep mountain backslope, and a complex footslope-toeslope area with diverse soils. Students were divided into teams of 3-4, with approximately 40 students altogether split over two sections that overlapped in the field by one hour. In the first lab session, groups completed a very basic description of just one soil profile. In subsequent weeks, they rotated through multiple pits excavated in a small area, and expanded their soil profile descriptions and interpretations. As students developed proficiency, they were assigned more dispersed locations to study, working for the most part independently as I hiked between pits. Throughout this process, every pit was geolocated using a GPS unit, and every profile description was copied and retained in a designated class file. Student groups delineated map units using stereo air photography, then used these delineations to guide the selection of their final locations to describe. At the end of the course, groups used all of the combined and georeferenced profile descriptions to construct a soil map of the study area complete with map unit descriptions. Most students struggled to make sense of the substantial variability within their map units, but through this struggle -- and their semester of field work -- they gained an appreciation for the value and limitations of a soil map that could not be obtained from even the most entertaining lecture. Both the class and particularly the field sessions received consistently high student reviews during the four years I had students map soils at Montanta State University.

  11. Influence of relief and vegetation on soil properties in a disturbed chernozem soil landscape

    NASA Astrophysics Data System (ADS)

    Raab, Thomas; Hirsch, Florian; Vasserman, Oleksandr; Raab, Alexandra; Naeth, Anne

    2017-04-01

    In central and southeastern Alberta, chernozems dominate the soil landscape and are divided into several groups that follow the climate gradient from Northwest to Southeast: Dark Grey Chernozems, Black Chernozems, Dark Brown Chernozems; Brown Chernozems. Principles controlling development and distribution of these chernozem subtypes along the ecotone transect are quite well known. However, intensive land use over the last century has affected soils that originally have formed under natural conditions during the Holocene in more than 10,000 years. There is a lack of knowledge regarding soil development in these landscapes on the decadal to centennial time scale. Within this time frame the most important factor of soil formation may be relief, although this has not been properly studied. This study aims to compare soil properties in a typical chernozem landscape where soils have been highly disturbed and parent materials have been re-arranged by surface coal mining. We hypothesize that within 50 years, soils develop with significant differences based on vegetation type and slope aspect. Our study site is the former Diplomat Mine near Forestburg, Alberta where spoils form a small scale ridge and graben topography. The south facing slopes of the piles are covered by grassland, whereas on the north exposition has trees and shrubs. Samples were taken from six sites with differences in topography and vegetation type. Diplomate T1 is at the top of the ridge with grassland, Diplomate S1 is on the southern slope with grassland, Diplomate N1 is on the northern slope with trees, and Diplomate N2 is on the northern slope with shrubs. For comparison we took samples from two sites without slope aspect. One site was an undisturbed grassland (Diplomate Z1) and the other sites were reclaimed piles (Diplomate R1). At each site, five soil profiles were examined and volumetrically sampled (250 cm3 steel ring) in steps of five centimeters to a depth of 30 centimeters. We present first results of basic physical and chemical soil parameters (bulk density, water content, pH, C-stock, N-stock).

  12. Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Dooling, Dave (Editor)

    2002-01-01

    Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.

  13. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.

    PubMed

    Quinn, R; Orenberg, J

    1993-10-01

    Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs to the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.

  14. Simulations of the Viking gas exchange experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs - Implications for the surface composition of Mars

    NASA Astrophysics Data System (ADS)

    Quinn, Richard; Orenberg, James

    1993-10-01

    Simulations of the Gas Exchange Experiment (GEX), one of the Viking Lander Biology Experiments, were run using palagonite and Fe-rich montmorillonite as terrestrial analogs of the Martian soil. These terrestrial analogs were exposed to a nutrient solution of the same composition as that of the Viking Landers under humid (no contact with nutrient) and wet (intimate contact) conditions. The headspace gases in the GEX sample cell were sampled and then analyzed by gas chromatography under both humid and wet conditions. Five gases were monitored: CO2, N2, O2, Ar, and Kr. It was determined that in order to simulate the CO2 gas changes of the Viking GEX experiment, the mixture of soil analog mineral plus nutrient medium must be slightly (pH = 7.4) to moderately basic (pH = 8.7). This conclusion suggests constraints upon the composition of terrestrial analogs of the Mars soil; acidic components may be present, but the overall mixture must be basic in order to simulate the Viking GEX results.

  15. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  16. Aggregate stability as an indicator of soil erodibility and soil physical quality: review and perspectives

    NASA Astrophysics Data System (ADS)

    Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio

    2010-05-01

    Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.

  17. Taxonomic and environmental soil diversity of marine terraces of Gronfjord (West Spitsbergen island)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny

    2017-04-01

    Soil surveys in polar region are faced to problems of soil diagnostics, evolution, geography and pedogenesis with the aim to assess the actual state and future dynamics of soil cover under changing environmental conditions. This investigation is devoted to specification of taxonomic and environmental soil diversity of marine terraces of Gronfjord (Svalbard archipelago, West Spitsbergen Island). It was established 3 key plots (Grendasselva, Aldegonda rivers and marine terrace in surroundings of Barentsburg aerodrome). Soil diagnostics was carried out according to Russian soil classification system and WRB. Grendasselva river valley is characterized by numerous patterned ground elements combined with lichen-moss and moss-lichen patches with sporadic inclusions of higher plants (mostly Lusula pilosa). Soil cover is represented by Typic Cryosols on elevated sites and Histic Gleysols, Turbic Gleysols and Histosols on well-drained boggy sites. Aldegonda river valley characterizes by predominance of entic soils (soil with non-pronounced profile differentiation) on moraine material (mostly Cryic Leptosols). Vegetation is presented by sporadic plant communities comprised by Lusula pilosa and thin lichen-moss ground layer (developed only in well-moistened micro depression). Marine terrace in surroundings of Barentsburg aerodrome is covered by moss-lichen tundra with sporadic inclusions of Lusula pilosa. On the top of the terrace compressed barren circles are quite abundant. Soil catena has been established within this key plot. Soil types are represented by Typic Cryosols in watershed parts of catena, Gleysols and Histic Gleysols in accumulation positions. The active layer depths have been distinguished using vertical electrical sounding. They ranged from 80-90 cm at Grendasselva and Aldegonda river key plot to 140-150 cm at marine terrace in surroundings of Barentsburg aerodrome. Regional differences in this indicator may be explained not only by local differences in thermal regime of soil and permafrost layers, but also by different ways of anthropogenic forcing on studied key plots. Spatial differentiation of soil types within the studied area is caused mainly by relief conditions (since it determines moisture conditions and gleyzation rates especially) and parent materials. Cryogenic mass transfer, cryoturbations and degree of their manifestation in studied soils depend on active layer thickness and also varies significantly. This study was conducted in cooperation with Arctic and Antarctic Research Institute (Saint Petersburg, Russia) and supported by Russian Foundation for basic research, grant 16-34-60010, Russian presidents' grant for Young Doctors of Science № MD-3615.2015.4.

  18. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  19. Soil-Water Characteristic Curves of Red Clay treated by Ionic Soil Stabilizer

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2009-12-01

    The relationship of red clay particle with water is an important factor to produce geological disaster and environmental damage. In order to reduce the role of adsorbed water of red clay in WuHan, Ionic Soil Stabilizer (ISS) was used to treat the red clay. Soil Moisture Equipment made in U.S.A was used to measure soil-water characteristic curve of red clay both in natural and stabilized conditions in the suction range of 0-500kPa. The SWCC results were used to interpret the red clay behavior due to stabilizer treatment. In addition, relationship were compared between the basic soil and stabilizer properties such as water content, dry density, liquid limit, plastic limit, moisture absorption rate and stabilizer dosages. The analysis showed that the particle density and specific surface area increase, the dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. After treatment with the ISS, the geological disasters caused by the adsorbed water of red clay can be effectively inhibited.

  20. Possible Exposure Pathways During Emergencies

    EPA Pesticide Factsheets

    There are three basic ways a person may be exposed to a hazardous substance: inhalation, ingestion, or direct contact. Points of contact include groundwater or surface water; soil, sediment, or dust; air; or food.

  1. Can we model observed soil carbon changes from a dense inventory? A case study over england and wales using three version of orchidee ecosystem model (AR5, AR5-PRIM and O-CN)

    NASA Astrophysics Data System (ADS)

    Guenet, B.; Moyano, F. E.; Vuichard, N.; Kirk, G. J. D.; Bellamy, P. H.; Zaehle, S.; Ciais, P.

    2013-07-01

    A widespread decrease of the top soil carbon content was observed over England and Wales during the period 1978-2003 in the National Soil Inventory (NSI), amounting to a carbon loss of 4.44 Tg yr-1 over 141 550 km2. Subsequent modelling studies have shown that changes in temperature and precipitation could only account for a small part of the observed decrease, and therefore that changes in land use and management and resulting changes in soil respiration or primary production were the main causes. So far, all the models used to reproduce the NSI data did not account for plant-soil interactions and were only soil carbon models with carbon inputs forced by data. Here, we use three different versions of a process-based coupled soil-vegetation model called ORCHIDEE, in order to separate the effect of trends in soil carbon input, and soil carbon mineralisation induced by climate trends over 1978-2003. The first version of the model (ORCHIDEE-AR5) used for IPCC-AR5 CMIP5 Earth System simulations, is based on three soil carbon pools defined with first order decomposition kinetics, as in the CENTURY model. The second version (ORCHIDEE-AR5-PRIM) built for this study includes a relationship between litter carbon and decomposition rates, to reproduce a priming effect on decomposition. The last version (O-CN) takes into account N-related processes. Soil carbon decomposition in O-CN is based on CENTURY, but adds N limitations on litter decomposition. We performed regional gridded simulations with these three versions of the ORCHIDEE model over England and Wales. None of the three model versions was able to reproduce the observed NSI soil carbon trend. This suggests that either climate change is not the main driver for observed soil carbon losses, or that the ORCHIDEE model even with priming or N-effects on decomposition lacks the basic mechanisms to explain soil carbon change in response to climate, which would raise a caution flag about the ability of this type of model to project soil carbon changes in response to future warming. A third possible explanation could be that the NSI measurements made on the topsoil are not representative of the total soil carbon losses integrated over the entire soil depth, and thus cannot be compared with the model output.

  2. Salinity and spectral reflectance of soils

    NASA Technical Reports Server (NTRS)

    Szilagyi, A.; Baumgardner, M. F.

    1991-01-01

    The basic spectral response related to the salt content of soils in the visible and reflective IR wavelengths is analyzed in order to explore remote sensing applications for monitoring processes of the earth system. The bidirectional reflectance factor (BRF) was determined at 10 nm of increments over the 520-2320-nm spectral range. The effect of salts on reflectance was analyzed on the basis of 162 spectral measurements. MSS and TM bands were simulated within the measured spectral region. A strong relationship was found in variations of reflectance and soil characteristics pertaining to salinization and desalinization. Although the individual MSS bands had high R-squared values and 75-79 percent of soil/treatment combinations were separable, there was a large number of soil/treatment combinations not distinguished by any of the four highly correlated MSS bands under consideration.

  3. Soil moisture mapping by ground and airborne microwave radiometry

    NASA Technical Reports Server (NTRS)

    Poe, G.; Edgerton, A. T.

    1972-01-01

    Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.

  4. On the importance of variable soil depth and process representation in the modeling of shallow landslide initiation

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Burlando, P.; Anagnostopoulos, G.

    2014-12-01

    Sub-surface hydrology has a dominant role on the initiation of rainfall-induced landslides, since changes in the soil water potential affect soil shear strength and thus apparent cohesion. Especially on steep slopes and shallow soils, loss of shear strength can lead to failure even in unsaturated conditions. A process based model, HYDROlisthisis, characterized by high resolution in space and, time is developed to investigate the interactions between surface and subsurface hydrology and shallow landslide initiation. Specifically, 3D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow, are simulated for the subsurface flow, coupled with a surface runoff routine. Evapotranspiration and specific root water uptake are taken into account for continuous simulations of soil water content during storm and inter-storm periods. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. The model is applied to a small catchment in Switzerland historically prone to rainfall-triggered landslides. A series of numerical simulations were carried out with various boundary conditions (soil depths) and using hydrological and geotechnical components of different complexity. Specifically, the sensitivity to the inclusion of preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with a multi-dimensional limit equilibrium analysis. The effect of the different model components on model performance was assessed using accuracy statistics and Receiver Operating Characteristic (ROC) curve. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) considerably improve predictive capabilities in the presented case study.

  5. 36 CFR 200.3 - Forest Service functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and (G) Physical and resource improvements needed to develop, protect, and use all resources are built..., including the five basic resources of timber, forest soil and water, range forage, wildlife and fish habitat...

  6. Radionuclide Basics: Thorium

    EPA Pesticide Factsheets

    Thorium is a naturally occurring radioactive metal found at trace levels in soil, rocks, plants and animals. Thorium is used very little in industry, but can be found in heat-resistant alloys and paints and optical lenses.

  7. A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio

    NASA Astrophysics Data System (ADS)

    Monkul, M. Murat; Önal, Okan

    2006-06-01

    A visual basic program (POCI) is proposed and explained in order to analyze oedometer test results. Oedometer test results have vital importance from geotechnical point of view, since settlement requirements usually control the design of foundations. The software POCI is developed in order perform the necessary calculations for convential oedometer test. The change of global void ratio and stress-strain characteristics can be observed both numerically and graphically. It enables the users to calculate some parameters such as coefficient of consolidation, compression index, recompression index, and preconsolidation pressure depending on the type and stress history of the soil. Moreover, it adopts the concept of intergranular void ratio which may be important especially in the compression behavior of sandy soils. POCI shows the variation of intergranular void ratio and also enables the users to calculate granular compression index.

  8. Isotopic Evolution of Soil Organic Matter Affects Paleo-vegetation and Paleo-pCO2 Reconstructions

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Beerling, D. J.

    2004-12-01

    The stable carbon isotope ratio (\\delta13C) of fossil terrestrial organic matter is used to study several aspects of biosphere/atmosphere coupling in the geologic past. These range from vegetation response to climatic and pCO2 shifts to reconstruction of paleo-pCO2 levels. Although screening for diagenesis is typical in these studies, few have taken into account the ubiquitous but poorly understood phenomenon of progressive 13C-enrichment of soil organic matter during its decay, which is observed in modern soils worldwide. We present a simple model that describes this phenomenon and the interaction of soil organic carbon and CO2 concentrations, fluxes and \\delta13C values. At its most basic level, the model suggests that bulk organic matter from sub-surface soil horizons will be variably enriched in 13C relative to the vegetation living on the soil surface. This complicates interpretation of paleo-isotopic records used in C3/C4 vegetation reconstructions, and may account for anomalously heavy fossil organic carbon isotope values measured in some paleosols pre-dating the end-Miocene expansion of C4 floras. The model also demonstrates that the \\delta13C evolution of soil organic carbon during its decay generates 2 types of biases that may affect soil mineral paleo-pCO2 proxies. The first type of bias results from a steady-state inequality between the \\delta13C of organic carbon at a single depth within the soil and that of respired CO2 in the soil. This bias is present when fossil organic matter is used to reconstruct the \\delta13C of soil-respired carbon, and can be minimized with appropriate sampling methods. The second type of bias results from a dynamic, seasonal imbalance in respiration, which may cause the soil \\delta13CO2 flux during times of soil mineral formation to deviate from that of the annually integrated flux. At present, this bias can not be fully described or corrected for due to inadequacies in our knowledge of soil \\delta13C dynamics and the timing of soil mineral formation. Given the strong dependence of paleo-pCO2 reconstructions on data from soil mineral isotopes, further work on these topics is warranted.

  9. Wilderness Medical Society Practice Guidelines for Basic Wound Management in the Austere Environment

    DTIC Science & Technology

    2014-01-01

    example, diabetes, certain rheumatologic conditions, clotting disorders, and cancer, as well as a number of medications (eg, corticosteroids), can affect ...markedly with leukocyte function and may decrease the amount of bacteria required for wound infection by a factor of 1000.50 Soil contaminants in dirt...hours59 when compared with low- or high-pressure irrigation. Recent studies have shown that irrigation can also remove beneficial growth factors and

  10. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  11. Bacterial diversity of soil aggregates of different sizes in various land use conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina; Azida, Thakahova; Olga, Kutovaya

    2014-05-01

    The patterns of soil microbiome structure may be a universal and very sensitive indicator of soil quality (soil "health") used for optimization and biologization of agricultural systems. The understanding of how microbial diversity influenses, and is influenced by, the environment can only be attained by analyses at scales relevant to those at which processes influencing microbial diversity actually operate. The basic structural and functional unit of the soil is a soil aggregate, which is actually a microcosm of the associative co-existing groups of microorganisms that form characteristic ecological food chains. It is known that many important microbial processes occur in spatially segregated microenvironments in soil leading to a microscale biogeography. The Metagenomic library of typical chernozem in conditions of different land use systems was created. Total genomic DNA was extracted from 0.5 g of the frozen soil after mechanical destruction. Sample preparation and sequencing was performed on a GS Junior ("Roche»", Switzerland) according to manufacturer's recommendations, using the universal primers to the variable regions V4 gene 16S - rRNA - F515 (GTGCCAGCMGCCGCGGTAA) and R806 (GGACT-ACVSGGGTATCTAAT). It is shown that the system of land use is a stronger determinant of the taxonomic composition of the soil microbial community, rather than the size of the structural units. In soil samples from different land use systems the presence of accessory components was revealed. They may be used as indicators of processes of soil recovery, soil degradation or soil exhaustion processes occuring in the agroecosystems. The comparative analysis of microbial communities of chernozem aggregates investigated demonstrates the statistically valuable differences in the amount of bacterial phyla and Archean domain content as well as the species richness in aggregates of various size fractions. The occurrence of specific components in the taxonomic structure of micro-and macro-aggregates may indicate the presence of a certain size fraction in the structure of the investigated soil. The study of soils' metagenome is promising for the development of both soil microbiology, and for the soil processes trends in soils of anthropogenic origin.

  12. Managing soil nutrients with compost in organic farms of East Georgia

    NASA Astrophysics Data System (ADS)

    Ghambashidze, Giorgi

    2013-04-01

    Soil Fertility management in organic farming relies on a long-term integrated approach rather than the more short-term very targeted solutions common in conventional agriculture. Increasing soil organic matter content through the addition of organic amendments has proven to be a valuable practice for maintaining or restoring soil quality. Organic agriculture relies greatly on building soil organic matter with compost typically replacing inorganic fertilizers and animal manure as the fertility source of choice. In Georgia, more and more attention is paid to the development of organic farming, occupying less than 1% of total agricultural land of the country. Due to increased interest towards organic production the question about soil amendments is arising with special focus on organic fertilizers as basic nutrient supply sources under organic management practice. In the frame of current research two different types of compost was prepared and their nutritional value was studied. The one was prepared from organic fraction municipal solid waste and another one using fruit processing residues. In addition to main nutritional properties both composts were tested on heavy metals content, as one of the main quality parameter. The results have shown that concentration of main nutrient is higher in municipal solid waste compost, but it contains also more heavy metals, which is not allowed in organic farming system. Fruit processing residue compost also has lower pH value and is lower in total salt content being is more acceptable for soil in lowlands of East Georgia, mainly characterised by alkaline reaction. .

  13. A multi-scale ''soil water structure'' model based on the pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.

    2009-02-01

    Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.

  14. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    PubMed

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  15. Soil erodibility for water erosion: A perspective and Chinese experiences

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric

    2013-04-01

    Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.

  16. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  17. Status of soil acidification in North America

    USGS Publications Warehouse

    Fenn, M.E.; Huntington, T.G.; Mclaughlin, S.B.; Eagar, C.; Gomez, A.; Cook, R.B.

    2006-01-01

    Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of leaching of base cations, increased availability of soil Al, and the accumulation and ultimate transmission of acidity from forest soils to streams. Losses of calcium from forest soils and forested watersheds have now been documented as a sensitive early indicator and a functionally significant response to acid deposition for a wide range of forest soils in North America. For red spruce, a clear link has been established between acidic deposition, alterations in calcium and aluminum supplies and increased sensitivity to winter injury. Cation depletion appears to contribute to sugar maple decline on some soils, specifically the high mortality rates observed in northern Pennsylvania over the last decade. While responses to liming have not been systematically examined in North America, in a study in Pennsylvania, restoring basic cations through liming increased basal area growth of sugar maple and levels of calcium and magnesium in soil and foliage. In the San Bernardino Mountains in southern California near the west coast, the pH of the A horizon has declined by at least 2 pH units (to pH 4.0-4.3) over the past 30 years, with no detrimental effects on bole growth; presumably, because of the Mediterranean climate, base cation pools are still high and not limiting for plant growth.

  18. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  19. Molecular and Microscopic Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    DOE PAGES

    Dohnalkova, Alice C.; Tfaily, Malak M.; Smith, A. Peyton; ...

    2017-08-26

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is scarce. This study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix with limited nutrients. We utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of newly-formed SOM compounds, and considered implications regarding their degree of long-term persistence. The microbes in this controlled, nutrient-limitedmore » system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. Here, these findings provide insight into the formation of SOM products in ecosystems, and show that the plant- and microbially-derived material associated with mineral matrices may be important components in current soil carbon models.« less

  20. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-11-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

  1. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    PubMed Central

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-01-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization. PMID:27805014

  2. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  3. Assessment of vertical soil solid phase transport (pedoturbations) in different types of land use by magnetic tracer method (Belgorod region, Russia)

    NASA Astrophysics Data System (ADS)

    Zhidkin, Andrey

    2015-04-01

    New method of quantitative assessments of vertical soil solid phase transport (pedoturbations) is based on redistribution of spherical magnetic particles (SMP) in soil profiles. SMP - are fly ash components, which mainly produce during coal burning. The main sources of SMP on studied object were locomotives on the railroads, which used coal at the turn of the XIX century. SMP income into the soil only from the atmosphere, very stable for destructions, can be preserved in soils for centuries, and have the same size and weight as the soil matter. So SMP redistribution reflects soil solid phase transport. SMP used as tracers of soil erosion (Olson et.al., 2013), but for the first time applied for quantitative assessments of pedoturbations. In Belgorod region of Russia studied vertical distribution of SMP in soils in different types of land use: a) arable chernozem about 160-year plowing, b) arable chernozem 120-year plowing, c) dark-gray forest soil, which didn't plow at least last 150 years. All three sites are located nearby for the same physical-geography conditions. Distribution of SMP studied layer by layer (thickness of the layer 7 cm) from the top to 70 cm depth, in triplicate soil columns in every land use type (totally 90 soil samples). The period of SMP kept in studied soils is about 115 years. Revealed the different depth of SMP penetration (burial) in soil profiles for this period: 49 cm in the soil of 160-year arable land, 58 cm in the soil of 120-year arable land and 68 cm in the virgin forest soil. Different depth of SMP penetration is connected with different activity of pedoturbations, which differs according to the composition of soil flora and fauna, root activity, and animal mixing work. It is supposed that in the arable land single cropping can reduce the thickness of the active layer and as a result the zone of active pedoturbation depth. Based on SMP distribution counted rates of vertical soil solid phase transport, which are equaled: 31 t/ha/year in the soil of 160-year arable land, 28 t/ha/year in the soil of 120-year arable land, 24 t/ha/year in the virgin forest soil. Certainly raised rates of vertical transport in arable land relative to forest is connected with agricultural plowing. Revealed the connection between the period of plowing and rates of vertical soil transport. Also worth noting is that the rates of pedoturbation in virgin forest soils are rather high and only 1,2-1,3 times less than on arable land uses. This research is funded by Russian Foundation for Basic Research - Project 14-05-31141. 1. Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M.V., Golosov V.N., Lang J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates // Catena. - 2013. - V. 104 - P. 103-110.

  4. S-World: A high resolution global soil database for simulation modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.

  5. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  6. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  7. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  8. 7 CFR 610.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...

  9. Can we model observed soil carbon changes from a dense inventory? A case study over England and Wales using three versions of the ORCHIDEE ecosystem model (AR5, AR5-PRIM and O-CN)

    NASA Astrophysics Data System (ADS)

    Guenet, B.; Moyano, F. E.; Vuichard, N.; Kirk, G. J. D.; Bellamy, P. H.; Zaehle, S.; Ciais, P.

    2013-12-01

    A widespread decrease of the topsoil carbon content was observed over England and Wales during the period 1978-2003 in the National Soil Inventory (NSI), amounting to a carbon loss of 4.44 Tg yr-1 over 141 550 km2. Subsequent modelling studies have shown that changes in temperature and precipitation could only account for a small part of the observed decrease, and therefore that changes in land use and management and resulting changes in heterotrophic respiration or net primary productivity were the main causes. So far, all the models used to reproduce the NSI data have not accounted for plant-soil interactions and have only been soil carbon models with carbon inputs forced by data. Here, we use three different versions of a process-based coupled soil-vegetation model called ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems), in order to separate the effect of trends in soil carbon input from soil carbon mineralization induced by climate trends over 1978-2003. The first version of the model (ORCHIDEE-AR5), used for IPCC-AR5 CMIP5 Earth System simulations, is based on three soil carbon pools defined with first-order decomposition kinetics, as in the CENTURY model. The second version (ORCHIDEE-AR5-PRIM) built for this study includes a relationship between litter carbon and decomposition rates, to reproduce a priming effect on decomposition. The last version (O-CN) takes into account N-related processes. Soil carbon decomposition in O-CN is based on CENTURY, but adds N limitations on litter decomposition. We performed regional gridded simulations with these three versions of the ORCHIDEE model over England and Wales. None of the three model versions was able to reproduce the observed NSI soil carbon trend. This suggests either that climate change is not the main driver for observed soil carbon losses or that the ORCHIDEE model even with priming or N effects on decomposition lacks the basic mechanisms to explain soil carbon change in response to climate, which would raise a caution flag about the ability of this type of model to project soil carbon changes in response to future warming. A third possible explanation could be that the NSI measurements made on the topsoil are not representative of the total soil carbon losses integrated over the entire soil depth, and thus cannot be compared with the model output.

  10. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method

    NASA Astrophysics Data System (ADS)

    Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam

    2017-10-01

    Soil texture as the basic soil physical property provides a basic information on the soil grain size distribution as well as grain size fraction representation. Currently, there are several methods of particle dimension measurement available that are based on different physical principles. Pipette method based on the different sedimentation velocity of particles with different diameter is considered to be one of the standard methods of individual grain size fraction distribution determination. Following the technical advancement, optical methods such as laser diffraction can be also used nowadays for grain size distribution determination in the soil. According to the literature review of domestic as well as international sources related to this topic, it is obvious that the results obtained by laser diffractometry do not correspond with the results obtained by pipette method. The main aim of this paper was to analyse 132 samples of medium fine soil, taken from the Nitra River catchment in Slovakia, from depths of 15-20 cm and 40-45 cm, respectively, using laser analysers: ANALYSETTE 22 MicroTec plus (Fritsch GmbH) and Mastersizer 2000 (Malvern Instruments Ltd). The results obtained by laser diffractometry were compared with pipette method and the regression relationships using linear, exponential, power and polynomial trend were derived. Regressions with the three highest regression coefficients (R2) were further investigated. The fit with the highest tightness was observed for the polynomial regression. In view of the results obtained, we recommend using the estimate of the representation of the clay fraction (<0.01 mm) polynomial regression, to achieve a highest confidence value R2 at the depths of 15-20 cm 0.72 (Analysette 22 MicroTec plus) and 0.95 (Mastersizer 2000), from a depth of 40-45 cm 0.90 (Analysette 22 MicroTec plus) and 0.96 (Mastersizer 2000). Since the percentage representation of clayey particles (2nd fraction according to the methodology of Complex Soil Survey done in Slovakia) in soil is the determinant for soil type specification, we recommend using the derived relationships in soil science when the soil texture analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the needs of soil science research and attempt to replace the standard pipette method with more progressive laser diffraction method.

  11. Terra e Arte Project: Soils connecting Art and Education

    NASA Astrophysics Data System (ADS)

    Muggler, Cristine Carole; Rozenberg, Bianca; de Cássia Francisco, Talita; Gramacho de Oliveira, Elisa

    2015-04-01

    The "Terra e Arte" project was designed to combine science and art by approaching soil contents in basic education schools in Viçosa, Minas Gerais, Brazil. The project was developed to awake, sensitize and create awareness about soils and their importance to life and environment within school communities. It was proposed and realized by the Earth Sciences Museum Alexis Dorofeef (MCTAD) of the Federal University of Viçosa (UFV), as part of the celebrations of its 20th anniversary. Since all the schools of the town visit the museum at least once a year and most of them have received and carried out pedagogic projects on soil themes in the last 20 years, it was proposed to them to develop a soil subject with any of their groups and combine it with painting using soil materials. Each group interested in joining the project received a basic set of material to produce soil paints. They were expected to develop a soil theme and its contents for a few weeks and to finalize it with a figurative and textual collective creation that synthetized their learning. 16 of the 24 visited schools joined the project and realized it for an average of two months. During this time, the school groups visited the museum and/or borrowed the itinerant exposition on soils from the museum to work with in in the school community. At the end of the projects, the productions were presented at the Knowledge Market (Feira do Conhecimento) that happens every year in the central square of the town, as part of the National Week of Science and Technology. At the event, 58 works were presented by 14 schools, involving directly 700 pupils and their teachers. They approached themes from soil formation and properties to agroecology and urban occupation and impacts on the soils. 30 of the works were selected for a commemorative exposition and 12 were chosen for a table calendar 2014. The movement created around the project mobilized many people and had strong impact on the school communities, especially after the distribution of the calendar to all schools. The result stimulated the museum to propose another project for the 21st anniversary that was intensely sought after by all schools of the town. The mobilization that has been created by those projects contributes to expand and to strengthen the word about soils within the schools and to increase the perception of soils in the town community.

  12. Compilation of hydrologic data, Little Elm Creek, Trinity River basin, Texas, 1968

    USGS Publications Warehouse

    ,

    1972-01-01

    The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of "The Flood Control Act ot 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. In June 1968, the Soil Conservation Service estimated approximately 3,500 structures to be physically and economically feasible for installation in Texas. As of September 30, 1968, 1,271 of these structures had been built. This watershed-development program will have varying but important effects on the surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data are needed to appraise the effects of the structures on water yield and the mode of occurrence of runoff. Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 11 areas (fig. 1). These studies are being made in cooperation with t he Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 11 study areas were choson to sample watersheds having different rainfall, topography, geology, and soils. In four of the study areas (Mukewater, North, Little Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses to the conditions before and after" development. Structures have now been built in three of these study areas. A summary of the development of the floodwater-retarding structures on each study area as of September 30, 1968, is shown in table 1.

  13. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  14. The 'overflow tap' theory: linking GPP to forest soil carbon dynamics and the mycorrhizal component

    NASA Astrophysics Data System (ADS)

    Heinemeyer, Andreas; Willkinson, Matthew; Subke, Jens-Arne; Casella, Eric; Vargas, Rodrigo; Morison, James; Ineson, Phil

    2010-05-01

    Quantifying soil organic carbon (SOC) dynamics accurately is crucial to underpin better predictions of future climate change feedbacks within the atmosphere-vegetation-soil system. Measuring the components of ecosystem carbon fluxes has become a central point of the research focus during the last decade, not least because of the large SOC stocks, potentially vulnerable to climate change. However, our basic understanding of the composition and environmental responses of the soil CO2 efflux is still under debate and limited by the available field methodologies. For example, only recently did we separate successfully root (R), mycorrhizal fungal (F) and soil animal/microbial (H) respiration based on a mesh-bag/collar methodology and described their unique environmental responses. Yet it might be these differences which are crucial for understanding C-cycle feedbacks and observed limitations in plant biomass increase under elevated carbon dioxide (e.g. FACE) studies. It is becoming clear that these flux components and their environmental responses must be incorporated in models that link but also treat the heterotrophic and autotrophic fluxes separately. However, owing to a scarcity of experimental data, separation of fluxes and environmental drivers has been ignored in current models. We are now in a position to parameterize realistic soil C turnover models that include both, decomposition and plant-derived fluxes. Such models will allow (1) a direct comparison of model output to field data for all flux components, (2) include the potential to link plant C allocation to the rhizosphere with increased decomposition activity through soil C priming, and (3) to explore the potential of plant biomass C sequestration limitations under increased C assimilation. These mechanisms are fundamental in describing the stability of future SOC stocks due to elevated temperatures and carbon dioxide, altering SOC decomposition directly and indirectly through changes in plant productivity. The work presented here focuses on three critical areas: (1) We present annual fluxes at hourly intervals for the three soil CO2 efflux components (R, F and H) from a 75 year-old deciduous oak forest in SE England. We investigate the individual environmental responses of the three flux components, and compare them to soil decomposition modelled by CENTURY and its latest version (i.e. DAYCENT), which separately models root-derived respiration in addition to the soil decomposition output. (2) Using estimates of gross primary productivity (GPP) based on eddy covariance measurements from the same site, we explore linkages between GPP and soil respiration component fluxes using basic regression and wavelet analyses. We show a distinctly different time lag signal between GPP and root vs. mycorrhizal fungal respiration. We then discuss how models might need to be improved to accurately predict total soil CO2 efflux, including root-derived respiration. (3) We finally discuss the ‘overflow tap' theory, that during periods of high assimilation (e.g. optimum environmental conditions or elevated CO2) surplus non-structural C is allocated belowground to the mycorrhizal network; this additional C could then be used and released by the associated fungal partners, causing soil priming through stimulating decomposition.

  15. The History of the Soil Science Society of Nigeria

    NASA Astrophysics Data System (ADS)

    Okechukwu Chude, Victor

    2013-04-01

    The Soil Science Society of Nigeria (SSSN) founded in 1968, is a registered member of the African Soil Science Association, International Union of Soil Science and the Global Soil Partnership. The Society aims at promoting and fostering better understanding of basic and applied Soil Science in Nigeria. The society also strives to enhance the dissemination of knowledge in all aspects of Soil science and shares ideas with National and International Societies through conferences, symposium, lectures, seminars and journal publications. The numerical strength of the society is 600 members (student, ordinary ,life and corporate). The soil science society of Nigeria has provided invaluable services in the formulation of agricultural land and fertilizer use strategies and policies of the country. The existing reconnaissance soil map of Nigeria typifies one of the major professional services rendered to the country by the society and its members. Despite the numerous contributions the society has made to the advancement of soil science in the country, the larger society is not aware of the its existence. This is largely because of our limited soil extension activities to land users due to lack of funds. If the society can attract donor funds, this will go a long way in enhancing the capacity and capability of the society.

  16. How desertification research is addressed in Spain? Land versus Soil approaches

    NASA Astrophysics Data System (ADS)

    Barbero Sierra, Celia; Marques, María Jose; Ruiz, Manuel; Escadafal, Richard; Exbrayat, Williams; Akthar-Schuster, Mariam; El Haddadi, Anass

    2013-04-01

    This study intend to understand how desertification research is organised in a south Mediterranean country, as is Spain. It is part of a larger work addressing soil and land research and its relationships with stakeholders. This wider work aims to explain the weakness of the United Nation Convention to Combat Desertification (UNCCD), which devoid of a scientific advisory panel. Within this framework, we assume that a fitting coordination between scientific knowledge and a better flow of information between researchers and policy makers is needed in order to slow down and reverse the impacts of land degradation on drylands. With this purpose we conducted an in-depth study at national level in Spain. The initial work focused on a small sample of published references in scientific journals indexed in the Web of Science. It allowed us to identify the most common thematic approaches and working issues, as well as the corresponding institutions and research teams and the relationships between them. The preliminary results of this study pointed out that two prevalent approaches at this national level could be identified. The first one is related to applied science being sensitive to socio-economic issues, and the second one is related to basic science studying the soil in depth, but it is often disconnected from socio-economic factors. We also noticed that the Spanish research teams acknowledge the other Spanish teams in this subject, as frequent co-citations are found in their papers, nevertheless, they do not collaborate. We also realised that the Web of Science database does not collect the wide spectrum of sociology, economics and the human implications of land degradation which use to be included in books or reports related to desertification. A new wider database was built compiling references of Web of Science related to "desertification", "land", "soil", "development" and "Spain" adding references from other socioeconomic databases. In a second stage we used bibliometric techniques through the Tetralogie software and network analysis using UCINET software, to proceed to: 1. Identify the most referred themes based on the keywords provided by the authors and by the Web of Science platform itself. 2. Identify the relationships between the different topics being addressed and their approach to the desertification from a basic scientific vision (soil degradation) and/or from an applied science vision (land degradation). 3. Identify and evaluate the strenght of possible networks and links established between institutions and/or research teams.

  17. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    PubMed

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  18. Depletion and Redistribution of Soil Nutrients in Response to Wind Erosion in Desert Grasslands of the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Li, J.; Okin, G.; Hartman, L.; Epstein, H.

    2005-12-01

    Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.

  19. Assessments of Potential Rock Coatings at Rocknest, Gale Crater with ChemCam

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Anderson, R.; Berger, G.; Bridges, J.; Bridges, N.; Clark, B.; Clegg, S.; Ehlman, B.; Goetz, W.; King, P.; hide

    2013-01-01

    Many locations on Mars have low color contrast between the rocks and soils due to the rocks being "dusty"--basically having a surface that is spectrally similar to Martian soil. In general this has been interpreted as soil and/or dust clinging to the rock though either mechanical or electrostic processes. However, given the apparent mobility of thin films of water forming cemented soils on Mars and at Gale Crater, the possibility exists that some of these "dusty" surfaces may actually be coatings formed by thin films of water locally mobilizing soil/air fall material at the rock interface. This type of coating was observed by Spirit during an investigation of the rock Mazatzal which showed enhanced salts above "normal soil" and an enhancement of nano phase iron oxide that was 10 micronmeters thick. We decided to use ChemCam to investigate the possibility of similar rock coatings forming at the Rocknest site at Gale Crater.

  20. Novel diffusive gradients in thin films technique to assess labile sulfate in soil.

    PubMed

    Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas

    2016-09-01

    A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.

  1. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    NASA Astrophysics Data System (ADS)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass. The new concept seems promising as a platform towards more accurate proxy functions for dissolved contaminant transport in intact soil.

  2. Soil, plant, and terrain effects on natural perchlorate distribution in a desert landscape

    USGS Publications Warehouse

    Andraski, Brian J.; Jackson, W.A.; Welborn, Toby L.; Böhlke, John Karl; Sevanthi, Ritesh; Stonestrom, David A.

    2014-01-01

    Perchlorate (ClO4−) is a contaminant that occurs naturally throughout the world, but little is known about its distribution and interactions in terrestrial ecosystems. The objectives of this Amargosa Desert, Nevada study were to determine (i) the local-scale distribution of shallow-soil (0–30 cm) ClO4− with respect to shrub proximity (far and near) in three geomorphic settings (shoulder slope, footslope, and valley floor); (ii) the importance of soil, plant, and terrain variables on the hillslope-distribution of shallow-soil and creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville] ClO4−; and (iii) atmospheric (wet plus dry, including dust) deposition of ClO4− in relation to soil and plant reservoirs and cycling. Soil ClO4− ranged from 0.3 to 5.0 μg kg−1. Within settings, valley floor ClO4− was 17× less near shrubs due in part to enhanced leaching, whereas shoulder and footslope values were ∼2× greater near shrubs. Hillslope regression models (soil, R2 = 0.42; leaf, R2 = 0.74) identified topographic and soil effects on ClO4− deposition, transport, and cycling. Selective plant uptake, bioaccumulation, and soil enrichment were evidenced by leaf ClO4− concentrations and Cl−/ClO4− molar ratios that were ∼8000× greater and 40× less, respectively, than soil values. Atmospheric deposition ClO4− flux was 343 mg ha−1 yr−1, ∼10× that for published southwestern wet-deposition fluxes. Creosote bush canopy ClO4− (1310 mg ha−1) was identified as a previously unrecognized but important and active reservoir. Nitrate δ18O analyses of atmospheric deposition and soil supported the leaf-cycled–ClO4− input hypothesis. This study provides basic data on ClO4− distribution and cycling that are pertinent to the assessment of environmental impacts in desert ecosystems and broadly transferable to anthropogenically contaminated systems.

  3. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.

    PubMed

    Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F

    2017-12-01

    After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed overcoming this problem by considering the environmental persistence of these munition constituents (MC) as multivariate mathematical functions over a variety of taxonomically distinct soil types, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments where the disappearance kinetics of TNT and RDX were measured over a >300 h period in taxonomically distinct soils. Classical fertility-based soil measurements were log-transformed, statistically decomposed, and correlated to TNT and RDX disappearance rates (k -TNT and k -RDX ) using multivariate dimension-reduction and correlation techniques. From these efforts, we generated multivariate linear functions for k parameters across different soil types based on a statistically reduced set of their chemical and physical properties: Calculations showed that the soil properties exhibited strong covariance, with a prominent latent structure emerging as the basis for relative comparisons of the samples in reduced space. Loadings describing TNT degradation were largely driven by properties associated with alkaline/calcareous soil characteristics, while the degradation of RDX was attributed to the soil organic matter content - reflective of an important soil fertility characteristic. In spite of the differing responses to the munitions, batch data suggested that the overall nutrient dynamics were consistent for each soil type, as well as readily distinguishable from the other soil types used in this study. Thus, we hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished "soil types" may provide the means for potentially predicting complex phenomena in soils. Published by Elsevier Ltd.

  4. Influence of selected physicochemical parameters on microbiological activity of mucks.

    NASA Astrophysics Data System (ADS)

    Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.

    2009-04-01

    One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.

  5. Can earthworms survive fire retardants?

    USGS Publications Warehouse

    Beyer, W.N.; Olson, A.

    1996-01-01

    Most common fire retardants are foams or are similar to common agricultural fertilizers, such as ammonium sulfate and ammonium phosphate. Although fire retardants are widely applied to soils, we lack basic information about their toxicities to soil organisms. We measured the toxicity of five fire retardants (Firetrol LCG-R, Firetrol GTS-R, Silv-Ex Foam Concentrate, Phos-chek D-75, and Phos-chek WD-881) to earthworms using the pesticide toxicity test developed for earthworms by the European Economic Community. None was lethal at 1,000 ppm in the soil, which was suggested as a relatively high exposure under normal applications. We concluded that the fire retardants tested are relatively nontoxic to soil organisms compared with other environmental chemicals and that they probably do not reduce earthworm populations when applied under usual firefighting conditions.

  6. Carbon mineralization and soil fertility at high altitude grasslands in the Bolivian Andean

    NASA Astrophysics Data System (ADS)

    Zornoza, R.; Muñoz, M. A.; Faz, A.

    2012-04-01

    The high grasslands of Apolobamba provide a natural habitat for a high number of wild and domestic camelids such as vicuna (Vicugna vicugna) and alpaca (Lama pacos) in Bolivia. Because of the importance of the camelid raising for the Apolobambás inhabitant economy, it is fundamental to determine the natural resources condition and their availability for the camelid support. The soil organic matter plays a crucial role in the maintenance of the soil fertility at high grasslands. On the other hand, soil respiration is the primary pathway for CO2 fixed by plants returning to the atmosphere and its study is essential to evaluate the soil organic matter mineralization and the global C cycle. Based on this, the objectives of this research were to: (i) evaluate the soil fertility and (ii) determine soil organic matter mineralization on the basis of CO2 releases in Apolobamba. Regarding the lastly vicuna censuses carried out in the studied area, eight representative zones with dissimilar vicuna densities were selected. Other characteristics were also considered to select the study zones: (1) alpaca densities, (2) vegetation communities (3) plant cover and (4) landscape and geo-morphological description. Soil samples from different samplings were collected. Soil respiration was determined at two temperatures: 15 °C (based on the highest atmosphere temperature that was registered in the area) and 25 °C, in order to monitor the increase in soil respiration (Q10). The physico-chemical soil results pointed out the good soil fertility. However, erosive processes could be taken place likely caused by the alpaca grazing. High total organic carbon contents were observed corresponding to the highest soil respiration at 15 °C. This observation was supported by the relationship found between the total organic carbon and the soil respiration. A noticeable increase of the soil respiration when the temperature increased 10 °C was reported (from 1083 ± 47 g C m-2 yr-1 at 15 °C to 2786 ± 343 g C m-2 yr-1 at 25 °C ) which indicated the organic matter mineralization increase and likely the high C reservoirs decrease. Additionally, high Q10 values were observed (13.8 ± 1.5 in subsurface). This indicates that basically climate conditions are actually controlling organic matter mineralization and it is more evident in zones with high total organic carbon contents. Although no vicuna affection on the soil fertility was observed, the camelid grazing generally causes a reduction in the soil respiration rate in Apolobamba. Therefore, it should be undertaken some protection actions to prevent the biodiversity affection bringing camelid overexploitation under control in Bolivian Andean. Keywords: biodiversity, high grasslands, camelid grazing, carbon mineralization, soil respiration

  7. Parental material and cultivation determine soil bacterial community structure and fertility.

    PubMed

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate nitrogen during soil development. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Annual compilation and analysis of hydrologic data for Escondido Creek, San Antonio River basin, Texas

    USGS Publications Warehouse

    Reddy, D.R.

    1971-01-01

    IntroductionHistory of Small Watershed Projects in TexasThe U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of the "Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built.This watershed-development program will have varying but important effects on the surface and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 12 study areas (fig. 1). These investigations are being made in cooperation with the Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 12 study areas were chosen to sample watershed having different rainfall, topography, geology, and soils. In five of the study areas, (North, Little Elm, Mukewater, little Pond-North Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses of the conditions "before and after" development. A summary of the development of the floodwater-retarding structures in each study areas of September 30, 1970, is shown in table 1.Objectives of the Texas Small Watersheds ProjectThe purpose of these investigations is to collect sufficient data to meeting the following objectives:To determine the net effect of floodwater-retarding structures on the regimen of streamflow at downstream points.To determine the effectiveness of the structures as ground-water recharge facilities.To determine the effect of the structures on the sediment yield at downstream points.To develop relationships between maximum rates and/or volumes of runoff with rainfall in small natural watersheds.To develop a stream-system model for basins with floodwater-retarding structures.To determine the minimum instrumentation necessary for estimating the flood hydrographs below a system of structures, as needed for downstream water-management operation.Purpose and Scope of this Basic-Data ReportThis report, which is the tenth in a series of basic-data reports published annually for the Escondido Creek study area, contains the rainfall, runoff, and storage data collected during the 1970 water year for the 72.4-square-mile area above the stream-gaging station Escondido Creek at Kenedy, Texas. The location of floodwater-retarding structures and hydrologic-instrument installations in the Escondido Creek study area are shown on figure 2.This investigation is scheduled to continue through a period of both above- and below-normal precipitation to define the various factors used in the analyses of rainfall-runoff relationship.To facilitate the publication and distribution of this report at the earliest feasible time, certain material contained herein does not conform to the formal publication standards of the U.S. Geological Survey.

  9. Radionuclide Basics: Americium-241

    EPA Pesticide Factsheets

    Americium (chemical symbol Am) is a man-made radioactive metal that is solid under normal conditions. Exposure to a significant amount of Am-241 is generally unlikely. Small amounts are found in the soil, plants and water from nuclear weapons testing.

  10. How Heat Can Enhance In-Situ Soil and Aquifer Remediation

    EPA Pesticide Factsheets

    The purpose of this Issue Paper and the three companion Issue Papers (Davis, 1997a, b, c) is to provide to those involved in assessing remediation technologies some basic information on the thermal remediation techniques.

  11. Soil health in the Mediterranean region: Development and consolidation of a multifactor index to characterize the health of agricultural lands

    NASA Astrophysics Data System (ADS)

    Gil, Eshel; Guy, Levy; Oshri, Rinot; Michael, Borisover; Uri, Yermiyahu; Leah, Tsror; Hanan, Eizenberg; Tal, Svoray; Alex, Furman; Yael, Mishael; Yosef, Steinberger

    2017-04-01

    The link among between soil health, soil conservation, and food security, resilience, and function under a wide range of agricultural uses and different environmental systems, is at the heart of many ecofriendly research studies worldwide. We consider the health of soil as a function of its ability to provide ecosystem services, including agricultural production (provisional services); regulating natural cycles (regulation services) and as a habitat for plants (support services). Soil health is affected by a wide range of soil properties (biotic and abiotic) that maintain complex interactions among themselves. The decline in soil health includes degradation in its physical properties (e.g., deterioration of soil structure, compaction and sealing, water-repellency, soil erosion by water and wind), chemical properties (e.g., salinization, depletion of nutrients and organic matter content, accumulation of pollutants and reduction of the soils' ion exchange capacity) and biological properties (e.g., vulnerable populations of microflora, microfauna, and mesofauna, leading to a breach of ecological balance and biodiversity and, as a result, destruction of beneficial populations and pathogen outbreaks). Numerous studies show that agricultural practices have a major impact on soil functioning. Substituting longstanding tillage with no-till cropping and the amalgamation of cover crops in crop rotations were found to improve soil properties. Such changes contributed to the enhancement of the agronomical performance of the soil. On the other hand, these practices may result in lessened effectiveness of controlling perennial weeds. The evaluation of soil-health status in the Mediterranean region is very limited. Moreover, existing approaches for evaluation that have been used (such as the Cornell and Hany tests) do not give sufficient weight to important agronomic processes, such as soil erosion, salinization, sodification, spread of weeds in the fields (in particular, weeds that are difficult to control), soil-borne diseases, and pesticide fixation and release. We, a group of more than ten Israeli scientists, have recently started a multidisciplinary study aimed at developing and consolidating a multiparameter soil-health index to characterize the health of agricultural soils in Mediterranean regions. Such an index will enable us to quantitatively evaluate the contribution of different cultivation managements and reclamation activities. In order to achieve our goal, a three steps approach was adopted: 1) acquiring a multivariate component database (about 42 variables) that will be quantified in the laboratory and in the fields in two soil types of the most important agricultural region of Israel, at three different soil usage: orchard, field crops and "native" as a reference. The acquired biological, physical, and chemical variables comprise basic quantitative values in the soil health of agricultural land; (2) developing a multivariate soil-health index based on a multivariate correlation, in addition to conducting meetings with farmers and panel discussions with other scientists in the field. The whole study angled to evaluate the relative contribution of each of the biotic and abiotic parameters in order to develop a model related to soil health; and (3) to validate the efficiency of the developed index for characterizing and assessing soil-health state at the various agricultural regions in Israel where conservation and reclamation activities took place. We are open to extend our study to other areas with a Mediterranean climate and look forward to establishing cooperative activities with other research groups.

  12. Soil settlement analysis in soft soil by using preloading system and prefabricated vertical draining runway of Kualanamu Airport

    NASA Astrophysics Data System (ADS)

    Roesyanto; Iskandar, R.; Silalahi, S. A.; Fadliansyah

    2018-02-01

    The method of soil improvement, using the combination of prefabricated vertical drain (PVD) and preloading, was used to accelerate the process of consolidation and the consolidation settlement in the runway of Kualanamu International Airport, which was constructed on the soft soil sediment like silty clay. In this research, the investigated area was the runway of Kualanamu International Airport zone I which had 11 meter-thickness of soft soil. Geotechnic instruments surveyed was settlement plate. Monitoring was done toward the behavior of landfill such as basic soil settlement. The result were compared with the analysis of finite element method of full scale in Mohr-Coulomb model by verifying the vertical drain of asymmetric unit cell and equivalent plane strain unit cell condition. The results of the research showed that there were an interesting behavior between the data in field observation and finite element of Mohr-Coulomb model. It was also found that the result of soil settlement of finite element method of Mohr-Coulomb model was closed to the result of settlement plate monitoring.

  13. Enhancing the engineering properties of expansive soil using bagasse ash

    NASA Astrophysics Data System (ADS)

    Silmi Surjandari, Niken; Djarwanti, Noegroho; Umri Ukoi, Nafisah

    2017-11-01

    This paper deals with stabilization of expansive soil on a laboratory experimental basis. The aim of the research was to evaluate the enhancement of the engineering properties of expansive soil using bagasse ash. The soil is treated with bagasse ash by weight (0, 5, 10, 15, and 20%) based on dry mass. The performance of bagasse ash stabilized soil was evaluated using physical and strength performance tests, namely the plasticity index, standard Proctor compaction, and percentage swelling. An X-ray diffraction (XRD) test was conducted to evaluate the clay mineral, whereas an X-ray fluorescence (XRF) was to the chemical composition of bagasse ash. From the results, it was observed that the basic tests carried out proved some soil properties after the addition of bagasse ash. Furthermore, the plasticity index decreased from 53.18 to 47.70%. The maximum dry density of the specimen increased from 1.13 to 1.24 gr/cm3. The percentage swelling decreased from 5.48 to 3.29%. The outcomes of these tests demonstrate that stabilization of expansive soils using bagasse ash can improve the strength.

  14. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    NASA Astrophysics Data System (ADS)

    Massman, W. J.

    2012-10-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the coupled heat and moisture transport in soil during these extreme heating events. Furthermore, improved understanding and modeling of heat and mass transport during extreme conditions should provide insights into the associated transport mechanisms under more normal conditions. The present study describes a numerical model developed to simulate soil heat and moisture transport during fires where the surface heating often ranges between 10,000 and 100,000 W m-2 for several minutes to several hours. Basically, the model extends methods commonly used to model coupled heat flow and moisture evaporation at ambient conditions into regions of extreme dryness and heat. But it also incorporates some infrequently used formulations for temperature dependencies of the soil specific heat, thermal conductivity, and the water retention curve, as well as advective effects due to the large changes in volume that occur when liquid water is rapidly volatilized. Model performance is tested against laboratory measurements of soil temperature and moisture changes at several depths during controlled heating events. Qualitatively, the model agrees with the laboratory observations, namely, it simulates an increase in soil moisture ahead of the drying front (due to the condensation of evaporated soil water at the front) and a hiatus in the soil temperature rise during the strongly evaporative stage of the soil drying. Nevertheless, it is shown that the model is incapable of producing a physically realistic solution because it does not (and, in fact, cannot) represent the relationship between soil water potential and soil moisture at extremely low soil moisture contents (i.e., residual or bound water: θ < 0.01 m3 m-3, for example). Diagnosing the model's performance yields important insights into how to make progress on modeling soil evaporation and heating under conditions of high temperatures and very low soil moisture content.

  15. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil

    DTIC Science & Technology

    2012-09-01

    basic form of phosphoric acid or sodium phosphate NO2- Nitrite OH- Hydroxide ion ERDC/EL TR-12-14 1 1 Introduction Alkaline hydrolysis has...into amber sample vials and refrigerated until analyzed. TNT analyses were conducted by high performance liquid chromatography (HPLC) with a C-18...The explosives concentrations of the different soils were quantified using a DIONEX HPLC system equipped with a C-18 reverse phase column and a

  16. Soils of Sub-Antarctic tundras: diversity and basic chemical characteristics

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny; Vlasov, Dmitry; Mukhametova, Nadezhda

    2014-05-01

    Antarctic peninsula is known as specific part of Antarctica, which is characterizes by humid and relatively warm climate of so-called sub Antarctic (maritime) zone. Annual precipitation and long above zero period provides the possibility of sustainable tundra's ecosystem formation. Therefore, the soil diversity of these tundra landscapes is maximal in the whole Antarctic. Moreover, the thickness of parent material debris's is also highest and achieves a 1 or 2 meters as highest. The presence of higher vascular plants Deshampsia antarctica which is considered as one of the main edificators provides the development of humus accumulation in upper solum. Penguins activity provides an intensive soil fertilization and development of plant communities with increased density. All these factors leads to formation of specific and quite diverse soil cover in sub Antarctic tundra's. These ecosystems are presented by following permafrost affected soils: Leptosols, Lithoosols, Crysols, Gleysols, Peats and Ornhitosols. Also the post Ornhitosols are widely spreaded in subantarcic ecosystems, they forms on the penguin rockeries during the plant succession development, leaching of nutrients and organic matter mineralization. "Amphibious" soils are specific for seasonal lakes, which evaporates in the end if Australian summer. These soils have specific features of bio sediments and soils as well. Soil chemical characteristic as well as organic matter features discussed in comparison with Antacrtic continental soil in presentation.

  17. How to study deep roots—and why it matters

    PubMed Central

    Maeght, Jean-Luc; Rewald, Boris; Pierret, Alain

    2013-01-01

    The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques. PMID:23964281

  18. Slope Root biomechanical properties and their contribution to soil reinforcement in the Landslide-prone region, the Bailong River Basin

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hong, M.; Huang, Z.; Zhao, Y.; Zhang, Y.

    2016-12-01

    The presence of vegetation increases soil burden stability along slopes and therefore reduces soil erosion. The contribution of the vegetation is due to the root's mechanical (reinforcing soil shear resistance) controls on superficial landslide. The study focused on the biotechnical characteristics of the root system of commonly grown shrub species in the Bailong River Basin, one of the most serious geo-hazards regions in China. The aim of this paper is to increase the understanding on slope root biomechanical properties of different shrubs species and their contribution to soil reinforcement. Field investigations were carried out to estimate the root density distribution with depth (root area ratio). Laboratory tests were conducted to measure the root tensile breaking force and the root tensile strength. Root tensile strength measurements were carried out on single root specimens and root area ratio was estimated analyzing the whole root system. The direct shear tests were used to quantify the soil mechanical reinforcement. The improvement of soil mechanical properties obtained by the presence of shrubs was estimated using two different models(the Fibrt Bundle Model and the Finite Element Model). The results indicates that the soil-root system shear strength of Robinia pseudoacacia Linn (L.), Populus simonii (L.), Olea europaea (L.), and Zanthoxylum bungeanum (L.) increment ranged from 62.4 to 26.3 kPa and its effect on the slope stability was significantly different. Robinia pseudoacacia Linn (L.) roots presented the highest tensile strength and soil reinforcement values. Similarly at each considered depth Robinia pseudoacacia Linn (L.) showed that the highest soil reinforcement effect (1461N) while Olea europaea (L.) presented the lowest soil reinforcement effect (1329N). The finite element model shows that the FoS of Zanthoxylum bungeanum (L.) is the largest of these plants when considering root additional cohesion. This research can provide a basic theory of afforestation mode in spatial distribution and hence control shallow landslide.

  19. An advanced process-based distributed model for the investigation of rainfall-induced landslides: The effect of process representation and boundary conditions

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Grigorios G.; Fatichi, Simone; Burlando, Paolo

    2015-09-01

    Extreme rainfall events are the major driver of shallow landslide occurrences in mountainous and steep terrain regions around the world. Subsurface hydrology has a dominant role on the initiation of rainfall-induced shallow landslides, since changes in the soil water content affect significantly the soil shear strength. Rainfall infiltration produces an increase of soil water potential, which is followed by a rapid drop in apparent cohesion. Especially on steep slopes of shallow soils, this loss of shear strength can lead to failure even in unsaturated conditions before positive water pressures are developed. We present HYDROlisthisis, a process-based model, fully distributed in space with fine time resolution, in order to investigate the interactions between surface and subsurface hydrology and shallow landslides initiation. Fundamental elements of the approach are the dependence of shear strength on the three-dimensional (3-D) field of soil water potential, as well as the temporal evolution of soil water potential during the wetting and drying phases. Specifically, 3-D variably saturated flow conditions, including soil hydraulic hysteresis and preferential flow phenomena, are simulated for the subsurface flow, coupled with a surface runoff routine based on the kinematic wave approximation. The geotechnical component of the model is based on a multidimensional limit equilibrium analysis, which takes into account the basic principles of unsaturated soil mechanics. A series of numerical simulations were carried out with various boundary conditions and using different hydrological and geotechnical components. Boundary conditions in terms of distributed soil depth were generated using both empirical and process-based models. The effect of including preferential flow and soil hydraulic hysteresis was tested together with the replacement of the infinite slope assumption with the multidimensional limit equilibrium analysis. The results show that boundary conditions play a crucial role in the model performance and that the introduced hydrological (preferential flow and soil hydraulic hysteresis) and geotechnical components (multidimensional limit equilibrium analysis) significantly improve predictive capabilities in the presented case study.

  20. Preliminary results on the influence of mineralogy on the turnover rates of SOM from different Hungarian soils

    NASA Astrophysics Data System (ADS)

    Zacháry, Dóra; Szalai, Zoltán; Jakab, Gergely; Németh, Tibor; Sipos, Péter; Filep, Tibor

    2016-04-01

    Fine textured soils generally considered containing more microbial biomass, and having a lower rate of biomass turnover and organic matter decomposition than coarse textured soils. In spite of this, several recent studies have shown contradicting trends. For example, the relative importance of different clay minerals for stabilizing SOM remains an open question. The aim of this study is to evaluate soil mineralological effect on the turnover of SOM by identifying and quantifying soil phyllosilicates. Our samples are derived from C3 forests and C3 croplands from different sites of Hungary. C4 maize residues are added to the soils in order to get natural 13C enrichment as tracer for the young carbon. Bulk samples of the soils from 0 to 20 cm depth were collected. The samples were dried at room temperature and preincubated in the dark for 4 months at 20 °C. The basic soil properties (pH, cation exchange capacity) were analysed after 2 mm sieving and homogenization. The amount of total C and N in the soils and maize residues were analysed using NDIR-chemiluminescent analyzer (Tekmar Dohrman Apollo 9000N). Particle size distribution was determined by laser diffraction (Fritsch Analysette MicroTec 22 plus) and particle imaging method (Malvern Morphologi G3-ID). The mineralological composition of the samples was determined by X-ray diffraction (Philips PW 1730 X-ray diffractometer). Moist soil equivalent to 400 g dry soil mixed with 2 g maize leaves is kept in air tight glass chambers for 183 days at 20°C. The leaves had previously been dried at 60 °C, were cut into pieces and sieved through a 2 mm mesh. The evolved CO2 is trapped by 10 mL 2 M NaOH, which is exchanged on day 1, 3, 5, 7, 10, 14, 21, 28 and subsequently every 31 days. The fractional abundance of 13C of the soils, the plant material and the evolved CO2 is measured with isotope ratio mass spectrometer (Thermo Scientific Delta V IRMS). Our work show the preliminary results on the link between phyllosilicate mineralogy and soil C dynamic by reporting a quantified phyllosilicate data in connection with SOM turnover and stabilization. Acknowledgement This research was supported by the Hungarian Scientific National Fund (OTKA K100180).

  1. Basic problems and new potentials in monitoring sediment transport using Japanese pipe type geophone

    NASA Astrophysics Data System (ADS)

    Sakajo, Saiichi

    2016-04-01

    The authors have conducted a lot of series of monitoring of sediment transport by pipe type geophone in a model hydrological channel with various gradients and water discharge, using the various size of particles from 2 to 21 mm in the diameter. In the case of casting soils particle by particle into the water channel, 1,000 test cases were conducted. In the case of casting all soils at a breath into the water channel, 100 test cases were conducted. The all test results were totally analyzed by the conventional method, with visible judgement by video pictures. Then several important basic problems were found in estimating the volume and particle distributions by the conventional method, which was not found in the past similar studies. It was because the past studies did not consider the types of collisions between sediment particle and pipe. Based on these experiments, the authors have firstly implemented this idea into the old formula to estimate the amount of sediment transport. In the formula, two factors of 1) the rate of sensing in a single collision and 2) the rate of collided particles to a cast all soil particles were concretely considered. The parameters of these factors could be determined from the experimental results and it was found that the obtained formula could estimate grain size distribution. In this paper, they explain the prototype formula to estimate a set of volume and distribution of sediment transport. Another finding in this study is to propose a single collision as a river index to recognize its characteristics of sediment transport. This result could characterize the risk ranking of sediment transport in the rivers and mudflow in the mountainous rivers. Furthermore, in this paper the authors explain how the preciseness of the pipe geophone to sense the smaller sediment particles shall be improved, which has never been able to be sensed.

  2. Soil biota effects on clonal growth and flowering in the forest herb Stachys sylvatica

    NASA Astrophysics Data System (ADS)

    de la Peña, Eduardo; Bonte, Dries

    2011-03-01

    The composition of a soil community can vary drastically at extremely short distances. Therefore, plants from any given population can be expected to experience strong differences in belowground biotic interactions. Although it is well recognized that the soil biota plays a significant role in the structure and dynamics of plant communities, plastic responses in growth strategies as a function of soil biotic interactions have received little attention. In this study, we question whether the biotic soil context from two forest associated contrasting environments (the forest understory and the hedgerows) determines the balance between clonal growth and flowering of the perennial Stachys sylvatica. Using artificial soils, we compared the growth responses of this species following inoculation with the mycorrhizal and microbial community extracted either from rhizospheric soil of the forest understory or from the hedgerows. The microbial context had a strong effect on plant functional traits, determining the production of runners and inflorescences. Plants inoculated with the hedgerow community had a greater biomass, larger number of runners, and lower resource investment in flower production than was seen in plants inoculated with the understory microbial community. The obtained results illustrate that belowground biotic interactions are essential to understand basic plastic growth responses determinant for plant establishment and survival. The interactions with microbial communities from two contrasting habitats resulted in two different, and presumably adaptive, growth strategies that were optimal for the conditions prevalent in the environments compared; and they are as such an essential factor to understand plant-plant, plant-animal interactions and the dispersal capacities of clonal plants.

  3. Sorption behaviour of perfluoroalkyl substances in soils.

    PubMed

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ca and Sr in the landscapes of the East Transbaikalia

    NASA Astrophysics Data System (ADS)

    Ermakov, Vadim; Bech, Jaume; Gulyaeva, Ul'yana; Safonov, Vladimir; Kuz'mina, Natal'ya; Roca, Núria

    2017-04-01

    It is known that Sr is involved in bone formation, but high levels of this trace element in the environment is associated with the risk of manifestation of chondrodystrophia (Urov Kashin-Beck disease), strontium rickets and bone destruction. The aim of this work was comparative assessment of Ca-Sr relationships in the soil-plant complex of the Urov biogeochemical provinces of Eastern Transbaikalia and "control" areas. The basic research landfills located on the territory of the area between the rivers Argun and Shilka. The study territory belongs to the forest-steppe areas of the High-Amur Midlands. Ca and Sr in soils were determined by X-ray fluorescence spectroscopy. The content of this chemical elements in plants (hay harvest) were measured by means of AAS. It was found that the content of Ca in soils, waters and plants of endemic Urov disease territories is approaching the concentrations of this macroelement in the objects of "background" areas. Sr concentrations are increased in the soil-plant complex of the Urov biogeochemical province and characterized by "spotting. It was found that the most frequently occurring ratio of Ca and Sr in the soils of some areas without the manifestation of osteoarticular pathologies in animals and humans varies from 11 to 236 units (53±24). In soils of Eastern Transbaikalia in the areas of distribution Urov Kashin-Beck disease, this ratio varies from 2 to 98 (36±11). The high content of strontium in the soil of the Urov biogeochemical province correlated with the concentration of this trace element in rocks.

  5. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    PubMed Central

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-01-01

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198

  6. Evaluation of the Use of Supercritical Fluids for the Extraction of Explosives and Their Degradation Products from Soil

    DTIC Science & Technology

    1994-04-01

    and nontoxic is a major pounds. advantage . The accepted analytical method for explosives, The basic equipment required to conduct SFE is SW846 Method...theoretical advantage of SFE tion (SlE) with 18-hour sonic extraction with ACN. compared to conventional solvent extraction. II T r Figure 1. Phase...diagram of C0 2.Temperature 31"C Shut-off Hewler Figure 2. Design for a basic SFE apparaztus. (After Hawthorne 1993.) The advantages of extraction

  7. The relationship between soil management and the Sustainable Development Goals: the case of global banana production

    NASA Astrophysics Data System (ADS)

    Stoorvogel, Jetse; Segura, Rafael; Erima, Rockefeller

    2017-04-01

    The Sustainable Development Goals (SDGs) are a good example of the increasing demand on our soil resources. Our soil resources play a central role in multiple SDGs while talking about poverty (SDG 1), food security (SDG 2), clean energy through biofuels (SDG 7), climate mitigation (SDG 13), and land degradation (SDG 15). This means that basic decisions on soil management are now placed in the context of multiple soil functions. A good example is the global production of bananas and plantains with a total harvested area of almost 10 million ha. While the export bananas played a central role in economic development, an even larger share of the production plays a role in food security. Nevertheless, the production is also criticized due the intensive use of agricultural chemicals (fertilizers and pesticides) and the risk of soil degradation in the monoculture plantations. Decisions on soil management are context specific and depending on the environment. In this study we will analyse and discuss three production environments from the Philippines, Uganda, and Costa Rica. The role of the SDGs in the regions is very different. Where SDG 1 and SDG15 play an important role in the Costa Rican situation, SDG 2 is more important in Uganda and the Philippines. Decisions on soil management strongly depend on the agro-ecology with the available technological packages. The technological packages include low external input farming, organic farming, precision agriculture, and so-called best management practices. While producers take decisions at the field and farm level, we are now increasingly forced for joined action at the regional level with the rapid spread of highly virulent crop diseases. The SDGs have major consequences for soil management but this study shows that, at the same time, they cannot be translated one-to-one to the farm level at which the management decisions are taken. Therefore, off-farm effects and externalities are often not considered in farm management except if they are explicitly being targeted by policies or other interventions. Specific attention is required to analyse the aggregated effect of soil management decisions at the regional level.

  8. An experimental study on stabilization of Pekan clay using polyethylene and polypropylene

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli; Mender, Fatin Nabilah

    2017-10-01

    Many countries are expressing concern over the growing issues of polyethylene terephthalate (PET) bottles and polypropylene (PP) products made by the household sector. The rapid increase in the generation of plastic waste all around the world is due to the economic development and population growth. PP is the world's second-most widely produced synthetic plastic, after polyethylene. Statistics show that nearly 50% of the municipal solid waste in Malaysia comes from the institutional, industrial, residential, and construction waste. This paper presents the results of an investigation on the utilisation of fibres as products of PET bottles and PP products in order to improve the engineering properties of clay soil in Pekan. The soil samples were taken from Kampung Tanjung Medang, Pekan, Pahang. The basic properties of the clay soil were determined as follows; optimum moisture content: 32.5%, maximum dry density: 13.43 kN/m3, specific gravity: 2.51, liquid limit: 74.67%, plastic limit: 45.98%, and plasticity index: 28.69%. This investigation concentrates on the shear strength of the reinforced clay soils with PET and PP in random orientation. The reinforced soil samples were subjected to unconfined compression test (UCT) to differentiate their shear strength with that of the unreinforced soil. The tests found that the waste fibres (PET and PP) improved the strength properties of the Pekan clayey soils. The unconfined compressive strength (UCS) value increased with the increasing percentage of PET fibre and reached the optimum content at 10% reinforcement, where it showed the highest improvement of 365 kN/m2 from 325 kN/m2 and depleted when the optimum content reached 20% reinforcement. For PP fibre, the reinforced soil showed the highest UCS at 20% reinforcement with the improvement of 367 kN/m2. The study concluded that the PET and PP fibres can be utilised successfully as reinforcement materials for the stabilisation of clayey soils. The use of these waste compounds as alternative materials for clay soil stabilisation is reasonable and cost effective since they are constantly available.

  9. Evaluating the Effect of Ground Temperature on Phreatic Evaporation in Bare Soil Area

    NASA Astrophysics Data System (ADS)

    Manting, S.; Wang, B.; Liu, P.

    2017-12-01

    Phreatic water evaporation is an important link in water conversion, and it is also the main discharge of shallow groundwater. The influencing factors of phreatic evaporation intensity include meteorological elements, soil lithology, ground temperature, water table depth and plant growth status, etc. However, the effect of ground temperature on phreatic evaporation is neglected in the traditional phreatic evaporation study, while from the principle of water vapor conversion, the ground temperature is the main energy controlling the process. Taking the homogeneous sand in bare soil area for example, the effect of different temperature difference between ground temperature and air temperature on phreatic evaporation was studied by constructing soil column experiment and Hydrus numerical simulation model. Based on analysis of the process and trend of soil water content in different depths, the influence mechanism of ground temperature on phreatic evaporation was discussed quantitatively. The experimental results show that the change trend of daily evaporation is basically the same. But considering the effect of ground temperature the evaporation amount is significantly larger than that of without considering the temperature. When the temperature (-2.3 ° 13.6 °) is lower than the ground temperature (20 °), the average value of evaporation increased by about 33.7%; When the temperature (22 ° -33.2 °) is higher than the ground temperature (20 °), the average increase of evaporation is about 10.08%. The effect of ground temperature on the evaporation is very significant in winter and summer. Soil water content increased with the increase of water table depth, while the soil water content at the same depth was different due to the temperature difference, and the soil water content was also different. The larger the temperature difference, the greater the difference of soil water content. The slope of the trend line of the phreatic evaporation is also increased accordingly. That is, under the influence of ground temperature, water vapor conversion rate increased, resulting in increased soil moisture and increased phreatic evaporation. Therefore, considering the ground temperature, it has important theoretical and practical value for scientific understanding and revealing the phreatic evaporation process.

  10. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    PubMed

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. © The Author 2015. Published by Oxford University Press.

  11. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    PubMed Central

    Gaines, Katie P.; Stanley, Jane W.; Meinzer, Frederick C.; McCulloh, Katherine A.; Woodruff, David R.; Chen, Weile; Adams, Thomas S.; Lin, Henry; Eissenstat, David M.

    2016-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. PMID:26546366

  12. [Soil water reservoir properties and influencing factors of typical newly-established green belts of Shanghai Chenshan Botanical Garden, China.

    PubMed

    Wu, Hai Bing; Fang, Hai Lan; Peng, Hong Ling

    2016-05-01

    The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total re-servoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively.

  13. The warming effect of the flare of natural gas on soil biological activity

    NASA Astrophysics Data System (ADS)

    Yevdokimov, Ilya; Yusupov, Irek; Shavnin, Sergey

    2017-04-01

    Simulation of global warming is one of the key issues of international efforts to study climatic changes. A number of manipulation experiments with soil warming have been established throughout the world in the last decades. We used warming with natural gas flare near the pine forest as a kind of manipulation experiment to assess the synergistic effect of drying and warming on plant-soil-microbial interactions. The experimental area is situated in a pine forest subzone of the forest zone of the Western Siberia near Pokachi, Yugra (61o73'N, 75o49'E). The experimental plots were established in a young Scotch pine forest on sandy podzolic soil at three distances of 70, 90 and 130 m from the flare of natural gas, with trees exposed to strong (S) moderate (M), and weak (W) impact, respectively. Increase of soil temperature in summer time were moderate: on average 0.7oC and 1.3oC for the plots M and S, respectively, compared to the plot W. The plot S demonstrated increase in CO2 efflux from the soil surface, mainly due to intensifying plant root respiration, by 18% compared to the plot W as well as increase in SOM content by 31%, with intensive accumulation of recalcitrant humus. By contrast, microbial biomass, labile SOM pool and basal respiration were higher in soil with weak flaring impact by 74%, 33% and 24%, respectively. Thus, three trends in plant-soil-microbe system exposed to warming and drying were revealed: i) SOM accumulation, ii) suppression of microbial activity, and iii) stimulation of root respiration. The research was supported by the Russian Science Foundation and Russian Foundation for Basic Researches.

  14. WSA index as an indicator of soil degradation due to erosion

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Schmidtova, Zuzana; Kubis, Adam; Fer, Miroslav; Klement, Ales; Nikodem, Antonin

    2014-05-01

    Knowledge of spatial distribution of soil aggregate stability as an indicator of soil degradation vulnerability is required for many scientific and practical environmental studies. The goal of our study was to assess predisposition of different soil types to change aggregate stability due to erosion. Five agriculture arable lands with different soil types were chosen. The common feature of these sites is relatively large slope and thus soils are impacted by water erosion. The first studied area was in Brumovice. The original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other four locations Vidim, Sedlcany, Zelezna and Hostoun, where the original soil types were Haplic Luvisol on loess and Haplic Cambisol on gneiss, Haplic Cambisol on shales, and Calcaric Cambisol on marlstone, respectively. The regular and semi-regular soil sampling grids were set at all five sites. The basic soil properties were measured and stability of soil aggregates (WSA index) was evaluated. In all cases, the higher aggregates stability was observed in soils, which were not (or only slightly) affected by water erosion and at base slope and the tributary valley (eroded soil particle accumulation). The lowest aggregate stability was measured at the steepest parts. When comparing individual sites, the highest WSA index, e.g. aggregate stability, was found in Sedlcany (Cambisol). Lower WSA indexes were measured on aggregates from Hostoun (Cambisol), Zelezna (Cambisol), Vidim (Luvisol) and the lowest values were obtained in Brumovice (Chernozem). The largest WSA indexes for Cambisols in comparison to Luvisols and Chernozem could be attributed to higher organic matter content and presence of iron oxides. Slightly higher aggregate stability of Luvisols in comparison to Chernozem, could be explained by the positive influence of clay (especially in form of clay coatings) and organic matter, and negative impact of pH. The largest range of WSA values were found for Sedlcany (WSA = 0.41 to 0.93), followed by Vidim (WSA = 0.32 to 0.78) and Brumovice (0.20 to 0.67), Zelezna (WSA = 0.35 to 0.78) and Hostoun (WSA = 0.53 to 0.85). This indicates that the largest impact of erosion on aggregate stability was measured for Cambisol in Sedlcany. Similar impact of soil erosion was observed for both soils on loess and Cambisol in Zelezna. The lowest impact of erosion on aggregate stability was measured for Cambisol in Hostoun. Acknowledgement: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic No. QJ1230319

  15. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  16. Effects of Soil Data and Simulation Unit Resolution on Quantifying Changes of Soil Organic Carbon at Regional Scale with a Biogeochemical Process Model

    PubMed Central

    Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong

    2014-01-01

    Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1∶50,000 (P5), a county-based database of 1∶50,000 (C5) and county-based database of 1∶14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1∶50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1∶14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0–30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, −3.99 Tg C and −15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922

  17. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  18. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world

  19. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.

  20. Impact of diverse soil microbial communities on crop residues decomposition

    NASA Astrophysics Data System (ADS)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N mineralization, and chemical measures. Physicochemical composition of crop residues was assessed by Fourier transform infrared spectroscopy FTIR technique at 0 and 83 days. The experiment was conducted in microcosms over 83 days for the biological measurements and 175 days for the C mineralization. The first results showed variations in the C & N rates, and the microbial abundances and functions over time, with a peak at 5 days and a decrease at 83 days for most of the measurements. The soil microbial communities' composition (different management practices) highly impacted the crop residues decomposition. The biochemical composition of crop residues influenced less the microbial communities of each soil. Further studies on the valorization of these residues into agro materials will be carried out. References: Andrews SS., Karlen DL., and Cambardella CA. (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America, 68: 1945-1962

  1. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  2. Remote sensing applied to agriculture: Basic principles, methodology, and applications

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1981-01-01

    The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.

  3. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China.

    PubMed

    Pan, Libo; Ma, Jin; Hu, Yu; Su, Benying; Fang, Guangling; Wang, Yue; Wang, Zhanshan; Wang, Lei; Xiang, Bao

    2016-10-01

    A total of 128 surface soil samples were collected, and eight heavy metals, including As, Cd, Cr, Cu, Pb, Ni, Zn, and Hg, were analyzed for their concentrations, potential ecological risks, and human health risks. The mean concentrations of these eight metals were lower than the soil environmental quality standards in China, while they were slightly higher than the background values in Shanxi Province. The enrichment factor, coefficient variation, and potential ecological risk index were used to assess the pollution and eco-risk level of heavy metals, among which, Cd and Hg showed higher pollution levels and potential risks than the others in the studied area. Moreover, multivariate geostatistical analysis suggested that Hg originated mainly from point sources such as industrial emissions, while agricultural activity is the predominant factor for Cd. The human health risk assessment indicated that non-carcinogenic values were below the threshold values. The total carcinogenic risks due to As, Cr, and Ni were within the acceptable range for adults, while for children, they were higher than the threshold value (1.0E-04), indicating that children are facing higher threat to heavy metals in soils. These results provide basic information on heavy metal pollution control and human health risk assessment management in the study regions.

  4. Impacts of single and recurrent wildfires on topsoil moisture regime

    NASA Astrophysics Data System (ADS)

    González-Pelayo, Oscar; Malvar, Maruxa; van den Elsen, Erik; Hosseini, Mohammadreza; Coelho, Celeste; Ritsema, Coen; Bautista, Susana; Keizer, Jacob

    2017-04-01

    The increasing fire recurrence on forest in the Mediterranean basin is well-established by future climate scenarios due to land use changes and climate predictions. By this, shifts on mature pine woodlands to shrub rangelands are of major importance on forest ecosystems buffer functions, since historical patterns of established vegetation help to recover from fire disturbances. This fact, together with the predicted expansion of the drought periods, will affect feedback processes of vegetation patterns since water availability on these seasons are driven by post-fire local soil properties. Although fire impacts of soil properties and water availability has been widely studied using the fire severity as the main factor, little research is developed on post-fire soil moisture patterns, including the fire recurrence as a key explanatory variable. The following research investigated, in pine woodlands of north central Portugal, the short-term consequences (one year after a fire) of wildfire recurrence on the surface soil moisture content (SMC) and on effective soil water (SWEFF, parameter that includes actual daily soil moisture, soil field capacity-FC and permanent wilting point-PWP). The study set-up includes analyses at two fire recurrence scenarios (1x- and 4x-burnt since 1975), at a patch level (shrub patch/interpatch) and at two soil depths (2.5 and 7.5 cm) in a nested approach. Understanding how fire recurrence affects water in soil over space and time is the main goal of this research. The use of soil moisture sensors in a nested approach, the rainfall features and analyses on basic soil properties as soil organic matter, texture, bulk density, pF curves, soil water repellency and soil surface components will establish which factors has the largest role in controlling soil moisture behavior. Main results displayed, in a seasonal and yearly basis, no differences on SMC as increasing fire recurrence (1x- vs 4x-burnt) neither between patch/interpatch microsites at both two soil depths. Otherwise, in a yearly basis and during soil drying cycles, it was found less effective water on soil at the surface layers of the 4x-burnt and between shrub interpatches, based on the worst soil hydrological conditions (PWP) and the increasing percentage of abiotic soil surface components as increasing fire recurrence. Our results suggest that the inclusion of soil hydrological properties, as pF-curves, on the soil water effectiveness calculation seems to be a better indicator of water availability that volumetric SM per se. Otherwise, the use of a nested approach methodology, stresses how fire recurrence, expected increases in the summer drought spells and, the increasing dominance of abiotic soil surface components, are the factors that much influence soil eco-hydrological functioning in fire prone ecosystems. Furthermore, this research point out how post-fire soil structural quality into plant interpatches could provoke looping feedback processes triggering desertification situations also in humid Mediterranean forestlands.

  5. Mapping soil texture targeting predefined depth range or synthetizing from standard layers?

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László

    2017-04-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data were applied as auxiliary variables. We compared the directly compiled and the synthetized clay-, sand content, and texture class maps by different tools. In addition to pairwise comparison of basic statistical features (histograms, scatter plots), we examined the spatial distribution of the differences. We quantified the taxonomical distances of the textural classes, in order to investigate the differences of the map-pairs. We concluded that the directly computed and the synthetized maps show various differences. In the case of clay-, and sand content maps, the map-pairs have to be considered statistically different. On the other hand, the differences of the texture class maps are not significant. However, in all cases, the differences rather concern the extreme ranges and categories. Using of synthetized maps can intensify extremities by error propagation in models and scenarios. Based on our results, we suggest the usage of the directly composed maps.

  6. The temperature characteristics of biological active period of the peat soils of Bakchar swamp

    NASA Astrophysics Data System (ADS)

    Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.

    2018-01-01

    The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.

  7. Changes in soil erosion and sediment transport based on the RUSLE model in Zhifanggou watershed, China

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Qian, Ju; Qi, Wen-Yan; Li, Sheng-Shuang; Chen, Jian-Long

    2018-04-01

    In this paper, changes of sediment yield and sediment transport were assessed using the Revised Universal Soil Loss Equation (RUSLE) and Geographical Information Systems (GIS). This model was based on the integrated use of precipitation data, Landsat images in 2000, 2005 and 2010, terrain parameters (slope gradient and slope length) and soil composition in Zhifanggou watershed, Gansu Province, Northwestern China. The obtained results were basically consistent with the measured values. The results showed that the mean modulus of soil erosion is 1224, 1118 and 875 t km-2 yr-1 and annual soil loss is 23 130, 21 130 and 16 536 in 2000, 2005 and 2010 respectively. The measured mean erosion modulus were 1581 and 1377 t km-2 yr-1, and the measured annual soil loss were 29 872 and 26 022 t in 2000 and 2005. From 2000 to 2010, the amount of soil erosion was reduced yearly. Very low erosion and low erosion dominated the soil loss status in the three periods, and moderate erosion followed. The zones classified as very low erosion were increasing, whereas the zones with low or moderate erosion were decreasing. In 2010, no zones were classified as high or very high soil erosion.

  8. Nitrate leaching index

    USDA-ARS?s Scientific Manuscript database

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  9. SW-846 Test Method 1340: In Vitro Bioaccessibility Assay for Lead in Soil

    EPA Pesticide Factsheets

    Describes assay procedures written on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.

  10. ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS

    EPA Science Inventory

    Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...

  11. Quality control analysis : part II : soil and aggregate base course.

    DOT National Transportation Integrated Search

    1966-07-01

    This is the second of the three reports on the quality control analysis of highway construction materials. : It deals with the statistical evaluation of results from several construction projects to determine the basic pattern of variability with res...

  12. Impact of Soil Moisture Dynamics on ASAR Observed Backscatters and its Spatial Variability over the Upstream of the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2013-01-01

    The so called change detection method is a promising way to acquire soil moisture (SM) dynamics dependent on time series of radar backscatter (σ0) observations. The current study is a preceded step for using this method to carry out SM inversion at basin scale, in order to investigate the applicability of the change detection method in the Heihe River Basin, and to inspect the sensitivity of SAR signals to soil moisture variations. At the meantime, a prior knowledge of SM dynamics and land heterogeneities that may contribute to backscatter observations can be obtained. The impact of land surface states on spatial and temporal σ0 variability measured by ASAR has been evaluated in the upstream of the Heihe River Basin, which was one of the foci experimental areas (FEAs) in Watershed Allied Telemetry Experimental Research (WATER). Based on the in situ measurements provided by an automatic meteorological station (AMS) established at the A’rou site and time series of ASAR observations focused on a 1 km2 area, the relationships between the temporal dynamics of σ0 with in situ SM variations, and land heterogeneities of the study area according to the characteristics of spatial variability of σ0, were identified. The in situ measurements of soil moisture and temperature show a very clear seasonal freeze/thaw cycle in the study site. The temporal σ0 evolvement is basically coherent with ground measurements.

  13. High mountain soils and periglacial features at the Torres del Paine, National Park Torres del Paine, Chile.

    NASA Astrophysics Data System (ADS)

    Senra, Eduardo; Schaefer, Carlos; Simas, Felipe; Gjorup, Davi

    2015-04-01

    The Torres del Paine National Park (TPNP) is located on the southern limit of the Andean Southern Ice Field, part of the Magallanes and Antartica Chilena region, in the province of Ultima Esperanza. The TPNP has a very heterogeneous climate due to orographic influence and wet air masses from the Pacific. The geology is basically Cretaceous metasedimentary rocks and Miocene granitic plutons and batholiths. We studied the main soils and geoenvironments of Mt Ferrier mountain and its surroundings, based on soils , landforms and vegetation aspects. The geoenvironmental stratification was based on the combined variation and integration of pedo-litho-geomorphological features with the vegetation. WE used detailed geological maps, a DEM and slope maps and WorlView II satellite images. Fifteen soils profiles were sampled and classified according to Soil Taxonomy (2010) at all genovironments, ranging from 50 m a.s.l to the at high plateau just below the permanent snowline, under periglacial conditions (~1004m asl). Three soil temperature and moisture monitoring sites were set, allowing for 24 consecutive months (2011 to 2013). Seven geoenvironments were identified with distinct soil and landform characteristics, all with a similar geological substrate. The landform and vegetation have a strong connection with the landscape dynamic, controlling erosional and depositional processes, resulting from glacier advances and retreats in the Late Quaternary. Wind blown materials is widespread, in the form of loess material, accumulating in the higher parts of the landscape. On the other hand, accumulation of organic matter in the water-saturated depressions is common in all altitudes. Generally the soils are acidic and dystrophic, with little exceptions. The following geoenvironments were identified: Periglacial Tundra, Loess slopes, Talus and scarpmentd, Fluvio-glacial terraces, Fluvio-lacustrine plains, Moraines and Paleodunes. The regional pedology show the occurrence of five soil orders (Soil Taxonomy, 2010): Histosols, Mollisols, Inceptsols, Entisols and Andisols.

  14. Modeling of traction-coupling properties of wheel propulsor

    NASA Astrophysics Data System (ADS)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.

  15. A Model for coupled heat and moisture transfer in permafrost regions of three rivers source areas, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.

    2012-04-01

    Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).

  16. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough understanding of the processes, factors and causes of SOC and SIC dynamics in soils of natural and managed ecosystems.

  17. Field and laboratory procedures used in a soil chronosequence study

    USGS Publications Warehouse

    Singer, Michael J.; Janitzky, Peter

    1986-01-01

    In 1978, the late Denis Marchand initiated a research project entitled "Soil Correlation and Dating at the U.S. Geological Survey" to determine the usefulness of soils in solving geologic problems. Marchand proposed to establish soil chronosequences that could be dated independently of soil development by using radiometric and other numeric dating methods. In addition, by comparing dated chronosequences in different environments, rates of soil development could be studied and compared among varying climates and mineralogical conditions. The project was fundamental in documenting the value of soils in studies of mapping, correlating, and dating late Cenozoic deposits and in studying soil genesis. All published reports by members of the project are included in the bibliography.The project demanded that methods be adapted or developed to ensure comparability over a wide variation in soil types. Emphasis was placed on obtaining professional expertise and on establishing consistent techniques, especially for the field, laboratory, and data-compilation methods. Since 1978, twelve chronosequences have been sampled and analyzed by members of this project, and methods have been established and used consistently for analysis of the samples.The goals of this report are to:Document the methods used for the study on soil chronosequences,Present the results of tests that were run for precision, accuracy, and effectiveness, andDiscuss our modifications to standard procedures.Many of the methods presented herein are standard and have been reported elsewhere. However, we assume less prior analytical knowledge in our descriptions; thus, the manual should be easy to follow for the inexperienced analyst. Each chapter presents one or more references of the basic principle, an equipment and reagents list, and the detailed procedure. In some chapters this is followed by additional remarks or example calculations.The flow diagram in figure 1 outlines the step-by-step procedures used to obtain and analyze soil samples for this study. The soils analyzed had a wide range of characteristics (such as clay content, mineralogy, salinity, and acidity). Initially, a major task was to test and select methods that could be applied and interpreted similarly for the various types of soils. Tests were conducted to establish the effectiveness and comparability of analytical techniques, and the data for such tests are included in figures, tables, and discussions. In addition, many replicate analyses of samples have established a "standard error" or "coefficient of variance" which indicates the average reproducibility of each laboratory procedure. These averaged errors are reported as percentage of a given value. For example, in particle-size determination, 3 percent error for 10 percent clay content equals 10 ± 0.3 percent clay. The error sources were examined to determine, for example, if the error in particle-size determination was dependent on clay content. No such biases were found, and data are reported as percent error in the text and in tables of reproducibility.

  18. Geometric parameters determination of the installation for oil-contaminated soils decontamination in Russia, the Siberian region and the Arctic zones climatic conditions with reagent encapsulating

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2018-01-01

    The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.

  19. The Mars oxidant experiment (MOx) for Mars '96

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.; hide

    1998-01-01

    The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.

  20. Instability improvement of the subgrade soils by lime addition at Borg El-Arab, Alexandria, Egypt

    NASA Astrophysics Data System (ADS)

    El Shinawi, A.

    2017-06-01

    Subgrade soils can affect the stability of any construction elsewhere, instability problems were found at Borg El-Arab, Alexandria, Egypt. This paper investigates geoengineering properties of lime treated subgrade soils at Borg El-Arab. Basic laboratory tests, such as water content, wet and dry density, grain size, specific gravity and Atterberg limits, were performed for twenty-five samples. Moisture-density (compaction); California Bearing Ratio (CBR) and Unconfined Compression Strength (UCS) were conducted on treated and natural soils. The measured geotechnical parameters of the treated soil shows that 6% lime is good enough to stabilize the subgrade soils. It was found that by adding lime, samples shifted to coarser side, Atterberg limits values of the treated soil samples decreased and this will improve the soil to be more stable. On the other hand, Subgrade soils improved as a result of the bonding fine particles, cemented together to form larger size and reduce the plastiCity index which increase soils strength. The environmental scanning electron microscope (ESEM) is point to the presence of innovative aggregated cement materials which reduce the porosity and increase the strength as a long-term curing. Consequently, the mixture of soil with the lime has acceptable mechanical characteristics where, it composed of a high strength base or sub-base materials and this mixture considered as subgrade soil for stabilizations and mitigation the instability problems that found at Borg Al-Arab, Egypt.

  1. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  2. MNA TO ACHIEVE SITE OBJECTIVES: BACK TO BASICS

    EPA Science Inventory

    The U.S. EPA recognizes a three-tiered approach to evaluate site specific data in support of monitored natural attenuation (1) historical groundwater and/or soil chemistry data that demonstrate a clean and meaningful trend of decreasing contaminant mass and/or concentration over ...

  3. Slash disposal and seedbed preparation by tractor

    Treesearch

    Donald T. Gordon

    1956-01-01

    Creating ground conditions favorable to regeneration immediately after the final harvest cutting is basic to forest management wherever advance growth is deficient. Ponderosa (Pinus ponderosa Laws) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) seeds require bare mineral soil for satisfactory germination. Pine seedlings,...

  4. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.

  5. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ashim

    2010-05-01

    STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize soil and groundwater conservation. The radio-tracer technology emerged as the latest technology in agriculture, which helps in studying the translocation of pesticide along with the organic matter and furthermore, the distribution of the pesticide in the soil phases. For the elucidation of these relationships and distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides, the present laboratory study was undertaken using 14C-enriched and non labeled maize straw as a source of fresh SOM in different soil fractions vis-à-vis its effect on distribution of 14C-labeled benazolin and non labeled benazolin (a selective, post emergence herbicide) as a xenobiotics throughout the soil system. To determine the turnover of SOM fractionation of top layer of the both the benazolin treated soil column was done followed by determination of 14C content in four different soil phases obtained from fraction, characterization of different phase and identification of the metabolites with TLC, HPLC and GC-MS. The result clearly indicated that where soil columns received non- labeled maize straw and 14C-benazolin as well as 14C-labeled maize straw and nonlabeled benazolin; the unit weight distribution study of radioactivity in benazolin followed the decreasing trend in different phases in following order of electrolyte>colloidal> micro aggregate > sediment phases respectively. The percentage distribution of maize straw (fresh organic matter) was also found highest in electrolyte phase followed the same order as in the case of benazolin. It was observed in phase-wise distribution study that radioactivity either of 14C-maize straw or 14C-benazolin was mostly concentrated in the sediment phase followed by micro aggregate, colloidal and electrolyte phase. From this it was clear that the soil columns, which received maize straw, have bound the pesticide benazolin and hindered the translocation to the lower layers leading to higher percentage of recovered radioactivity at top layer. Thus, these two results can be correlated in a way that dissolve organic matter affects the mobility of the pesticide along with its own mobility.

  6. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  7. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    PubMed

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  8. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    PubMed Central

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  9. Measures of Microbial Biomass for Soil Carbon Decomposition Models

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Dabbs, J.; Steinweg, J. M.; Schadt, C. W.; Kluber, L. A.; Wang, G.; Jagadamma, S.

    2014-12-01

    Explicit parameterization of the decomposition of plant inputs and soil organic matter by microbes is becoming more widely accepted in models of various complexity, ranging from detailed process models to global-scale earth system models. While there are multiple ways to measure microbial biomass, chloroform fumigation-extraction (CFE) is commonly used to parameterize models.. However CFE is labor- and time-intensive, requires toxic chemicals, and it provides no specific information about the composition or function of the microbial community. We investigated correlations between measures of: CFE; DNA extraction yield; QPCR base-gene copy numbers for Bacteria, Fungi and Archaea; phospholipid fatty acid analysis; and direct cell counts to determine the potential for use as proxies for microbial biomass. As our ultimate goal is to develop a reliable, more informative, and faster methods to predict microbial biomass for use in models, we also examined basic soil physiochemical characteristics including texture, organic matter content, pH, etc. to identify multi-factor predictive correlations with one or more measures of the microbial community. Our work will have application to both microbial ecology studies and the next generation of process and earth system models.

  10. The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1993-01-01

    New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.

  11. Modeling adaptation of wetland plants under changing environments

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, R.; Muneepeerakul, C. P.

    2010-12-01

    An evolutionary-game-theoretic approach is used to study the changes in traits of wetland plants in response to environmental changes, e.g., altered patterns of rainfall and nutrients. Here, a wetland is considered as a complex adaptive system where plants can adapt their strategies and influence one another. The system is subject to stochastic rainfall, which controls the dynamics of water level, soil moisture, and alternation between aerobic and anaerobic conditions in soil. Based on our previous work, a plant unit is characterized by three traits, namely biomass nitrogen content, specific leaf area, and allocation to rhizome. These traits control the basic functions of plants such as assimilation, respiration, and nutrient uptake, while affecting their environment through litter chemistry, root oxygenation, and thus soil microbial dynamics. The outcome of this evolutionary game, i.e., the best-performing plant traits against the backdrop of these interactions and feedbacks, is analyzed and its implications on important roles of wetlands in supporting our sustainability such as carbon sequestration in biosphere, nutrient cycling, and repository of biodiversity are discussed.

  12. Fine Increment Soil Collector (FISC): A new device to support high resolution soil and sediment sampling for agri-environmental assessments

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine

    2014-05-01

    Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.

  13. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long-term fertilization. OC mainly existed in the macroaggregate (> 0.25 mm) of red soils after the long-term fertilization, and the organic matter was the most important colloid material for macroaggregates. We conclude that the long-term, appropriate application of chemical fertilizer and the combination with organic manure were the most effective measures to improve soil structure and organic carbon contents in red soil regions.

  14. Investigating the context-dependency of plant-soil-AMF-microbe interactions along a pollution gradient

    NASA Astrophysics Data System (ADS)

    Glassman, S. I.; Casper, B. B.

    2010-12-01

    Background/Question/Methods Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions, which is currently recognized as a major avenue of future research. We study plant-mycorrhiza symbiotic relationships along a gradient of heavy metal contamination at a recently revegetated “Superfund” site on Blue Mountain, in Palmerton, Pennsylvania. We investigated the interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, and two plant species (a C3 and C4 grass) along the contamination gradient. The native C3 study species Deschampsia flexuosa, is dominant along the gradient and established naturally; the C4 Sorghastrum nutans, is native to Pennsylvania but not to the site and was introduced during restoration. Because C4 grasses are obligate mycotrophs, we expected S. nutans to have a different effect on and response to the soil symbiont community than the C3 grass. We carried out a full factorial greenhouse experiment using field-collected seeds of D. flexuosa and S. nutans, soil, AMF spores, and non-mycorrhizal microbes from both high and low contaminated ends of the gradient. After 11 weeks of growth in the greenhouses, we harvested above and belowground plant biomass, and quantified AMF root colonization and AMF sporulation. Results/Conclusions Our results indicate that context-dependent function is an important factor driving specific ecological interactions between plants and soil microbes. We found that soil origin significantly affected plant growth. Plants from both species grew much larger in soil from low contaminated (LC) origin than high contaminated (HC) origin. Furthermore, we found that the efficacy of AMF in promoting plant growth depended on AMF origin. Specifically, AMF from LC improved growth of D. flexuosa best in either soil background and improved survivorship of S. nutans in HC soil compared to AMF from HC. We also found that the origin of non-mycorrhizal soil microbes affects the benefit provided to plants and likely interacts with AMF in affecting AMF function. Non-mycorrhizal soil microbes from HC origin decreased mean plant size in D. flexuosa while microbes from LC origin increased mean plant size compared to plants with no non-mycorrhizal soil microbes added. Our results may be useful for improving our basic ecological understanding of plant-soil interactions and ecotypic variation/context-dependent function. There are also potential applications for restoration of heavy metal polluted sites.

  15. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  16. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  17. Water content determination of soil surface in an intensive apple orchard

    NASA Astrophysics Data System (ADS)

    Riczu, Péter; Nagy, Gábor; Tamás, János

    2015-04-01

    Currently in Hungary, less than 100,000 hectares of orchards can be found, from which cultivation of apple is one of the most dominant ones. Production of marketable horticulture products can be difficult without employing advanced and high quality horticulture practices, which, in turn, depends on appropriate management and irrigation systems, basically. The got out water amount depend on climatic, edafic factors and the water demand of plants as well. The soil water content can be determined by traditional and modern methods. In order to define soil moisture content, gravimetry measurement is one of the most accurate methods, but it is time consuming and sometimes soil sampling and given results are in different times. Today, IT provides the farmers such tools, like global positioning system (GPS), geographic information system (GIS) and remote sensing (RS). These tools develop in a great integration rapidly. RS methods are ideal to survey larger area quick and accurate. Laser scanning is a novel technique which analyses a real-world or object environment to collect structural and spectral data. In order to obtain soil moisture information, the Leica ScanStation C10 terrestrial 3D laser scanner was used on an intensive apple orchard on the Study and Regional Research Farm of the University of Debrecen, near Pallag. Previously, soil samples from the study area with different moisture content were used as reference points. Based on the return intensity values of the laser scanner can be distinguished the different moisture content areas of soil surface. Nevertheless, the error of laser distance echo were examined and statistically evaluated. This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

  18. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  19. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed. Overall, this study provides good evidence for anaerobic methane oxidation in certain wetland soils, and suggests that models predicting methane flux from wetland soils to the atmosphere could be improved by better understanding of this process.

  20. Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I.; Frazee, C. J.; Rusche, A. E.; Moore, D. G.; Nelson, G. D.; Westin, F. C.

    1974-01-01

    The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery.

  1. Research progress of on-the-go soil parameter sensors based on NIRS

    NASA Astrophysics Data System (ADS)

    An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua

    2014-11-01

    Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.

  2. Dissipation rate of thiacloprid and its control effect against Bemisia tabaci in greenhouse tomato after soil application.

    PubMed

    Dong, Sa; Qiao, Kang; Wang, Hongyan; Zhu, Yukun; Xia, Xiaoming; Wang, Kaiyun

    2014-08-01

    Thiacloprid is a chloronicotinyl insecticide that is quite effective against sucking insects. In this study, when thiacloprid was applied at two different rates (normal rate 15 kg ha(-1) , double rate 30 kg ha(-1) ), the systemic distribution and residue of thiacloprid as well as its control effect against whitefly (Bemisia tabaci) were investigated in greenhouse tomato after soil application. The results showed that thiacloprid was present in the tomato leaves until day 25, and then its amount was less than 0.005 mg kg(-1) and could not be detected. Thiacloprid residue in the tomato stems basically remained at a stable low level throughout the experimental period. Thiacloprid in soil had half-lives of 11.8 and 12.5 days for the normal treatment and the double treatment respectively. The control efficiency of whiteflies was about 90% from day 1 to day 10. This was followed by a slow decline, but efficiency was still higher than 50% until day 21. In addition, no significant differences were noted in the control effect of thiacloprid on whiteflies between the two different rates. Soil application of thiacloprid at the normal rate can effectively control whiteflies, with high efficiency and long persistence. © 2013 Society of Chemical Industry.

  3. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  4. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. [Distribution characteristics and risk assessment of organochlorine pesticides in soil from Jiufeng Mountain Range in Fujian, China].

    PubMed

    Huang, Huan-Fang; Qi, Shi-Hua; Qu, Cheng-Kai; Li, Hui; Chen, Wen-Wen; Zhang, Li; Hu, Ting; Shi, Liao

    2014-07-01

    Totally 81 surface soil samples were collected from Jiufeng Mountain Range, and 8 compounds of organochlorine pesticides (OCPs) were determined by a Ni electron capture detector (GC-ECD) to investigate the distribution, composition, source and potential health risks of these compounds in the study region. The detection ratio of HCHs and DDTs' isomers ranged from 77.78% to 100.00%. Concentrations of HCHs and DDTs in surface soils ranged from 0.97 ng x g(-1) to 247.40 ng x g(-1) (mean 10.17 ng x g(-1)) and 0.01 ng x g(-1) to 384.75 ng x g(-1) (mean 18.91 ng x g(-1)), respectively. Compared with other regions, the pollution of OCPs in Jiufeng Mountain Range stayed at a low level. The residue level in different types of lands was in the order as: paddy field > vegetable land > tea land > woodland. Source analysis indicated that Lindane and dicofol might be used recently in this area. The incremental lifetime, cancer risks (ILCRs) of different age groups (children, youths, and adults) were all within the acceptable risk range of 10(-6) to 10(-4) recommended by USEPA for carcinogenic chemicals. The residue level of OCPs in soil may not cause cancer risk for local residents basically.

  6. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  7. Sequential extractions of selenium soils from Stewart Lake: total selenium and speciation measurements with ICP-MS detection.

    PubMed

    Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A

    2003-06-01

    Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.

  8. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    PubMed

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Tao; Fuliu Xu; Wenxin Liu

    Severe contamination of agricultural soils by polycyclic aromatic hydrocarbons (PAHs) occurs in many places in China mainly as a result of coal and biomass combustion. Because ingestion is the main source of human exposure to PAHs and vegetables are basic ingredients for the Chinese diet, it is important to know how and to what extent PAHs are accumulated in vegetables produced in contaminated soils. This study, evaluated the extent to which organic matter contents in soils influence the accumulation of PAHs by the roots of wheat plants and have developed a rapid chemical method for determining the bioavailability of PAH.more » Four PAHs, naphthalene, acenaphthylene, fluorene, and phenanthrene, were added to natural soil samples with different amounts of organic matter for pot experiments to evaluate apparent bioavailability of PAHs to wheat roots (Triticum aestivum L.). The extractabilities of PAHs in the soil were tested by a sequential extraction scheme using accelerated solvent extraction with water, n-hexane, and a mixture of dichloromethane and acetone as solvents. The water or n-hexane-extractable PAHs were positively correlated to dissolved organic matter (DOM) and negatively correlated to total organic matter (TOM), indicating mobilization and immobilization effects of DOM and TOM on soil PAHs, respectively. The apparent accumulation of PAHs by wheat roots was also positively and negatively correlated to DOM and TOM, respectively. As a result, there are positive correlations between the amounts of PAHs extracted by water or n-hexane and the quantities accumulated in plant roots, suggesting the feasibility of using water- or n-hexanes-extractable fractions as indicators of PAH availability to plants. 19 refs., 8 figs., 1 tab.« less

  10. Basic methods for measuring the reflectance color of iron oxides

    NASA Astrophysics Data System (ADS)

    Pospisil, Jaroslav; Hrdy, Jan; Hrdy Jan, Jr.

    2007-06-01

    The main contribution of the present article consists in coherent description and interpretation of the principles of basic measuring methods and colorimeters for color classification and evaluation of light reflecting samples containing iron oxides. The chosen relevant theoretical background is based on the CIE tristimulus colorimetric system (X,Y,Z), the CIE colorimetric system (L*,a*,b*) and the Munsell colorimetric system (H,V,C). As an example of color identification and evaluation, some specific mathematical and graphical relationships between the soil redness rate and the corresponding hematite content are shown.

  11. Using soil enzymes to explain observed differences in the response of soil decomposition to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Stone, M.; Weiss, M.; Goodale, C. L.

    2010-12-01

    Soil microbes produce extracellular enzymes that degrade a variety of carbon-rich polymers contained within soil organic matter (SOM). These enzymes are key regulators of the terrestrial carbon cycle. However, basic information about the kinetics of extracellular enzymes and key environmental variables that regulate their catalytic ability is lacking. This study aims to clarify the mechanisms by which microbial carbon-degrading enzymes drive different responses to nitrogen (N) fertilization in soil decomposition at two sites with long-term N fertilization experiments, the Bear Brook (BB) forest in Maine and Fernow Forest (FF) in West Virginia. We examined a suite of cellulolytic and lignolytic enzymes that break down common SOM constituents. We hypothesized that enzymes derived from the site with a higher mean annual temperature (FF) would be more heat-tolerant, and retain their catalytic efficiency (Km) as temperature rises, relative to enzymes from the colder environment (BB). We further hypothesized that cellulolytic enzyme activity would be unaffected by N, while oxidative enzyme activity would be suppressed in N-fertilized soils. To test these hypotheses and examine the interactive effects of temperature and N, we measured enzyme activity in unfertilized and N-fertilized soils under a range of laboratory temperature manipulations. Preliminary results show a significant decrease in cellulolytic enzyme efficiency with temperature at the colder site (BB), as well as a significant increase in efficiency due to N-fertilization for two cellulolytic enzymes. Oxidative enzyme activity shows a marginally significant reduction due to N-fertilization at BB. These results suggest that soil warming may produce a negative feedback on carbon turnover in certain climates, while N-fertilization may alter the relative decomposition rates of different soil organic matter constituents. FF activity will be analyzed in a similar manner and the two sites will be compared in order to fully assess our hypotheses.

  12. [Dynamics of Cry1ab protein content in the rhizosphere soil and straw debris of transgenic Bt corn].

    PubMed

    Li, Fan; Wang, Min; Sun, Hong-Wei; Yang, Shu-Ke; Lu, Xing-Bo

    2013-07-01

    By using ELISA test kits, a field investigation was conducted on the degradation dynamics of CrylAb protein in the rhizosphere soil of Bt corn MON810 at its different growth stages and in the MON810 straws returned into field after harvest. Three models (shift-log model, exponential model, and bi-exponential model) were used to fit the degradation dynamics of the Cry1 Ab protein from the straw debris, and the DT50 and DT90, values were estimated. There existed great differences in the CrylAb protein content in the rhizosphere soil of MON810 at its different growth stages, but overall, the CrylAb protein content was decreased remarkably with the growth of MON810. The degradation of Cry1 Ab protein from the straws covered on soil surface and buried in soil showed the same two-stage pattern, i.e., more rapid at early stage and slow-stable in later period. Within the first week after straw return, the degradation rate of the CrylAb protein from the straws covered on soil surface was significantly higher than that from the straws buried in soil. At 10 d, the degradation rate of the CrylAb protein from the straws covered on soil surface and buried in soil was basically the same, being 88.8% and 88.6%, respectively. After 20 days, the degradation of CrylAb protein entered slow-stable stage. Till at 180 d, a small amount of Cry1Ab protein could still be detected in the straw debris. All of the three models used in this study could fit the decay pattern of the CrylAb protein from the straw debris in field. By comparing the correlation coefficient (r) and the consistency between the measured and calculated DT90, bi-exponential model was considered to be the best.

  13. Principles of control automation of soil compacting machine operating mechanism

    NASA Astrophysics Data System (ADS)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  14. AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER

    EPA Science Inventory

    Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...

  15. Conservation Awareness Guide.

    ERIC Educational Resources Information Center

    Santa Rosa County Board of Public Instruction, Milton, FL.

    Recommendations for incorporating conservation education into the K-5 curriculum comprise this teacher's guide. Examined are eight natural resources: air, energy, forests and plant life, human resources, minerals, soil, water, and wildlife. Each of these topics is considered in two ways: (1) a chart depicts concepts basic to understanding the…

  16. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  17. The role of particle-size soil fractions in the adsorption of heavy metals

    NASA Astrophysics Data System (ADS)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of the process - the adsorption equilibrium constant (k).The ratio between the content of exchangeable cations displaced from the soil adsorbing complex (SAC) into the solution and the content of adsorbed HMs decreased with the increasing concentration of adsorbed HMs. These values could be higher (for Cu2+ and Pb2+), equal, or lower than 1 (for Zn2+) and depend on the properties of HMs. At the first case, this was due to the dissolution of readily soluble salts at low HM concentrations in the SAC. In the latter case, this was related to the adsorption of associated forms HMs and the formation of new phases localized on the surface of soil particles at high HM concentrations in the SAC. Soil solution equilibrium (SSE) accords to the soil fine fraction composition. SSE thermodynamics causes the ratio of free and associated forms of ions and ion's activity in soil solution influencing composition, concentration and adsorption of HMs salts by SAC. This study was supported by the Russian Foundation for Basic Research, project no. 12-05-33078,14-05-00586_a, grant of President of MK-6448.2014.4

  18. Microbiome of Yermic Regosol in southern Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kutovaya, Olga; Lebedeva, Marina; Tkhakakhova, Azida

    2014-05-01

    Biological activity is of utmost importance for the genesis of extremely arid desert soils. The soil surface in arid regions is often covered by biofilms representing a complex biocenosis of algae, bacteria, micromycetes, and, sometimes, mosses or lichens. Biofilms of extremely arid soils form a significant part of the living matter in the desert ecosystems and play the central role in their dynamics. Study of the genetic material recovered directly from the soil samples is the main approach in soil metagenomics. Modern sequencing methods were used to describe the diversity of the microorganisms in soil samples. For the first time, such data were obtained for the extremely arid desert soil (Yermic Regosol) in southern Kazakhstan (flat alluvial plain; 43° 42'53.2" N; 79°25'29.1" E; 615 m asl). Taxonomic identification of nucleotide sequences and comparative analysis of microbial communities were performed using VAMPS. The classification of the sequences was performed using RDP. As the primers used were based on the sequences of 16S-rRNA gene of bacteria and archaea, we could analyze the prokaryotic community. Along with bacteria and archaea with established systematic position, all soil samples contained unidentified sequences (5.2-5.3%). Bacteria predominated at the domain level (65.9-74.9%), although their portion was much lower in comparison with that in less arid soils, where it reached 94-100%. Archaea were present as minor components (0.3-0.5%). Dominant groups of bacteria were represented by Proteobacteria (43.9-50.8%), Actinobacteria (9.5-10%), Firmicutes (0.8-2.4%), Verrucomicrobia (1.1-3%), Acidobacteria (1.1-2%), Bacteroidetes (1.2-1.4%). The portion of other phyla was less than 1%. Thus, bacterial phyla Proteobacteria, Actinobacteria and Acidobacteria constitute the core component of the microbiome. Archaea are represented by phylum Crenarchaeota. A key feature of the extremely arid soils is the presence of large numbers (24.7-33.6%) of cyanobacteria in the composition of DNA of the microbial community. Cyanobacteria play the major role in immobilization of carbon in the course of their photosynthetic activity. The biogenome of the studied soil consists of 27 families including dominant: Cyanobacteria (24.7-33.6%), Enterobacteriaceae from the class Gammaproteobacteria (13.0-15.6%), Pseudomonadaceae (1.6-11.7%), order Myxococcales (0.9-13.2%), which is found only in desert soils, and Moraxellaceae (0.7-8.1%) and Acetobacteraceae (2.9-3.2%) (also endemic organisms). Unclassified (at family level) bacteria from the order Burkholderiales were found in the soil samples (36 and 54 sequences, or 1.2-2.1%). We suppose that these are DNA of iron bacteria Leptothrix, whose presence in the soils was identified using the method of fouling glasses. The data on the biodiversity and genomic characterization of extremely arid desert soils in Kazakhstan reflect the actual species diversity of soil microorganisms. This study was supported by the Russian Foundation for Basic Research, project no. 12-04-00990a.

  19. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    NASA Astrophysics Data System (ADS)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange capacity. The highest amount of mercury was adsorbed by the vermicompost from garden bio-waste. This vermicompost contained the most humic acids and the least amount of other fractions of organic matter. Acknowledgements: Financial support for these investigations was provided by the Grant Agency of the Czech Republic; Project No. 503/12/0682 and Czech University of Life Science Prague; Project No. 21140/1313/3130.

  20. Comparison of the bioavailability of elemental waste laden soils using in vivo and in vitro analytical methodology and refinement of exposure/dose models. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lioy, P.J.; Gallo, M.; Georgopoulos, P.

    1998-06-01

    'The authors hypotheses are: (1) the more closely the synthetic, in vitro, extractant mimics the extraction properties of the human digestive bio-fluids, the more accurate will be the estimate of an internal dose; (2) performance can be evaluated by in vivo studies with a rat model and quantitative examination of a mass balance, calculation and dose estimates from model simulations for the in vitro and in vivo system; and (3) the concentration of the elements Pb, Cd, Cr and selected Radionuclides present in the bioavailable fraction obtained with a synthetic extraction system will be a better indicator of contaminant ingestionmore » from a contaminated soil because it represents the portion of the mass which can yield exposure, uptake and then the internal dose to an individual. As of April 15, 1998, they have made significant progress in the development of a unified approach to the examination of bioavailability and bioaccessibility of elemental contamination of soils for the ingestion route of exposure. This includes the initial characterization of the soil, in vitro measurements of bioaccessibility, and in vivo measurements of bioavailability. They have identified the basic chemical and microbiological characteristics of waste laden soils. These have been used to prioritize the soils for potential mobility of the trace elements present in the soil. Subsequently they have employed a mass balance technique, which for the first time tracked the movement and distribution of elements through an in vitro or in vivo experimental protocol to define the bioaccessible and the bioavailable fractions of digested soil. The basic mass balance equation for the in vitro system is: MT = MSGJ + MIJ + MR. where MT is the total mass extractable by a specific method, MSGJ, is the mass extracted by the saliva and the gastric juices, MIJ is the mass extracted by the intestinal fluid, and MR is the unextractable portion of the initial mass. The above is based upon the use of a synthetic digestive bio-fluids model that includes the saliva, gastric juices, and intestinal fluids. The system has been devised to sequentially extract elements from soil by starting with an extraction by the saliva and carrying the entire mixture to the subsequent bio-fluids for further extraction. The residence time of the soil in each extractant and the liquid to mass ratio in the gastric juices are based upon typical values known for the human digestive system. Experiments were conducted to examine the sensitivity of the extractions to changes in these major variables. The results indicated the lack of significant extraction after 2 h of residence in gastric fluid. The range of variation of the liquid to mass ratio was element dependent over the interval 100:1 and 5,000:1. The final values used for the extraction protocol were: 2 h residence time , and a ratio of 1,000:1. Details of the chemical composition of the extraction protocol are found in Hamel, 1998.'« less

  1. Heavy Metals in Surface Soils in the Upper Reaches of the Heihe River, Northeastern Tibetan Plateau, China

    PubMed Central

    Bu, Jianwei; Sun, Ziyong; Zhou, Aiguo; Xu, Youning; Ma, Rui; Wei, Wenhao; Liu, Meng

    2016-01-01

    The upper reaches of the Heihe River have been regarded as a hotspot for phytoecology, climate change, water resources and hydrology studies. Due to the cold-arid climate, high elevation, remote location and poor traffic conditions, few studies focused on heavy metal contamination of soils have been conducted or reported in this region. In the present study, an investigation was performed to provide information regarding the concentration levels, sources, spatial distributions, and environmental risks of heavy metals in this area for the first time. Fifty-six surface soil samples collected from the study area were analyzed for Cr, Mn, Ni, Cu, Zn, As, Cd and Pb concentrations, as well as TOC levels. Basic statistics, concentration comparisons, correlation coefficient analysis and multivariate analyses coupled with spatial distributions were utilized to delineate the features and the sources of different heavy metals. Risk assessments, including geoaccumulation index, enrichment factor and potential ecological risk index, were also performed. The results indicate that the concentrations of heavy metals have been increasing since the 1990s. The mean values of each metal are all above the average background values in the Qinghai Province, Tibet, China and the world, except for that of Cr. Of special note is the concentration of Cd, which is extremely elevated compared with all background values. The distinguished ore-forming conditions and well-preserved, widely distributed limestones likely contribute to the high Cd concentration. Heavy metals in surface soils in the study area are primarily inherited from parent materials. Nonetheless, anthropogenic activities may have accelerated the process of weathering. Cd presents a high background concentration level and poses a severe environmental risk throughout the whole region. Soils in Yinda, Reshui daban, Kekeli and Zamasheng in particular pose threats to the health of the local population, as well as that of livestock and wildlife. PMID:26907322

  2. Modelling of percolation rate of stormwater from underground infiltration systems.

    PubMed

    Burszta-Adamiak, Ewa; Lomotowski, Janusz

    2013-01-01

    Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils.

  3. A design study for the use of a multiple aperture deployable antenna for soil moisture remote sensing satellite applications

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1986-01-01

    The instrumentation problems associated with the measurement of soil moisture with a meaningful spatial and temperature resolution at a global scale are addressed. For this goal only medium term available affordable technology will be considered. The study while limited in scope, will utilize a large scale antenna structure, which is being developed presently as an experimental model. The interface constraints presented by a singel Space Transportation System (STS) flight will be assumed. Methodology consists of the following steps: review of science requirements; analyze effects of these requirements; present basic system engineering considerations and trade-offs related to orbit parameters, number of spacecraft and their lifetime, observation angles, beamwidth, crossover and swath, coverage percentage, beam quality and resolution, instrument quantities, and integration time; bracket the key system characteristics and develop an electromagnetic design of the antenna-passive radiometer system. Several aperture division combinations and feed array concepts are investigated to achieve maximum feasible performacne within the stated STS constraints.

  4. Characterisation of the physico-mechanical parameters of MSW.

    PubMed

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  5. Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil

    PubMed Central

    Locatelli, Aude; Spor, Aymé; Jolivet, Claudy; Piveteau, Pascal; Hartmann, Alain

    2013-01-01

    Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils. PMID:24116083

  6. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  7. The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary)

    NASA Astrophysics Data System (ADS)

    Hofmann, Tomás; Horvàth, Imre; Bidló, András; Hofmann, Eszther

    2015-04-01

    The taste of soil: chemical investigation of soil, grape and wine in the Sopron wine region (Hungary) The Sopron wine region is one of the most significant and historical wine-producing regions of Hungary. 1800 hectares out of the total area of 4300 hectares of the wine region are used for grape cultivation. Kékfrankos (Blue Frankish) is the most frequent grape variety (60%) nevertheless other varieties are also grown here (including Zweigelt, Merlot, Cabernet Franc, Portugieser and Sauvignon Blanc). In this study preliminary results of the chemical analyses involving soil, grape and wine are presented, which could provide a future basis for a comprehensive terroir research in the wine region. As soil is the premanent home of grapevine, its quality is highly influencing for the growth of the plants and grape berries, and also determines future organoleptic characteristics of the wines. The investigated basic soil parameters included humus content, transition, soil structure, compactness, roots, skeletal percent, color, physical assortment, concretion, soil defects. Laboratory measurements involved the determination of pH, carbonated lime content, humus content, ammonium lactate-acetic acid soluble P and K content, KCl soluble Ca and Mg content, EDTA and DTPA soluble Cu, Fe, Mn and Zn content. Soil samples were also investigated for heavy metal contents using ICP-OES method (Thermo Scientific iCAP 7000 Series). By the use of thermoanalytical measurements (Mettler Toledo TGA/DSC 1 type thermogravimeter, 5°C/min, air atmosphere, 25-1000°C) the mineral composition of the soils was evaluated. Regarding major aroma compounds in grape berries and wine, the concentrations of organic acids (tartaric-, acetic-, succinic-, malic-, lactic acid), methanol, ethanol, glycerine, glucose and fructose were determined by high performance liquid chromatography (Shimadzu LC-20 HPLC equipment with DAD and RID detection). The density, titratable acidity, pH and total extractive content of the wine samples was also determined. With the presentation of the results the possible relationships between individual parameters will be demonstrated. The research is supported by the "Agroclimate-2" (VKSZ_12-1-2013-0034) joint EU-national research project.

  8. Fundamentals of watershed hydrology

    Treesearch

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  9. Automated irrigation management with soil and canopy sensing

    USDA-ARS?s Scientific Manuscript database

    Automated irrigation management provides for real time feedback between crop water needs and the delivery of specific amount of irrigation water to specific locations on demand. In addition to the basic components of any irrigation system, e.g. pumps, filters, valves, pipes and tubing, sprinkler he...

  10. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  11. RESOURCES CONSERVATIONS COMPANY - B.E.S.T. SOLVENT EXTRACTION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...

  12. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  13. [Near infrared spectrum analysis and meaning of the soil in 512 earthquake surface rupture zone in Pingtong, Sichuan].

    PubMed

    Yi, Ze-bang; Cao, Jian-jin; Luo, Song-ying; Wang, Zheng-yang; Liao, Yi-peng

    2014-08-01

    Through modern near infrared spectrum, the authors analyzed the yellow soil from the rupture zone located in Ping- tong town,Pingwu, Sichuan province. By rapid identification of the characteristic of peak absorption of mineral particles, the result shows that the soil samples mainly composed of calcite, dolomite, muscovite, sericite, illite, smectite; talc, tremolite, actinolite, chlorite, etc. And the mineral compositions of the soil is basically the same with the yellow soil in Sichuan region. By analyzing and comparing it was revealed that part of mineral compositions of the soil are in accordance with the characteristics of the rock mineral compositions below the rupture zone, indicating that part of the minerals of the soil's evolution is closely related to the rock compositions in this area; and the compositions of the clay mineral in the rupture zone is similar to the Ma Lan loess in the north of China, so it is presumed that the clay minerals in these two kinds of soil have the same genetic type. The characteristic of the mineral composition of the soil is in accordance with evolution characteristics of the rocks which is bellow the rupture zone, also it was demonstrated that the results of soil minerals near-infrared analysis can effectively analyze the mineral particles in the soil and indicate the pedogenic environment. Therefore, the result shows the feasibility of adopting modern near-infrared spectrum for rapid analysis of mineral particles of the soil and research of geology. Meanwhile, the results can be the foundation of this region's soil mineral analysis, and also provide new ideas and methods for the future research of soil minerals and the earthquake rupture zone.

  14. Retention equations of nonionic organic chemicals in soil column chromatography with methanol-water eluents.

    PubMed

    Xu, Feng; Liang, Xinmiao; Lin, Bingcheng

    2002-01-01

    Research efforts dealing with chemical transportation in soils are needed to prevent damage to ground water. Methanol-containing solvents can increase the translocation of nonionic organic chemicals (NOCs). In this study, a general log-linear retention equation, log k' = log k'w - Sphi (Eq. [1]), was developed to describe the mobilities of NOCs in soil column chromatography (SCC). The term phi denotes the volume fraction of methanol in eluent, k' is the capacity factor of a solute at a certain phi value, and log k'w and -S are the intercept and slope of the log k' vs. phi plot. Two reference soils (GSE 17204 and GSE 17205) were used as packing materials, and were eluted by isocratic methanol-water mixtures. A model of linear solvation energy relationships (LSER) was applied to analyze the k' from molecular interactions. The most important factor determining the transportation was found to be the solute hydrophobic partition in soils, and the second-most important factor was the solute hydrogen-bond basicity (hydrogen-bond accepting ability), while the less important factor was the solute dipolarity-polarizability. The solute hydrogen-bond acidity (hydrogen-bond donating ability) was statistically unimportant and deletable. From the LSER model, one could also obtain Eq. [1]. The experimental k' data of 121 NOCs can be accurately explained by Eq. [1]. The equation is promising to estimate the solute mobility in pure water by extrapolating from lower-capacity factors obtained in methanol-water mixed eluents.

  15. Molecular and Imaging Insights into the Formation of Soil Organic Matter in a Red Pine Rhizosphere

    NASA Astrophysics Data System (ADS)

    Dohnalkova, A.; Tfaily, M.; Smith, A. P.; Chu, R. K.; Crump, A.; Brislawn, C.; Varga, T.; Shi, Z.; Thomashow, L. S.; Harsh, J. B.; Balogh-Brunstad, Z.; Keller, C. K.

    2017-12-01

    Microbially-derived carbon inputs to soils play an important role in forming soil organic matter (SOM), but detailed knowledge of basic mechanisms of carbon (C) cycling, such as stabilization of organic C compounds originating from rhizodeposition, is limited. The objective of this study aimed to investigate the stability of rhizosphere-produced carbon components in a model laboratory mesocosm of Pinus resinosa grown in a designed mineral soil mix. We hypothesized that nutrient limitation would cause formation of microbially-produced C constituents that would contribute to SOM stabilization. We focused on the processes of rhizodeposition in the rhizosphere, and we utilized a suite of advanced imaging and molecular techniques to obtain a molecular-level identification of the microbial community and the newly-formed SOM compounds in the rhizosphere and the bulk soil. We considered implications regarding their degree of long-term stability. The microbes in this controlled, nutrient-limited system, without pre-existing organic matter, produced extracellular polymeric substances that formed associations with nutrient-bearing minerals and contributed to the microbial mineral weathering process. Electron microscopy revealed unique ultrastructural residual signatures of biogenic C compounds, and the increased presence of an amorphous organic phase associated with the mineral phase was evidenced by X-ray diffraction. These findings provide insight into the various degrees of stability of microbial SOM products in ecosystems and evidence that the residual biogenic material associated with mineral matrices may be important components in current carbon cycle models.

  16. [Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].

    PubMed

    Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu

    2014-03-01

    The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.

  17. Kubiëna's heritage: worries and hopes about micropedology (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Stoops, Georges

    2010-05-01

    Kubiëna's book 'Micropedology' (1938) is considered as the start of soil micromorphology, providing the first concepts allowing a systematic description and comparison of soil thin sections as a central tool for understanding soil genesis and for soil classification. The aim of this contribution is to evaluate the impact and the role of micromorphology in different fields of application, and to evaluate its progress as a discipline. The most important application in soil science has always been in the field of soil genesis. This is however affected by the declining interest (and sponsoring) for genesis nowadays. It remains however a must for studies on pedogenesis and weathering. After a strong impulse early in the nineteen sixties, caused by the study of many exotic soils and the development of new soil classification systems (7th Approximation, later Soil Taxonomy) the role of micromorphology declined together with the general interest in soil classification. Its break through as an instrument in classification did not realise. Several causes can be mentioned. On the base of experience gained in the fields of pedogenesis and classification, micromorphology became for geologists and geomorphologists an important instrument in palaeopedology, Quaternary geology and environmental reconstruction. The last two decades an enormous expansion of micromorphological studies has been noticed in the field of archaeology, not only related to ancient soils, but also to many anthropogenic materials. Archaeologists are probably the most intense users of this discipline now. Since the end of the nineteen sixties quantitative micromorphology (micromorphometry) was developed as a response to the demand for numerical data. It expanded mainly since the development of personal computers, but its wider use is essentially restricted to porosity studies related to soil physics. The complete absence of standardisation of methods and parameters hinders however its use and further expansion. Micromorphology proved also to be precious tool in monitoring experiments, both in the laboratory and in the field, often using quantitative data. Changes become visible in thin sections before they can be detected by other methods. Examples are studies on surface crust formation, effects of freezing, gypsum crystallisation and land management. Last years especially archaeologists contributed in these fields. It is also an excellent tool for controlling and interpreting data obtained by other methods. Analysis of literature and abstracts of congresses show that the last two decennia very few contributions were made related to development of micromorphological concepts and techniques. There are several causes for this situation. The bottleneck hindering use and expansion of micromorphology are both technical and theoretical. The main factors are the difficulty to acquire the necessary basic knowledge of optical techniques and micromorphological interpretation, and the difficulty to prepare good thin sections. Solutions are discussed, even as new opportunities for this discipline, at the benefit of different earth sciences.

  18. Seismic Hazard Assessment for the Baku City and Absheron Peninsula, Azerbaijan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babayev, Gulam R.

    2006-03-23

    This paper deals with the seismic hazard assessment for Baku and the Absheron peninsula. The assessment is based on the information on the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect. I analyze active faults, seismicity, soil and rock properties, geological cross-sections, the borehole data of measured shear-wave velocity, lithology, amplification factor of each geological unit, geomorphology, topography, and basic rock and surface ground motions. To estimate peak ground acceleration (PGA) at the surface, PGA at the basic rock is multiplied by the amplification parameter of each surface layers. Quaternary soft deposits, representing a highmore » risk due to increasing PGA values at surface, are studied in detail. For a near-zone target earthquake PGA values are compared to intensity at MSK-64 scale for the Absheron peninsula. The amplification factor for the Baku city is assessed and provides estimations for a level of a seismic motion and seismic intensity of the studied area.« less

  19. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    NASA Astrophysics Data System (ADS)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded within the first three days in all soils, indicating a fast initial dissipation rate. However, the dissipation rate considerably decreased over time and the degradation kinetics adjusted to a two-compartment kinetic model. No differences were found between tillage practices. Dissipation was not related to the microbial activity measured as soil respiration. The fast decrease in the concentration of glyphosate at the beginning of the dissipation study was not reflected in an increase on the concentration of AMPA. The estimated half-lives for glyphosate ranged between 9 and 38 days. However, glyphosate bioavailability decreases over time as it is strongly adsorbed to the soil matrix. This increases its residence time which may lead to its accumulation in agricultural soils.

  20. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  1. Variation of Soil Bacterial Communities in a Chronosequence of Rubber Tree (Hevea brasiliensis) Plantations

    PubMed Central

    Zhou, Yu-Jie; Li, Jian-Hua; Ross Friedman, Cynthia; Wang, Hua-Feng

    2017-01-01

    Regarding rubber tree plantations, researchers lack a basic understanding of soil microbial communities; specifically, little is known about whether or not soil microbial variation is correlated with succession in these plantations. In this paper, we used high-throughput sequencing of the 16S rRNA gene to investigate the diversity and composition of the soil bacterial communities in a chronosequence of rubber tree plantations that were 5, 10, 13, 18, 25, and 30 years old. We determined that: (1) Soil bacterial diversity and composition show changes over the succession stages of rubber tree plantations. The diversity of soil bacteria were highest in 10, 13, and 18 year-old rubber tree plantations, followed by 30 year-old rubber tree plantations, whereas 5 and 25 year-old rubber tree plantations had the lowest values for diversity. A total of 438,870 16S rDNA sequences were detected in 18 soil samples from six rubber tree plantations, found in 28 phyla, 66 classes, 139 orders, 245 families, 355 genera, and 645 species, with 1.01% sequences from unclassified bacteria. The dominant phyla were Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria, and Verrucomicrobia (relative abundance large than 3%). There were differences in soil bacterial communities among different succession stages of rubber tree plantation. (2) Soil bacteria diversity and composition in the different stages was closely related to pH, vegetation, soil nutrient, and altitude, of which pH, and vegetation were the main drivers. PMID:28611794

  2. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review.

    PubMed

    Senesi, Giorgio S; Senesi, Nicola

    2016-09-28

    Soil organic carbon (OC) measurement is a crucial factor for quantifying soil C pools and inventories and monitoring the inherent temporal and spatial heterogeneity and changes of soil OC content. These are relevant issues in addressing sustainable management of terrestrial OC aiming to enhance C sequestration in soil, thus mitigating the impact of increasing CO2 concentration in the atmosphere and related effects on global climate change. Nowadays, dry combustion by an elemental analyzer or wet combustion by dichromate oxidation of the soil sample are the most recommended and commonly used methods for quantitative soil OC determination. However, the unanimously recognized uncertainties and limitations of these classical laboursome methods have prompted research efforts focusing on the development and application of more advanced and appealing techniques and methods for the measurement of soil OC in the laboratory and possibly in situ in the field. Among these laser-induced breakdown spectroscopy (LIBS) has raised the highest interest for its unique advantages. After an introduction and a highlight of the LIBS basic principles, instrumentation, methodologies and supporting chemometric methods, the main body of this review provides an historical and critical overview of the developments and results obtained up-to-now by the application of LIBS to the quantitative measurement of soil C and especially OC content. A brief critical summary of LIBS advantages and limitations/drawbacks including some final remarks and future perspectives concludes this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  4. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples.

    PubMed

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. On the Need to Establish an International Soil Modeling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  6. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    NASA Astrophysics Data System (ADS)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  7. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a second alternative a unique optical model valid for a broad range of soils developed by the Department of Soil, Water, and Environmental Science of the University of Arizona (personal communication, already submitted) was tested. The results were compared with the particle size distribution measured in the same soils and aggregate classes using the hydrometer method. Preliminary results indicate a better calibration of the technique using the optical model of the Department of Soil, Water, and Environmental Science of the University of Arizona, which obtained a good correlations (r2>0.85). This result suggests that with an appropriate calibration of the optical model laser diffractometry might provide a reliable soil particle characterization.

  8. Radiocesium wash-off associated with soil erosion from various land uses after the Fukushima Dai-ichi NPP accident

    NASA Astrophysics Data System (ADS)

    Wakiyama, Yoshifumi; Onda, Yuichi; Yoshimura, Kazuya; Kato, Hiroaki; Konoplev, Alexei; Zheleznyak, Mark

    2014-05-01

    Soil erosion is the initial process which drives radiocesium into the aquatic systems and therefore the quantification of radiocesium wash-off associated with soil erosion is indispensable for mitigating the risks. This study presents two year's observation of soil erosion and radiocesium wash-off to quantify differences in radiocesium behavior in various land uses. Seven runoff plots were established in four landscapes; uncultivated farmland (Farmland A1, Farmland B1), cultivated farmland (Farmland A2, Farmland B2), grassland (Grassland A, Grassland B) and Japanese cedar forest (Forest) in Kawamata town, an area affected by the Fukushima Dai-ichi Nuclear Power Plant accident. The discharged sediments were collected approximately every two weeks. In laboratories, collected sediments were dried and weighed for calculating soil erosion rates (kg m-2) and served for measurements of radiocesium concentration (Bq kg-1) with HPGe detectors. The erosivity factor of the Universal Soil Loss Equation (R-factor: MJ mm ha-1 hr-1 yr-1) was calculated based on the data of precipitation. Standardized soil erosion rates (kg m-2 MJ-1 mm-1 ha hr yr), observed soil erosion rates divided by R-factor, was 1.8 × 10-4 in Farmland A1, 6.0 × 10-4 in Farmland A2, 1.5 × 10-3 in Farmland B1, 8.3 × 10-4 in Farmland B2, 9.6 × 10-6 in Grassland A, 5.9 × 10-6 in Grassland B and 2.3 × 10-6 in Forest. These erosion rates were basically proportional to their vegetation cover of soil surfaces except for cultivated farmlands. Concentrations of Cs-137 in eroded sediments basically depended on the local deposition of Cs-137 and varied enormously with ranging several orders of magnitude in all the landscapes. For the observation period of time decreasing trends in concentrations of Cs-137 in eroded sediments were not obvious. To compare these results with those of Chernobyl, we calculated normalized 'solid' wash-off coefficient (m2 g-1) with dividing the mean total concentration of Cs-137 in sediments by local deposition of Cs-137 (Konoplev et al., 1992). The coefficient was 4.4 × 10-5 in Farmland A1, 1.3 × 10-5 in Farmland A2, 6.4 × 10-5 in Farmland B1, 1.0 × 10-5 in Farmland B2, 2.2 × 10-5 in Grassland A, 1.0 × 10-5 in Grassland B and 8.2 × 10-5 in Forest. High erodibilities and relatively low values of normalized wash-off coefficients in cultivated farmlands can be attributed to the mixing of surface soil by ploughing. These values almost corresponded to those of Chernobyl. It was found that the total 'solid' wash-off coefficient of radiocesium from farmlands is high and for 2 years period of time after the accident reaches 10%. Generally high precipitation in the region and steep slopes promote higher wash-off of radiocesium as compared to the Chernobyl case. Also, normalized wash-off coefficients exhibited relatively less volatility than erodibilities in the landscapes. These results suggest that soil erosion management is crucial for mitigating risks of radiocesium.

  9. Features of seasonal temperature variations in peat soils of oligotrophic bogs in south taiga of Western Siberia

    NASA Astrophysics Data System (ADS)

    Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.

    2018-03-01

    The work presents the results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface down to 240 cm. All sites were divided into two groups according to the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). The waterlogged sites are better warmed in the summer period and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is in July. The minimum temperature on the surface is observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C/cm in February and 1.1 °C/cm in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn or in the beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but the degradation rate from the top is faster.

  10. Characterization of a New Family of Metal Transport Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerinot, Mary Lou; Eide, David

    1999-06-01

    Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic informationmore » on how plants acquire metals. An important long term goal of our research program is to understand how metals such as zinc, cadmium and iron are transported across membranes. Our research is focused on a new family of metal transporters, which we have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. We have identified a family of 24 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which we have designated the ''ZIP'' genes, provides a rich source of material with which to undertake studies on metal transport in eukar« less

  11. CAN A MODEL TRANSFERABILITY FRAMEWORK IMPROVE ...

    EPA Pesticide Factsheets

    Budget constraints and policies that limit primary data collection have fueled a practice of transferring estimates (or models to generate estimates) of ecological endpoints from sites where primary data exists to sites where little to no primary data were collected. Whereas benefit transfer has been well studied; there is no comparable framework for evaluating whether model transfer between sites is justifiable. We developed and applied a transferability assessment framework to a case study involving forest carbon sequestration for soils in Tillamook Bay, Oregon. The carbon sequestration capacity of forested watersheds is an important ecosystem service in the effort to reduce atmospheric greenhouse gas emissions. We used our framework, incorporating three basic steps (model selection, defining context variables, assessing logistical constraints) for evaluating model transferability, to compare estimates of carbon storage capacity derived from two models, COMET-Farm and Yasso. We applied each model to Tillamook Bay and compared results to data extracted from the Soil Survey Geographic Database (SSURGO) using ArcGIS. Context variables considered were: geographic proximity to Tillamook, dominant tree species, climate and soil type. Preliminary analyses showed that estimates from COMET-Farm were more similar to SSURGO data, likely because model context variables (e.g. proximity to Tillamook and dominant tree species) were identical to those in Tillamook. In contras

  12. Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets).

    PubMed

    Komov, V T; Ivanova, E S; Poddubnaya, N Y; Gremyachikh, V A

    2017-03-01

    The characteristic properties of uptake and distribution of mercury in terrestrial ecosystems have received much lesser attention compared to aquatic particularly in Russia. Terrestrial ecosystems adjacent to large industrial manufactures-potential sources of mercury inflow into the environment frequently remain unstudied. This is the first report on mercury (Hg) levels in the basic elements of terrestrial ecosystems situated close to a large metallurgical complex.Mean values of mercury concentration (mg Hg/kg dry weight) in the vicinity of city of Cherepovets were the following: 0.056 ± 0.033-in the humus layer of soil; 0.556 ± 0.159-in earthworms; in the organs of voles Myodes glareolus (kidneys-0.021 ± 0.001; liver-0.014 ± 0.003; muscle-0.014 ± 0.001; brain-0.008 ± 0.002); in the organs of shrew Sorex araneus (kidneys-0.191 ± 0.016; liver-0.124 ± 0.011; muscle-0.108 ± 0.009; brain-0.065 ± 0.000). Correlation dependences between Hg content in soil and earthworms (r s  = 0.85, p < 0.01) as well as soil and all studied shrews' organs (rs = 0.44-0.58; p ≤ 0.01) were found.The results obtained evidence for a strong trophic link in the bioaccumulation of Hg in terrestrial food webs. Despite the vicinity to a large metallurgical complex, mercury content in the studied objects was significantly lower than values of corresponding parameters in the soils and biota from industrial (polluted) areas of Great Britain, the USA, and China.

  13. Does the different mowing regime affect soil biological activity and floristic composition of thermophilous Pieniny meadow?

    NASA Astrophysics Data System (ADS)

    Józefowska, Agnieszka; Zaleski, Tomasz; Zarzycki, Jan

    2016-04-01

    The study area was located in the Pieniny National Park in the Carpathian Mountain (Southern Poland). About 30% of Park's area is covered by meadows. The climax stage of this area is forest. Therefore extensive use is indispensable action to keep semi-natural grassland such as termophilous Pieniny meadows, which are characterized by a very high biodiversity. The purpose of this research was to answer the question, how the different way of mowing: traditional scything (H), and mechanical mowing (M) or abandonment of mowing (N) effect on the biological activity of soil. Soil biological activity has been expressed by microbial and soil fauna activity. Microbial activity was described directly by count of microorganisms and indirectly by enzymatic activity (dehydrogenase - DHA) and the microbial biomass carbon content (MBC). Enchytraeidae and Lumbricidae were chosen as representatives of soil fauna. Density and species diversity of this Oligochaeta was determined. Samples were collected twice in June (before mowing) and in September (after mowing). Basic soil properties, such as pH value, organic carbon and nitrogen content, moisture and temperature, were determined. Mean count of vegetative bacteria forms, fungi and Actinobacteria was higher in H than M and N. Amount of bacteria connected with nitrification and denitrification process and Clostridium pasteurianum was the highest in soil where mowing was discontinued 11 years ago. The microbial activity measured indirectly by MBC and DHA indicated that the M had the highest activity. The soil biological activity in second term of sampling had generally higher activity than soil collected in June. That was probably connected with highest organic carbon content in soil resulting from mowing and the end of growing season. Higher earthworm density was in mowing soil (220 and 208 individuals m-2 in H and M respectively) compare to non-mowing one (77 ind. m-2). The density of Enchytraeidae was inversely, the higher density was noted in N (34639 ind. m-2) than in mowing one (16266 and 25904 ind. m-2 H and M respectively). The species diversity of Enchytraeidae was the highest in H variant (15 - number of determined species) next N (11) and the lowest was in M variant (9). There was noted decrease in soil fauna abundance before and after mechanical mowing, it was 50% for Lumbricidae and 32% for Enchytraeidae. The study was supported by the special purpose grant for scientific research or development work and related tasks, contributing to the development of young scientists and doctoral students UR financed through a competition in 2015 No. BM - 4162/15

  14. A (137)Cs erosion model with moving boundary.

    PubMed

    Yin, Chuan; Ji, Hongbing

    2015-12-01

    A novel quantitative model of the relationship between diffused concentration changes and erosion rates using assessment of soil losses was developed. It derived from the analysis of surface soil (137)Cs flux variation under persistent erosion effect and based on the principle of geochemistry kinetics moving boundary. The new moving boundary model improves the basic simplified transport model (Zhang et al., 2008), and mainly applies to uniform rainfall areas which show a long-time soil erosion. The simulation results for this kind of erosion show under a long-time soil erosion, the influence of (137)Cs concentration will decrease exponentially with increasing depth. Using the new model fit to the measured (137)Cs depth distribution data in Zunyi site, Guizhou Province, China which has typical uniform rainfall provided a good fit with R(2) = 0.92. To compare the soil erosion rates calculated by the simple transport model and the new model, we take the Kaixian reference profile as example. The soil losses estimated by the previous simplified transport model are greater than those estimated by the new moving boundary model, which is consistent with our expectations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Use of Quantity Indicators for Forecasting of Biogeochemical Behavior Sr-90 and Cs-137 in the Conditions of the Combined Pollution of Soils

    NASA Astrophysics Data System (ADS)

    Lavrentyeva, G. V.; Geshel, I. V.

    2012-04-01

    From huge number of the radionuclides generated by anthropogenous activity the major value the group of biologically active radionuclides has. First of all, it Sr-90 and Cs-137 which play an important role in various radiological situations. In researches on studying of laws of behavior in environment Sr -90 and Cs-137 the basic attention was given to studying of influence of their chemical analogs Ca and K, instead of stable isotopes Sr and Cs. However, even low concentration of stable isotopes Sr and Cs in soil can influence on biogeochemical behavior of radionuclides. Objects of research: dernovo-podsolic soil, summer barley of grade, stable and radioactive isotopes Sr, Cs. Schemes of experiments provided entering of 8 doses stable Cs and Sr in the range from 0 to 500-750 mg/kg of air-dry weight of soil and 50 kBq of radionuclides on each frequency. Absorption of radionuclides by plants will be defined by two parametres of transport. The first - factor of transition (TF), which characterises level of regulation of process of carrying over of a radionuclide from soil in plants and depends on distribution of an element between the firm and liquid phase, distribution defined in the factor (Kd). The second parametre - factor of concentrating (CF) which characterises biological level of regulation of this process. The increase in quantity of stable Sr in soil leads to an active desorption Sr-90 in a soil solution on all frequency. Kd of Cs-137 on the general background of which decrease in values some increase in factor in the range of 120-225 mg of Cs/kg of soil is observed. Received Kd of radionuclides will well be co-ordinated with the revealed functional dependences between concentration Cs and Sr in soil and specific activity Cs-137 and Sr-90 in a soil solution. Comparison CF of two radionuclides shows that plants absorb Sr-90 from a soil solution actively, than Cs-137. Thus values CF of Sr-90 in the investigated interval of concentration of a stable isotope are in inverse relationship from the element maintenance in a soil solution in all investigated interval of the maintenance of the isotope carrier whereas change similar the indicator for Cs-137 has more difficult dependence. The revealed laws of change of CF studied radionuclides prove to be true the received dependences of accumulation Sr-90 and Cs-137 in barley from specific activity of radionuclides in a soil solution. Values of TF of Sr-90 are in direct dependence on level of the maintenance stable Sr, below similar indicators for Cs-137 in all interval of change of concentration of stable isotopes. It finds reflection in the analysis of functional dependences between concentration of radionuclides in plants and soil. The received values of studied factors completely reflect change of specific activity of radionuclides in a soil solution and their biological availability depending on concentration of their stable isotopes that confirms use possibility in the prognostic purposes of these indicators.

  16. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  18. Impact of changing land-use and hydrology on soil organic carbon dynamics in beef cattle agroecosystem

    USDA-ARS?s Scientific Manuscript database

    Basic information on the ecological understanding and the responses of systems to water regime change is essential for maintaining ecosystems environmental integrity and productivity. Flooding of formerly drained areas is common practice in wetland restoration. Such practice could profoundly affect ...

  19. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    USDA-ARS?s Scientific Manuscript database

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  20. Forest canopy structural properties. Chapter 14

    Treesearch

    Marie-Louise Smith; Jeanne Anderson; Matthew Fladeland

    2008-01-01

    The forest canopy is the interface between the land and the atmosphere, fixing atmospheric carbon into biomass and releasing oxygen and water. The arrangement of individual trees, differences in species morphology, the availability of light and soil nutrients, and many other factors determine canopy structure. Overviews of approaches for basic measurements of canopy...

  1. Application And Implication Of Nanomaterials In The Environment: An Overview Of Current Research At The Environmental Protection Agency (Romania)

    EPA Science Inventory

    The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...

  2. A new landscape classification system for monitoring and assessment of pastures

    USDA-ARS?s Scientific Manuscript database

    Pasturelands in the United States span a broad range of climate, soils, physical sites, and management. Rather than treat each site as a unique entity, this diversity must be classified into basic units for research and management purposes. A similar system based on ecological principles is needed f...

  3. SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...

  4. Ground Water Issue. BASIC CONCEPTS OF CONTAMINANT SORPTION AT HAZARDOUS WASTE SITES

    EPA Science Inventory

    One of the major issues of concern to the Regional Superfund Ground Water Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. Processes which influence the behavior of contaminants in the subsurface must be considered bot...

  5. Sagebrush identification, ecology, and palatability relative to sage-grouse

    Treesearch

    Roger Rosentreter

    2005-01-01

    Basic identification keys and comparison tables for 23 low and big sagebrush (Artemisia) taxa are presented. Differences in sagebrush ecology, soil temperature regimes, geographic range, palatability, mineralogy, and chemistry are discussed. Coumarin, a chemical produced in the glands of some Artemisia species, causes UV-light fluorescence of the...

  6. Using the Quirk-Schofield Diagram to Explain Environmental Colloid Dispersion Phenomena

    ERIC Educational Resources Information Center

    Mays, David C.

    2007-01-01

    Colloid dispersion, through its role in soil science, hydrology, and contaminant transport, is a basic component of many natural resources and environmental education programs. However, comprehension of colloid dispersion phenomena is limited by the numerous variables involved. This article demonstrates how the Quirk-Schofield diagram can be used…

  7. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  8. GROUND WATER ISSUE: HOW HEAT CAN ENHANCE IN-SITU SOIL AND AQUIFER REMEDIATION: IMPORTANT CHEMICAL PROPERTIES & GUIDANCE ON CHOOSING THE APPROPRIATE TECHNIQUE

    EPA Science Inventory

    The purpose of this Issue Paper and the three companion Issue Papers (Davis, 1997a, b, c) is to provide to those involved in assessing remediation technologies some basic information on the thermal remediation techniques.

  9. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  10. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    PubMed

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment increased the proportion of fungivores especially in the drought period, suggesting the biochar was the preferred fungal energy channel in comparison to soil without biochar addition. In summary, complex patterns occurred not only due to the application rate of biochar as well as their interactions with N fertilization but also due to the drought and wet periods. It is, therefore, necessary to consider different ecological factors when evaluating the effects of biochar in future.

  11. The Use of Electrical Resistivity Method to Mapping The Migration of Heavy Metals by Electrokinetic

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Ayuni, S. A.; Ezree, A. M.; Nizam, Z. M.; Aziman, M.; Hazreek, Z. A. M.; Norshuhaila, M. S.; Zaidi, E.

    2017-08-01

    The presence of heavy metals contamination in soil environment highly needs innovative remediation. Basically, this contamination was resulted from ex-mining sites, motor workshop, petrol station, landfill and industrial sites. Therefore, soil treatment is very important due to metal ions are characterized as non-biodegradable material that may be harmful to ecological system, food chain, human health and groundwater sources. There are various techniques that have been proposed to eliminate the heavy metal contamination from the soil such as bioremediation, phytoremediation, electrokinetic remediation, solidification and stabilization. The selection of treatment needs to fulfill some criteria such as cost-effective, easy to apply, green approach and high remediation efficiency. Electrokinetic remediation technique (EKR) offers those solutions in certain area where other methods are impractical. While, electrical resistivity method offers an alternative geophysical technique for soil subsurface profiling to mapping the heavy metals migration by the influece of electrical gradient. Consequently, this paper presents an overview of the use of EKR to treat contaminated soil by using ERM method to verify their effectiveness to remove heavy metals.

  12. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory.

    PubMed

    Hernandez, Rebecca R; Allen, Michael F

    2013-10-01

    Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory

    PubMed Central

    Hernandez, Rebecca R; Allen, Michael F

    2013-01-01

    Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. PMID:23844990

  14. Comparative assessment of five water infiltration models into the soil

    NASA Astrophysics Data System (ADS)

    Shahsavaramir, M.

    2009-04-01

    The knowledge of the soil hydraulic conditions particularly soil permeability is an important issue hydrological and climatic study. Because of its high spatial and temporal variability, soil infiltration monitoring scheme was investigated in view of its application in infiltration modelling. Some of models for infiltration into the soil have been developed, in this paper; we design and describe capability of five infiltration model into the soil. We took a decision to select the best model suggested. In this research in the first time, we designed a program in Quick Basic software and wrote algorithm of five models that include Kostiakove, Modified Kostiakove, Philip, S.C.S and Horton. Afterwards we supplied amounts of factual infiltration, according of get at infiltration data, by double rings method in 12 series of Saveh plain which situated in Markazi province in Iran. After accessing to models coefficients, these equations were regenerated by Excel software and calculations related to models acuity rate in proportion to observations and also related graphs were done by this software. Amounts of infiltration parameters, such as cumulative infiltration and infiltration rate were obtained from designed models. Then we compared amounts of observation and determination parameters of infiltration. The results show that Kostiakove and Modified Kostiakove models could quantify amounts of cumulative infiltration and infiltration rate in triple period (short, middle and long time). In tree series of soils, Horton model could determine infiltration amounts better than others in time trinal treatments. The results show that Philip model in seven series had a relatively good fitness for determination of infiltration parameters. Also Philip model in five series of soils, after passing of time, had curve shape; in fact this shown that attraction coefficient (s) was less than zero. After all S.C.S model among of others had the least capability to determination of infiltration parameters.

  15. Soil analysis in discussions of agricultural feasibility for ancient civilizations: A critical review and reanalysis of the data and debate from Chaco Canyon, New Mexico.

    PubMed

    McCool, Jon-Paul P; Fladd, Samantha G; Scarborough, Vernon L; Plog, Stephen; Dunning, Nicholas P; Owen, Lewis A; Watson, Adam S; Bishop, Katelyn J; Crowley, Brooke E; Haussner, Elizabeth A; Tankersley, Kenneth B; Lentz, David; Carr, Christopher; Thress, Jessica L

    2018-01-01

    Questions about how archaeological populations obtained basic food supplies are often difficult to answer. The application of specialist techniques from non-archaeological fields typically expands our knowledge base, but can be detrimental to cultural interpretations if employed incorrectly, resulting in problematic datasets and erroneous conclusions not easily caught by the recipient archaeological community. One area where this problem has failed to find resolution is Chaco Canyon, New Mexico, the center of one of the New World's most vibrant ancient civilizations. Discussions of agricultural feasibility and its impact on local population levels at Chaco Canyon have been heavily influenced by studies of soil salinity. A number of researchers have argued that salinized soils severely limited local agricultural production, instead suggesting food was imported from distant sources, specifically the Chuska Mountains. A careful reassessment of existing salinity data as measured by electrical conductivity reveals critical errors in data conversion and presentation that have misrepresented the character of the area's soil and its potential impact on crops. We combine all available electrical conductivity data, including our own, and apply multiple established conversion methods in order to estimate soil salinity values and evaluate their relationship to agricultural productivity potential. Our results show that Chacoan soils display the same salinity ranges and spatial variability as soils in other documented, productive fields in semi-arid areas. Additionally, the proposed large-scale importation of food from the Chuska Mountains region has serious social implications that have not been thoroughly explored. We consider these factors and conclude that the high cost and extreme inflexibility of such a system, in combination with material evidence for local agriculture within Chaco Canyon, make this scenario highly unlikely. Both the soil salinity and archaeological data suggest that there is no justification for precluding the practice of local agriculture within Chaco Canyon.

  16. Lacandon Maya ecosystem management: sustainable design for subsistence and environmental restoration.

    PubMed

    Diemont, Stewart A W; Martin, Jay F

    2009-01-01

    Indigenous groups have designed and managed their ecosystems for generations, resulting in biodiversity protection while producing for their family's needs. Here we describe the agroecosystem of the Lacandon Maya, an indigenous group who live in Chiapas, Mexico. The Lacandon practice a form of swidden agriculture that conserves the surrounding rain forest ecosystem while cycling the majority of their land through five successional stages. These stages include an herbaceous stage, two shrub stages, and two forest stages. A portion of their land is kept in primary forest. This study presents the Lacandon traditional ecological knowledge (TEK) for agroforestry and quantitatively describes the plant community and the associated soil ecology of each successional stage. Also documented is the knowledge of the Lacandon regarding the immediate use of plant species and plant species useful for soil fertility enhancement. Woody plant diversity increases during the successional stages of the Lacandon system, and by the beginning of the first forest stage, the diversity is similar to that of the primary forest. In all stages, Lacandon use 60% of the available plant species for food, medicine, and raw materials. Approximately 45% of the woody plant species present in each fallow stage were thought by the Lacandon to enhance soil fertility. Total soil nitrogen and soil organic matter increased with successional stage and with time from intentional burn. Nutrient and soil nematode dynamics in shrub stages related to the presence of introduced and managed plants, indicating engineered soil enhancement by the Lacandon. The effects on biodiversity and soil ecology coupled with productivity for agricultural subsistence indicate that Lacandon TEK may offer tools for environmental conservation that would provide for a family's basic needs while maintaining a biodiverse rain forest ecosystem. Tools such as these may offer options for regional restoration and conservation efforts such as the Mesoamerican Biological Corridor in Mexico and Central America, where attainment of environmental goals must include methods to provide resources to local inhabitants.

  17. [Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Wei, Quan-Shuai; Wang, Jing-Hua; Duan, Wen-Biao; Chen, Li-Xin; Wang, Ting; Han, Dong-Hui; Gu, Wei

    2014-03-01

    An investigation was conducted in a 2.25 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study basic characteristics of 7 small gaps, 5 middle gaps, 3 large gaps and 7 closed stands within 38 pit and mound complexes caused by treefall in May 2012. From June to September 2012, the soil temperature, soil water content and relative humidity at five microsites (pit bottom, pit wall, mound top, mound face and undisturbed closed stands) were measured in six sunny days each month. The results showed that among the five microsites in every month, the mound top had the highest soil temperature and the lowest water content and relative humidity, and vice versa for the pit bottom. Mostly, the differences in the above indicators among the five microsites were significant. From June to September, the mean soil temperatures for all microsites at pit and mound complex in the various gaps and closed stands were in the order of large gap>middle gap >small gap>closed stand; but the soil water content ranked differently every month. In June, August and September, the mean relative humidities for all microsites in the various gaps and closed stands were in the order of closed stand>small gap>middle gap>large gap. Mostly, the differences in the above indicators between all microsites in the various gaps and closed stand were significant. The mean monthly soil temperature and relative humidity were highest in July, but lowest in September. The maximal mean monthly soil water content occurred in July and the minimal one in September for each microsite except the undisturbed closed stands, where the maximal mean monthly soil water content occurred in July. The variation of the microclimate at the pit and mound complex was mainly influenced by gap size, microsite, and time.

  18. Multiscale analysis of the spatial variability of heavy metals and organic matter in soils and groundwater across Spain

    NASA Astrophysics Data System (ADS)

    Luque-Espinar, J. A.; Pardo-Igúzquiza, E.; Grima-Olmedo, J.; Grima-Olmedo, C.

    2018-06-01

    During the last years there has been an increasing interest in assessing health risks caused by exposure to contaminants found in soil, air, and water, like heavy metals or emerging contaminants. This work presents a study on the spatial patterns and interaction effects among relevant heavy metals (Sb, As and Pb) that may occur together in different minerals. Total organic carbon (TOC) have been analyzed too because it is an essential component in the regulatory mechanisms that control the amount of metal in soils. Even more, exposure to these elements is associated with a number of diseases and environmental problems. These metals can have both natural and anthropogenic origins. A key component of any exposure study is a reliable model of the spatial distribution the elements studied. A geostatistical analysis have been performed in order to show that selected metals are auto-correlated and cross-correlated and type and magnitude of such cross-correlation varies depending on the spatial scale under consideration. After identifying general trends, we analyzed the residues left after subtracting the trend from the raw variables. Three scales of variability were identified (compounds or factors) with scales of 5, 35 and 135 km. The first factor (F1) basically identifies anomalies of natural origin but, in some places, of anthropogenics origin as well. The other two are related to geology (F2 and F3) although F3 represents more clearly geochemical background related to large lithological groups. Likewise, mapping of two major structures indicates that significant faults have influence on the distribution of the studied elements. Finally, influence of soil and lithology on groundwater by means of contingency analysis was assessed.

  19. Multilaboratory evaluation of methods for detecting enteric viruses in soils.

    PubMed Central

    Hurst, C J; Schaub, S A; Sobsey, M D; Farrah, S R; Gerba, C P; Rose, J B; Goyal, S M; Larkin, E P; Sullivan, R; Tierney, J T

    1991-01-01

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, there was a statistically significant laboratory effect exhibited by assay titers from the independent versus reference laboratories for two of the soils, sandy loam and clay loam. PMID:1849712

  20. Multilaboratory evaluation of methods for detecting enteric viruses in soils.

    PubMed

    Hurst, C J; Schaub, S A; Sobsey, M D; Farrah, S R; Gerba, C P; Rose, J B; Goyal, S M; Larkin, E P; Sullivan, R; Tierney, J T

    1991-02-01

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated "Berg" and "Goyal," was based on results of an initial screening which indicated that both met basic criteria considered essential by the task group. Both methods utilized beef extract solutions to achieve desorption and recovery of viruses from representative soils: a fine sand soil, an organic muck soil, a sandy loam soil, and a clay loam soil. One of the two methods, Goyal, also used a secondary concentration of resulting soil eluants via low-pH organic flocculation to achieve a smaller final assay volume. Evaluation of the two methods was simultaneously performed in replicate by nine different laboratories. Each of the produced samples was divided into portions, and these were respectively subjected to quantitative viral plaque assay by both the individual, termed independent, laboratory which had done the soil processing and a single common reference laboratory, using a single cell line and passage level. The Berg method seemed to produce slightly higher virus recovery values; however, the differences in virus assay titers for samples produced by the two methods were not statistically significant (P less than or equal to 0.05) for any one of the four soils. Despite this lack of a method effect, there was a statistically significant laboratory effect exhibited by assay titers from the independent versus reference laboratories for two of the soils, sandy loam and clay loam.

  1. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  2. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    PubMed

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were < 1 independent of niche or water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  4. Viewpoints on impacts of climate change on soil quality

    NASA Astrophysics Data System (ADS)

    Dilly, Oliver; Pfeiffer, Eva-Maria; Trasar-Cepeda, Carmen; Nannipieri, Paolo

    2010-05-01

    Climate projections indicate a critical increase in temperature and modification of the precipitation pattern for the next century worldwide (IPCC 2007). Higher temperature increase are expected in polar than in temperate and tropical regions. In addition, studies on the response of microbial metabolism to temperature changes showed lower sensitivity at higher temperature level as analyzed by Q10 values (Kirschbaum 1995). The temperature response as indicated by the Q10 value refers to physiological response including enzyme configuration and substrate availability. For soils from an undisturbed forest site in eastern Amazonia, Knorr et al. (2005) observed even that the apparent pool turnover times are insensitive to temperature and received evidence that non-labile soil organic carbon was more sensitive to temperature than labile soil organic carbon. Linking the climate projections and the findings related to Q10 values suggests that the microbial activity may be stimulated to a higher degree at northern latitudes than at lower latitudes. But few studies address the role of temperature changes on soil organic matter pool and microbial biomass and activities although temperature changes may be important (Dilly et al. 2003). On top, the thawing of permafrost soil (24 % of exposed land in the Northern Hemisphere) represents a further threat since erosion processes will occur and captured gases may evolve to the atmosphere. Finally, dryness and drying-rewetting cycling that are affected by climate change are regulating soil organic carbon turnover (Mamilov and Dilly 2001). The lecture will summarize basic findings and positive feedback on our climate system and also address the concept of ‘soil energ-omics' including the interaction between respiration and microbial colonization and the respective metabolic quotient (Dilly 2006). Key words: Q10, Nitrogen deposition, Permafrost, Carbon turnover, Microbial biomass, adjustment References Dilly, O., 2006. Evaluating soil quality in ecosystems based on modern respiratory approaches. In: Cenci R., Sena F. (eds.) Biodiversity-bioindication to evaluate soil health. European Commission EUR 22245EN, p. 59-64 Dilly O., Blume H.-P., Munch J.C., 2003. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319-339 IPPC 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, 2007). Kirschbaum, M.U.F., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27, 753-760 Knorr W., Prentice I.C., House J.I., Holland E.A. 2005. Long-term sensitivity of soil carbon to warming. Nature 433, 298-301 Mamilov, A. Sh., Dilly, O., 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology and Biochemistry 34, 1283-1290

  5. Potential of the Thermal Infrared Wavelength Region to predict semi-arid Soil Surface Properties for Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann

    2014-05-01

    Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models using the LWIR-window (sand content: R2 = 0.84 and RMSECV = 1.09 %, and for clay content: R2 = 0.77 and RMSECV = 1.0 %, both with 3 factor models). In comparison, the quantification from the solar-reflective window showed its limitations in its relative complex PLSR models and a lower prediction accuracy (sand content: R2 = 0.69 and RMSECV = 1.5 % with 7 factors, and for clay content: R2 = 0.64 and RMSECV = 1.26 % with 9 factors). The prediction of the SOC content, on the other hand, showed minor disparity between the two atmospheric windows (LWIR: R2 = 0.73 and RMSECV = 0.1 % with 6 factors, VNIR-SWIR: R2 = 0.69 and RMSECV = 0.11 %, with 9 factors). The prospect of the LWIR for determining soil texture was demonstrated to be even more impressive when reduced to the spectral band specifications of airborne (TASI-600) and spaceborne (ASTER) sensors. The results demonstrate the high potential of the LWIR to detect and quantify soil surface properties in the future for a monitoring via LWIR hyperspectral remote sensing.

  6. Allowable residual contamination levels of radionuclides in soil from pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyquist, J.E.; Baes, C.F. III

    1987-01-01

    The uncertainty regarding radionuclide distributions among Remedial Action Program (RAP) sites and long-term decommissioning and closure options for these sites requires a flexible approach capable of handling different levels of contamination, dose limits, and closure scenarios. We identified a commercially available pathway analysis model, DECOM, which had been used previously in support of remedial activities involving contaminated soil at the Savannah River Plant. The DECOM computer code, which estimates concentrations of radionuclides uniformly distributed in soil that correspond to an annual effective dose equivalent, is written in BASIC and runs on an IBM PC or compatible microcomputer. We obtained themore » latest version of DECOM and modified it to make it more user friendly and applicable to the Oak Ridge National Laboratory (ORNL) RAP. Some modifications involved changes in default parameters or changes in models based on approaches used by the EPA in regulating remedial actions for hazardous substances. We created a version of DECOM as a LOTUS spreadsheet, using the same models as the BASIC version of DECOM. We discuss the specific modeling approaches taken, the regulatory framework that guided our efforts, the strengths and limitations of each approach, and areas for improvement. We also demonstrate how the LOTUS version of DECOM can be applied to specific problems that may be encountered during ORNL RAP activities. 18 refs., 2 figs., 3 tabs.« less

  7. Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.

    PubMed

    Abrahamson, John

    2002-01-15

    The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball lightning energy release, and argued to be the result of a normal lightning strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to lightning strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model predicted the important properties of "average" observed ball lightning, and the extension in this paper also covers high-energy examples of ball lightning. Laboratory checks of the theory are described, and predictions given of what conditions are necessary for observing ball lightning in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball lightning through a sheet of building material, including glass, and its occasional charring of flesh on close contact.

  8. Soil organic carbon dynamics following afforestation in the Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.

    2013-07-01

    Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.

  9. On nutrients and trace metals: Effects from Enhanced Weathering

    NASA Astrophysics Data System (ADS)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like afforestation, biofuel production, and biochar application could benefit from Enhanced Weathering side effects, as organic carbon pools are positively influenced.

  10. System reliability analysis of granular filter for protection against piping in dams

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Sivakumar Babu, G. L.

    2015-09-01

    Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.

  11. Optimal Thermolysis Conditions for Soil Carbon Storage on Plant Residue Burning: Modeling the Trade-Off between Thermal Decomposition and Subsequent Biodegradation.

    PubMed

    Kajiura, Masako; Wagai, Rota; Hayashi, Kentaro

    2015-01-01

    Field burning of plant biomass is a widespread practice that provides charred materials to soils. Its impact on soil C sequestration remains unclear due to the heterogeneity of burning products and difficulty in monitoring the material's biodegradation in fields. Basic information is needed on the relationship between burning conditions and the resulting quantity/quality of residue-derived C altered by thermal decomposition and biodegradation. In this study, we thermolyzed residues (rice straw and husk) at different temperatures (200-600°C) under two oxygen availability conditions and measured thermal mass loss, C compositional change by solid-state C NMR spectroscopy, and biodegradability of the thermally altered residues by laboratory aerobic incubation. A trade-off existed between thermal and microbial decomposition: when burned at higher temperatures, residues experience a greater mass loss but become more recalcitrant via carbonization. When an empirical model accounting for the observed trade-off was projected over 10 to 10 yr, we identified the threshold temperature range (330-400°C) above and below which remaining residue C is strongly reduced. This temperature range corresponded to the major loss of O-alkyl C and increase in aromatic C. The O/C molar ratios of the resultant residues decreased to 0.2 to 0.4, comparable to those of chars in fire-prone field soils reported previously. Although the negative impacts of biomass burning need to be accounted for, the observed relationship may help to assess the long-term fate of burning-derived C and to enhance soil C sequestration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  13. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  14. An analytical model for in situ extraction of organic vapors

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1991-01-01

    This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (K(H)) and between the liquid-soil phase by soil adsorption constants (K(d)) derived from soil organic carbon-water partition coefficients (K(oc)). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (K(oc) < 100 mL/g) were significantly higher when K(H) was greater than 10-4 atm??m3??mol-1. When K(oc) was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (KH) and between the liquid-soil phase by soil adsorption constants (Kd) derived from soil organic carbon-water partition coefficients (Koc). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (Koc < 100 mL/g) were significantly higher when KH was greater than 10-4atm-m3-mol-1. When Koc was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.

  15. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    USGS Publications Warehouse

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  16. Effect of fertilizers on faba bean (V. faba) growth and soil pH

    NASA Astrophysics Data System (ADS)

    Angel, C.

    2013-12-01

    The purpose of this experiment was to see the effect of fertilizers on faba bean (V. faba) growth and soil pH. This experiment is important because of the agriculture here in California and the damage fertilizers are doing to the soil. Three Broad Fava Windsor beans (Vicia faba) were planted per pot, with at least three pots per treatment. There were four treatments: soil with phosphorus (P) fertilizer, soil with nitrogen (N) fertilizer, soil with both N and P fertilizer, and soil without any fertilizers (control). The soil pH was 7.7, and it had 26.6mg/kg Olsen-P, 2.2mg/kg ammonium-N and no nitrate-N (Data from UCD Horwath Lab). All pots were put in a greenhouse with a stable temperature of 80 degrees. I watered them 2-3 times a week. After two months I measured the soil pH using a calibrated pHep HI 98107 pocket-sized pH meter. After letting the plants dry I weighed the shoots and roots separately for dry biomass. From testing pH of the soil of the faba bean plants with and without fertilizer I found that only the nitrogen fertilizer made the soil more acidic than the other ones. The other ones became more basic. Also the N-fertilized plants weighed more than the other ones. This shows how the nitrogen fertilizer had a greater impact on the plants. I think the reason why the nitrogen and the phosphorus fertilizers didn't work as well is because there was an interaction between the fertilizers and the nitrogen one made the soil more acidic because of the way nitrogen is made.

  17. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil

    NASA Astrophysics Data System (ADS)

    Wang, Sa; Guo, Shuhai; Li, Fengmei; Yang, Xuelian; Teng, Fei; Wang, Jianing

    2016-04-01

    This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg-1 glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg-1·d-1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.

  18. Ecosystem-atmosphere exchange of CO2 in a temperate herbaceous peatland in the Sanjiang Plain of northeast China

    USGS Publications Warehouse

    Zhu, Xiaoyan; Song, Changchun; Swarzenski, Christopher M.; Guo, Yuedong; Zhang, Xinhow; Wang, Jiaoyue

    2015-01-01

    Northern peatlands contain a considerable share of the terrestrial carbon pool, which will be affected by future climatic variability. Using the static chamber technique, we investigated ecosystem respiration and soil respiration over two growing seasons (2012 and 2013) in a Carex lasiocarpa-dominated peatland in the Sanjiang Plain in China. We synchronously monitored the environmental factors controlling CO2 fluxes. Ecosystem respiration during these two growing seasons ranged from 33.3 to 506.7 mg CO2–C m−2 h−1. Through step-wise regression, variations in soil temperature at 10 cm depth alone explained 73.7% of the observed variance in log10(ER). The mean Q10 values ranged from 2.1 to 2.9 depending on the choice of depth where soil temperature was measured. The Q10 value at the 10 cm depth (2.9) appears to be a good representation for herbaceous peatland in the Sanjiang Plain when applying field-estimation based Q10values to current terrestrial ecosystem models due to the most optimized regression coefficient (63.2%). Soil respiration amounted to 57% of ecosystem respiration and played a major role in peatland carbon balance in our study. Emphasis on ecosystem respiration from temperate peatlands in the Sanjiang Plain will improve our basic understanding of carbon exchange between peatland ecosystem and the atmosphere.

  19. Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria

    2015-09-01

    Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.

  20. Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment materials.

    PubMed

    Cho, B H; Chino, H; Tsuji, H; Kunito, T; Nagaoka, K; Otsuka, S; Yamashita, K; Matsumoto, S; Oyaizu, H

    1997-10-01

    A huge amount of oil-contaminated soil remains unremediated in the Kuwait desert. The contaminated oil has the potentiality to cause pollution of underground water and to effect the health of people in the neighborhood. In this study, laboratory scale bioremediation experiments were carried out. Hyponex (Hyponex, Inc.) and bark manure were added as basic nutrients for microorganisms, and twelve kinds of materials (baked diatomite, microporous glass, coconut charcoal, an oil-decomposing bacterial mixture (Formula X from Oppenheimer, Inc.), and eight kinds of surfactants) were applied to accelerate the biodegradation of oil hydrocarbons. 15% to 33% of the contaminated oil was decomposed during 43 weeks' incubation. Among the materials tested, coconut charcoal enhanced the biodegradation. On the contrary, the addition of an oil-decomposing bacterial mixture impeded the biodegradation. The effects of the other materials were very slight. The toxicity of the biodegraded compounds was estimated by the Ames test and the tea pollen tube growth test. Both of the hydrophobic (dichloromethane extracts) and hydrophilic (methanol extracts) fractions showed a very slight toxicity in the Ames test. In the tea pollen tube growth test, the hydrophobic fraction was not toxic and enhanced the growth of pollen tubes.

Top