Sustainability of three modified soil conservation methods in agriculture area
NASA Astrophysics Data System (ADS)
Setiawan, M. A.; Sara, F. H.; Christanto, N.; Sartohadi, J.; Samodra, G.; Widicahyono, A.; Ardiana, N.; Widiyati, C. N.; Astuti, E. M.; Martha, G. K.; Malik, R. F.; Sambodo, A. P.; Rokhmaningtyas, R. P.; Swastanto, G. A.; Gomez, C.
2018-04-01
Recent innovations in soil conservation methods do not present any breakthrough. Providing more attractive soil conservation methods from the farmer’s perspective is however still of critical importance. Contributing to this soil research gap we attempt to evaluate the sustainable use of three modified conservation methods, namely JALAPA (Jala Sabut Kelapa - geotextile made of coconut fibres), wood sediment trap, and polybag system compared to traditional tillage without conservation method. This research provides both qualitative and quantitative analysis on the performance of each conservation measures. Therefore, in addition to the total sediment yield value and investment cost – as quantitative analysis, we also evaluate qualitatively the indicator of soil loss, installation, maintenance, and the durability of conservation medium. Those criteria define the sustainability use of each conservation method. The results show that JALAPA is the most effective method for controlling soil loss, but it also requires the most expensive cost for installation. However, our finding confirms that geotextile is sensitive to sun heating by which the coconut fibre can become dry and shrink. Wood sediment trap is the cheapest and easiest to install; however it is easily damaged by termite. Polybag method results in the highest productivity, but requires more time during the first installation. In terms of the farmer’s perspective, soil conservation using polybag system was the most accepted technique due to its high benefits; even if it is less effective at reducing soil loss compared to JALAPA.
Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model
NASA Astrophysics Data System (ADS)
Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen
2018-01-01
According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.
ERIC Educational Resources Information Center
Smith, Martha
2010-01-01
Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…
Approved Practices in Soil Conservation.
ERIC Educational Resources Information Center
Foster, Albert B.
This book is written for individuals who wish to apply conservation practices, especially those of soil and water conservation, without technical assistance, to meet one's own conditions, and within his own capability to apply them. To meet these needs, the book includes a discussion and description of soil and water conservation methods for the…
26 CFR 1.175-6 - Adoption or change of method.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the method of treating expenditures for soil or water conservation as expenses for the first taxable... or water conservation expenditures described in section 175(a) are paid or incurred. Such adoption... soil and water conservation expenditures as provided by section 175 for any taxable year to which the...
26 CFR 1.175-6 - Adoption or change of method.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the method of treating expenditures for soil or water conservation as expenses for the first taxable... or water conservation expenditures described in section 175(a) are paid or incurred. Such adoption... soil and water conservation expenditures as provided by section 175 for any taxable year to which the...
26 CFR 1.175-6 - Adoption or change of method.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the method of treating expenditures for soil or water conservation as expenses for the first taxable... or water conservation expenditures described in section 175(a) are paid or incurred. Such adoption... soil and water conservation expenditures as provided by section 175 for any taxable year to which the...
26 CFR 1.175-6 - Adoption or change of method.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the method of treating expenditures for soil or water conservation as expenses for the first taxable... or water conservation expenditures described in section 175(a) are paid or incurred. Such adoption... soil and water conservation expenditures as provided by section 175 for any taxable year to which the...
Extension of the soil conservation service rainfall-runoff methodology for ungaged watersheds
DOT National Transportation Integrated Search
1981-07-01
The estimation of direct runoff for ungaged watersheds is a common problem in : engineering hydrology. The method of the Soil Conservation Services (SCS) is widely used due to its ease of application. Runoff estimates are based upon the soil types an...
NASA Technical Reports Server (NTRS)
Pelletier, R. E.; Griffin, R. H.
1985-01-01
The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.
Research progress and harnessing method of soil and water loss in Pisha Sandstone region
NASA Astrophysics Data System (ADS)
Xiao, P. Q.; Yang, C. X.; Jing, C. R.
2018-05-01
Pisha Sandstone region is the most vulnerable and the most dramatic area of soil erosion, severe soil erosion on the ecological bases of China’s energy security constitutes a serious challenge. Research progress of soil erosion in pisha Sandstone region was reviewed based on the need of soil and water ecological construction in Pisha Sandstone region and harnessing the yellow river including soil erosion mechanism, soil erosion dynamic monitoring and soil erosion simulation assessments. Meanwhile, the latest progress of soil and water conservation measures was analyzed, and the existing problems and future harnessing measures of soil and water loss were discussed. This study is to explore the comprehensive management method and provide scientific theory for constructing soil and water conservation project in Pisha Sandstone region.
EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL
The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...
NASA Astrophysics Data System (ADS)
Michel, Claude; Andréassian, Vazken; Perrin, Charles
2005-02-01
This paper unveils major inconsistencies in the age-old and yet efficient Soil Conservation Service Curve Number (SCS-CN) procedure. Our findings are based on an analysis of the continuous soil moisture accounting procedure implied by the SCS-CN equation. It is shown that several flaws plague the original SCS-CN procedure, the most important one being a confusion between intrinsic parameter and initial condition. A change of parameterization and a more complete assessment of the initial condition lead to a renewed SCS-CN procedure, while keeping the acknowledged efficiency of the original method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, D.T.; Silver, M.B.
1982-01-01
This article describes how property-tax incentives can be used to implement soil-conservation programs on agricultural and open-space lands under the differential-assessment statutes and other exceptions to constitutional limitations on taxation powers. The article describes restrictions imposed on taxing powers by the constitutional uniformity clauses and methods for circumventing those limitations; various property-tax incentives available for conservation programs; types of differential or use-value assessments providing property-tax relief for farm, forest, and open-space land preservation; eligibility of lands for differential assessments; methods available to landowners for participation in differential assessments; and determination of value under differential assessment. The article next details howmore » each of the three primary types of differential or use-value assessment statutes for farm, forest, and open-space land preservation provides exceptions to the uniformity clauses for property tax incentives to implement soil-conservation programs. Other methods available for providing exceptions to the uniformity clauses to permit property-tax incentives are also described for each of the three states. Each of these states has statutes giving favorable tax treatment to certain types of property, such as pollution-abatement equipment, alternative energy-producing devices, and even country clubs. These statutes can be used as examples of finding a constitutional method for providing favorabe tax treatment to promote participation in soil-conservation programs.« less
TECHNIQUES FOR TEACHING CONSERVATION EDUCATION.
ERIC Educational Resources Information Center
BROWN, ROBERT E.; MOUSER, G.W.
CONSERVATION PRINCIPLES, FIELD METHODS AND TECHNIQUES, AND SPECIFIC FIELD LEARNING ACTIVITIES ARE INCLUDED IN THIS REFERENCE VOLUME FOR TEACHERS. CONSERVATION PRINCIPLES INCLUDE STATEMENTS PERTAINING TO (1) SOIL, (2) WATER, (3) FOREST, AND (4) WILDLIFE. FIELD METHODS AND TECHNIQUES INCLUDE (1) PREPARING FOR A FIELD TRIP, (2) GETTING STUDENT…
NASA Astrophysics Data System (ADS)
Dazzi, Carmelo; Fullen, Michael A.; Costantini, Edoardo A. C.; Theocharopoulos, Sid; Rickson, Jane; Kasparinskis, Raimonds; Lo Papa, Giuseppe; Peres, Guenola; Sholten, Thomas; Kertész, Adam; Vasenev, Ivan; Dumitru, Mihail; Cornelis, Wim; Rubio, José L.
2017-04-01
Soil is an integral component of the global environmental system that supports the quality and diversity of terrestrial life on Earth. Therefore, it is vital to consider the processes and impacts of soil degradation on society, especially on the provision of environmental goods and services, including food security and climate change mitigation and adaptation. Scientific societies devoted to Soil Science play significant roles in promoting soil security by advancing scientific knowledge, education and environmental sustainability. The European Society for Soil Conservation (ESSC) was founded in Ghent (Belgium) on 4 November 1988 by a group of 23 researchers from several European countries. It is an interdisciplinary, non-political association with over 500 members in 56 countries. The ESSC produces and distributes a hardcopy Newsletter twice a year and maintains both a website and Facebook page: http://www.soilconservation.eu/ https://www.facebook.com/European-Society-for-Soil-Conservation-ESSC-100528363448094/ The ESSC aims to: • Support research on soil degradation, soil protection and soil and water conservation. • Provide a network for the exchange of knowledge about soil degradation processes and soil conservation research and practises. • Produce publications on major issues relating to soil degradation and soil and water conservation. • Advise regulators and policy-makers on soil issues, especially soil degradation, protection and conservation. The ESSC held its First International Congress in Silsoe (UK) in 1992. Further International Congresses were held in Munich (1996), Valencia (2000), Budapest (2004), Palermo (2007), Thessaloniki (2011) and Moscow (2015). The Eighth International Congress will be held in Lleida (Spain) in June 2017: http://www.consowalleida2017.com/ Interspersed between these international congresses, the ESSC organizes annual international conferences on specific topics. These include Imola, Italy (Biogeochemical Processes at Air-Soil-Water Interfaces and Environmental Protection) in 2015 and Cluj-Napoca, Romania (Soil: Our Common Future) in 2016. Since its inception, the Society has made significant advances, including developing a strong and growing global network of soil scholars. The ESSC honours major individual contributions to soil conservation through two awards made every four years at its Congresses, namely: • The 'Gerold Richter Award,' awarded to a person who has, over their career, made significant and internationally recognized contributions to the investigation and/or promotion of soil conservation in Europe. • The 'Young Person's Award' is presented to a member of the Society, aged 40 years or less, who over the previous four years has made important contributions to soil conservation in Europe through research, practise, policy-making or another relevant activity. The ESSC provides grants to young members to attend its conferences and promotes the organization of scientific meetings, soil conservation research, and co-operation between numerous institutions and individuals on soil conservation initiatives. The societal challenges that can be addressed through better soil protection, as well as developing new knowledge and scientific approaches to soil protection and sustainable management, mean the ESSC embraces the on-going development, application, review and criticism of highly innovative scientific methods for soil conservation. It is in this context that the ESSC analyses and publicizes the roles and functions of soil in natural and human-modified systems and the functional optimization of soils to ensure sustainable environmental protection.
Soil management and conservation: Irrigation: Methods
USDA-ARS?s Scientific Manuscript database
Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...
NASA Astrophysics Data System (ADS)
Chen, Lihua; Xu, Xianghong; Zhang, Huan; Han, Rui; Cheng, Yao; Tan, Xueyi; Chen, Xuanyu
2017-04-01
Water leaching is the major method to decrease soil salinity of the coastal saline soil. Conservation of soil nutrition in the soil ameliorating process is helpful to maintain soil fertility and prevent environment pollution. In the experiment, glutamic acid and poly-γ-glutamic acid (PGA) producing bacteria were isolated for manufacturing the PGA biopreparation (PGAB), and the effect of PGAB on the soil nitrogen (N) conservation was assayed. The glutamic acid and PGA producing bacteria were identified as Brevibacterium flavum and Bacillus amyloliquefaciens. After soil leached with water for 90 days, compared to control treatment, salt concentration of 0-30cm soil with PGAB treatment was lowered by 39.93%, however the total N loss was decreased by 65.37%. Compared to control, the microbial biomass N increased by 1.19 times at 0-30 cm soil with PGAB treatment. The populations of soil total bacteria, fungi, actinomyces, nitrogen fixing bacteria, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria and biomass of soil algae were significantly increased in PGAB treatment, while anaerobic bacteria decreased (P<0.05). In addition, the percentage of soil aggregates with diameter > 0.25 mm and 0.02 mm < diameter <0.25 mm were increased by 2.93 times and 26.79% respectively in PGAB treatment. The soil erosion-resistance coefficient of PGAB treatment increased by 50%. All these suggested that the PGAB conserved the soil nitrogen effectively in the process of soil water leaching and improved the coastal saline soil quality.
Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia
2015-06-01
To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.
Evolution of the SCS curve number method and its applications to continuous runoff simulation
USDA-ARS?s Scientific Manuscript database
The Natural Resources Conservation Service (NRCS) [previously Soil Conservation Service (SCS)] developed the SCS runoff curve-number (CN) method for estimating direct runoff from storm rainfall. The NRCS uses the CN method for designing structures and for evaluating their effectiveness. Structural...
Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo
2012-07-01
With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.
NASA Astrophysics Data System (ADS)
Xu, W.; Wang, X.; Zhang, Y.; Liu, Y.
2014-12-01
High soil-conservation herbs are very important for slope vegetation restoration of a highway in serious sandstorm regions. In this study, nine common herbs in northeast China were selected and compared to study soil-conservation effects by using an undisturbed-soil trough scouring method for soil anti-scourability enhancement and hydrostatic collapse method for soil anti-erodibility. Further, principal components analysis was used to identify significant root features that affected soil erosion resistance. Results indicated that different herbs had distinct enhancement effects on soil erosion resistance. Soil anti-scourability enhancement index decreased with increases of soil depth, slope gradient and rainfall amount. Relationship between soil anti-erodibility enhancement index ( S) and immersion time ( t) is a cubic spline in each different herb type ( R 2 ≥ 0.88). Herb root features such as micro-aggregates, organic matter, net leaf weight, thick root length, fine root length and biomass contributed a leading role in soil erosion resistance enhancement effect, and all their common factor variances were more than 0.81. Descending order of soil erosion resistance enhancement effect in soil anti-scourability for nine herbs is Poa pratensis, Medicago sativa, Viola philippica, Rudbeckia hirta, Clematis heracleifolia, Kalimeris indica, Cosmos bipinnata, Hemerocallis fulva and Sedum elatinoides, while the sequence of soil anti-erodibility is M. sativa, S. elatinoides, P. pratensis, R. hirta, H. fulva, V. philippica, C. heracleifolia, C. bipinnata and K. indica. Therefore, we concluded that P. pratensis and M. sativa were the most suitable herbs for resisting soil erosion and recommended to be widely planted for road vegetation recovery in this region.
Erosion Prediction Analysis and Landuse Planning in Gunggung Watershed, Bali, Indonesia
NASA Astrophysics Data System (ADS)
Trigunasih, N. M.; Kusmawati, T.; Yuli Lestari, N. W.
2018-02-01
The purpose of this research is to predict the erosion that occurs in Gunggung watershed and sustainable landuse management plan. This research used the USLE (Universal Soil Loss Equation) methodology. The method used observation / field survey and soil analysis at the Soil Laboratory of Faculty of Agriculture, Udayana University. This research is divided into 5 stages, (1) land unit determination, (2) Field observation and soil sampling, (3) Laboratory analysis and data collection, (4) Prediction of erosion using USLE (Universal Soil Loss Equation) method, (5) The permissible erosion determination (EDP) then (6) determines the level of erosion hazard based on the depth of the soil, as well as the soil conservation plan if the erosion is greater than the allowed erosion, and (7) determining landuse management plan for sustainable agriculture. Erosion which value is smaller than soil loss tolerance can be exploited in a sustainable manner, while erosion exceeds allowable erosion will be conservation measures. Conservation action is the improvement of vegetation and land management. Land management like improvements the terrace, addition of organic matter, increase plant density, planting ground cover and planting layered header system will increase the land capability classes. Land use recommended after management is mixed plantation high density with forest plants, mix plantation high density with patio bench construction, seasonal cultivation and perennial crops, cultivation of perennial crops and cultivation of seasonal crops.
NASA Astrophysics Data System (ADS)
Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea
2017-04-01
Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM/2016, PN-III-P3-3.1-PM-RO-MD-2016-0034: The comparative evaluation of conventional and conservative tillage systems regarding carbon sequestration and foundation of sustainable agroecosystems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the State or territorial soil conservation district law, or tribal law. The subdivision may be a conservation district, soil conservation district, soil and water conservation district, resource conservation... county or area, in accordance with Sec. 8(b) of the Soil Conservation and Domestic Allotment Act, as...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the State or territorial soil conservation district law, or tribal law. The subdivision may be a conservation district, soil conservation district, soil and water conservation district, resource conservation... county or area, in accordance with Sec. 8(b) of the Soil Conservation and Domestic Allotment Act, as...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the State or territorial soil conservation district law, or tribal law. The subdivision may be a conservation district, soil conservation district, soil and water conservation district, resource conservation... county or area, in accordance with Sec. 8(b) of the Soil Conservation and Domestic Allotment Act, as...
USDA-ARS?s Scientific Manuscript database
Conservation tillage methods are beneficial as they disturb soil less and leaves increased crop residue cover (CRC) after planting on the soil surface. CRC helps reduce soil erosion, evaporation, and the need for tillage operations in fields. Greenhouse gas emissions are reduced to due to less fos...
Remote sensing as a tool for estimating soil erosion potential
NASA Technical Reports Server (NTRS)
Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.
1979-01-01
The Universal Soil Loss Equation is a frequently used methodology for estimating soil erosion potential. The Universal Soil Loss Equation requires a variety of types of geographic information (e.g. topographic slope, soil erodibility, land use, crop type, and soil conservation practice) in order to function. This information is traditionally gathered from topographic maps, soil surveys, field surveys, and interviews with farmers. Remote sensing data sources and interpretation techniques provide an alternative method for collecting information regarding land use, crop type, and soil conservation practice. Airphoto interpretation techniques and medium altitude, multi-date color and color infrared positive transparencies (70mm) were utilized in this study to determine their effectiveness for gathering the desired land use/land cover data. Successful results were obtained within the test site, a 6136 hectare watershed in Dane County, Wisconsin.
USDA-NRCS conservation practice standard: amending soil properties with gypsum products
USDA-ARS?s Scientific Manuscript database
The US Department of Agriculture National Resource Conservation Service is tasked with providing support to preserve the nation’s natural resources. They provide farmers with financial and technical assistance to voluntarily put conservation practices on the ground by promoting methods to preserve ...
NASA Astrophysics Data System (ADS)
Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo
2015-12-01
Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.
Code of Federal Regulations, 2013 CFR
2013-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2014 CFR
2014-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2011 CFR
2011-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Code of Federal Regulations, 2012 CFR
2012-01-01
... soil, water, air, plant, and animal resources with consideration of the many human (economic and... specialties, including soil science, soil conservation, agronomy, biology, agroecology, range conservation... formerly the Soil Conservation Service (SCS) which was established by the Soil Conservation Act of 1935...
Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.
2008-01-01
Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.
Method to measure soil matrix infiltration in forest soil
NASA Astrophysics Data System (ADS)
Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu
2017-09-01
Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This method can also be applied to explore matrix infiltration in other land-use types.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., tribal, or territorial law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district... practices and conservation management systems. It contains detailed information on the conservation of soil...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., tribal, or territorial law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district... practices and conservation management systems. It contains detailed information on the conservation of soil...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., tribal, or territorial law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district... practices and conservation management systems. It contains detailed information on the conservation of soil...
COSMOS soil water sensing affected by crop biomass and water status
USDA-ARS?s Scientific Manuscript database
Soil water sensing methods are widely used to characterize water content in the root zone and below, but only a few are capable of sensing soil volumes larger than a few hundred liters. Scientists with the USDA-ARS Conservation & Production Research Laboratory, Bushland, Texas, evaluated: a) the Cos...
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
NASA Astrophysics Data System (ADS)
Adimassu, Zenebe; Langan, Simon; Johnston, Robyn; Mekuria, Wolde; Amede, Tilahun
2017-01-01
Research results published regarding the impact of soil and water conservation practices in the highland areas of Ethiopia have been inconsistent and scattered. In this paper, a detailed review and synthesis is reported that was conducted to identify the impacts of soil and water conservation practices on crop yield, surface run-off, soil loss, nutrient loss, and the economic viability, as well as to discuss the implications for an integrated approach and ecosystem services. The review and synthesis showed that most physical soil and water conservation practices such as soil bunds and stone bunds were very effective in reducing run-off, soil erosion and nutrient depletion. Despite these positive impacts on these services, the impact of physical soil and water conservation practices on crop yield was negative mainly due to the reduction of effective cultivable area by soil/stone bunds. In contrast, most agronomic soil and water conservation practices increase crop yield and reduce run-off and soil losses. This implies that integrating physical soil and water conservation practices with agronomic soil and water conservation practices are essential to increase both provisioning and regulating ecosystem services. Additionally, effective use of unutilized land (the area occupied by bunds) by planting multipurpose grasses and trees on the bunds may offset the yield lost due to a reduction in planting area. If high value grasses and trees can be grown on this land, farmers can harvest fodder for animals or fuel wood, both in scarce supply in Ethiopia. Growing of these grasses and trees can also help the stability of the bunds and reduce maintenance cost. Economic feasibility analysis also showed that, soil and water conservation practices became economically more viable if physical and agronomic soil and water conservation practices are integrated.
7 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... practices that are set forth in the contracts, (4) Where practicable, enter into agreements with soil conservation districts, State soil and water conservation agencies, or State water quality agencies to... practicable for soil conservation districts, State soil and water conservation agencies, or State water...
7 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... practices that are set forth in the contracts, (4) Where practicable, enter into agreements with soil conservation districts, State soil and water conservation agencies, or State water quality agencies to... practicable for soil conservation districts, State soil and water conservation agencies, or State water...
7 CFR 634.4 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... practices that are set forth in the contracts, (4) Where practicable, enter into agreements with soil conservation districts, State soil and water conservation agencies, or State water quality agencies to... practicable for soil conservation districts, State soil and water conservation agencies, or State water...
NASA Astrophysics Data System (ADS)
Evrard, Olivier; Le Gall, Marion; Tiecher, Tales; Gomes Minella, Jean Paolo; Laceby, J. Patrick; Ayrault, Sophie
2017-04-01
Agricultural expansion that occurred in the 1960s in Southern Brazil significantly increased soil erosion and sediment supply to the river networks. To limit the deleterious impacts of soil erosion, conservation practices were progressively implemented in the 1990s, including the direct sowing of crops on a soil densely covered with plant residues, contour farming, the installation of ponds to trap sediment in the landscape and the use of crop rotations. However, there remains a lack of observational data to investigate the impact of these conservation practices on soil erosion and sediment supply. This data is crucial to protect soil resources and maintain the sustainability of food production systems in this region of the world characterized by a rapidly increasing population. Accordingly, sediment sources were investigated in the Guaporé catchment (2,032 km2) representative of the cultivated environments found in this part of the world. In the upper catchment, the landscape is characterized by gentle slopes and deep soils (Ferralsols, Nitisols) corresponding to the edge of the basaltic plateau. Soybean, corn and wheat under direct sowing are the main crops in this area. In contrast, steep and shallow soils (Luvisols, Acrisols, Leptosols) highly connected to the rivers are found in the lower catchment, where tobacco and corn fields are cultivated with conventional ploughing. These soil types were characterized by elemental geochemistry and 87Sr/86Sr ratios. Sediment sources were then modelled using the optimal suite of properties (87Sr/86Sr ratios, K, Ti, Co, As, Ba, and Pb). The results demonstrate that sediment collected at the catchment outlet during two hydrological years (2012-2014) mainly originated from downstream soils (Luvisols, Acrisols, Leptosols; 92±3%), with this proportion remaining stable throughout the monitoring period. This research indicates that conservation practices implemented in the upper catchment are effective and that similar methods should be applied to downstream soils in order to conserve soil resources and limit the degradation of freshwater environments.
Prioritization of catchments based on soil erosion using remote sensing and GIS.
Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K
2015-06-01
Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.
[Effects of land use changes on soil water conservation in Hainan Island, China].
Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min
2017-12-01
In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.
Code of Federal Regulations, 2010 CFR
2010-01-01
... out a local soil and water conservation program. Such district or unit of government may be referred to as a “conservation district,” “soil conservation district,” “soil and water conservation district... name. Conservation practice means one or more conservation improvements and activities, including...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... dishwashers with a separate soil- sensing cycle, and the normal cycle definition, power supply and detergent... Soiling Requirements 5. Detergent Dosing Specifications E. Incorporation by Reference of an Updated AHAM...: (1) The addition of a method to rate the efficiency of soil-sensing products; (2) the addition of a...
Measurement of the fluorescence of crop residues: A tool for controlling soil erosion
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.
1994-01-01
Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.
Planning and programing in the soil conservation service
NASA Technical Reports Server (NTRS)
Gray, R. M.
1972-01-01
The historical base is presented for the framework plan for soil conservation. Conservation effects, resource management systems, and accomplishments, activities, and costs of the Soil Conservation Service are discussed.
Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D
2017-12-15
Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of watershed regionalization for the land use change parameterization
NASA Astrophysics Data System (ADS)
Randusová, Beata; Kohnová, Silvia; Studvová, Zuzana; Marková, Romana; Nosko, Radovan
2016-04-01
The estimation of design discharges and water levels of extreme floods is one of the most important parts of the design process for a large number of engineering projects and studies. Floods and other natural hazards initiated by climate, soil, and land use changes are highly important in the 21st century. Flood risks and design flood estimation is particularly challenging. Methods of design flood estimation can be applied either locally or regionally. To obtain the design values in such cases where no recorded data exist, many countries have adopted procedures that fit the local conditions and requirements. One of these methods is the Soil Conservation Service - Curve number (SCS-CN) method which is often used in design flood estimation for ungauged sites. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. This study is focused on development of the SCS-CN methodology for the changing land use conditions in Slovak basins (with the pilot site of the Myjava catchment), which regionalize actual state of land use data and actual rainfall and discharge measurements of the selected river basins. In this study the state of the water erosion and sediment transport along with a subsequent proposal of erosion control measures was analyzed as well. The regionalized SCS-CN method was subsequently used for assessing the effectiveness of this control measure to reduce runoff from the selected basin. For the determination of the sediment transport from the control measure to the Myjava basin, the SDR (Sediment Delivery Ratio) model was used.
A Manual on Conservation of Soil and Water. Appropriate Technologies for Development. R-38.
ERIC Educational Resources Information Center
Peace Corps, Washington, DC. Information Collection and Exchange Div.
In order to keep the land productive, a good conservation program is imperative. The primary purpose of soil and water conservation is to prevent soil erosion and heal its scars. This handbook explains the causes, processes, and consequences of soil erosion and depletion, and describes major soil- and water-conservation measures. This book was…
2016-07-01
Note (CHETN) describes a method using the U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Soil Survey Geographic...the general texture classifications. 2. Another source for soil information, such as the Food and Agriculture Organization of the United Nations (FAO...science studies such as agriculture , geology, geomorphology, engineering, biology, history, etc. (Soil Survey Division Staff 1993). The procedure pulls
[Conservation tillage systems in North America and their significance for China].
Yang, Xueming; Zhang, Xiaoping; Fang, Huajun; Liang, Aizhen; Qi, Xiaoning; Wang, Yang
2004-02-01
Soil degradation through erosion and desertification reduces soil productivity, and is a serious problem in agricultural production of China. To avert our arable land from further degradation, soil management must be shifted from degrading tillage to conservation practices. Over viewing the technology used in the 20th century for controlling soil degradation from erosion, conservation tillage developed in the United States and adopted in South America and Africa is one of the most successful measures to overcome soil degradation problems. This paper reviewed the historical development and the current situation of conservation tillage systems used in North and South America, with special reference to their effects on soil erosion control and soil quality. The increasing adoption of conservation tillage systems in North and South America and Africa followed an enhanced awareness of the increasing risk of soil erosion and the high cost of fuel associated with conventional tillage. Many crucial points for successfully adopting conservation tillage systems were emphasized, such as equipment/tool development and chemical weed control. Adopting conservation tillage could provide China with low-priced means of reducing soil degradation and improving soil and water quality.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
26 CFR 1.175-2 - Definition of soil and water conservation expenditures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...
26 CFR 1.175-2 - Definition of soil and water conservation expenditures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...
26 CFR 1.175-2 - Definition of soil and water conservation expenditures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...
26 CFR 1.175-2 - Definition of soil and water conservation expenditures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...
Yang, Wen-yan; Zhou, Zhong-xue
2014-12-01
With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Soil quality means resource concerns and/or opportunities related to depletion of soil organic matter..., or Tribal law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Soil quality means resource concerns and/or opportunities related to depletion of soil organic matter..., or Tribal law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Soil quality means resource concerns and/or opportunities related to depletion of soil organic matter..., or Tribal law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district...
Becker, M.F.
1997-01-01
In 1995 the Oklahoma Department of Wildlife Conservation acquired a drained wetland in southwest Oklahoma known as Hackberry Flat. Following restoration by Wildlife Conservation the wetland will be used by migratory birds and waterfowl. If naturally occurring trace metals and residual organic compounds from agriculture and industry were present, they may have posed a potential biohazard and were a concern for Wildlife Conservation. The U. S. Geological Survey, in cooperation with Wildlife Conservation and the Oklahoma Geological Survey, examined the soils of Hackberry Flat to determine trace metal concentrations, presence of selected organic compounds, and the bioavailability of selected organic compounds in the soils. The purpose of this report is to present the data that establish the baseline concentrations of selected trace metals and organic compounds in the soils of Hackberry Flat prior to wetland restoration. Sampling and analysis were performed using two approaches. One was to collect soil samples and analyze the composition with standard laboratory practices. The second exposed composite soils samples to organic-free water and a semipermeable membrane device that mimics an organism and then analyzed the device. Ten soil samples were collected in 1994 to be analyzed for trace metals, organochlorine pesticides, and polychlorinated biphenyls. Soil samples tested for bioavailability of selected organic compounds were collected in 1995. Most of the 182 soil samples collected were from the center of every 40-acre quarter-quarter section owned by the Wildlife Conservation. The samples were grouped by geographical area with a maximum of 16 sample sites per group. Concentrations of most selected trace metals measured from soils in Hackberry Flat are within the range of mean concentrations measured in cultivated soils within the United States. Organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons were not found at concentrations above the analytical detection levels and, if present, in the soil samples are at concentrations below the detection level of the analytical method used. Organochlorine pesticides, total polychlorinated biphenyls, and polyaromatic hydrocarbons were not detected in any of the semipermeable membrane devices at the analytical detection levels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... law for the express purpose of developing and carrying out a local soil and water conservation program. Such district or unit of government may be referred to as a “conservation district,” “soil conservation district,” “soil and water conservation district,” “resource conservation district,” “natural resource...
26 CFR 1.175-1 - Soil and water conservation expenditures; in general.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in... (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for depreciation...
26 CFR 1.175-1 - Soil and water conservation expenditures; in general.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...
26 CFR 1.175-1 - Soil and water conservation expenditures; in general.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...
26 CFR 1.175-1 - Soil and water conservation expenditures; in general.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...
26 CFR 1.175-1 - Soil and water conservation expenditures; in general.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...
26 CFR 1.175-2 - Definition of soil and water conservation expenditures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion of...
ERIC Educational Resources Information Center
Stewart, Bob R.; And Others
This student reference booklet is designed to accompany lessons outlined in the companion instructor's guide on soil conservation. The soil conservation unit builds on competencies gained in Agricultural Science I and II. Informative material is provided for these eight lessons: benefits of conservation, land utilization, how soils are eroded,…
78 FR 48035 - Conservation Reserve Program, Re-Enrollment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-07
... purpose of CRP is to cost- effectively assist producers in conserving and improving soil, water, wildlife... producers in conserving and improving soil, water, wildlife, and other natural resources by converting..., Reporting and recordkeeping requirements, Soil conservation, Technical assistance, Water resources, Wildlife...
Zhang, Yan; Yuan, Jianping; Liu, Baoyuan
2002-08-01
Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.
Soil and Water Conservation for a Better America. A Framework Plan.
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
Through this framework plan, the Soil Conservation Service (SCS) takes a look ahead to its soil and water conservation mission, a look at its direction and thrust in helping create a desirable America in the decades ahead. The plan attempts to define the nature of soil and water conservation efforts, to put them in perspective, and to present a…
Zhong, Tai-Yang; Huang, Xian-jin
2006-02-01
The paper analyzed the farm households' decision-making progress of soil & water conservation and its two-stage conceptual model. It also discussed the impacts of rural land market on the farm households' behavior of soil & water conservation. Given that, the article established models for the relations between the land market and soil & water conservation, and the models' parameters were estimated with Heckman's two-stage approach by using the farm household questionnaires in Xingguo, Shangrao and Yujiang counties of Jiangxi province. The paper analyzed the impact o f rural land market on farm household's behavior of soil & water conservation and its regional difference with the result of model estimation. The results show that the perception of soil & water loss and the tax & fee on the farm land have significant influence upon the soil and water conservation from the view of the population; however, because of different social and economic condition, and soil & water loss, there are differences of the influence among the three sample counties. These differences go as follows in detail: In Xingguo County, the rent-in land area and its cost have remarkable effect on the farm households' soil & water conservation behavior; In Yujiang County, the rent-in land area, rent-in cost and rent-out land area remarkably influence the farm households' behavior of soil and water conservation, with the influence of the rent-in land area being greater than Xingguo County; In Shangrao County, only rent-out land area has significant influence on the behaviors of soil & water conservation; In all samples, Xingguo County and Yujiang County samples, the rent-out income has no significant influence on the farm household's decision-making behavior soil and water conservation. Finally, the paper put forward some suggestions on how to bring the soil & water loss under control and use land resource in sustainable ways.
Estimating phosphorus availability for microbial growth in an emerging landscape
Schmidt, S.K.; Cleveland, C.C.; Nemergut, D.R.; Reed, S.C.; King, A.J.; Sowell, P.
2011-01-01
Estimating phosphorus (P) availability is difficult—particularly in infertile soils such as those exposed after glacial recession—because standard P extraction methods may not mimic biological acquisition pathways. We developed an approach, based on microbial CO2 production kinetics and conserved carbon:phosphorus (C:P) ratios, to estimate the amount of P available for microbial growth in soils and compared this method to traditional, operationally-defined indicators of P availability. Along a primary succession gradient in the High Andes of Perú, P additions stimulated the growth-related (logistic) kinetics of glutamate mineralization in soils that had been deglaciated from 0 to 5 years suggesting that microbial growth was limited by soil P availability. We then used a logistic model to estimate the amount of C incorporated into biomass in P-limited soils, allowing us to estimate total microbial P uptake based on a conservative C:P ratio of 28:1 (mass:mass). Using this approach, we estimated that there was < 1 μg/g of microbial-available P in recently de-glaciated soils in both years of this study. These estimates fell well below estimates of available soil P obtained using traditional extraction procedures. Our results give both theoretical and practical insights into the kinetics of C and P utilization in young soils, as well as show changes in microbial P availability during early stages of soil development.
Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W
2018-07-01
Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.
Long-term hydrological simulation based on the Soil Conservation Service curve number
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2004-05-01
Presenting a critical review of daily flow simulation models based on the Soil Conservation Service curve number (SCS-CN), this paper introduces a more versatile model based on the modified SCS-CN method, which specializes into seven cases. The proposed model was applied to the Hemavati watershed (area = 600 km2) in India and was found to yield satisfactory results in both calibration and validation. The model conserved monthly and annual runoff volumes satisfactorily. A sensitivity analysis of the model parameters was performed, including the effect of variation in storm duration. Finally, to investigate the model components, all seven variants of the modified version were tested for their suitability.
US Policy approaches for assessing soil health
USDA-ARS?s Scientific Manuscript database
There is worldwide recognition for a more holistic vision of soil health and tools to guide soil conservation policy, management and restoration. To meet this need, U.S. conservation programs in the US Food, Conservation, and Energy Act of 2008 (the farm bill), including the Conservation Stewardship...
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
A global predictive model of carbon in mangrove soils
NASA Astrophysics Data System (ADS)
Jardine, Sunny L.; Siikamäki, Juha V.
2014-10-01
Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to assess the impacts of climate change on mangrove soil carbon stocks.
3. VIEW NORTHEAST, SOUTH FRONT OF SOIL CONSERVATION SERVICE CLUSTER ...
3. VIEW NORTHEAST, SOUTH FRONT OF SOIL CONSERVATION SERVICE CLUSTER (BUILDING 25) - U.S. Plant Introduction Station, Soil Conservation Service Cluster, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD
Code of Federal Regulations, 2011 CFR
2011-01-01
... State by annual tilling of the soil, including tilling by one-trip planters; or sugarcane planted and... or territorial law for the express purpose of developing and carrying out a local soil and water...,” “soil conservation district,” “soil and water conservation district,” “resource conservation district...
1. VIEW EAST, WEST FRONT OF SOIL CONSERVATION SERVICE CLUSTER ...
1. VIEW EAST, WEST FRONT OF SOIL CONSERVATION SERVICE CLUSTER (BUILDINGS 24, 25, 26) - U.S. Plant Introduction Station, Soil Conservation Service Cluster, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD
Empirical solution of Green-Ampt equation using soil conservation service - curve number values
NASA Astrophysics Data System (ADS)
Grimaldi, S.; Petroselli, A.; Romano, N.
2012-09-01
The Soil Conservation Service - Curve Number (SCS-CN) method is a popular widely used rainfall-runoff model for quantifying the total stream-flow volume generated by storm rainfall, but its application is not appropriate for sub-daily resolutions. In order to overcome this drawback, the Green-Ampt (GA) infiltration equation is considered and an empirical solution is proposed and evaluated. The procedure, named CN4GA (Curve Number for Green-Ampt), aims to calibrate the Green-Ampt model parameters distributing in time the global information provided by the SCS-CN method. The proposed procedure is evaluated by analysing observed rainfall-runoff events; results show that CN4GA seems to provide better agreement with the observed hydrographs respect to the classic SCS-CN method.
Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard
2013-02-05
Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.
Determination of soil degradation from flooding for estimating ecosystem services in Slovakia
NASA Astrophysics Data System (ADS)
Hlavcova, Kamila; Szolgay, Jan; Karabova, Beata; Kohnova, Silvia
2015-04-01
Floods as natural hazards are related to soil health, land-use and land management. They not only represent threats on their own, but can also be triggered, controlled and amplified by interactions with other soil threats and soil degradation processes. Among the many direct impacts of flooding on soil health, including soil texture, structure, changes in the soil's chemical properties, deterioration of soil aggregation and water holding capacity, etc., are soil erosion, mudflows, depositions of sediment and debris. Flooding is initiated by a combination of predispositive and triggering factors and apart from climate drivers it is related to the physiographic conditions of the land, state of the soil, land use and land management. Due to the diversity and complexity of their potential interactions, diverse methodologies and approaches are needed for describing a particular type of event in a specific environment, especially in ungauged sites. In engineering studies and also in many rainfall-runoff models, the SCS-CN method has remained widely applied for soil and land use-based estimations of direct runoff and flooding potential. The SCS-CN method is an empirical rainfall-runoff model developed by the USDA Natural Resources Conservation Service (formerly called the Soil Conservation Service or SCS). The runoff curve number (CN) is based on the hydrological soil characteristics, land use, land management and antecedent saturation conditions of soil. Since the method and curve numbers were derived on the basis of an empirical analysis of rainfall-runoff events from small catchments and hillslope plots monitored by the USDA, the use of the method for the conditions of Slovakia raises uncertainty and can cause inaccurate results in determining direct runoff. The objective of the study presented (also within the framework of the EU-FP7 RECARE Project) was to develop the SCS - CN methodology for the flood conditions in Slovakia (and especially for the RECARE pilot site of Myjava), with an emphasis on the determination of soil degradation from flooding for estimating ecosystem services. The parameters of the SCS-CN methodology were regionalised empirically based on actual rainfall and discharge measurements. Since there has been no appropriate methodology provided for the regionalisation of SCS-CN method parameters in Slovakia, such as runoff curve numbers and initial abstraction coefficients (λ), the work presented is important for the correct application of the SCS-CN method in our conditions.
Wu, Haibing
2018-01-01
Watershed prioritization with the objective of identifying critical areas to undertake soil and water conservation measures was conducted in the upper Han River basin, the water source area of approximately 95,000 km 2 for the middle route of China's South-to-North Water Transfer Project. Based on the estimated soil erosion intensity in uplands and clustering analysis of measured nutrient concentrations in rivers, the basin was grouped into very-high-, high-, moderate-, and low-priority regions for water and soil conservation, respectively. The results indicated that soil erosion was primarily controlled by topography, and nutrients in rivers were associated with land use and land cover in uplands. Also, there was large spatial disparity between soil erosion intensity in the uplands and nutrient concentrations in the rivers across the basin. Analysis was then performed to prioritize the basin by the integration of the soil erosion intensity and water quality on a GIS platform in order to identify critical areas for water and soil conservation in the basin. The identified high-priority regions which occupy 5.74% of the drainage areas need immediate attention for soil and water conservation treatments, of which 5.28% is critical for soil erosion prevention and 0.46% for water conservation. Understandings of the basin environment and pollutant loading with spatial explicit are critical to the soil and water resource conservation for the interbasin water transfer project.
NASA Astrophysics Data System (ADS)
Molla, Tegegne; Sisheber, Biniam
2017-01-01
Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga watershed.
NASA Astrophysics Data System (ADS)
Kuhwald, Michael; Augustin, Katja; Duttmann, Rainer
2017-04-01
The positive effects of reduced tillage on soil stability and on various soil functions such as infiltrability or saturated hydraulic conductivity are known in general. However, long-term employment of conservation tillage can increase weed pressure, damage by mice and soil compaction. Thus, the application of one-time inversion tillage (occasional or strategic tillage) is customarily used as a method for overcoming these drawbacks. Hitherto, the effects of one-time inversion tillage on soil physical properties have not been investigated. This study focuses on analysing whether the improved soil physical properties derived by long-term reduced tillage remain after one-time inversion tillage by mouldboard plough. The study was carried out in a 5.5 ha field in the southern part of Lower Saxony, Germany. Since 1996, this field has been subdivided into three plots, one managed conventionally by using a mouldboard plough (CT), while in the others a chisel plough (RT1) and a disk harrow (RT2) were employed. In October 2014, the entire field was ploughed by mouldboard plough to a depth of 30 cm. During the following year, four field studies were conducted to analyse the effects of this one-time inversion tillage on volumetric soil water content, bulk density, saturated hydraulic conductivity and infiltration rate. Additionally, penetration resistance measurements taken across the entire field were interpolated by kriging to analyse the spatial distribution of soil characteristics. The surveys of RT1 and RT2 were compared with CT and with analyses conducted before the one-time inversion tillage. This study shows that positive effects of long-term conservation tillage on several soil physical characteristics still remain after one-time mouldboard ploughing. Throughout the entire cropping season, the topsoil tilled under former conservation tillage practices revealed significantly higher (p < 0.05) values of saturated hydraulic conductivities and infiltration rates compared to the plot that experienced continuously conventional tillage. Moreover, field-wide measuring of penetration resistance indicated the removal of the compaction zone developed under conservation tillage in soil depths between 10 and 20 cm. After mouldboard ploughing, penetration resistance in the topsoil was significantly (p < 0.05) reduced in both plots, showing the same order of magnitude as measured in the conventionally managed plot. The results of this study suggest that one-time inversion tillage with a mouldboard plough offers a suitable management option for overcoming some of the main disadvantages associated with long-term conservation tillage, while conserving the improved soil physical properties and functions.
USDA-ARS?s Scientific Manuscript database
Soil fauna is an important component in soil ecosystem. Through the soil moisture changes, soil environment is changed under different tillage systems, and then the population of soil fauna also is changed. This study tested whether conservation tillage or conventional tillage (CT) of black soil fie...
Environmental Education: A Guide to Teaching Conservation in Texas.
ERIC Educational Resources Information Center
Texas Education Agency, Austin. Div. of Curriculum Development.
This document describes Texas' natural resources and suggests ways to correlate conservation instruction into the existing curriculum. Resources discussed include: 1) soil (soil formation; properties of soils; soil survey, soil use in agriculture; soils and the state economy, land value; specific soil resources); 2) air (principal pollutants and…
7 CFR 654.30 - Responsibility for operation and maintenance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... soil and water conservation measures installed with NRCS assistance provided through soil, water, and other conservation districts. ... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Conservation...
7 CFR 654.30 - Responsibility for operation and maintenance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... soil and water conservation measures installed with NRCS assistance provided through soil, water, and other conservation districts. ... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Conservation...
7 CFR 654.30 - Responsibility for operation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... soil and water conservation measures installed with NRCS assistance provided through soil, water, and other conservation districts. ... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Conservation...
7 CFR 654.30 - Responsibility for operation and maintenance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... soil and water conservation measures installed with NRCS assistance provided through soil, water, and other conservation districts. ... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Conservation...
7 CFR 654.30 - Responsibility for operation and maintenance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... soil and water conservation measures installed with NRCS assistance provided through soil, water, and other conservation districts. ... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES OPERATION AND MAINTENANCE Conservation...
Teaching Soil and Water Conservation: A Classroom and Field Guide.
ERIC Educational Resources Information Center
Foster, Albert B.; Fox, Adrian C.
Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…
USDA-ARS?s Scientific Manuscript database
In conservation agriculture, cover crops are utilized to improve soil properties and to enhance cash crop growth. One important part of cover crop management is termination. With smaller profit margins and constraints on time and labor, producers are looking for ways to reduce time and labor require...
Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.
1983-11-28
Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion
Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J
2010-01-01
The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.
7 CFR 761.8 - Loan Limitations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assumption of indebtedness. (1) Farm Ownership, Downpayment loans, Conservation loans, and Soil and Water... direct Farm Ownership loan, direct Conservation loan, direct Soil and Water loan, guaranteed Farm Ownership loan, guaranteed Conservation loan, and guaranteed Soil and Water loan-$700,000 (for fiscal year...
4. VIEW NORTHWEST, NORTH FRONT OF SOIL CONSERVATION SERVICE CLUSTER ...
4. VIEW NORTHWEST, NORTH FRONT OF SOIL CONSERVATION SERVICE CLUSTER (BUILDINGS 24, 25, 26); NORTH FRONT OF QUARANTINE HEADHOUSE (BUILDING 27) - U.S. Plant Introduction Station, Soil Conservation Service Cluster, 11601 Old Pond Road, Glenn Dale, Prince George's County, MD
7 CFR 761.8 - Loan Limitations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assumption of indebtedness. (1) Farm Ownership, Downpayment loans, Conservation loans, and Soil and Water... direct Farm Ownership loan, direct Conservation loan, direct Soil and Water loan, guaranteed Farm Ownership loan, guaranteed Conservation loan, and guaranteed Soil and Water loan-$700,000 (for fiscal year...
7 CFR 761.8 - Loan Limitations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assumption of indebtedness. (1) Farm Ownership, Downpayment loans, Conservation loans, and Soil and Water... direct Farm Ownership loan, direct Conservation loan, direct Soil and Water loan, guaranteed Farm Ownership loan, guaranteed Conservation loan, and guaranteed Soil and Water loan-$700,000 (for fiscal year...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng
Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less
Wang, Chengchao; Zhang, Yaoqi; Xu, Yecheng; ...
2015-07-31
Collapsed gully erosion constantly plagues the sustainability of rural areas in China. To control collapsed gully erosion, an ecological and economic approach, which uses tree plantation to gain economic benefits and control soil erosion, has been widely applied by local governments in Southern China. However, little is known about the economic feasibility of this new method. The objective of this study was to determine the effectiveness and economic benefits of the new method. Based on a case study in Changting County, Southeast China, two farms were selected to represent a timber tree plantation and a fruit tree plantation, respectively. Themore » Annual Capital Capitalization Method and Return on Investment (ROI) were selected to conduct cost-benefit analysis. In contrast to previous studies, we found that the new approach was far from economic. The value of the newly-built forestland in Sanzhou Village and Tufang Village is 2738 RMB ha -1 and 5477 RMB ha -1, respectively, which are extremely lower than the costs of ecological restoration. Meanwhile, the annual ROI is –3.60% and –8.90%, respectively, which is negative and also far poorer than the average value of forestry in China. The costs of conservation were substantially over the related economic benefits, and the investors would suffer from greater loss if they invested more in the conservation. Low-cost terraces with timber trees had less economic loss compared with the costly terraces with fruit tree plantation. Moreover, the cost efficiency of the new approaches in soil conservation was also greatly poorer than the conventional method. The costs of conserving one ton soil per year for conventional method, new method for planting timber trees, and planting fruit trees were 164 RMB, 696 RMB, and 11,664 RMB, respectively. Therefore, the new collapsed gully erosion control methods are uneconomic and unsuitable to be widely carried out in China in the near future.« less
Yannelli, Florencia A; Tabeni, Solana; Mastrantonio, Leandro E; Vezzani, Nazareth
2014-01-01
Land abandonment is a major issue worldwide. In Argentina, the Monte Desert is the most arid rangeland, where the traditional conservation practices are based on successional management of areas excluded to disturbances or abandoned. Some areas subjected to this kind of management may be too degraded, and thus require active restoration. Therefore, the aim of this study was to assess whether passive succession-based management is a suitable approach by evaluating the status of land degradation in a protected area after 17-41 years of farming abandonment. Soil traits and plant growth forms were quantified and compared between sites according to time since abandonment and former land use (cultivation and grazing). Two variables were calculated using the CORINE-CEC method, i.e., potential (PSER) and actual (ASER) soil erosion risk. PSER indicates the erosion risk when no vegetation is present, while ASER includes the protective role of vegetation cover. Results showed that land use history had no significant effect on plant growth forms or soil traits (p > 0.05). After more than 25 years since abandonment of farming activities, soil conditions and vegetation cover had improved, thus having a lower ASER. Nevertheless, the present soil physical crusts may have delayed the full development of vegetation, enhancing erosion processes. Overall, this study indicates that succession-based management may not be the best practice in terms of conservation. Therefore, any effort for conservation in the Monte Desert should contemplate the current status of land degradation and potential vegetation recovery.
7 CFR 761.8 - Loan Limitations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... indebtedness. (1) Farm Ownership, Downpayment loans, Conservation loans, and Soil and Water loans: (i) Direct... Ownership loan, direct Conservation loan, direct Soil and Water loan, guaranteed Farm Ownership loan, guaranteed Conservation loan, and guaranteed Soil and Water loan-$700,000 (for fiscal year 2000 and increased...
Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia
USDA-ARS?s Scientific Manuscript database
A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...
7 CFR 611.10 - Standards, guidelines, and plans.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.10 Standards, guidelines, and plans. (a) NRCS conducts soil surveys under national standards and guidelines for naming, classifying, and interpreting soils and for disseminating soil survey information. (b...
7 CFR 611.10 - Standards, guidelines, and plans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.10 Standards, guidelines, and plans. (a) NRCS conducts soil surveys under national standards and guidelines for naming, classifying, and interpreting soils and for disseminating soil survey information. (b...
7 CFR 611.10 - Standards, guidelines, and plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.10 Standards, guidelines, and plans. (a) NRCS conducts soil surveys under national standards and guidelines for naming, classifying, and interpreting soils and for disseminating soil survey information. (b...
7 CFR 611.10 - Standards, guidelines, and plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.10 Standards, guidelines, and plans. (a) NRCS conducts soil surveys under national standards and guidelines for naming, classifying, and interpreting soils and for disseminating soil survey information. (b...
7 CFR 611.10 - Standards, guidelines, and plans.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.10 Standards, guidelines, and plans. (a) NRCS conducts soil surveys under national standards and guidelines for naming, classifying, and interpreting soils and for disseminating soil survey information. (b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wight, L.; Zaslawsky, M.
Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.
Soil conservation in the 21st century: why we need smart agricultural intensification
NASA Astrophysics Data System (ADS)
Govers, Gerard; Merckx, Roel; van Wesemael, Bas; Van Oost, Kristof
2017-03-01
Soil erosion severely threatens the soil resource and the sustainability of agriculture. After decades of research, this problem still persists, despite the fact that adequate technical solutions now exist for most situations. This begs the question as to why soil conservation is not more rapidly and more generally implemented. Studies show that the implementation of soil conservation measures depends on a multitude of factors but it is also clear that rapid change in agricultural systems only happens when a clear economic incentive is present for the farmer. Conservation measures are often more or less cost-neutral, which explains why they are often less generally adopted than expected. This needs to be accounted for when developing a strategy on how we may achieve effective soil conservation in the Global South, where agriculture will fundamentally change in the next century. In this paper we argue that smart intensification is a necessary component of such a strategy. Smart intensification will not only allow for soil conservation to be made more economical, but will also allow for significant gains to be made in terms of soil organic carbon storage, water efficiency and biodiversity, while at the same time lowering the overall erosion risk. While smart intensification as such will not lead to adequate soil conservation, it will facilitate it and, at the same time, allow for the farmers of the Global South to be offered a more viable future.
Soil conservation in Central America and Panama: current problems.
Popenoe, H
1976-06-01
Soil conservation measures in Central America go back to the Maya civilization, in which terracing was employed. After the Spanish conquest, plowing, livestock raising, and the succession of social and political changes all contributed to accelerate erosion. Through the past few decades, awareness of the need for soil conservation has again increased; El Salvador and Costa Rica began efforts in that direction in 1943. For sometime, the use of machinery and chemical fertilizers has masked the loss of topsoil, but under recent increases in population pressures, soil conservation measures are gaining in importance. Important agents of erosion in the tropics are heavy seasonal rains at high elevations, alternating with long dry seasons; wind erosion; and landslides after saturation of the soil during prolonged rains. Modern machinery often hastens soil removal, as do also overgrazing, deforestation and vertical crop rows. Under the present energy crisis, human labor is becoming again a significant element in crop production, and soil conservation becomes thereby more feasible and more important.
The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe
NASA Astrophysics Data System (ADS)
Mupangwa, W.; Twomlow, S.; Walker, S.
Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.
Xu, Xiang-Zhou; Li, Mei-Juan; Liu, Bin; Kuang, Shang-Fu; Xu, Shi-Guo
2012-05-01
A large number of soil and water conservation programs have been implemented on the Loess Plateau of China since the 1950s. To comprehensively assess the merits and demerits of the conservation practices is of great importance in further supervising the conservation strategy for the Loess Plateau. This study calculates the impact factors of conservation practices on soil, water, and nutrients during the period 1954-2004 in the Nanxiaohegou Catchment, a representative catchment in the Loess Mesa Ravine Region of the Loess Plateau, China. Brief conclusions could be drawn as follows: (1) Soil erosion and nutrient loss had been greatly mitigated through various conservation practices. About half of the total transported water and 94.8 % of the total transported soil and nutrients, had been locally retained in the selected catchment. The soil retained from small watersheds do not only form large-scale fertile farmland but also safeguard the Yellow River against overflow. (2) Check dam was the most appropriate conservation practice on the Loess Plateau. In the selected catchment, more than 90 % of the retained soil and water were accomplished by the dam farmland, although the dam farmland occupied only 2.3 % of the total area of all conservation measures. Retention abilities of the characteristic conservation practices were in the following order: dam farmland > terrace farmland > forest land and grassland. (3) The conservation practices were more powerful in retaining sediment than in reducing runoff from the Loess Plateau, and the negative effects of the conservation practices on reducing water to the Yellow River were relatively slight.
7 CFR 650.20 - Reviewing and commenting on EIS's prepared by other agencies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... future use considered in the EIS? (3) Provisions for soil and water conservation management measures on... of severance on private land ownerships? (6) The impact on existing soil and water conservation... response. (2) EIS's submitted to conservation districts. NRCS may furnish needed soil, water, and related...
26 CFR 1.175-7 - Allocation of expenditures in certain circumstances.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the time the taxpayer paid or incurred expenditures for the purpose of soil or water conservation, or... that A's expenditures for the purpose of soil and water conservation can reasonably be expected to... soil and water conservation can reasonably be expected to directly and substantially benefit only the...
7 CFR 650.20 - Reviewing and commenting on EIS's prepared by other agencies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... future use considered in the EIS? (3) Provisions for soil and water conservation managment measures on... of severance on private land ownerships? (6) The impact on existing soil and water conservation... response. (2) EIS's submitted to conservation districts. NRCS may furnish needed soil, water, and related...
26 CFR 1.175-7 - Allocation of expenditures in certain circumstances.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the time the taxpayer paid or incurred expenditures for the purpose of soil or water conservation, or... that A's expenditures for the purpose of soil and water conservation can reasonably be expected to... soil and water conservation can reasonably be expected to directly and substantially benefit only the...
7 CFR 650.20 - Reviewing and commenting on EIS's prepared by other agencies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... future use considered in the EIS? (3) Provisions for soil and water conservation management measures on... of severance on private land ownerships? (6) The impact on existing soil and water conservation... response. (2) EIS's submitted to conservation districts. NRCS may furnish needed soil, water, and related...
26 CFR 1.175-7 - Allocation of expenditures in certain circumstances.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the time the taxpayer paid or incurred expenditures for the purpose of soil or water conservation, or... that A's expenditures for the purpose of soil and water conservation can reasonably be expected to... soil and water conservation can reasonably be expected to directly and substantially benefit only the...
26 CFR 1.175-7 - Allocation of expenditures in certain circumstances.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the taxpayer paid or incurred expenditures for the purpose of soil or water conservation, or for the... that A's expenditures for the purpose of soil and water conservation can reasonably be expected to... soil and water conservation can reasonably be expected to directly and substantially benefit only the...
7 CFR 650.20 - Reviewing and commenting on EIS's prepared by other agencies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... future use considered in the EIS? (3) Provisions for soil and water conservation managment measures on... of severance on private land ownerships? (6) The impact on existing soil and water conservation... response. (2) EIS's submitted to conservation districts. NRCS may furnish needed soil, water, and related...
26 CFR 1.175-7 - Allocation of expenditures in certain circumstances.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the time the taxpayer paid or incurred expenditures for the purpose of soil or water conservation, or... that A's expenditures for the purpose of soil and water conservation can reasonably be expected to... soil and water conservation can reasonably be expected to directly and substantially benefit only the...
Improvement of Soil and Water Conservation Outdoor Classrooms and Volunteers in Taiwan
NASA Astrophysics Data System (ADS)
Wu, Y. L.; Lin, Y. H.; Huang, K. F.; Chan, H. C.
2016-12-01
In order to improve the knowledge and understanding of soil and water conservation, the Soil and Water Conservation Bureau, Taiwan sets up soil and water conservation outdoor classrooms and assigns volunteers for on-site commentating. There are 19 soil and water conservation outdoor classrooms and 483 volunteers. In order to intergate education resource and improve quality, the examination of outdoor classrooms and training of the volunteers were conducted. The training programs aimed to improve the standard of living, promote a general mood of voluntary service, and encourage the public to cultivate the value of hometown-treasuring and the sentiment of people-helping. The service system of volunteers was also organized through the training programs. The assessments of soil and water conservation outdoor classrooms were conducted through the on-site investigations. The improvement suggestions were then put forward according to the characteristics of the classrooms. The improvement contents were compiled for each outdoor classroom and there are five common suggestions depicted as follows: 1. the expectations of internationalization; 2. the issues of land leases; 3. improvement of traffic flow; 4. the format and information of explanation boards should be unified; and 5. the issues of facility maintaining. Key words: Soil and water conserveation, Volunteer, Outdoor classroom.
Soil Classification and Treatment.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
This instructional unit was designed to enable students, primarily at the secondary level, to (1) classify soils according to current capability classifications of the Soil Conservation Service, (2) select treatments needed for a given soil class according to current recommendations provided by the Soil Conservation Service, and (3) interpret a…
Carling, P A; Irvine, B J; Hill, A; Wood, M
2001-01-29
The historical process by which a soil conservation strategy has evolved within the UK forestry industry is briefly reviewed. Particular attention is given to the development of practical and effective guidelines to prevent both soil damage and sediment entering water courses. It is concluded that the 'Forest and Water Guidelines', together with other forest industry manuals, largely provide adequate protection for aquatic habitats from pre-afforestation cultivation and from harvesting activities. The problem of soil erosion owing to ploughing of open furrows has largely been obviated by improved drainage network design coupled with the use of vegetated buffer strips and sediment catchpits. Alternative site preparation techniques, such as 'moling' or 'dolloping' of afforestation sites, are now preferred. However, the effects on slope hydrology and the improved soil conservation associated with these methods require quantifying. Additional understanding of effective buffer strip function, for example, on a variety of slope angles, soil types and vegetation associations would be beneficial. The design of forest roads and the associated network of drains, culverts and sediment catchpits is addressed in forestry guidelines. Future potential in this area may involve the use of Geographical Information Systems in the effective design of road networks which minimise adverse effects on slope hydrology. Similarly computer simulation of flow routing might aid in the design of road drain networks. At the more local scale there remains scope for further research aimed at minimising soil disturbance by machinery. Consideration should also be given to the long-term sustainability of the soil structure through second and subsequent crop rotations.
NASA Astrophysics Data System (ADS)
Jayasree, P. K.; Arun, K. V.; Oormila, R.; Sreelakshmi, H.
2018-05-01
As per Indian Standards, laterally loaded piles are usually analysed using the method adopted by IS 2911-2010 (Part 1/Section 2). But the practising engineers are of the opinion that the IS method is very conservative in design. This work aims at determining the extent to which the conventional IS design approach is conservative. This is done through a comparative study between IS approach and the theoretical model based on Vesic's equation. Bore log details for six different bridges were collected from the Kerala Public Works Department. Cast in situ fixed head piles embedded in three soil conditions both end bearing as well as friction piles were considered and analyzed separately. Piles were also modelled in STAAD.Pro software based on IS approach and the results were validated using Matlock and Reese (In Proceedings of fifth international conference on soil mechanics and foundation engineering, 1961) equation. The results were presented as the percentage variation in values of bending moment and deflection obtained by different methods. The results obtained from the mathematical model based on Vesic's equation and that obtained as per the IS approach were compared and the IS method was found to be uneconomical and conservative.
Soil management: The key to soil quality and sustainable agriculture
NASA Astrophysics Data System (ADS)
Basch, Gottlieb; Barão, Lúcia; Soares, Miguel
2017-04-01
Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as close as possible natural soil conditions while producing food, feed, fibre and fuel. This means to establish and manage crops while disturbing the soil as least as possible, to maintain the soil permanently covered with plants or their residues and to allow for a diversity of plants either in rotation or in association. These principles also known as Conservation Agriculture have shown to be the most promising approach for a sustainable production intensification and proven to work in a wide range of agro-ecological conditions. Although adopted already on more than 150 Mha worldwide, in Europe it still can be considered a novel soil management practice as it is applied on only around 2% of the annual cropland. A paradigm shift and innovative approaches are needed both to recognise the principles of Conservation Agriculture as the only cost-effective, and thus overall sustainable soil management practices capable to deliver the soil-mediated ecosystem services and to make Conservation Agriculture systems work and accepted as the best compromise to attain better soil quality. Keywords: Soil threats, Soil conservation, GAEC, Conservation Agriculture, Resource efficiency
NASA Astrophysics Data System (ADS)
Huang, Wen-Cheng
2014-05-01
Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint. 6. Conduct soil and water conservation research according to the importance and urgency of policies. 7. Implement the international cooperation, technology communication, talent cultivation, and integrated education and promotion.
Crop rotations and poultry litter impact dynamic soil chemical properties and soil biota long-term
USDA-ARS?s Scientific Manuscript database
Dynamic soil physiochemical interactions with conservation agricultural practices and soil biota are largely unknown. Therefore, this study aims to quantify long-term (12-yr) impacts of cover crops, poultry litter, crop rotations, and conservation tillage and their interactions on soil physiochemica...
USDA-ARS?s Scientific Manuscript database
Incorporating manures into soil with conventional tillage is an effective means to reduce ammonia volatilization and conserve manure nitrogen. However, it is not possible in pasture and is not readily compatible with high-residue soil conservation practices for rowcrops. A variety of manure injecto...
Soil conservation applications with C-band SAR
NASA Technical Reports Server (NTRS)
Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.
1992-01-01
Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.
7 CFR 12.31 - On-site wetland identification criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CONSERVATION Wetland Conservation § 12.31 On-site wetland identification criteria. (a) Hydric soils. (1) NRCS shall identify hydric soils through the use of published soil maps which reflect soil surveys completed by NRCS or through the use of on-site reviews. If a published soil map is unavailable for a given...
7 CFR 12.31 - On-site wetland identification criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSERVATION Wetland Conservation § 12.31 On-site wetland identification criteria. (a) Hydric soils. (1) NRCS shall identify hydric soils through the use of published soil maps which reflect soil surveys completed by NRCS or through the use of on-site reviews. If a published soil map is unavailable for a given...
7 CFR 12.31 - On-site wetland identification criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CONSERVATION Wetland Conservation § 12.31 On-site wetland identification criteria. (a) Hydric soils. (1) NRCS shall identify hydric soils through the use of published soil maps which reflect soil surveys completed by NRCS or through the use of on-site reviews. If a published soil map is unavailable for a given...
7 CFR 12.31 - On-site wetland identification criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CONSERVATION Wetland Conservation § 12.31 On-site wetland identification criteria. (a) Hydric soils. (1) NRCS shall identify hydric soils through the use of published soil maps which reflect soil surveys completed by NRCS or through the use of on-site reviews. If a published soil map is unavailable for a given...
7 CFR 12.31 - On-site wetland identification criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSERVATION Wetland Conservation § 12.31 On-site wetland identification criteria. (a) Hydric soils. (1) NRCS shall identify hydric soils through the use of published soil maps which reflect soil surveys completed by NRCS or through the use of on-site reviews. If a published soil map is unavailable for a given...
Shi, Min-Jun; Chen, Kevin
2004-12-01
Land degradation is one of the severe environmental problems in China. In order to combat land degradation, a soil conservation program was introduced since 2000 to reduce soil erosion by converting slope-cultivated land into forestry and pasture. This paper represents the first systematic attempt to investigate the impact of the soil conservation program on land degradation in the loess plateau. The results indicate that the soil conservation program to convert slope fields into forest or pasture is an effective way to combat soil erosion. However, a subsidy that is higher than profit of land use activity of slope fields before their conversion into forest and pasture is needed to encourage farmers to join the conservation program. A policy measure to encourage and assist farmers to develop sedentary livestock by using crops produced from fields as well as fodder and forage grass from the converted slope fields might contribute to combat soil erosion. Increase in off-farm job opportunities may encourage households to reduce cultivation in slope fields. That implies a policy measure to encourage rural urbanization might contribute to combat soil erosion.
Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin
NASA Astrophysics Data System (ADS)
Peng, H.; Jia, Y.; Qiu, Y.
2011-12-01
The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin
SOIL AND WATER CONSERVATION PROJECTS AND ACTIVITIES, A GUIDE FOR 4-H CLUB LEADERS.
ERIC Educational Resources Information Center
FOSTER, ALBERT B.; FOX, ADRIAN C.
THIS PUBLICATION WAS PREPARED BY THE SOIL CONSERVATION SERVICE FOR USE WITH YOUTH GROUPS. VARIOUS ACTIVITIES AND PROJECTS ARE PRESENTED WHICH CAN BE USED TO DEVELOP CONCEPTS ABOUT SOIL AND WATER CONSERVATION. IN ORDER TO SIMPLIFY THE PROCESS OF DEMONSTRATING THESE ACTIVITIES, MANY OF THE CONCEPTS ARE PICTORIALLY ILLUSTRATED. THE ACTIVITIES…
26 CFR 1.175-4 - Definition of “land used in farming.”
Code of Federal Regulations, 2014 CFR
2014-04-01
... before or at the same time as, the taxpayer makes the expenditures for soil or water conservation or for... land is idle because of the season, A makes certain soil and water conservation expenditures on this..., construct earthen terraces and ponds, and make other soil and water conservation expenditures. The land is...
26 CFR 1.175-4 - Definition of “land used in farming.”
Code of Federal Regulations, 2011 CFR
2011-04-01
... before or at the same time as, the taxpayer makes the expenditures for soil or water conservation or for... land is idle because of the season, A makes certain soil and water conservation expenditures on this..., construct earthen terraces and ponds, and make other soil and water conservation expenditures. The land is...
26 CFR 1.175-4 - Definition of “land used in farming.”
Code of Federal Regulations, 2013 CFR
2013-04-01
... before or at the same time as, the taxpayer makes the expenditures for soil or water conservation or for... land is idle because of the season, A makes certain soil and water conservation expenditures on this..., construct earthen terraces and ponds, and make other soil and water conservation expenditures. The land is...
26 CFR 1.175-4 - Definition of “land used in farming.”
Code of Federal Regulations, 2012 CFR
2012-04-01
... before or at the same time as, the taxpayer makes the expenditures for soil or water conservation or for... land is idle because of the season, A makes certain soil and water conservation expenditures on this..., construct earthen terraces and ponds, and make other soil and water conservation expenditures. The land is...
ERIC Educational Resources Information Center
Bruening, Thomas H.; Martin, Robert A.
A sample of 731 farmers was surveyed to identify perceptions regarding selected soil and water conservation practices. The sample was stratified and proportioned by conservation district to have a representative group of respondents across Iowa. Items on the mailed questionnaire were designed to assess perceptions regarding issues in soil and…
NASA Technical Reports Server (NTRS)
Potter, Christopher S.; Li, Shuang
2014-01-01
The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.
7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...
7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...
7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...
7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...
7 CFR 610.14 - Use of USLE, RUSLE, and WEQ.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations..., this includes the soil loss tolerance values used in those formulas for determining HEL. The soil loss tolerance value is used as one of the criteria for planning soil conservation systems. These values are...
Participatory GIS for Soil Conservation in Phewa Watershed of Nepal
NASA Astrophysics Data System (ADS)
Bhandari, K. P.
2012-07-01
Participatory Geographic Information Systems (PGIS) can integrate participatory methodologies with geo-spatial technologies for the representation of characteristic of particular place. Over the last decade, researchers use this method to integrate the local knowledge of community within a GIS and Society conceptual framework. Participatory GIS are tailored to answer specific geographic questions at the local level and their modes of implementation vary considerably across space, ranging from field-based, qualitative approaches to more complex web-based applications. These broad ranges of techniques, PGIS are becoming an effective methodology for incorporating community local knowledge into complex spatial decision-making processes. The objective of this study is to reduce the soil erosion by formulating the general rule for the soil conservation by participation of the stakeholders. The poster was prepared by satellite image, topographic map and Arc GIS software including the local knowledge. The data were collected from the focus group discussion and the individual questionnaire for incorporate the local knowledge and use it to find the risk map on the basis of economic, social and manageable physical factors for the sensitivity analysis. The soil erosion risk map is prepared by the physical factors Rainfall-runoff erosivity, Soil erodibility, Slope length, Slope steepness, Cover-management, Conservation practice using RUSLE model. After the comparison and discussion among stakeholders, researcher and export group, and the soil erosion risk map showed that socioeconomic, social and manageable physical factors management can reduce the soil erosion. The study showed that the preparation of the poster GIS map and implement this in the watershed area could reduce the soil erosion in the study area compared to the existing national policy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Pollution Control Act (33 U.S.C. 1288(j)). (2) The rural abandoned mine program authorized by section 406 of... conservation program authorized by the Soil Conservation and Domestic Allotment Act (16 U.S.C. 590a). (6) The Great Plains conservation program authorized by section 16 of the Soil Conservation and Domestic...
Zhu, Qiang-Gen; Zhu, An-Ning; Zhang, Jia-Bao; Zhang, Huan-Chao; Huang, Ping; Zhang, Cong-Zhi
2009-10-01
An investigation was made on the abundance and diversity of soil fauna in the corn fields under conventional and conservation tillage in Huang-Huai-Hai Plain of China. The abundance and diversity of soil fauna were higher at corn maturing (September) than at its jointing stage (July), and higher at jointing stage under conservation tillage than under conventional tillage. Soil fauna mainly distributed in surface soil layer (0-10 cm), but still had a larger number in 10-20 cm layer under conservation tillage. The individuals of acari, diptera, diplura, and microdrile oligochaetes, especially those of acari, were higher under conservation tillage than under conventional tillage. At maturing stage, an obvious effect of straw-returning under conservation tillage was observed, i. e., the more the straw returned, the higher the abundance of soil fauna, among which, the individuals of collembola, acari, coleopteran, and psocoptera, especially those of collembolan, increased significantly. The abundance of collembola at both jointing and maturing stages was significantly positively correlated with the quantity of straw returned, suggesting that collembola played an important role in straw decomposition and nutrient cycling.
Emergent Imaging and Geospatial Technologies for Soil Investigations
NASA Technical Reports Server (NTRS)
DeGloria, Stephen D.; Beaudette, Dylan E.; Irons, James R.; Libohova, Zamir; O'Neill, Peggy E.; Owens, Phillip R.; Schoeneberger, Philip J.; West, Larry T.; Wysocki, Douglas A.
2014-01-01
Soil survey investigations and inventories form the scientific basis for a wide spectrum of agronomic and environmental management programs. Soil data and information help formulate resource conservation policies of federal, state, and local governments that seek to sustain our agricultural production system while enhancing environmental quality on both public and private lands. The dual challenges of increasing agricultural production and ensuring environmental integrity require electronically available soil inventory data with both spatial and attribute quality. Meeting this societal need in part depends on development and evaluation of new methods for updating and maintaining soil inventories for sophisticated applications, and implementing an effective framework to conceptualize and communicate tacit knowledge from soil scientists to numerous stakeholders.
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
30 CFR 715.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a qualified soil scientist or agronomist, may be obtained from any one or a combination of the following sources: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii...
30 CFR 816.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 816.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 817.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 817.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 715.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... a qualified soil scientist or agronomist, may be obtained from any one or a combination of the following sources: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii...
30 CFR 817.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 817.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 715.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... a qualified soil scientist or agronomist, may be obtained from any one or a combination of the following sources: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii...
30 CFR 715.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... a qualified soil scientist or agronomist, may be obtained from any one or a combination of the following sources: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii...
30 CFR 715.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... a qualified soil scientist or agronomist, may be obtained from any one or a combination of the following sources: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii...
30 CFR 816.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 816.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 816.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
30 CFR 817.200 - Interpretative rules related to general performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... demonstrate that the resulting soil medium is equal to or more suitable for sustaining revegetation than the...: (i) U.S. Department of Agriculture Soil Conservation Service published data based on established soil series; (ii) U.S. Department of Agriculture Soil Conservation Service Technical Guides; (iii) State...
Impact of agronomic practices on soil biological properties on the Texas High Plains
USDA-ARS?s Scientific Manuscript database
Semiarid environments of the Texas High Plains decrease soil organic carbon and soil residue building resulting in difficult conditions for soil microbes. Current conservation practices such as conservation tillage, crop rotation, and cover cropping have not been quickly adopted in the area. In or...
7 CFR 611.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.1 Purpose and scope. (a) This part sets forth policy on soil survey operations of the Natural Resources Conservation Service (NRCS). (b) NRCS is responsible for soil survey activities of the U.S. Department of Agriculture (USDA). A soil survey provides...
7 CFR 611.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.1 Purpose and scope. (a) This part sets forth policy on soil survey operations of the Natural Resources Conservation Service (NRCS). (b) NRCS is responsible for soil survey activities of the U.S. Department of Agriculture (USDA). A soil survey provides...
7 CFR 611.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.1 Purpose and scope. (a) This part sets forth policy on soil survey operations of the Natural Resources Conservation Service (NRCS). (b) NRCS is responsible for soil survey activities of the U.S. Department of Agriculture (USDA). A soil survey provides...
7 CFR 611.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.1 Purpose and scope. (a) This part sets forth policy on soil survey operations of the Natural Resources Conservation Service (NRCS). (b) NRCS is responsible for soil survey activities of the U.S. Department of Agriculture (USDA). A soil survey provides...
7 CFR 611.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.1 Purpose and scope. (a) This part sets forth policy on soil survey operations of the Natural Resources Conservation Service (NRCS). (b) NRCS is responsible for soil survey activities of the U.S. Department of Agriculture (USDA). A soil survey provides...
USDA-ARS?s Scientific Manuscript database
Background: Conservation tillage is a common management practice utilized in the hopes of reducing soil erosion and increasing soil carbon. Evidence suggests that conservation tillage may lead to habitat improvement for soil microorganisms, in particular rhizospheric bacteria and arbuscular mycorrhi...
Hydrology and Conservation Ecology
NASA Astrophysics Data System (ADS)
Narayanan, M.
2006-12-01
Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296/1-4. 1-22. http://www.wcc.nrcs.usda.gov http://www.ceh-nerc.ac.uk http://www.usda.gov
Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts
Heathcote, Adam J.; Filstrup, Christopher T.; Downing, John A.
2013-01-01
Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha−1. Sediment deposition from erosion increased >6-fold, from 149 g m−2 yr−1 in 1850 to 986 g m−2 yr−1 by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm−1 at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454
Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.
Heathcote, Adam J; Filstrup, Christopher T; Downing, John A
2013-01-01
Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...
Criterion I: Soil and water conservation on rangelands [Chapter 2
Michael G. (Sherm) Karl; Paul T. Tueller; Gerald E. Schuman; Mark R. Vinson; James L. Fogg; Ronald W. Shafer; David A. Pyke; D. Terrance Booth; Steven J. Borchard; William G. Ypsilantis; Richard H. Barrett
2010-01-01
The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion of rangeland sustainability. Within the soil/water criterion, 10 indicators  five soil-based and five water-based - were developed through the expert opinions of rangeland scientists, rangeland management agency personnel, non-...
Conservation of Water and Related Land Resources
NASA Astrophysics Data System (ADS)
Caldwell, Lynton K.
1984-04-01
The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.
Sharma, Pankaj; Singh, Geeta; Singh, Rana P.
2011-01-01
The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665
Hydrologic impacts of climate change and urbanization in Las Vegas Wash Watershed, Nevada
In this study, a cell-based model for the Las Vegas Wash (LVW) Watershed in Clark County, Nevada, was developed by combining the traditional hydrologic modeling methods (Thornthwaite’s water balance model and the Soil Conservation Survey’s Curve Number method) with the pixel-base...
Genesee River Basin Study. Volume 1. Main Report.
1988-06-01
Watersheds" by the U.S. Department of Agriculture, Soil Conservation Service, was prepared in June and October 1974. The report entitled "Dyke Creek...Watershed Preliminary Evaluation" by the U.S. Department of Agriculture, Soil Conservation Service, was prepared in December 1974. The report recommended... Soil Conservation Service prepared the draft report "Dyke Creek, P.L. 566 Watershed Project, Watershed Plan and Environmental Assessment" in June
Sustainable Soil Management: Its perception and the need for policy intervention
NASA Astrophysics Data System (ADS)
Basch, Gottlieb; Kassam, Amir; González-Sánchez, Emilio
2017-04-01
As stated in the strategic objectives of the Global Soil Partnership "healthy soils and sustainable soil management are the precondition for human well-being and economic welfare and therefore play the key role for sustainable development". Although the functional properties of a healthy soil are well understood, in practice it is easily overlooked what is necessary to achieve and sustain healthy agricultural soils. This contribution intends: to discuss the concept of sustainable soil management in agricultural production with regard to soil health, and to highlight its importance in the achievement of both Sustainable Development Goals and the 4 per mille objectives, as well as for the Common Agricultural Policy (CAP). In Europe, soil and the need for its conservation and stewardship gained visibility at the beginning of this century during the discussions related to the Soil Thematic Strategy. This higher level of awareness concerning the status of Europe's soils led to the introduction of soil conservation standards into the cross-compliance mechanism within the 1st Pillar of CAP. These standards were applied through the definition of Good Agricultural and Environmental Conditions (GAECs) which are compulsory for all farmers receiving direct payments, and in the last CAP reform in 2014, through the introduction of additional Greening Measures in Pilar 1. Despite these measures and the claim of some writers that they already contributed to significantly reducing soil erosion, the EC Joint Research Centre still reports water erosion in Europe amounting to almost one billion tonnes annually. Regarding soil conservation, soil carbon stocks or the provision of additional ecosystem services, measures called for in GAEC 4 (Minimum soil cover), in GAEC 5 (Minimum land management reflecting site specific conditions to limit soil erosion), and in GAEC 6 (Maintenance of soil organic matter level through appropriate practices, …), give the impression that a lot is being done to conserve Europe's agricultural soils. Knowing, however, that it is the member states who define these standards allowing them to be tailored to national and regional contexts, it becomes clear why agricultural practices and soil management on the majority of European cropland still follow a 'business-as-usual' model. Further, the introduction of the 'Greening' obligations continue to maintain the status quo for Europe's cropland soils as there is no added value opportunity available beyond the 5% Ecological Focus Area, accounted for by the existing landscape areas not directly used for production, and the maintenance of permanent pasture lands. In light of the above, urgent action is needed to extend these timid efforts of agricultural soil conservation to include measures that can apply directly to a much larger area under agricultural production while preserving and enhancing the production potential and capacity of the farmland. Crop production and agricultural land management based on the principles of Conservation Agriculture (no-till seeding and weeding, maintaining soil mulch cover, crop diversification) has proven to improve decisively the delivery of all soil-mediated productivity and ecosystem services, including soil carbon sequestration (4 per mille), the efficient use of natural resources and external inputs and thus improved cost efficiency and profit, while maintaining or increasing productivity. However, especially in Europe, institutional and policy support is needed to mainstream this truly agro-ecological approach of Conservation Agriculture to sustainable farming and land management. Keywords: Soil health, Common Agricultural Policy, Conservation Agriculture, Ecosystem Services, Productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
Andy Henriksen
2010-01-01
Since 1935, the Natural Resources Conservation Service (NRCS) (originally the Soil Conservation Service) has provided leadership in a partnership effort to help America's private landowners and managers conserve their soil, water, and other natural resources. NRCS employees provide technical assistance based on sound science and suited to a customer's...
Resource Conservation Glossary.
ERIC Educational Resources Information Center
Soil Conservation Society of America, Ankeny, IA.
This glossary is a composite of terms selected from 13 technologies, and is the expanded revision of the original 1952 edition of "The Soil and Water Conservation Glossary." The terms were selected from these areas: agronomy, biology, conservation, ecology, economics, engineering, forestry, geology, hydrology, range, recreation, soils, and…
Indexing Soil Conservation: Farmer Perceptions of Agroforestry Benefits
Subhrendu K. Pattanayak; D. Evan Mercer
2002-01-01
Soil erosion poses economic and environmental concerns in many tropical uplands. Agroforestry has been proposed as a sustainable land use that can mitigate soil erosion and promote the economic welfare of small farmers. To evaluate such claims, we must (a) develop a composite measure of effectiveness, such as a soil conservation index, and (b) define it in terms...
USDA-ARS?s Scientific Manuscript database
We investigated changes in soil bacterial and fungal communities with increasing restoration time across a Conservation Reserve Program chronosequence (CRP) on fine sandy loam soils in the Texas high plains region. Soil samples (0-10cm) were collected in 2012 and 2014 from seven dryland croplands (0...
7 CFR 610.22 - State Technical Committee membership.
Code of Federal Regulations, 2011 CFR
2011-01-01
... variety of disciplines in soil, water, wetlands, plant, and wildlife sciences. The State Conservationist... resources agency; (iv) Department of agriculture; (v) Association of soil and water conservation districts; and (vi) Soil and water conservation agency; (8) Agricultural producers representing the variety of...
7 CFR 610.22 - State Technical Committee membership.
Code of Federal Regulations, 2012 CFR
2012-01-01
... variety of disciplines in soil, water, wetlands, plant, and wildlife sciences. The State Conservationist... resources agency; (iv) Department of agriculture; (v) Association of soil and water conservation districts; and (vi) Soil and water conservation agency; (8) Agricultural producers representing the variety of...
7 CFR 610.22 - State Technical Committee membership.
Code of Federal Regulations, 2013 CFR
2013-01-01
... variety of disciplines in soil, water, wetlands, plant, and wildlife sciences. The State Conservationist... resources agency; (iv) Department of agriculture; (v) Association of soil and water conservation districts; and (vi) Soil and water conservation agency; (8) Agricultural producers representing the variety of...
7 CFR 610.22 - State Technical Committee membership.
Code of Federal Regulations, 2010 CFR
2010-01-01
... variety of disciplines in soil, water, wetlands, plant, and wildlife sciences. The State Conservationist... resources agency; (iv) Department of agriculture; (v) Association of soil and water conservation districts; and (vi) Soil and water conservation agency; (8) Agricultural producers representing the variety of...
7 CFR 610.22 - State Technical Committee membership.
Code of Federal Regulations, 2014 CFR
2014-01-01
... variety of disciplines in soil, water, wetlands, plant, and wildlife sciences. The State Conservationist... resources agency; (iv) Department of agriculture; (v) Association of soil and water conservation districts; and (vi) Soil and water conservation agency; (8) Agricultural producers representing the variety of...
NASA Astrophysics Data System (ADS)
Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco
2017-04-01
Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.
Conservation strategies on citrus plantation in eastern Spain. Catch crops, geotextiles and mulches
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Dominguez, Alfons; Giménez Morera, Antonio
2010-05-01
Tillage (6 %), and herbicides (89 %) are the most widespread soil management methods in eastern Spain citrus orchards. The bare soils, the high intensity thunderstorms and the steep slopes result in high erosion rates. Over the last 3 years an experimental station has been developed at Montesa municipality in order to determine the effect of different types of mulch, geotextiles and catch crops. Rainfall simulation experiments on 20 m2 plots shown that soil losses can be control by catch crops (85 %), chipped pruned branches (89 %), straw mulch (97 %) and geotextiles (99 %). Then, vegetation can contribute to control the soil and water losses on the highly erodible soil of Mediterranean orchards.
NASA Astrophysics Data System (ADS)
Zolin, C. A.; Folegatti, M. V.; Mingoti, R.; Paulino, J.; Sánchez-Román, R. M.; González, A. M.
2013-12-01
Brazil possesses one of the most important water assets in the world, however, the country experiences vast differences among its hydrographic regions. Although Brazil has the largest water reserves in the world, those reserves are not distributed according to the concentration of the population. In addition, the largest portions of these water reserves are not always located where the highest urban concentrations and demands occur, which causes serious problems in maintaining water supply within the country's most populous regions (Zolin et al. 2011). It has become evident that policies aimed at mitigating the growing water resources and water use conflicts in Brazil are crucial. The municipality of Extrema in Minas Gerais state in Brazil pioneered the first Brazilian municipal PES initiative (Conservador das Águas program), based on the relationship between forests and the benefits they provide. This study aimed to assess soil loss in the Posses sub-basin, where the Conservador das Águas program began. Additionally, we aimed to determine the potential that this PES initiative has for soil conservation, as well as to optimize the environmental services provided as a function of forest area size and location. In this sense, considering the prescribed conservation practices, land use situation, and soil cover in the Posses sub-basin, we analyzed the effectiveness of the Conservador das Águas program before and after implementation in relation to reduced soil loss under different land use and soil cover scenarios. We used a geographic information system (GIS) for spatializing and producing different information plans and the Revised Universal Soil Loss Equation (RUSLE) for estimating soil loss. As a result, we found that optimized soil conservation may be obtained by adopting pasture conservation practices. Additionally the expected average soil loss in the Posses sub-basin under conditions of land use and soil cover, before and after implementing the water conservation program, was 30.63 and 7.06 Mg ha-1 year-1, respectively.
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2014 CFR
2014-01-01
... districts and other organizations concerned with the conservation of soil, water, plant, and wildlife... and needs in order for districts to develop long-range soil and water conservation programs...) Farmers, ranchers, and other land users concerned with the conservation of land and water resources. (2...
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2012 CFR
2012-01-01
... districts and other organizations concerned with the conservation of soil, water, plant, and wildlife... and needs in order for districts to develop long-range soil and water conservation programs...) Farmers, ranchers, and other land users concerned with the conservation of land and water resources. (2...
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2013 CFR
2013-01-01
... districts and other organizations concerned with the conservation of soil, water, plant, and wildlife... and needs in order for districts to develop long-range soil and water conservation programs...) Farmers, ranchers, and other land users concerned with the conservation of land and water resources. (2...
Impacts of climate and land use change on reservoir sedimentation
USDA-ARS?s Scientific Manuscript database
Impacts of evolving climate and implementation of upstream soil conservation measures on sedimentation of the Fort Cobb Reservoir in West-Central Oklahoma are investigated. Conservation practices before the 1950s were few. Between 1950 and 2008, extensive soil conservation measures were implemented...
NASA Astrophysics Data System (ADS)
Mor-Mussery, Amir; Helman, David; Ben Eli, Michael; Leu, Stefan
2017-04-01
The Israeli Negev Desert, as most Mediterranean drylands, is profoundly degraded. We have been documenting degradation and successful rehabilitation approaches in recent research, aiming at maximizing environmental and economic benefits while restoring healthy dryland soils and perennial vegetation to act as carbon sinks. These methods have been implemented for rehabilitation of Project Wadi Attir's. 50 hectares of heavily degraded farmland suffering from intensive soil erosion (expressed in dense gullies net and massive overland flow). Project Wadi Attir is a groundbreaking initiative of the Bedouin community in the Negev, for establishing a model sustainable agricultural operation. The project was initiated by the US-based Sustainability Laboratory and the Hura Municipal Council. The project is designed to demonstrate implementation of holistic sustainability principles developed by The Lab. The project's ecosystem restoration component involves site development, erosion control, soil conservation and improvement, planting of native and agroforestry trees, together with conservation and protection of biodiversity hotspots and avoiding grazing have, within three years, revealed the high biodiversity and productivity potential of this arid/semi-arid landscape. A number of shrublands and loess plots were subject to strict conservation, avoiding tilling and grazing. Soil fertility, productivity and biodiversity of these conserved plots inside the farm boundaries was compared to similar unprotected plots outside the farm fences by sampling in the field and by using satellite imaging. Our findings indicate a gradual improvement of SOM content specifically in the conserved shrubland area. Water infiltration, herbaceous biomass productivity and ants' activity of the protected plots also significantly increased within 3 years compared to the unprotected control areas. Starting from similar soil organic matter content in 2013 (3.3%) in the rocky slopes, in 2016 1% higher SOM was measured inside the farm vs. outside (4.5% compared to 3.5%, respectively). In spring 2014 herbaceous biomass production was similar in both areas (0.05 Kg per m2), while in spring 2016 0.25 Kg per m2 were measured in the pedestal inside the farm compared to 0.06 Kg per m2 outside were observed. Consistent but less dramatic, changes were observed in the loess areas inside the farm with a productivity difference of 1.1 inside compared to 0.19 Kg per m2 outside in 2016 as compared to 0.05 Kg per m2 observed in both areas in 2013. Our results indicate that soil conservation together with proper land management and protection of biodiversity hotspots will enable sustainable agricultural management in degraded drylands all over the globe under significant gains in productivity, biodiversity and carbon sequestration.
Book review: Principals of soil conservation and management
USDA-ARS?s Scientific Manuscript database
Conservation and sustainable management of soil are essential features of humankind’s reverence for Nature. As well they should be, given the essential ecosystem services that soil imparts to our world, such as producing food, moderating climate, storing and cycling water and nutrients, purifying w...
Code of Federal Regulations, 2011 CFR
2011-01-01
... improvement in soil conditions on a field or group of fields containing highly erodible cropland when compared...: Agricultural commodity means any crop planted and produced by annual tilling of the soil, including tilling by... and implement soil and water conservation activities or programs. Conservation plan means the document...
Code of Federal Regulations, 2010 CFR
2010-01-01
... improvement in soil conditions on a field or group of fields containing highly erodible cropland when compared...: Agricultural commodity means any crop planted and produced by annual tilling of the soil, including tilling by... and implement soil and water conservation activities or programs. Conservation plan means the document...
Multi criteria evaluation for universal soil loss equation based on geographic information system
NASA Astrophysics Data System (ADS)
Purwaamijaya, I. M.
2018-05-01
The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.
Eckert, Sandra; Tesfay Ghebremicael, Selamawit; Hurni, Hans; Kohler, Thomas
2017-05-15
Land degradation affects large areas of land around the globe, with grave consequences for those living off the land. Major efforts are being made to implement soil and water conservation measures that counteract soil erosion and help secure vital ecosystem services. However, where and to what extent such measures have been implemented is often not well documented. Knowledge about this could help to identify areas where soil and water conservation measures are successfully supporting sustainable land management, as well as areas requiring urgent rehabilitation of conservation structures such as terraces and bunds. This study explores the potential of the latest satellite-based remote sensing technology for use in assessing and monitoring the extent of existing soil and water conservation structures. We used a set of very high resolution stereo Geoeye-1 satellite data, from which we derived a detailed digital surface model as well as a set of other spectral, terrain, texture, and filtered information layers. We developed and applied an object-based classification approach, working on two segmentation levels. On the coarser level, the aim was to delimit certain landscape zones. Information about these landscape zones is useful in distinguishing different types of soil and water conservation structures, as each zone contains certain specific types of structures. On the finer level, the goal was to extract and identify different types of linear soil and water conservation structures. The classification rules were based mainly on spectral, textural, shape, and topographic properties, and included object relationships. This approach enabled us to identify and separate from other classes the majority (78.5%) of terraces and bunds, as well as most hillside terraces (81.25%). Omission and commission errors are similar to those obtained by the few existing studies focusing on the same research objective but using different types of remotely sensed data. Based on our results, we estimate that the construction of the conservation structures in our study area in Eritrea required over 300,000 person-days of work, which underlines the huge efforts involved in soil and water conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian
2011-01-01
Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the long term storage of carbon in soil (as soil organic matter) or in plant material (such as in trees). Chief means the Chief of the Natural Resources Conservation Service or the person delegated... conservation activities result in a net conservation benefit for listed, candidate, or other species. Landowner...
7 CFR 610.11 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...
7 CFR 610.11 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...
7 CFR 610.11 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...
7 CFR 610.11 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...
7 CFR 610.11 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.11 Purpose... by the Natural Resources Conservation Service (NRCS) to predict soil erosion due to water and wind... Act, as amended, 16 U.S.C. 3801-3813 specified that the Secretary would publish the universal soil...
USDA-ARS?s Scientific Manuscript database
Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...
Soil organic carbon sequestration potential of conservation vs. conventional tillage
NASA Astrophysics Data System (ADS)
Meurer, Katharina H. E.; Ghafoor, Abdul; Haddaway, Neal R.; Bolinder, Martin A.; Kätterer, Thomas
2017-04-01
Soil tillage has been associated with many negative impacts on soil quality, especially a reduction in soil organic carbon (SOC). The benefits of no tillage (NT) on topsoil SOC concentrations have been demonstrated in several reviews, but the effect of reduced tillage (RT) compared to conventional tillage (CT) that usually involves soil inversion through moldboard ploughing is still unclear. Moreover, the effect of tillage on total SOC stocks including deeper layers is still a matter of considerable debate, because the assessment depends on many factors such as depth and method of measurement, cropping systems, soil type, climatic conditions, and length of the experiments used for the analysis. From a recently published systematic map database consisting of 735 long-term field experiments (≥ 10 years) within the boreal and temperate climate zones (Haddaway et al. 2015; Environmental Evidence 4:23), we selected all tillage studies (about 80) reporting SOC concentrations along with dry soil bulk density and conducted a systematic review. SOC stocks were calculated considering both fixed soil depths and by using the concept of equivalent soil mass. A meta-analysis was used to determine the influence of environmental, management, and soil-related factors regarding their prediction potential on SOC stock changes between the tillage categories NT, RT, and CT. C concentrations and stocks to a certain depth were generally highest under NT, intermediate under RT, and lowest under CT. However, this effect was mainly limited to the first 15 cm and disappeared or was even reversed in deeper layers, especially when adjusting soil depth according to the equivalent soil mineral mass. Our study highlights the impact of tillage-induced changes in soil bulk density between treatments and shows that neglecting the principles of equivalent soil mass leads to overestimation of SOC stocks for by conservation tillage practices.
The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture
USDA-ARS?s Scientific Manuscript database
Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...
Soil microbial community restoration in conservation reserve program semi-arid grasslands
USDA-ARS?s Scientific Manuscript database
The Conservation Reserve Program (CRP) in the Southern High Plains (SHP) is known to play a crucial role in maintaining ecosystem health by reducing soil erosion. However, the restoration of its soil biological health (biological community and its function) over time have not been clearly elucidated...
Code of Federal Regulations, 2011 CFR
2011-01-01
... agriculture is so broad that an included use could lead to the degradation of soils and agriculture... local soil conservation district in consultation with the local committees established under Section 8(b)(5) of the Soil Conservation and Domestic Allotment Act (16 U.S.C. 5909h(b)(5)) and the Secretary, or...
Correspondence between vegetation and soils in wetlands and nearby uplands
Scott, Michael L.; Slauson, William L.; Segelquist, Charles A.; Auble, Gregor T.
1989-01-01
The association between vegetation and soils from a geographically broad sampling of wetlands and adjoining uplands is reported for 38 hydric and 26 nonhydric soils, as recognized in the hydric soils list of the Soil Conservation Service. Wetlands represented in the study include estuaries, pitcher plant bogs, prairie depressional wetlands, and western riparian lands. The agreement between vegetation and soils is clear with few exceptions. In general, hydric soils support hydrophytic plant communities, and nonhydric soils support upland communities. Only 10% of the hydric soils sampled support upland communities and only 15% of the nonhydric soils support wetland communities. Exceptions to the correspondence between vegetation and soils are discussed; local hydrology, the transitional nature of some soils, and other determinants of wetland vegetation structure (e.g., salinity, disturbance) seem to account for many of the observed discrepancies. A method that simplifies the complexity of soils and vegetation cannot be expected to represent accurately all details of their interrelations.
The Impacts of Water Conservation Strategies on Water Use: Four Case Studies.
Tsai, Yushiou; Cohen, Sara; Vogel, Richard M
2011-08-01
We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields.
The Impacts of Water Conservation Strategies on Water Use: Four Case Studies1
Tsai, Yushiou; Cohen, Sara; Vogel, Richard M
2011-01-01
We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields. PMID:22457572
NASA Astrophysics Data System (ADS)
Galieva, G. Sh; Gilmutdinova, I. M.; Fomin, V. P.; Selivanovskaya, S. Yu; Galitskaya, P. Yu
2018-01-01
Conservation of soil fertility is one of the most important tasks of the present time. As microorganisms are among the key factors in forming soil fertility, monitoring their state in natural and anthropogenically changed soils is an important component of compulsory environmental monitoring. Modern methods make it possible to evaluate the diversity and the functions of soil microorganisms, however, unfortunately, not all the soils are analyzed with their help up to the present moment. The present investigation is aimed to evaluate the functional diversity of five natural soil samples in the Republic of Tatarstan (belonging to sod-podzol, sod-carbonate, alluvial, and gray types) using the method of Biolog EcoPlate according to the index of average well color development, alpha-biodiversiry Shannon index (H), amount of substrates consumed ®, and strategy of consumption of various carbon substrate groups. It was shown that the highest AWCD index was found in sample No 3 - alluvial soil type (3.159±0.460), the lowest one - in sample No 5 - gray soil type (0.572±0.230). Correlation of biological activity of microorganisms with organic matter content in soil was shown.
Diemont, Stewart A W; Martin, Jay F
2009-01-01
Indigenous groups have designed and managed their ecosystems for generations, resulting in biodiversity protection while producing for their family's needs. Here we describe the agroecosystem of the Lacandon Maya, an indigenous group who live in Chiapas, Mexico. The Lacandon practice a form of swidden agriculture that conserves the surrounding rain forest ecosystem while cycling the majority of their land through five successional stages. These stages include an herbaceous stage, two shrub stages, and two forest stages. A portion of their land is kept in primary forest. This study presents the Lacandon traditional ecological knowledge (TEK) for agroforestry and quantitatively describes the plant community and the associated soil ecology of each successional stage. Also documented is the knowledge of the Lacandon regarding the immediate use of plant species and plant species useful for soil fertility enhancement. Woody plant diversity increases during the successional stages of the Lacandon system, and by the beginning of the first forest stage, the diversity is similar to that of the primary forest. In all stages, Lacandon use 60% of the available plant species for food, medicine, and raw materials. Approximately 45% of the woody plant species present in each fallow stage were thought by the Lacandon to enhance soil fertility. Total soil nitrogen and soil organic matter increased with successional stage and with time from intentional burn. Nutrient and soil nematode dynamics in shrub stages related to the presence of introduced and managed plants, indicating engineered soil enhancement by the Lacandon. The effects on biodiversity and soil ecology coupled with productivity for agricultural subsistence indicate that Lacandon TEK may offer tools for environmental conservation that would provide for a family's basic needs while maintaining a biodiverse rain forest ecosystem. Tools such as these may offer options for regional restoration and conservation efforts such as the Mesoamerican Biological Corridor in Mexico and Central America, where attainment of environmental goals must include methods to provide resources to local inhabitants.
NASA Technical Reports Server (NTRS)
Sellers, Piers
2012-01-01
Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.
Approved Practices in Soil Conservation. Fifth Edition.
ERIC Educational Resources Information Center
Bosworth, Duane A.; Foster, Albert B.
This book is designed for individuals who want to apply conservation practices either without or with minimal technical assistance. These individuals include students who want to practice soil/water conservation with some instructor guidance and others who want to apply the principles in their own way, to their own conditions, and within their own…
Effect of roller/crimper designs in terminating rye cover crop in small-scale conservation systems
USDA-ARS?s Scientific Manuscript database
In recent years, use of cover crops in no-till organic production systems has steadily increased. When cover crops are terminated at an appropriate growth stage, the unincorporated residue mulch protects the soil from erosion, runoff, soil compaction, and weed pressure, and conserves soil water. In ...
Influence of FGD gypsum on the properties of a highly erodible soil under conservation tillage
USDA-ARS?s Scientific Manuscript database
The performance of conservation tillage practices imposed on highly erodible soils may be improved by the use of amendments with a high solubility rate, and whose dissolution products are translocated at depth in the soil profile faster than normally used agricultural lime and fertilizer products. T...
USDA-ARS?s Scientific Manuscript database
Conservation tillage (CsT) involves management that reduces soil erosion by maintaining crop residue cover on farm fields. Typically, both infiltration and soil organic matter increase over time with CsT practices. We compared the impact of a commonly used CsT practice, strip tillage (ST), to conven...
USDA-ARS?s Scientific Manuscript database
Conservation soil management practices such as no-till (NT) and strip-till (ST) are effective ways to sequester carbon and increase soil organic matter in agricultural lands. However, the impact of these practices on other greenhouse gases (GHG) such as nitrous oxide (N2O) varies depending on soil ...
USDA-ARS?s Scientific Manuscript database
The objective of this project is to compare the soil C quality in Conservation Reserve Program (CRP) vs. land under Sorghum cropping or rangeland in the Southern High Plains. Whole soils as well as light fraction particulate organic matter (lfPOM) was assessed using diffuse reflectance Fourier trans...
NASA Astrophysics Data System (ADS)
Shaw, Stephen B.; Walter, M. Todd
2009-03-01
The Soil Conservation Service curve number (SCS-CN) method is widely used to predict storm runoff for hydraulic design purposes, such as sizing culverts and detention basins. As traditionally used, the probability of calculated runoff is equated to the probability of the causative rainfall event, an assumption that fails to account for the influence of variations in soil moisture on runoff generation. We propose a modification to the SCS-CN method that explicitly incorporates rainfall return periods and the frequency of different soil moisture states to quantify storm runoff risks. Soil moisture status is assumed to be correlated to stream base flow. Fundamentally, this approach treats runoff as the outcome of a bivariate process instead of dictating a 1:1 relationship between causative rainfall and resulting runoff volumes. Using data from the Fall Creek watershed in western New York and the headwaters of the French Broad River in the mountains of North Carolina, we show that our modified SCS-CN method improves frequency discharge predictions in medium-sized watersheds in the eastern United States in comparison to the traditional application of the method.
Remote sensing as a source of land cover information utilized in the universal soil loss equation
NASA Technical Reports Server (NTRS)
Morris-Jones, D. R.; Morgan, K. M.; Kiefer, R. W.; Scarpace, F. L.
1979-01-01
In this study, methods for gathering the land use/land cover information required by the USLE were investigated with medium altitude, multi-date color and color infrared 70-mm positive transparencies using human and computer-based interpretation techniques. Successful results, which compare favorably with traditional field study methods, were obtained within the test site watershed with airphoto data sources and human airphoto interpretation techniques. Computer-based interpretation techniques were not capable of identifying soil conservation practices but were successful to varying degrees in gathering other types of desired land use/land cover information.
7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii... that can be geographically described and has specific environmental sensitivities or significant soil...
Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2004-12-01
A criterion is developed for determining the validity of the Soil Conservation Service curve number (SCS-CN) method. According to this criterion, the existing SCS-CN method is found to be applicable when the potential maximum retention, S, is less than or equal to twice the total rainfall amount. The criterion is tested using published data of two watersheds. Separating the steady infiltration from capillary infiltration, the method is extended for predicting infiltration and rainfall-excess rates. The extended SCS-CN method is tested using 55 sets of laboratory infiltration data on soils varying from Plainfield sand to Yolo light clay, and the computed and observed infiltration and rainfall-excess rates are found to be in good agreement.
NASA Astrophysics Data System (ADS)
Rahaman, S. Abdul; Aruchamy, S.; Jegankumar, R.; Ajeez, S. Abdul
2015-10-01
Soil erosion is a widespread environmental challenge faced in Kallar watershed nowadays. Erosion is defined as the movement of soil by water and wind, and it occurs in Kallar watershed under a wide range of land uses. Erosion by water can be dramatic during storm events, resulting in wash-outs and gullies. It can also be insidious, occurring as sheet and rill erosion during heavy rains. Most of the soil lost by water erosion is by the processes of sheet and rill erosion. Land degradation and subsequent soil erosion and sedimentation play a significant role in impairing water resources within sub watersheds, watersheds and basins. Using conventional methods to assess soil erosion risk is expensive and time consuming. A comprehensive methodology that integrates Remote sensing and Geographic Information Systems (GIS), coupled with the use of an empirical model (Revised Universal Soil Loss Equation- RUSLE) to assess risk, can identify and assess soil erosion potential and estimate the value of soil loss. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the study area. The final map of annual soil erosion shows a maximum soil loss of 398.58 t/ h-1/ y-1. Based on the result soil erosion was classified in to soil erosion severity map with five classes, very low, low, moderate, high and critical respectively. Further RUSLE factors has been broken into two categories, soil erosion susceptibility (A=RKLS), and soil erosion hazard (A=RKLSCP) have been computed. It is understood that functions of C and P are factors that can be controlled and thus can greatly reduce soil loss through management and conservational measures.
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Wang, D.
2016-12-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: 1) the soil is saturated at the land surface; and 2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
NASA Astrophysics Data System (ADS)
Hooshyar, Milad; Wang, Dingbao
2016-08-01
The empirical proportionality relationship, which indicates that the ratio of cumulative surface runoff and infiltration to their corresponding potentials are equal, is the basis of the extensively used Soil Conservation Service Curve Number (SCS-CN) method. The objective of this paper is to provide the physical basis of the SCS-CN method and its proportionality hypothesis from the infiltration excess runoff generation perspective. To achieve this purpose, an analytical solution of Richards' equation is derived for ponded infiltration in shallow water table environment under the following boundary conditions: (1) the soil is saturated at the land surface; and (2) there is a no-flux boundary which moves downward. The solution is established based on the assumptions of negligible gravitational effect, constant soil water diffusivity, and hydrostatic soil moisture profile between the no-flux boundary and water table. Based on the derived analytical solution, the proportionality hypothesis is a reasonable approximation for rainfall partitioning at the early stage of ponded infiltration in areas with a shallow water table for coarse textured soils.
NASA Astrophysics Data System (ADS)
Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.
2009-04-01
The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.
NASA Astrophysics Data System (ADS)
Rusu, T.; Gus, P.; Bogdan, I.; Moraru, P.; Pop, A.; Clapa, D.; Pop, L.
2009-04-01
The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter, gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change.
Douglas c. Wallace; Fred J. Young
2008-01-01
Suitable site conditions are essential for productive growth of black walnut (Juglans nigra L.). Field officers at the Natural Resources Conservation Service (NRCS) in the Midwest are often asked, "What is a good walnut soil?" Current NRCS information available to most field offices rates soils only as "suitable" or "...
USDA-ARS?s Scientific Manuscript database
Long-term soil conservation management decreases soil bulk density, increases water infiltration and water holding capacity. In the Virginia Coastal Plain, growers have been practicing rotational no-tillage and continuous no-tillage with and without biosolid application over 20 years to improve soi...
Gypsum adherence to forage: consideration for excessive ingestion by ruminates
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4•2H2O) has long been used as a soil amendment to improve soil conditions and its use has recently been encouraged by the USDA-NRCS for soil conservation through a new National Conservation Practice Standard: Code 333. However, there is concern regarding the e...
USDA-ARS?s Scientific Manuscript database
No tillage (NT) and N fertilization can increase surface soil organic C (SOC) stocks, but the effects deeper in the soil profile are uncertain. Subsequent tillage could counter SOC stabilized through NT practices by disrupting soil aggregation and promoting decomposition. We followed a long-term ti...
Effectiveness of soil conservation strategies on erosion in Morocco
NASA Astrophysics Data System (ADS)
Benmansour, Moncef; Mabit, Lionel; Moussadek, Rachid; Yassin, Mohamed; Nouira, Asmae; Zouagui, Anis; Mrabet, Rachid; Iaaich, Hamza; Hajib, Said
2016-04-01
- In Morocco, reducing soil erosion and land degradation is a national priority for improving soil quality and protecting downstream water quality and quantity. The combined use of Cs-137 and Be-7 techniques permit to estimate long and short term erosion and deposition magnitudes under different agro-environment and climatic conditions and then to evaluate the effectiveness of soil conservation practices. Case studies using Cs-137 and Be-7 were carried out in three Moroccan agricultural sites: Marchouch, Harchane and Oued Mellah located in Rabat, Tétouan and Chaouia-Ouardigha regions, respectively. In these sites, fallout Cs-137 measurements allowed a retrospective assessment of long term (50-60 years) soil redistribution rates while fallout Be-7 (half-life of 53 days) was used to document short term soil erosion associated with rainfall events for different tillage systems and land uses. Long term soil erosion rates of the three regions evaluated by the Cs-137 method, ranged from 8 to 58 t/ha/yr. Mostly located in the upslope part of the fields, the eroding zones represented more than 70% of the total area. For the experimental sites in Rabat and Tétouan, the results obtained using Be-7 indicated that soil loss has been reduced significantly under no-till as compared to conventional tillage. Indeed, soil erosion rates were lowered by 50% for the Marchouch site and by 40% for the Harchane site. Concerning the Oued Mellah watershed, the results highlighted that high density Atriplex plantations have reduced soil loss by approximately 60 to 80%, while for the site under fruit plantations and cereals, soil erosion has been decreased by 58%.
Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H
2015-02-01
This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.
Zhang, Qing-Wen; Li, Yong
2014-05-01
Accelerated soil erosion is considered as a major land degradation process resulting in increased sediment production and sediment-associated nutrient inputs to the rivers. Over the last decade, several soil conservation programs for erosion control have been conducted throughout Northeastern China. Reliable information on soil erosion rates is an essential prerequisite to assess the effectiveness of soil conservation measures. A study was carried out in Baiquan County of Northeastern China to assess the effectiveness of soil conservation measures in reducing soil erosion using the (137)Cs tracer technique and related techniques. This study reports the use of (137)Cs measurements to quantify medium-term soil erosion rates in traditional slope farmland, contour cropping farmland and terrace farmland in the Dingjiagou catchment and the Xingsheng catchment of Baiquan County. The (137)Cs reference inventory of 2532 ± 670 Bq m(-2) was determined. Based on the principle of the (137)Cs tracer technique, soil erosion rates were estimated. The results showed that severe erosion on traditional slope farmland is the dominant soil erosion process in the area. The terrace measure reduced soil erosion rates by 16% for the entire slope. Typical net soil erosion rates are estimated to be 28.97 Mg per hectare per year for traditional slope farmland and 25.04 Mg per hectare per year for terrace farmland in the Dingjiagou catchment. In contrast to traditional slope farmland with a soil erosion rate of 34.65 Mg per hectare per year, contour cultivation reduced the soil erosion rate by 53% resulting in a soil erosion rate of 22.58 Mg per hectare per year in the Xingsheng catchment. These results indicated that soil losses can be controlled by changing tillage practices from the traditional slope farmland cultivation to the terrace or contour cultivation.
Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview.
Demeyer, A; Voundi Nkana, J C; Verloo, M G
2001-05-01
Wood industries and power plants generate enormous quantities of wood ash. Disposal in landfills has been for long a common method for removal. New regulations for conserving the environment have raised the costs of landfill disposal and added to the difficulties for acquiring new sites for disposal. Over a few decades a number of studies have been carried out on the utilization of wood ashes in agriculture and forestry as an alternative method for disposal. Because of their properties and their influence on soil chemistry the utilization of wood ashes is particularly suited for the fertility management of tropical acid soils and forest soils. This review principally focuses on ash from the wood industry and power plants and considers its physical, chemical and mineralogical characteristics, its effect on soil properties, on the availability of nutrient elements and on the growth and chemical composition of crops and trees, as well as its impact on the environment.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.
The status of soil mapping for the Idaho National Engineering Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, G.L.; Lee, R.D.; Jeppesen, D.J.
This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less
Kong, Lingqiao; Zheng, Hua; Rao, Enming; Xiao, Yi; Ouyang, Zhiyun; Li, Cong
2018-08-01
The conservation impacts of policies that promote large-scale ecological restoration of ecosystem services and socio-economic development are well documented around the world. However, the effect of socio-economic development resulting from such policies on ecosystem services is rarely analysed, although it is important to do so if these policies are to be sustainable. We analysed the socio-economic impacts of soil conservation services from 2000 to 2015 in the Yangtze River Basin under the Grain to Green Programme (GTGP). Also we assessed the driving forces behind the programme: conservation policies, urbanization, agricultural development, and population growth. Our results show that during 2000-2015, cultivated area decreased by 7.5%, urban area increased by 67.5%, forest area increased by 2.1%, and soil erosion was reduced by 19.5%. The programme not only contributed significantly to an improvement in soil conservation services but also enhanced them significantly through faster urbanization. Furthermore, vegetation cover and crop yields increased synergistically, mainly due to high-efficiency agriculture that reduced the negative effect of the GTGP on agricultural production. Overall determining the indirect and direct effects of the GTGP on soil conservation and agricultural production are important for furthering our understanding of the long-term effects of ecological restoration policies, and the present study offers practical insights for ecological restoration of other watersheds. Copyright © 2018 Elsevier B.V. All rights reserved.
Morris, Jeffrey; Brown, Sally; Cotton, Matthew; Matthews, H Scott
2017-05-16
This study reviewed 147 life cycle studies, with 28 found suitable for harmonizing food waste management methods' climate and energy impacts. A total of 80 scientific soil productivity studies were assessed to rank management method soil benefits. Harmonized climate impacts per kilogram of food waste range from -0.20 kg of carbon dioxide equivalents (CO 2 e) for anaerobic digestion (AD) to 0.38 kg of CO 2 e for landfill gas-to-energy (LFGTE). Aerobic composting (AC) emits -0.10 kg of CO 2 e. In-sink grinding (ISG) via a food-waste disposer and flushing for management with other sewage at a wastewater treatment plant emits 0.10 kg of CO 2 e. Harmonization reduced climate emissions versus nonharmonized averages. Harmonized energy impacts range from -0.32 MJ for ISG to 1.14 MJ for AC. AD at 0.27 MJ and LFGTE at 0.40 MJ fall in between. Rankings based on soil studies show AC first for carbon storage and water conservation, with AD second. AD first for fertilizer replacement, with AC second, and AC and AD tied for first for plant yield increase. ISG ranks third and LFGTE fourth on all four soil-quality and productivity indicators. Suggestions for further research include developing soil benefits measurement methods and resolving inconsistencies in the results between life-cycle assessments and soil science studies.
NASA Astrophysics Data System (ADS)
Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul
2012-08-01
SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and maintenance of soil moisture regime.
Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto
2013-04-01
Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first SMOS soil moisture values available at the closest DGG node immediately after saturation produced by the rain. The results are shown as maps of precipitation and soil moisture obtained using a V4 integration method between a linear and nearest neighbour methods. Surface runoff maps are consequently obtained using the SCS-CN equation given earlier. These results have also been compared to COSMO-CLM model simulations for the same periods. It is envisaged to obtain precipitation maps from MSG-SEVIRI data.
Estimating Surface Soil Moisture in a Mixed-Landscape using SMAP and MODIS/VIIRS Data
NASA Astrophysics Data System (ADS)
Tang, J.; Di, L.; Xiao, J.
2017-12-01
Soil moisture, a critical parameter of earth ecosystem linking land surface and atmosphere, has been widely applied in many application (Di, 1991; Njoku et al. 2003; Western 2002; Zhao et al. 2014; McColl et al. 2017) from regional to continental or even global scale. The advent of satellite-based remote sensing, particular in the last two decades, has proven successful for mapping the surface soil moisture (SSM) from space (Petropoulos et al. 2015; Kim et al. 2015; Molero et al. 2016). The current soil moisture products, however, is not able to fully characterize the spatial and temporal variability of soil moisture at mixed landscape types (Albergel et al. 2013; Zeng et al. 2015). In this research, we derived the SSM at 1-km spatial resolution by using sensor observation and high-level products from SMAP and MODIS/VIIRS as well as metrorological, landcover, and soil data. Specifically, we proposed a practicable method to produce the originally planned SMAP L3_SM_A with comparable quality by downscaling the SMAP L3_SM_P product through a proved method, the geographically weighted regression method at mixed landscape in southern New Hampshire. This estimated SSM was validated using the Soil Climate Analysis Network (SCAN) from Natural Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA).
NASA Astrophysics Data System (ADS)
Dotterweich, Markus
2013-11-01
This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil management in order to incorporate it into modern soil conservation strategies. The study shows that local and regional variations in natural settings, cultural traditions, and socioeconomic conditions played a major role for the dynamics and the rates of soil erosion on a long-term perspective. Geomorphic evidence and historical sources can often complement each other, but there should be also an awareness of new pitfalls when using them together.
Ehigiator, O A; Anyata, B U
2011-11-01
This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nonstationary frequency analysis for the trivariate flood series of the Weihe River
NASA Astrophysics Data System (ADS)
Jiang, Cong; Xiong, Lihua
2016-04-01
Some intensive human activities such as water-soil conservation can significantly alter the natural hydrological processes of rivers. In this study, the effect of the water-soil conservation on the trivariate flood series from the Weihe River located in the Northwest China is investigated. The annual maxima daily discharge, annual maxima 3-day flood volume and annual maxima 5-day flood volume are chosen as the study data and used to compose the trivariate flood series. The nonstationarities in both the individual univariate flood series and the corresponding antecedent precipitation series generating the flood events are examined by the Mann-Kendall trend test. It is found that all individual univariate flood series present significant decreasing trend, while the antecedent precipitation series can be treated as stationary. It indicates that the increase of the water-soil conservation land area has altered the rainfall-runoff relationship of the Weihe basin, and induced the nonstationarities in the three individual univariate flood series. The time-varying moments model based on the Pearson type III distribution is applied to capture the nonstationarities in the flood frequency distribution with the water-soil conservation land area introduced as the explanatory variable of the flood distribution parameters. Based on the analysis for each individual univariate flood series, the dependence structure among the three univariate flood series are investigated by the time-varying copula model also with the water-soil conservation land area as the explanatory variable of copula parameters. The results indicate that the dependence among the trivariate flood series is enhanced by the increase of water-soil conservation land area.
Testing soil and water conservation methods in 16 countries; do best practices exist?
NASA Astrophysics Data System (ADS)
Jetten, V.; Shrestha, D. P.
2012-04-01
In order to find suitable conservation measures to protect the land from further deterioration leading to desertification, sustainable land management technologies were applied in 16 locations in countries having land degradation problems such as erosion (by wind and water), salinization, vegetation degradation and wild fire. The technologies were selected in consultation with all the stakeholders involved which included farmers, land users, local administrators and scientists. The selected technologies varied from vegetative (planting trees) through agronomic (crop rotation, contour ploughing, minimum tillage) to mechanical (terracing, fencing, prescribed burning) measures. They were applied in the 16 hotspot locations in semi-arid and arid regions to test their suitability for conservation purposes. Improvement on soil conditions was monitored during 2-3 years and the effectiveness of the applied technologies were evaluated. Although data from monitoring is available for only 2-3 years the results show improvements of soil conditions and indicate that good land management practices can help in minimizing land degradation. The results also show that the so called "the best practices" which could be applied everywhere with big success do not exist. Each region is characterized by having its own bio-physical and socio-economic factors which determine whether certain land management practices can be applied successfully which is also socially acceptable in the area.
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the Patterson Anti-Tank Range at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas samplers from the area estimated to be the Patterson Anti-Tank Range and in the hyporheic zone and floodplain of Brier Creek. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers in the hyporheic zone and floodplain of Brier Creek contained total petroleum hydrocarbons, benzene, octane, and pentadecane concentrations above method detection levels. All soil-gas samplers within the boundary of the Patterson Anti-Tank Range contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler located near the middle of the site and near the remnants of a manmade earthen mound and trench. The highest toluene mass detected was 1.04 micrograms and was located in the center of the Patterson Anti-Tank Range and coincides with a manmade earthen mound. Some soil-gas samplers installed detected undecane masses greater than the method detection level of 0.04 microgram, with the highest detection of soil-gas undecane mass of 58.64 micrograms collected along the southern boundary of the site. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed.
Wind erosion potential after land application of biosolids
NASA Astrophysics Data System (ADS)
PI, H.; Sharratt, B. S.; Schillinger, W. F.; Bary, A.; Cogger, C.
2017-12-01
The world population is currently 7.6 billion and, along with continued population growth, comes the challenge of disposing of wastewater and sewage sludge (biosolids). Applying biosolids to agricultural land to replace synthetic fertilizers represents a relatively safe method to recycle or sustainably use biosolids. While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to conventional and conservation tillage practices during the summer fallow phase of a winter wheat-summer fallow rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and conservation versus conventional tillage at high erosion rates. This suggests that biosolids may reduce wind erosion under highly erodible conditions. Meanwhile, heavy metal concentrations in the windblown sediment were similar for the biosolid and synthetic fertilizer treatments whereas metal loss in windblown sediment was 10% lower from biosolid than synthetic fertilizer. Our results indicate that land application of biosolids did not accelerate the loss of metals or nutrients from soils during high winds. KeywordsLand application of biosolids; wind erosion; wind tunnel; sustainable agriculture
The 3D elevation program - Precision agriculture and other farm practices
Sugarbaker, Larry J.; Carswell, Jr., William J.
2016-12-27
A founding motto of the Natural Resources Conservation Service (NRCS), originally the Soil Conservation Service (SCS), explains that “If we take care of the land, it will take care of us.” Digital elevation models (DEMs; see fig. 1) are derived from light detection and ranging (lidar) data and can be processed to derive values such as slope angle, aspect, and topographic curvature. These three measurements are the principal parameters of the NRCS LidarEnhanced Soil Survey (LESS) model, which improves the precision of soil surveys, by more accurately displaying the slopes and soils patterns, while increasing the objectivity and science in line placement. As combined resources, DEMs, LESS model outputs, and similar derived datasets are essential for conserving soil, wetlands, and other natural resources managed and overseen by the NRCS and other Federal and State agencies.
Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie
2012-06-01
Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.
NASA Astrophysics Data System (ADS)
Zhang, Wen-Yan; Lin, Chao-Yuan
2017-04-01
The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.
A relook at NEH-4 curve number data and antecedent moisture condition criteria
NASA Astrophysics Data System (ADS)
Mishra, Surendra Kumar; Singh, Vijay P.
2006-08-01
This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book-Section 4 (NEH-4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH-4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall-runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5-day antecedent rainfall amount. Including this power relation, the SCS-CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH-4 AMC criteria yielded similar results.
[Assessment on the changing conditions of ecosystems in key ecological function zones in China].
Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song
2015-09-01
In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.
NASA Astrophysics Data System (ADS)
Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.
2015-04-01
Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine these strategies under predicted climate change scenarios in a few decades from now. The models are also used to evaluate historical erosion rates, and the long-term impact of soil erosion on olive yield due to the loss of soil profile. This is our second major line of research. Our their key line of research is the analysis of gully erosion processes, from field based observation to evaluation at regional scale, and the development of cost-effective strategies for gully control at farm scale. This includes the testing of some of these strategies with farmers. We integrate the use of vegetation in gully erosion control strategies to enhance biodiversity and landscape values; both severely degraded in many agricultural areas in the Mediterranean. The fourth, and last, major line of research is the development or improvement of technologies for soil erosion studies. Among them is the use of rainfall simulations, laboratory flumes, photoreconstruction techniques for 3D model, improved sampling devices, etc. Within this line we have improved the use of sediment tracers to understand the processes of sediment mobilization within the landscape, or at plot scale. This greatly improves our understanding of erosion processes and the actual effectiveness of erosion control strategies. The results of these lines of research are put together in the form of Good Agricultural Practices, and technical notes, software, for implementation by farmers and technicians working at the fields that are disseminated through seminars, cooperation with government and non-government agencies and other documents such as videos or web sites. In this communication we mention some of the our research in order to highlight the major problems and questions that are faced when trying to develop viable soil and water conservation techniques, specially the need for transdisciplinary research and the cooperation, form the start, with key stakeholders, specially farmers.
Conservation of soil, water and nutrients in surface runoff using riparian plant species.
Srivastava, Prabodh; Singh, Shipra
2012-01-01
Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.
Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.
NASA Astrophysics Data System (ADS)
Khresat, Saeb
2016-04-01
Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for land preparation through tillage systems decreased by 40-60% as a result of fuel and time-saving in the operations. The mean biological and grain yield by applying conservation agriculture have increased between 14-35% compared to conventional agriculture. It is concluded that there is a correlation between CO2 loss and tillage intensity and that a shift from traditional agriculture to Conservation agriculture can contribute to making agricultural systems more resilient to climate change.
Code of Federal Regulations, 2012 CFR
2012-01-01
... purpose of conserving soil and water resources, protecting or restoring the environment, improving forests... payments. If a payment is made for several purposes, it may be considered as having soil and water conservation, environmental protection or restoration, forestry improvement, or providing wildlife habitat as...
Code of Federal Regulations, 2014 CFR
2014-01-01
... purpose of conserving soil and water resources, protecting or restoring the environment, improving forests... payments. If a payment is made for several purposes, it may be considered as having soil and water conservation, environmental protection or restoration, forestry improvement, or providing wildlife habitat as...
Code of Federal Regulations, 2011 CFR
2011-01-01
... purpose of conserving soil and water resources, protecting or restoring the environment, improving forests... payments. If a payment is made for several purposes, it may be considered as having soil and water conservation, environmental protection or restoration, forestry improvement, or providing wildlife habitat as...
Code of Federal Regulations, 2010 CFR
2010-01-01
... purpose of conserving soil and water resources, protecting or restoring the environment, improving forests... payments. If a payment is made for several purposes, it may be considered as having soil and water conservation, environmental protection or restoration, forestry improvement, or providing wildlife habitat as...
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the Old Metal Workshop Hog Farm Area. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 121.32 micrograms in a soil-gas sampler from the western corner of the Old Metal Workshop Hog Farm Area along Sawmill Road. The highest undecane mass detected was 73.28 micrograms at the same location as the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected toluene mass greater than the method detection level of 0.02 microgram; the highest detection of toluene mass was 0.07 microgram. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed. Inorganic concentrations in five soil samples collected did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to eight times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
Subhrendu Patanayak; D. Evan Mercer
1998-01-01
Trecs can he considered as investments made by economic agents to prevent depreciation of natural assets such as stocks of top soil and water. In agroforestq systems farmers use trees in this manner by deliberately combining them with agricultural crops on the same unit of land. Although advocates of agroforestry have asserted that soil conservation is one of its...
NASA Astrophysics Data System (ADS)
Sullivan, A. B.; Mulholland, P. J.; Jones, J. B.
2001-05-01
Headwater streams are almost always supersaturated with CO2 compared to concentrations expected in equilibrium with atmospheric CO2. Direct measurements of CO2 in two streams in eastern Tennessee with different bedrock lithologies (Walker Branch, Upper Gum Hollow Branch) over a year revealed levels of supersaturation of two to five times atmospheric CO2. Highest levels were generally found during the summer months. Springs discharging into the stream had dissolved CO2 concentration up to an order of magnitude higher than that in streamwater. These levels of supersaturation are a reflection of the high concentrations of CO2 in soil produced by root respiration and organic matter decomposition. The hydrologic connection between soil CO2 and streamwater CO2 forms the basis of our method to determine soil CO2 concentrations and efflux from the soil to the atmosphere. The method starts with streamwater measurements of CO2. Then corrections are made for evasion from the stream surface using injections of a conservative solute tracer and volatile gas, and for instream metabolism using a dissolved oxygen change technique. The approach then works backward along the hydrologic flowpath and evaluates the contribution of bedrock weathering, which consumes CO2, by examining the changes in major ion chemistry between precipitation and the stream. This produces estimates of CO2 concentration in soil water and soil atmosphere, which when coupled with soil porosity, allows estimation of CO2 efflux from soil. The hydrologic integration of CO2 signals from whole watersheds into streamwater allows calculation of soil CO2 efflux at large scales. These estimates are at scales larger than current chamber or tower methods, and can provide broad estimates of soil CO2 efflux with easily collected stream chemistry data.
soilphysics: An R package to determine soil preconsolidation pressure
NASA Astrophysics Data System (ADS)
da Silva, Anderson Rodrigo; de Lima, Renato Paiva
2015-11-01
Preconsolidation pressure is a parameter obtained from the soil compression curve and has been used as an indicator of load-bearing capacity of soil, as well as to characterize the impacts suffered by the use of machines. Despite its importance in soil physics, there is a few software or computational routines to support its determination. In this paper we present a computational package in R language, the package soilphysics, which contains implementations of the main methods for determining preconsolidation pressure, such as the method of Casagrande, Pacheco Silva, regression methods and the method of the virgin compression line intercept. There is still a consensus that Casagrande is the standard method, although the method of Pacheco Silva has shown similar values. The method of the virgin compression line intercept can be used when trying to be more conservative on the value (smaller) of preconsolidation pressure. Furthermore, Casagrande could be replaced by a regression method when the compression curve is obtained from saturated soils. The theory behind each method is presented and the algorithms are thoroughly described. We also give some support on how to use the R functions. Examples are used to illustrate the capabilities of the package, and the results are briefly discussed. The latter were validated using a recently published VBA. With soilphysics, the user has all the graphical and statistical power of R to determine preconsolidation pressure using different methods. The package is distribution free (under the GPL-2|3) and is currently available from the Comprehensive R Archive Network.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"
NASA Astrophysics Data System (ADS)
Ilieva, Diliana; Malinov, Ilia
2014-05-01
Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.
Fine sediment sources in conservation effects assessment project watersheds
USDA-ARS?s Scientific Manuscript database
Two naturally occurring radionuclides, 7Be and 210Pbxs , were used as tracers to discriminate eroded surface soils from channel-derived sediments in the fine suspended sediment loads of eight Conservation Effects Assessment Project (CEAP) benchmark watersheds. Precipitation, source soils, and suspe...
49 CFR 1105.7 - Environmental reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Park Service; (9) The U.S. Soil Conservation Service; (10) The National Geodetic Survey (formerly known... plans. Describe any inconsistencies. (ii) Based on consultation with the U.S. Soil Conservation Service... transported, identify: the materials and quantity; the frequency of service; whether chemicals are being...
Code of Federal Regulations, 2010 CFR
2010-01-01
... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...
Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve
NASA Astrophysics Data System (ADS)
Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding
2018-01-01
Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.
A land-suitability analysis (LSA) was integrated with open-space conservation principles, based on watershed physiographic and soil characteristics, to derive a low-impact development (LID) residential plan for a three hectare site in Coshocton OH, USA. The curve number method wa...
NASA Astrophysics Data System (ADS)
Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.
There is big effort to disseminate conservation tillage practices in Tanzania. Despite wide spread field demonstrations there has been some field experiments meant to assess and verify suitability of the tillage options in local areas. Much of the experiments are short lived and thus long term effects of the tillage options are unknown. Experiments to study long term effects of the tillage options are lacking because they are expensive and cannot be easily managed. Crop simulation models have the ability to use long term weather data and the local soil parameters to assess long term effects of the tillage practices. The Agricultural Production Systems Simulator (APSIM) crop simulation model; was used to simulate long term production series of soil moisture and grain yield based on the soil and weather conditions in Mkoji sub-catchment of the great Ruaha river basin in Tanzania. A 24 year simulated maize yield series based on conventional tillage with ox-plough, without surface crop residues (CT) treatment was compared with similar yield series based on conservation tillage (ox-ripping, with surface crop residues (RR)). Results showed that predicted yield averages were significantly higher in conservation tillage than in conventional tillage ( P < 0.001). Long term analysis, using APSIM simulation model, showed that average soil moisture in the conservation tillage was significantly higher ( P < 0.05) (about 0.29 mm/mm) than in conventional tillage (0.22 mm/mm) treatment during the seasons which received rainfall between 468 and 770 mm. Similarly the conservation tillage treatment recorded significantly higher yields (4.4 t/ha) ( P < 0.01) than the conventional tillage (3.6 t/ha) treatment in the same range of seasonal rainfall. On the other hand there was no significant difference in soil moisture for the seasons which received rainfall above 770 mm. In these seasons grain yield in conservation tillage treatment was significantly lower (3.1 kg/ha) than in the conventional tillage treatment (4.8 kg/ha) ( P < 0.05). Results also indicated a probability of 0.5 of getting higher yield in conservation than in conventional tillage practice. The conservation tillage treatment had the ability to even-out the acute and long intra-seasonal dry spells. For example a 36-days agricultural dry spell which occurred between 85th and 130th day after planting in the 1989/1990 season (in the CT treatment) was mitigated to zero days in the RR treatment by maintaining soil moisture above the critical point. Critical soil moisture for maize was measured at 0.55 of maximum soil moisture that can be depleted crop (0.55 D). It is concluded that conservation tillage practice where ripping and surface crop residues is used is much more effective in mitigating dry spells and increase productivity in a seasonal rainfall range of between 460 and 770 mm. It is recommended that farmers in the area adopt that type of conservation tillage because rainfall was in this range (460-770 mm) in 12 out of the past 24 years, indicating possibility of yield losses once in every 2 years.
Effects of terracing on soil and water conservation in China: A meta-analysis
NASA Astrophysics Data System (ADS)
Chen, Die; Wei, Wei
2017-04-01
Terracing has long been considered a powerful strategy for soil and water conservation. However, the efficiency is limited by many factors, such as climate, soil properties, topography, land use, population and socioeconomic status. The aim of this critical review was to discuss the effects of terracing on soil and water conservation in China, using a systematic approach to select peer-reviewed articles published in English and Chinese. 46 individual studies were analyzed, involving six terracing structures (level terraces, slope-separated terraces, slope terraces, reverse-slope terraces, fanya juu terraces and half-moon terraces), a wide geographical range (Northeastern China, Southeastern hilly areas, Southwestern mountain areas and Northwestern-central China), and six land use types (forest, crop trees, cropland, shrub land, grassland and bare land) as well as a series of slope gradients ranging from 3° to 35°. Statistical meta-analysis with runoff for 593 observations and sediment for 636 observations confirmed that terracing had a significant effect on water erosion control. In terms of different terrace structures, runoff and sediment reduction were uppermost on slope-separated terraces. Land use in terraces also played a crucial role in the efficiency of conservation, and tree crops and forest were detected as the most powerful land covers in soil and water conservation due to large aboveground biomass and strong root systems below the ground, which directly reduces the pressure of terraces on rainwater redistribution. In addition, a significant positive correlation between slope gradients (3° 15° and 16° 35°) and terracing efficiency on soil and water conservation was observed. This study revealed the effectiveness and variation of terracing on water erosion control on the national scale, which can serve as a scientific basis to land managers and decision-makers.
NASA Astrophysics Data System (ADS)
Dostal, Tomas; Devaty, Jan
2013-04-01
The paper presents results of surface runoff, soil erosion and sediment transport modeling using Erosion 3D software - physically based mathematical simulation model, event oriented, fully distributed. Various methods to simulate technical soil-erosion conservation measures were tested, using alternative digital elevation models of different precision and resolution. Ditches and baulks were simulated by three different approaches, (i) by change of the land-cover parameters to increase infiltration and decrease flow velocity, (ii) by change of the land-cover parameters to completely infiltrate the surface runoff and (iii) by adjusting the height of the digital elevation model by "burning in" the channels of the ditches. Results show advantages and disadvantages of each approach and conclude suitable methods for combinations of particular digital elevation model and purpose of the simulations. Further on a set of simulations was carried out to model situations before and after technical soil-erosion conservation measures application within a small catchment of 4 km2. These simulations were focused on quantitative and qualitative assessment of technical soil-erosion control measures impact on soil erosion off-site effects within urban areas located downstream of intensively used agricultural fields. The scenarios were built upon a raster digital elevation model with spatial resolution of 3 meters derived from LiDAR 5G vector point elevation data. Use of this high-resolution elevation model allowed simulating the technical soil-erosion control measures by direct terrain elevation adjustment. Also the structures within the settlements were emulated by direct change in the elevation of the terrain model. The buildings were lifted up to simulate complicated flow behavior of the surface runoff within urban areas, using approach of Arévalo (Arévalo, 2011) but focusing on the use of commonly available data without extensive detailed editing. Application of the technical soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.
Should soil testing services measure soil biological activity
USDA-ARS?s Scientific Manuscript database
Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...
S. Wang; Z. Zhang; G. Sun; S.G. McNulty; M. Zhang
2009-01-01
Soil conservation practices have been widely implemented on the Loess Plateau to reduce severe soil erosion in north-central China over the past three decades. However, the hydrologic impacts of these practices are not well documented and understood. The objective of this study was to examine how water yield has changed after implementing soil conservation practices...
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy
Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.
Fall conservation deep tillage stabilizes maize residues into soil organic matter
USDA-ARS?s Scientific Manuscript database
Efforts for increasing soil organic matter (SOM) content under agricultural systems have primarily focused on management practices that reduce exposure of SOM to decomposition via minimum tillage. We assess an alternative approach, termed ‘fall conservation deep tillage’ (FCDT), to SOM stabilization...
Ground-water levels in the alluvial aquifer in Eastern Arkansas, 1989
Westerfield, P.W.; Baxter, C.R.
1990-01-01
This report, prepared by the U.S. Geological Survey in cooperation with the Arkansas Soil and Water Conservation Commission, the U.S. Soil Conservation Service and local Conservation Districts, contains groundwater level measurements of 504 wells that tap the alluvial aquifer in the Quaternary deposits of the Mississippi Alluvial Plain. The measurements were made by district Soil Conservation Service personnel during 1989. The shallowest prepumping season water levels occurred in Clay, Greene, Independence, Mississippi, Phillips, and Randolph Counties where water levels averaged less than 20 ft below the land surface. The deepest water levels occurred in Arkansas, Lonoke, Poinsett, and Prairie Counties where water levels of more than 100 ft were measured. Water levels in the postpumping season averaged about 2.5 ft lower than during the prepumping season. (USGS)
Checkai, Ron; Van Genderen, Eric; Sousa, José Paulo; Stephenson, Gladys; Smolders, Erik
2014-01-01
Soil contaminant concentration limits for the protection of terrestrial plants and soil invertebrates are commonly based on thresholds derived using data from laboratory ecotoxicity tests. A comprehensive assessment has been made for the derivation of ecological soil screening levels (Eco-SSL) in the United States; however, these limits are conservative because of their focus on high bioavailability scenarios. Here, we explain and evaluate approaches to soil limit derivation taken by 4 jurisdictions, 2 of which allow for correction of data for factors affecting bioavailability among soils, and between spiked and field-contaminated soils (Registration Evaluation Authorisation and Restriction of Chemicals [REACH] Regulation, European Union [EU], and the National Environment Protection Council [NEPC], Australia). Scientifically advanced features from these methods have been integrated into a newly developed method for deriving soil clean-up values (SCVs) within the context of site-specific baseline ecological risk assessment. Resulting site-specific SCVs that account for bioavailability may permit a greater residual concentration in soil when compared to generic screening limit concentrations (e.g., Eco-SSL), while still affording acceptable protection. Two choices for selecting the level of protection are compared (i.e., allowing higher effect levels per species, or allowing a higher percentile of species that are potentially unprotected). Implementation of this new method is presented for the jurisdiction of the United States, with a focus on metal and metalloid contaminants; however, the new method can be used in any jurisdiction. A case study for molybdate shows the large effect of bioavailability corrections and smaller effects of protection level choices when deriving SCVs. Integr Environ Assess Manag 2014;10:346–357. PMID:24470189
NASA Astrophysics Data System (ADS)
Green, Timothy R.; Erskine, Robert H.
2011-12-01
Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... portion of the 208 water-quality management plan. (s) OMB Circular A-34. “Instructions on Budget Execution... needed to attain water quality standards or water quality goals. Fifty (50) percent of the adequate level... agency. A soil conservation district, State soil and water conservation agency, or State water quality...
Integrated watershed management for saturation excess generated runoff, erosion and nutrient control
USDA-ARS?s Scientific Manuscript database
Understanding the basic hydrology and erosion is vital for effective management and utilization of water resources and soil conservation planning. An important question for judging effectiveness of soil and water conservation practices is whether runoff erosion and nutrient loss is affected by infil...
SOIL AND WATER CONSERVATION POLICY APPROACHES IN NORTH AMERICA, EUROPE, AND AUSTRALIA. (R825761)
Soil and water conservation policies and programs in developed countries in North America, Europe, and Australia are examined in the context of their effectiveness for addressing environmental degradation associated with technology-intensive agricultural syste...
Code of Federal Regulations, 2011 CFR
2011-01-01
... portion of the 208 water-quality management plan. (s) OMB Circular A-34. “Instructions on Budget Execution... needed to attain water quality standards or water quality goals. Fifty (50) percent of the adequate level... agency. A soil conservation district, State soil and water conservation agency, or State water quality...
Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia
USDA-ARS?s Scientific Manuscript database
Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...
Modeling of soil erosion and sediment transport in the East River Basin in southern China
Wu, Yping; Chen, Ji
2012-01-01
Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.
ERIC Educational Resources Information Center
Tivendale, Bruce D.
Soil is a natural resource of inestimable value. It is classified as a renewable resource, but because it may take from a few hundred years to a few thousand years to be renewed, it is more accurately termed an exhaustible resource. The emphasis of this teaching unit is the importance of soil and the need and means to conserve it. The constraining…
NASA Astrophysics Data System (ADS)
Lal, Mohan; Mishra, S. K.; Pandey, Ashish; Pandey, R. P.; Meena, P. K.; Chaudhary, Anubhav; Jha, Ranjit Kumar; Shreevastava, Ajit Kumar; Kumar, Yogendra
2017-01-01
The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall-runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall-runoff dataset and 0.108 and 0 for the ordered rainfall-runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.
USDA-ARS?s Scientific Manuscript database
We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...
78 FR 8444 - Energy Efficiency and Conservation Loan Program Programmatic Environmental Assessment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... Recipients' service territories (Ultimate Recipients) for EE improvements at the Ultimate Recipients... area of previous disturbance, but a review of National Resources Conservation Service (NRCS) soils maps shows that the Ultimate Recipient's premises is not within a hydric soil unit which is one of the three...
Streese-Kleeberg, Jan; Rachor, Ingke; Gebert, Julia; Stegmann, Rainer
2011-05-01
In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ground-water levels in the alluvial aquifer in eastern Arkansas, 1988
Westerfield, P.W.; Baxter, C.R.
1990-01-01
This report, prepared by the U.S. Geological Survey in cooperation with the Arkansas Soil and Water Conservation Commission, the U.S. Soil Conservation Service, and local Conservation Districts, contains groundwater level measurements of 509 wells that tap the alluvial aquifer in the Quaternary deposits of the Mississippi Alluvial Plain. The measurements were made by district Soil Conservation Service personnel during 1988. The shallowest prepumping season water levels occurred in Ashley, Clay, Greene, Mississippi, Phillips, and Randolph Counties where water levels averaged less than 20 ft below the land surface. The deepest water levels occurred in Arkansas, Lonoke, Poinsett, and Prairie Counties where water levels of more than 100 ft below land surface were measured. Water levels in the postpumping season averaged about 4.1 ft lower than during the prepumping season. (USGS)
Ranking agricultural practices on soil water improvements: a meta-analysis
NASA Astrophysics Data System (ADS)
Basche, A.; DeLonge, M. S.; Gonzalez, J.
2016-12-01
Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.
NASA Astrophysics Data System (ADS)
Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John
2014-05-01
The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines and places is essential if we are to develop viable measures and approaches to soil and water conservation across the globe. In this paper we will provide an overview of the topics that are addressed in this session and give an overview of the current research in this field and using the insights we will aim to present a new research agenda oriented towards a significant impact in economic and environmental sustainability.
The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, M. A.; Stoetter, J.; Sartohadi, J.; Christanto, N.
2009-04-01
Many types of soil erosion modeling have been developed worldwide; each of models has its own advantage and assumption based on the originated area. Ironically, in the tropical countries where the rainfall intensity is higher than other area, the soil erosion problem gain less attention. As in Indonesia, due the inadequate supporting data and method to dealing with, the soil erosion management appears to be least prior in the policy decision. Hence, there is increasing necessity towards the initiation and integration of risk management model in the soil erosion, to prevent further land degradation problem in Indonesia. The main research objective is to generate a model which can analyze the dynamic system of soil erosion problem. This model will comprehensively consider four main aspects within the dynamic system analysis, i.e.: soil erosion rate modeling, the tolerable soil erosion rate, total soil erosion cost, and soil erosion management measures. The generating model will involve some sub-software i.e. the PC Raster to maintain the soil erosion modeling, Powersim Constructor Ver. 2.5 as the tool to analyze the dynamic system and Python Ver. 2.6.1 to build the main Graphical User Interface model. The first step addressed in this research is figuring the most appropriate soil erosion model to be applied in Indonesia based on landscape, climate, and data availability condition. This appropriate model must have the simplicity aspect in input data but still deal with the process based analysis. By using the soil erosion model result, the total soil erosion cost will be calculated both on-site and off-site effect. The total soil erosion cost will be stated in Rupiah (Indonesian currency) and Dollar. That total result is then used as one of input parameters for the tolerable soil erosion rate. Subsequently, the tolerable soil erosion rate decides whether the soil erosion rate has exceeded the allowed value or not. If the soil erosion rate has bigger value than the tolerable soil erosion rate, the soil erosion management will be applied base on cost and benefit analysis. The soil erosion management measures will conduct as decision maker of defining the best alternative soil conservation method in a certain area. Besides the engineering and theoretical methods, the local wisdom also will be taken into account in defining the alternative manners of soil erosion management. As a prototype, this integrated model will be generated and simulated in Serayu Watershed, Central Java, since this area has a serious issue in soil erosion problem mainly in the upper stream area (Dieng area). The extraordinary monoculture plantation (potatoes) and very intensive soil tillage without proper soil conservation method has accelerated the soil erosion and depleted the soil fertility. Based on the potatoes productivity data (kg/ha) from 1997-2007 showed that there was a declining trend line, approximately minus 8,2% every year. On the other hand the fertilizer and pesticide consumption in agricultural land are significantly increasing every year. In the same time, the high erosion rate causes serious sedimentation problem in lower stream. Those conditions can be used as study case in determining the element at risk of soil erosion and calculation method for the total soil erosion cost (on-site and off-site effect). Moreover, The Serayu Watershed consists of complex landforms which might have variation of soil erosion tolerable rate. In the future, this integrated model can obtain valuable basis data of the soil erosion hazard in spatial and temporal information including its total cost, the sustainability time of certain land or agriculture area, also the consequences price of applying certain agriculture or soil management. Since this model give result explicitly in spatial and temporal, this model can be used by the local authority to run the land use scenario in term of soil erosion impact before applied them in the real condition. In practice, such integrated model could give more understanding knowledge to the local people about the soil erosion, its processes, impacts, and how to manage that. Keywords: Risk assessment, soil erosion, dynamic system, environmental valuation
Myers, Donna N.; Metzker, Kevin D.; Davis, Steven
2000-01-01
The relation of suspended-sediment discharges to conservation-tillage practices and soil loss were analyzed for the Maumee River Basin in Ohio, Michigan, and Indiana as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Cropland in the basin is the largest contributor to soil erosion and suspended-sediment discharge to the Maumee River and the river is the largest source of suspended sediments to Lake Erie. Retrospective and recently-collected data from 1970-98 were used to demonstrate that increases in conservation tillage and decreases in soil loss can be related to decreases in suspended-sediment discharge from streams. Average annual water and suspended-sediment budgets computed for the Maumee River Basin and its principal tributaries indicate that soil drainage and runoff potential, stream slope, and agricultural land use are the major human and natural factors related to suspended-sediment discharge. The Tiffin and St. Joseph Rivers drain areas of moderately to somewhat poorly drained soils with moderate runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the St. Joseph and Tiffin Rivers represent 29.0 percent of the basin area, 30.7 percent of the average-annual streamflow, and 9.31 percent of the average annual suspended-sediment discharge. The Auglaize and St. Marys Rivers drain areas of poorly to very poorly drained soils with high runoff potential. Expressed as a percentage of the total for the Maumee River Basin, the Auglaize and St. Marys Rivers represent 48.7 percent of the total basin area, 53.5 percent of the average annual streamflow, and 46.5 percent of the average annual suspended-sediment discharge. Areas of poorly drained soils with high runoff potential appear to be the major source areas of suspended sediment discharge in the Maumee River Basin. Although conservation tillage differed in the degree of use throughout the basin, on aver-age, it was used on 55.4 percent of all crop fields in the Maumee River Basin from 1993-98. Conservation tillage was used at relatively higher rates in areas draining to the lower main stem from Defiance to Waterville, Ohio and at relatively lower rates in the St. Marys and Auglaize River Basins, and in areas draining to the main stem between New Haven, Ind. and Defiance, Ohio. The areas that were identified as the most important sediment-source areas in the basin were characterized by some of the lowest rates of conservation tillage. The increased use of conservation tillage was found to correspond to decreases in suspended-sediment discharge over time at two locations in the Maumee River Basin. A 49.8 percent decrease in suspended-sediment discharge was detected when data from 1970-74 were compared to data from 1996-98 for the Auglaize River near Ft. Jennings, Ohio. A decrease in suspended-sediment discharge of 11.2 percent was detected from 1970?98 for the Maumee River at Waterville, Ohio. No trends in streamflow at either site were detected over the period 1970-98. The lower rate of decline in suspended-sediment discharge for the Maumee River at Waterville, Ohio compared to the Auglaize River near Ft. Jennings, may be due to resuspension and export of stored sediments from drainage ditches, stream channels, and flood plains in the large drainage basin upstream from Waterville. Similar findings by other investigators about the capacity of drainage networks to store sediment are supported by this investigation. These findings go undetected when soil loss estimates are used alone to evaluate the effectiveness of conservation tillage. Water-quality data in combination with soil-loss estimates were needed to draw these conclusions. These findings provide information to farmers and soil conservation agents about the ability of conservation tillage to reduce soil erosion and suspended-sediment discharge from the Maumee River Basin.
NASA Astrophysics Data System (ADS)
Love, David; Twomlow, Steve; Mupangwa, Walter; van der Zaag, Pieter; Gumbo, Bekithemba
The Millennium Development Goals’ target to halve the proportion of people who suffer from hunger is extremely important in southern Africa, where food security has become increasingly problematic over the last 20 years. One “quick-win” proposal is replenishment of soil nutrients for smallholder farmers, through free or subsidised chemical fertilisers. Other proposals include appropriate irrigation technology, improved inputs and interventions targeted at women. Analysis of over 10 years of agro-hydrological and agro-economic studies from southern African show that a different approach is required to interventions proposed. There are sustainability problems with free chemical fertiliser due to transport costs and ancillary costs. Furthermore, recent studies in Zimbabwe and Mozambique show that significant increases in yield can only be obtained when soil fertility management is combined with good crop husbandry, e.g. timely planting and weeding. Ongoing replenishment of fertility would be dependent on a continued free or subsidised fertiliser supply, and transport system. Increasing access to irrigation will help, but is not the only solution and cannot reach even a majority of farmers. It has been determined that short dryspells are often the major cause of low yields in sub-Saharan Africa. Soil-water conservation approaches, e.g. winter weeding and conservation tillage, can reduce risk and increase yield. The following specific recommendations are made for urgent interventions to contribute sustainably to food security in southern Africa: (i) To increases access to fertiliser, consider development of strong input markets at end-user level. (ii) Intensification of technology transfer, focusing on capacity building for transfer of existing technologies and much closer collaboration between state and NGO sectors, agronomists and water engineers. (iii) Increasing the uptake of soil-water conservation methods, including conservation tillage and weeding, and supplementary irrigation to minimise adverse effects of dryspells, through investments in farmer training. (iv) Linking crop development strategies to livestock development practices and strategies. (v) Developing non-agro-based livelihood strategies in marginal lands.
Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?
NASA Astrophysics Data System (ADS)
Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik
2016-04-01
Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA<5 years) and CA during more than 5 years (CA>5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No improvement of aggregate stability level was observed after the 5th year of CA conversion. A positive correlation was observed between aggregate stability and total soil organic carbon (r=0.52, n=18). It is assumed that this correlation could be due to increased microbial activity under CA. A positive and statistically significant relationship was also noted between aggregate stability and the number of years after the no-till conversion (r= 0.46, n=18) for all plots.
Effects of soil water holding capacity on evapotranspiration and irrigation scheduling
USDA-ARS?s Scientific Manuscript database
The USDA Natural Resources Conservation Service (NRCS), through the National Cooperative Soil Survey, developed three soil geographic databases that are appropriate for acquiring soil information at the national, regional, and local scales. These relational databases include the National Soil Geogra...
Mikkonen, Hannah G; Clarke, Bradley O; Dasika, Raghava; Wallis, Christian J; Reichman, Suzie M
2017-02-15
Understanding ambient background concentrations in soil, at a local scale, is an essential part of environmental risk assessment. Where high resolution geochemical soil surveys have not been undertaken, soil data from alternative sources, such as environmental site assessment reports, can be used to support an understanding of ambient background conditions. Concentrations of metals/metalloids (As, Mn, Ni, Pb and Zn) were extracted from open-source environmental site assessment reports, for soils derived from the Newer Volcanics basalt, of Melbourne, Victoria, Australia. A manual screening method was applied to remove samples that were indicated to be contaminated by point sources and hence not representative of ambient background conditions. The manual screening approach was validated by comparison to data from a targeted background soil survey. Statistical methods for exclusion of contaminated samples from background soil datasets were compared to the manual screening method. The statistical methods tested included the Median plus Two Median Absolute Deviations, the upper whisker of a normal and log transformed Tukey boxplot, the point of inflection on a cumulative frequency plot and the 95th percentile. We have demonstrated that where anomalous sample results cannot be screened using site information, the Median plus Two Median Absolute Deviations is a conservative method for derivation of ambient background upper concentration limits (i.e. expected maximums). The upper whisker of a boxplot and the point of inflection on a cumulative frequency plot, were also considered adequate methods for deriving ambient background upper concentration limits, where the percentage of contaminated samples is <25%. Median ambient background concentrations of metals/metalloids in the Newer Volcanic soils of Melbourne were comparable to ambient background concentrations in Europe and the United States, except for Ni, which was naturally enriched in the basalt-derived soils of Melbourne. Copyright © 2016 Elsevier B.V. All rights reserved.
30 CFR 823.14 - Soil replacement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...
30 CFR 823.14 - Soil replacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...
30 CFR 823.14 - Soil replacement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...
30 CFR 823.14 - Soil replacement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...
30 CFR 823.14 - Soil replacement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...
7 CFR 611.11 - Soil survey information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Soil survey information. 611.11 Section 611.11..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS disseminates soil survey information to the public by any of the means...
7 CFR 611.11 - Soil survey information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Soil survey information. 611.11 Section 611.11..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS disseminates soil survey information to the public by any of the means...
7 CFR 611.11 - Soil survey information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Soil survey information. 611.11 Section 611.11..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS disseminates soil survey information to the public by any of the means...
7 CFR 611.11 - Soil survey information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Soil survey information. 611.11 Section 611.11..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS disseminates soil survey information to the public by any of the means...
7 CFR 611.11 - Soil survey information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Soil survey information. 611.11 Section 611.11..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS Soil Survey Operations § 611.11 Soil survey information. (a) Availability. NRCS disseminates soil survey information to the public by any of the means...
Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion
USDA-ARS?s Scientific Manuscript database
Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...
USDA-ARS?s Scientific Manuscript database
Manure injection provides for soil incorporation of manures in no-till and perennial forage production. Injection is expected to substantially reduce nitrogen loss due to ammonia volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This ...
LET'S DEMONSTRATE SOIL AND WATER CONSERVATION FOR BETTER FARMING, BETTER LIVING.
ERIC Educational Resources Information Center
LEYENDECKER, PHILIP J.
EIGHTEEN DEMONSTRATIONS ON THE SUBJECT OF SOIL AND WATER CONSERVATION ARE PRESENTED. THESE DEMONSTRATIONS UTILIZE SIMPLE AND INEXPENSIVE EQUIPMENT AND ARE SUITABLE FOR CLASSROOM OR OTHER GROUP USE, ALTHOUGH THEY WERE DESIGNED FOR 4-H CLUBS. LISTED ARE THE EQUIPMENT AND MATERIALS NEEDED, PREVIOUS PREPARATION, STEPS IN THE DEMONSTRATION, AND…
A proposed NRCS conservation practice standard: Amending soil properties with gypsiferous products
USDA-ARS?s Scientific Manuscript database
This paper will discuss the proposed new NRCS conservation practice standard regarding the use of gypsiferous products in agriculture. Gypsiferous products include gypsum (CaSO4 .2H2O), has been used as an agricultural soil amendment for over 250 years as a soluble source of calcium and sulfur for ...
Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT
USDA-ARS?s Scientific Manuscript database
The Merguellil catchment (Central Tunisia) is a typical Mediterranean semi-arid basin which suffers from regular water shortage aggravated by current droughts. During the recent decades the continuous construction of small and large dams and Soil and Water Conservation Works (i.e. Contour ridges) ha...
A general overview of the history of soil science
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Cerdà, Artemi
2017-04-01
Human knowledge of soil has come a long way since agriculture began about 9000 BCE, when finding the best soils to grow crops in was largely based on a trial and error approach. Many innovations to manage and conserve soil, such as the plow, irrigation techniques, terraces, contour tillage, and even the engineering of artificial soils, were developed between 9000 BCE and 1500 CE. Scientific methods began to be employed in the study of soils during the Renaissance and many famous scientists addressed soil issues, but soil science did not evolve into an independent scientific field of study until the 1880s. In the early days of the study of soil as a science, soil survey activities provided one of the major means of advancing the field. As the 20th century progressed, advances in soil biology, chemistry, genesis, management, and physics allowed the use of soil information to expand beyond agriculture to environmental issues, human health, land use planning, and many other areas. The development of soil history as a subfield of the discipline in the latter part of the 20th century has promise to help advance soil science through a better understanding of how we have arrived at the major theories that shape the modern study of soil science.
ERIC Educational Resources Information Center
National Rifle Association, Washington, DC.
Conservation problems are identified, with some suggestions for action. General areas covered are: Wildlife Conservation, Soil Conservation, Clean Water, Air Pollution Action, and Outdoor Recreation Action. Appendices list private organizations or agencies concerned with natural resource use and/or management, congressional committees considering…
NASA Astrophysics Data System (ADS)
Baptista, I.; Ferreira, A. D.; Tavares, J.; Querido, A. L. E.; Reis, A. E. A.; Geissen, V.; Ritsema, C.; Varela, A.
2012-04-01
Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government's agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and effectiveness of the techniques to reduce soil erosion and to promote rainfall infiltration. Finally, we discuss the critical governance factors that lead to the successful implementation of such strategy in a country with scarce natural resources.
Estimating Erosion Rates using Caesium-137 Tracers in the Ethiopian Highlands
NASA Astrophysics Data System (ADS)
Guzman, C. D.; Tilahun, S. A.; Zegeye, A. D.; Yitaferu, B.; Kay, R. W.; Steenhuis, T. S.
2016-12-01
The effects and seriousness of soil erosion have been gaining more attention recently, especially with respect to shortening the life of reservoirs for hydroelectric power generation and diminished agricultural productivity. A central aim of this study on soil erosion and conservation is to compare and contrast estimates and identification of eroding areas and patterns in the Ethiopian highlands. In Debre Mawi, Ethiopia, we examined spatial variations in erosion from an agricultural watershed using the soil-adsorbed radionuclide caesium-137(Cs-137) as a sediment tracer. Sixteen sites were monitored in this small watershed 30 km south of Lake Tana, with characteristic semi-monsoonal rains, during the long (kremt) rainy season for topsoil depth change, groundwater table height, and ceasium-137 inventory. These sixteen sites are divided among cropped and fallow land and are spread out among upslope, midslope, and downslope areas within the watershed. The Cs-137 tracer method mapped the upland mildly sloping areas to be eroding at a greater average rate than any of the mid-slope or toe-slope areas. From comparisons with the sediment concentration in the downstream weir and groundwater table measurements, we draw information helpful in understanding why and how sediment concentration and erosion decreases or increases at certain times during the rainy season. By combining these different detection methods we hope to enable the development of more effective and sustainable conservation practices.
NASA Astrophysics Data System (ADS)
Abrougui, Khaoula; Khemis, Chiheb; Cornelis, Wim; Chehaibi, Sayed
2017-04-01
To evaluate the impact of tillage systems on soil environment, it is necessary to quantify the modifications to physical, chemical and biological properties. The objective of this study was to evaluate the short-term impact of different tillage systems in organic farming on soil resistance to penetration, bulk density, microbial biomass, organic matter, and carbon and nitrogen stocks. The tillage systems included conventional tillage (CT), 'agronomic' tillage (AT) and superficial (shallow) tillage (ST), with ST being a non-inversion practice. Tests were carried out on alluvial poorly developed soil (10% clay, 57% silt, 33% sand) in the Higher Institute of Agronomy of Chott Meriem (Tunisia). The soil resistance to penetration was measured with a penetrologger till 50 cm depth along with soil water content measurements. Bulk density (g cm-3) was measured by a cylinder densimeter on samples collected every 10 cm till 30 cm depth. Microbial biomass is a determining factor in soil biological quality because of its role in the regulation, transformation and storage of nutrients. To count the germs, we used the method of enumeration after incorporation into agar. The Walkley and Black method was used for the determination of soil organic matter, and Kjeldahl's for the analysis of total nitrogen content. Carbon and nitrogen stocks (t ha-1) were then calculated as a function of carbon and nitrogen contents, bulk density and the horizon depth. Shallow tillage without inversion ST showed the best values in terms of soil resistance and bulk density. Indeed, soil resistance was 3.1, 2.4 and 2 MPa under CT, AT and ST respectively at 40 cm depth. By adopting this conservation technique, we noted an increase in organic matter with 53% as compared to CT (from 1.9% to 2.9%) and thus a significant increase in C (from 12.5 to 14.5 g kg-1) and N (from 5 to 8 g kg-1) stocks, particularly in the topsoil. In fact, the increase of organic matter in the topsoil constituted a reserve of essential nutrients which allowed the development and boosted the activity of living beings from 756 to 780 UFC g-1 x 105 in the topsoil as compared to CT. The overall increase of C stocks in the topsoil for ST significantly contributes to carbon sequestration.
Climate change impact on soil erosion in the Mandakini River Basin, North India
NASA Astrophysics Data System (ADS)
Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar
2017-09-01
Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.
The role of soil quality and soil conservation for private gardening in South-West Germany
NASA Astrophysics Data System (ADS)
Teuber, Sandra; Kühn, Peter; Scholten, Thomas
2016-04-01
In the past centuries, agriculture played a major role in the economy of Germany, and private gardening was common practice. With the shift from agriculture to (service-) industry, less people work in their own garden for subsistence purposes and thus are no longer in direct contact with soil. However, the "Kleingarten"- and "Schrebergarten"-movements still exist in Germany, within which gardeners use soil to provide themselves with fruit and vegetables. The gardeners spend their leisure time cultivating the soil, planting, and harvesting. We ask as to whether these gardeners have a specific relation to soil quality and soil conservation, and what it is they associate with soil. Moreover, how do they use soil? Is soil quality assessed prior to planting? How do private gardeners conserve their soil? Interviewer-administered questionnaires were carried out in the respective gardens. Additionally, management practices were observed, and the fertility of the topsoil was measured. The research area is located in South-West Germany between the Black Forest and the Swabian Jura in a rural district. However, the "Kleingärten" investigated belong to the regional centre there and thus developed in an urban context. The theoretical framework of the SFB 1070 ResourceCultures was used for the study. A small portion of the surveyed private gardeners used simple box kits to analyse soil quality. However, the majority relied on experience and traditional knowledge to determine their management practices. This behaviour complicates the establishment of up-to-date knowledge about sustainable soil use like no-till and raised vegetable beds. Many surveyed persons have an agricultural background inasmuch as their (grand-) parents were farmers or at least owned a garden. Soil conservation practices are common, like the use of green manure to prevent the soil from drying out and supplementing soil with compost. Soil pollution is related to the use of chemical fertilizers which many private gardeners try to avoid. However, most people surveyed are neither aware of soil pollution by industry and traffic, nor of the enrichment of pollutants in compost. Generally, the surveyed gardeners, who had a mean age of 66 years, used a different approach to soil than soil scientists. They are in touch with the soil in their garden on a daily basis and therefore analyse it, and changes within it, constantly. The analytical tools which they use seem to be more rooted in traditions than in modern science.
Hydrologic data for Cow Bayou, Brazos River Basin, Texas, 1975
Mitchell, R.N.; Wehmeyer, E.E.
1977-01-01
The U.S. Soil Conservation Service is actively engaged in the implementation of flood- and soil-erosion reducing measures in Texas under the authority of. "The Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater~retarding structures to be physically and economically feasible in Texas. As of September 30, 1975, 1,680 of these structures had been built.
NASA Astrophysics Data System (ADS)
Kagoya, Sarah; Paudel, Krishna P.; Daniel, Nadhomi L.
2018-02-01
Soil and water conservation technologies have been widely available in most parts of Uganda. However, not only has the adoption rate been low but also many farmers seem not to be aware of these technologies. This study aims at identifying the factors that influence awareness and adoption of soil and water conservation technologies in Nabajuzi watershed in central Uganda. A bivariate probit model was used to examine farmers' awareness and adoption of soil and water conservation technologies in the watershed. We use data collected from the interview of 400 households located in the watershed to understand the factors affecting the awareness and adoption of these technologies in the study area. Findings indicate that the likelihood of being aware and adopting the technologies are explained by the age of household head, being a tenant, and number of years of access to farmland. To increase awareness and adoption of technologies in Uganda, policymakers may expedite the process of land titling as farmers may feel secure about landholding and thus adopt these technologies to increase profitability and productivity in the long run. Incentive payments to farmers residing in the vulnerable region to adopt these considered technologies may help to alleviate soil deterioration problems in the affected area.
Kagoya, Sarah; Paudel, Krishna P; Daniel, Nadhomi L
2018-02-01
Soil and water conservation technologies have been widely available in most parts of Uganda. However, not only has the adoption rate been low but also many farmers seem not to be aware of these technologies. This study aims at identifying the factors that influence awareness and adoption of soil and water conservation technologies in Nabajuzi watershed in central Uganda. A bivariate probit model was used to examine farmers' awareness and adoption of soil and water conservation technologies in the watershed. We use data collected from the interview of 400 households located in the watershed to understand the factors affecting the awareness and adoption of these technologies in the study area. Findings indicate that the likelihood of being aware and adopting the technologies are explained by the age of household head, being a tenant, and number of years of access to farmland. To increase awareness and adoption of technologies in Uganda, policymakers may expedite the process of land titling as farmers may feel secure about landholding and thus adopt these technologies to increase profitability and productivity in the long run. Incentive payments to farmers residing in the vulnerable region to adopt these considered technologies may help to alleviate soil deterioration problems in the affected area.
Lunar Dust Separation for Toxicology Studies
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.
2010-01-01
During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.
Effect of integrating straw into agricultural soils on soil infiltration and evaporation.
Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong
2012-01-01
Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.
Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils
NASA Astrophysics Data System (ADS)
Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.
2002-12-01
The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (P<0.05) increased in soils under cotton rotated with sorghum or wheat, and due to conservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.
Van Cuyk, S.; Siegrist, R.L.; Lowe, K.; Harvey, R.W.
2004-01-01
Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRID-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coil concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.
Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater
NASA Astrophysics Data System (ADS)
Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.
2012-06-01
In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.
77 FR 12234 - Changes in Hydric Soils Database Selection Criteria
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... Conservation Service [Docket No. NRCS-2011-0026] Changes in Hydric Soils Database Selection Criteria AGENCY... Changes to the National Soil Information System (NASIS) Database Selection Criteria for Hydric Soils of the United States. SUMMARY: The National Technical Committee for Hydric Soils (NTCHS) has updated the...
Fall cover crops boost soil arbuscular mycorrhizal fungi which can lead to reduced inputs
USDA-ARS?s Scientific Manuscript database
Fall cover crops provide multiple benefits to producers. These benefits include pathogen and pest protection, drought protection, weed control, reduced soil erosion, nutrient acquisition and retention, increased soil organic matter, and conservation of soil water by improvement of soil structure th...
Modeling of soil erosion and sediment transport in the East River Basin in southern China.
Wu, Yiping; Chen, Ji
2012-12-15
Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.
Introductory Soil Science Exercises Using USDA Web Soil Survey
ERIC Educational Resources Information Center
Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.
2007-01-01
The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…
Impacts of biofuel expansion on soil quality and carbon dynamics in a central Iowa watershed
USDA-ARS?s Scientific Manuscript database
Crop residues (plant litter) on the soil surface helps decrease soil erosion, increase water infiltration, increase soil organic matter, and improve soil quality. Thus, management of crop residues is an integral part of most conservation tillage systems. Crop residue cover is used to classify soil t...
7 CFR 614.3 - Decisions subject to informal appeal procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Soil and Water Conservation Program; (iv) Water Bank Program; (v) Watershed Protection and Flood... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS NRCS APPEAL PROCEDURES § 614.3... technical determinations made with respect to: (1) Conservation programs and regulatory requirements...
7 CFR 614.3 - Decisions subject to informal appeal procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Soil and Water Conservation Program; (iv) Water Bank Program; (v) Watershed Protection and Flood... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS NRCS APPEAL PROCEDURES § 614.3... technical determinations made with respect to: (1) Conservation programs and regulatory requirements...
Atlantic City Area Wetlands Review. Volume 1. Overview and Conclusions
1981-01-01
1.2.2 Soil Characteristics...91 5.3.3.2 Soil Conservation Committee........................................................ .... .......... 91 5.3.4...Area ....................................................................... 2 Figure 1-2 Typical Study Area Soil Patterns
GIS/RS-based Rapid Reassessment for Slope Land Capability Classification
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Chompuchan, C.
2014-12-01
Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.
SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD
An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...
NASA Astrophysics Data System (ADS)
Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg
2017-04-01
In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified. Mechanical precompression stress was significantly higher for STBS (141 kPa) than STWS (38 kPa). In addition, the CT image cross sections and the computed tomographic parameters confirmed the mechanically more stable soil structure observed under STBS with a higher initial average pore size but lower porosity and connectivity values compared to STWS. The reason for this is the lack of tillage. On the other hand, tillage at STWS created a loosened, porous and connective substrate. For all variants, the increasing load application led to progressive homogenization processes of the soil structure. At the same time, as stress application increased in all variants, the increase in dry bulk density led to a decrease in average pore size, porosity, and connectivity, while anisotropy increased. It was possible to confirm that strip tillage combines the advantages of no-till and a deeper conservation primary tillage, since on the one hand MT and STWS and on the other hand STBS and NT showed very similar soil structures. The computed tomographic parameters therefore provide valuable information about the impact of tillage on microscopic pore space attributes that improve our understanding about soil functional behavior at much larger scales.
Soil and Water Conservation Activities for Scouts.
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…
ERIC Educational Resources Information Center
Stewart, Bob R.; And Others
This instructor's guide contains eight lesson plans for teaching soil conservation in accordance with the Missouri State Board of Education's Vocational Instructional Management System. To make the unit easier for teachers to use, the following materials are provided in the front of the unit: objectives and competencies for each lesson, a…
USDA-ARS?s Scientific Manuscript database
The USAID-SANREM-Virginia Polytechnic Institute project has made and continues to make an excellent impact, specifically showcasing the positive results of soil and water conservation (Barrera et al. 2010a; 2010b). This project has strong international cooperation between the USA, Ecuador and Bolivi...
Free and Inexpensive Materials Available for Teaching Conservation Education: Soil and Water.
ERIC Educational Resources Information Center
Cousins, Genevieve; Smith, Bonnie Mae
This publication was prepared to accompany the revised "Soil and Water Section" of "Guides for Teacher Conservation in the Schools of Louisiana." Its purpose is to provide teachers with information about possible sources of teaching materials that can be obtained free or with only a small expenditure of funds. Each item listed…
Potential adherence of gypsum to forage as a consideration for excessive ingestion by ruminates
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4•2H2O) has long been used in agriculture to improve soils and crop production and its use has recently been encouraged by the USDA NRCS for soil conservation through a new National Conservation Practice Standard: Code 333. However, there is concern regarding ...
Soil conservation service tests of Eucalyptus species for windbreaks
Gary L. Young
1983-01-01
The Soil Conservation Service is in the early stages of testing many species of Eucalyptus or windbreaks. Over 260 different species have been collected. The pre-planting selection criteria and process is described as well as the test conditions and procedures. Some sources of information on the use of the Eucalypts may be misleading through...
ERIC Educational Resources Information Center
Bruening, Thomas; Martin, Robert A.
1992-01-01
A survey of 731 Iowa farmers received 432 responses indicating that (1) groundwater and water quality were of greater concern than soil conservation; (2) field demonstrations and county meetings were useful information sources on these issues; and (3) government agencies such as cooperative extension and state universities were useful sources of…
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
7 CFR 600.9 - Major land resource area soil survey offices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...
Sui, Yuanyuan; Ou, Yang; Yan, Baixing; Xu, Xiaohong; Rousseau, Alain N; Zhang, Yu
2016-01-01
Micro-basin tillage is a soil and water conservation practice that requires building individual earth blocks along furrows. In this study, plot experiments were conducted to assess the efficiency of micro-basin tillage on sloping croplands between 2012 and 2013 (5°and 7°). The conceptual, optimal, block interval model was used to design micro-basins which are meant to capture the maximum amount of water per unit area. Results indicated that when compared to the up-down slope tillage, micro-basin tillage could increase soil water content and maize yield by about 45% and 17%, and reduce runoff, sediment and nutrients loads by about 63%, 96% and 86%, respectively. Meanwhile, micro-basin tillage could reduce the peak runoff rates and delay the initial runoff-yielding time. In addition, micro-basin tillage with the optimal block interval proved to be the best one among all treatments with different intervals. Compared with treatments of other block intervals, the optimal block interval treatments increased soil moisture by around 10% and reduced runoff rate by around 15%. In general, micro-basin tillage with optimal block interval represents an effective soil and water conservation practice for sloping farmland of the black soil region.
Sui, Yuanyuan; Ou, Yang; Yan, Baixing; Xu, Xiaohong; Rousseau, Alain N.; Zhang, Yu
2016-01-01
Micro-basin tillage is a soil and water conservation practice that requires building individual earth blocks along furrows. In this study, plot experiments were conducted to assess the efficiency of micro-basin tillage on sloping croplands between 2012 and 2013 (5°and 7°). The conceptual, optimal, block interval model was used to design micro-basins which are meant to capture the maximum amount of water per unit area. Results indicated that when compared to the up-down slope tillage, micro-basin tillage could increase soil water content and maize yield by about 45% and 17%, and reduce runoff, sediment and nutrients loads by about 63%, 96% and 86%, respectively. Meanwhile, micro-basin tillage could reduce the peak runoff rates and delay the initial runoff-yielding time. In addition, micro-basin tillage with the optimal block interval proved to be the best one among all treatments with different intervals. Compared with treatments of other block intervals, the optimal block interval treatments increased soil moisture by around 10% and reduced runoff rate by around 15%. In general, micro-basin tillage with optimal block interval represents an effective soil and water conservation practice for sloping farmland of the black soil region. PMID:27031339
NASA Astrophysics Data System (ADS)
Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed
2015-04-01
In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.
Zhao, Chuanchuan; Yang, Ninggui; Wang, Zhen; Liu, Sili; Dong, Xu; Xin, Wenrong
2013-01-01
The information of slope and vegetation coverage of the monitoring region were extracted, based on DEM (Digital Evaluation Model) and Spot5 Satellite data images, and fishnet grid was generated using GIS (Geographic Information System) and RS (Remote Sensing) technique. Applying the information of slop and vegetation coverage layers into the corresponding space grid by using the function of zonal statistics and analysis, it can realize overlay analysis based on Standards for Classification and Gradation of Soil Erosion (SL190-2007), and obtains the map of soil erosion intensity of the monitoring region. Finally, according to Specifications for Assessment of Forest Ecosystem Services (LY/T1721-2008) and monitoring data of typical plot, the soil and water conservation value from cropland to forest was evaluated quantitatively in 2009. The results showed that the area, on and below the moderate level, was 93600 ha, taking up 50.03% of total conversion of farmland to forest area (185100 ha), which indicates a 14.64 million (t/a) of soil conversion, and a 1520 million Yuan for erosion control. The results of the study showed that the soil and water conservation was very effective.
Soil Geochemical Data for the Wyoming Landscape Conservation Initiative Study Area
Smith, David B.; Ellefsen, Karl J.
2010-01-01
In 2008, soil samples were collected at 139 sites throughout the Wyoming Landscape Conservation Initiative study area in southwest Wyoming. These samples, representing a density of 1 site per 440 square kilometers, were collected from a depth of 0-5 cm and analyzed for a suite of more than 40 major and trace elements following a near-total multi-acid extraction. In addition, soil pH, electrical conductivity, total nitrogen, total and organic carbon, and sodium adsorption ratio were determined. The resulting data set provides a baseline for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used, and makes available all the soil geochemical data generated in the study.
Geomorphological characterization of conservation agriculture
NASA Astrophysics Data System (ADS)
Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta
2017-04-01
Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.
Luo, Chunling; Yang, Renxiu; Wang, Yan; Li, Jun; Zhang, Gan; Li, Xiangdong
2012-08-01
Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil>vegetable soil>paddy soil>natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The (206)Pb/(207)Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. Copyright © 2012 Elsevier B.V. All rights reserved.
Sharma, E; Rai, S C; Sharma, R
2001-02-01
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.
Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less
Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.; ...
2014-02-17
Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less
An Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China
Zhao, Wenwu; Fu, Bojie; Qiu, Yang
2013-01-01
The cover-management factor (C-factor) is important for studying soil erosion. In addition, it is important to use sampling plot data to estimate the regional C-factor when assessing erosion and soil conservation. Here, the loess hill and gully region in Ansai County, China, was studied to determine a method for computing the C-factor. This C-factor is used in the Universal Soil Loss Equation (USLE) at a regional scale. After upscaling the slope-scale computational equation, the C-factor for Ansai County was calculated by using the soil loss ratio, precipitation and land use/cover type. The multi-year mean C-factor for Ansai County was 0.36. The C-factor values were greater in the eastern region of the county than in the western region. In addition, the lowest C-factor values were found in the southern region of the county near its southern border. These spatial differences were consistent with the spatial distribution of the soil loess ratios across areas with different land uses. Additional research is needed to determine the effects of seasonal vegetation growth changes on the C-factor, and the C-factor upscaling uncertainties at a regional scale. PMID:24113551
An upscaling method for cover-management factor and its application in the loess Plateau of China.
Zhao, Wenwu; Fu, Bojie; Qiu, Yang
2013-10-09
The cover-management factor (C-factor) is important for studying soil erosion. In addition, it is important to use sampling plot data to estimate the regional C-factor when assessing erosion and soil conservation. Here, the loess hill and gully region in Ansai County, China, was studied to determine a method for computing the C-factor. This C-factor is used in the Universal Soil Loss Equation (USLE) at a regional scale. After upscaling the slope-scale computational equation, the C-factor for Ansai County was calculated by using the soil loss ratio, precipitation and land use/cover type. The multi-year mean C-factor for Ansai County was 0.36. The C-factor values were greater in the eastern region of the county than in the western region. In addition, the lowest C-factor values were found in the southern region of the county near its southern border. These spatial differences were consistent with the spatial distribution of the soil loess ratios across areas with different land uses. Additional research is needed to determine the effects of seasonal vegetation growth changes on the C-factor, and the C-factor upscaling uncertainties at a regional scale.
Soil conservation service curve number: How to take into account spatial and temporal variability
NASA Astrophysics Data System (ADS)
Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.
2012-09-01
The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.
The Pedotopia Project: A Transdisciplinary Experiment in Soil Education
NASA Astrophysics Data System (ADS)
Toland, A.; Wessolek, G.
2012-04-01
In the absence of every-day interactions with the land, a hands-on, comprehensive soil education across disciplines and ages is necessary. Soil education is usually integrated into earth science and geography curricula and only rarely into social science, arts and humanities programs. Furthermore, an emphasis on measurement and modeling in conventional classroom science often neglects aesthetic, moral and other non-quantifiable values, precluding a broader cultural context in which soil education could take place. The arts play a vital role in communicating environmental issues to the greater public and represent a dynamic approach to help students discover soil complexity in new and unexpected ways. Artistic methods have recently been introduced as pedagogical tools in soil awareness-raising programs for children and youth. Painting with soil has become an interesting new approach to soil education from Kindergarten to University levels (SZLEZAK 2008). And a growing amount of literature describes artists who have undertaken different soil issues, suggesting that such artistic focus may improve wider understanding and appreciation of soil conservation issues (FELLER et al 2010, TOLAND & WESSOLEK 2010, WAGNER 2002). How can art contribute to soil science, policy and education - both with the aim of generating greater public understanding, but also by honing creative methods to confront problems such as contamination, erosion, and urban sprawl? What artistic approaches exist to protect and restore soils as well as our relationship to the land? And how can these approaches support current soil education goals? These questions were addressed in the transdisciplinary soil seminar, "Pedotopia - Re-sourcing Urban Soils" from September 2010 to September 2011 in Berlin. A cooperation between the Technical University of Berlin's Department of Soil Protection and the Berlin University of Arts' Institute for Art in Context, the project served as a teaching experiment as well as a platform for the production of new soil-oriented artworks. An exhibition of the resulting works as well as a symposium on the cultural values of soil conservation was held at the annual meeting of the German Soil Science Society (DBG) in 2011 in Berlin. In the following paper we will present the Pedotopia project as a case study in transdisciplinary soil education. We will highlight main points of the curriculum, present the results of the project and address challenges and future considerations of transdisciplinary soil education. SOURCES FELLER, LARDY and UGOLINI (2010): The Representation of Soil in the Western Art: From Genesis to Pedogenesis. In: Feller and Landa (Hrsg.) Soil and Culture. Dordrecht, Heidelberg, London and New York: Springer Science + Business Media B.V.: 3-21 SZLEZAK, E. (2009) "Soilart with the Colours of the Earth". In: Amt der NÖ LandesregierungAbteilung Landentwicklung. Stand 2009. http://www.soilart.eu/1-0-Home.htm (abgerufen am 20. Dezember 2011) TOLAND, A. & WESSOLEK, G. (2010): Merging Horizons - Soil Science and Soil Art. In: Feller and Landa (Hrsg.) Soil and Culture. Dordrecht, Heidelberg, London and New York: Springer Science + Business Media B.V.: 45-66 WAGNER, M. (2002): Erde als Material künstlerische Gestaltung. In: BUSCH, B. (2002) (Hrsg.): Erde. Schriftenreihe Forum, Bd. 11, Elemente des Naturhaushalts III. Kunst- und Ausstellungshalle der Bundesrepublik Deutschland GmbH, Köln, 246-260
Beyond conservation agriculture.
Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard
2015-01-01
Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.
Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.
Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo
2016-08-31
Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).
Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch
2014-06-01
Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion Tmore » values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.« less
Using satellite image data to estimate soil moisture
NASA Astrophysics Data System (ADS)
Chuang, Chi-Hung; Yu, Hwa-Lung
2017-04-01
Soil moisture is considered as an important parameter in various study fields, such as hydrology, phenology, and agriculture. In hydrology, soil moisture is an significant parameter to decide how much rainfall that will infiltrate into permeable layer and become groundwater resource. Although soil moisture is a critical role in many environmental studies, so far the measurement of soil moisture is using ground instrument such as electromagnetic soil moisture sensor. Use of ground instrumentation can directly obtain the information, but the instrument needs maintenance and consume manpower to operation. If we need wide range region information, ground instrumentation probably is not suitable. To measure wide region soil moisture information, we need other method to achieve this purpose. Satellite remote sensing techniques can obtain satellite image on Earth, this can be a way to solve the spatial restriction on instrument measurement. In this study, we used MODIS data to retrieve daily soil moisture pattern estimation, i.e., crop water stress index (cwsi), over the year of 2015. The estimations are compared with the observations at the soil moisture stations from Taiwan Bureau of soil and water conservation. Results show that the satellite remote sensing data can be helpful to the soil moisture estimation. Further analysis can be required to obtain the optimal parameters for soil moisture estimation in Taiwan.
Spatial distribution and hazard degree of soil erosion of sloping croplands in northeast China
NASA Astrophysics Data System (ADS)
Zhang, T.
2017-12-01
Soil erosion is causing damage to the sloping croplands of northeast China and threatening the food security of the nation. However, little is known about the problem in macro scale. This study aims to investigate the area, slope gradient, soil erosion rate and year limit of erosion of the sloping croplands in whole northeast China and different geomorphologic regions, soil types, watersheds and administrative divisions of it, to estimate quantitatively the necessity and urgency of soil conservation and to offer advices. Meteorological data, topography data, geomorphology data, soil data and landuse data were collected. The China Soil Loss Equation was applied. The results indicated that: (1) Total area of the sloping croplands of northeast China is 195000 km2. They mainly distributed in Changbai mountainous region, eastern Songnen plain and Daxinganling mountainous region, with dark-brown earth, black soil and brown earth as main soil types. Total area of the sloping croplands steeper than 5 degree is 31000 km2. They mainly distributed in the mountain regions, with dark-brown earth and brown earth as main soil types. (2) The soil erosion rates of 92% of the sloping croplands have exceeded the soil loss tolerance in the national standard (0.15 mm/a). These croplands need to be conserved. The A horizon depths of 66% of the sloping croplands are less than 30 cm , while the year limit of A horizon erosion of 59% of the sloping croplands are less than 100 a. These croplands need to be conserved immediately. (3) Contour farming is suitable to 84% of the sloping croplands and deserves more attention. The sloping croplands steeper than 15 degree and those located in the aeolian sandy soil and some others soil types contributed little in grain production with high hazard degrees of erosion and should be reused for other purposes, as soon as possible. (4) The Changbai mountainous region, Daxinganling mountainous region, the dark-brown earth region and the brown earth region are the key regions, difficult regions and priority regions of the conversation work and deserve more attention. (5) The load, difficulty and urgency of the conservation work varies widely among counties. Therefore, each county should be dealt with on its individual merits, but not as the same case.
1980-10-01
Conservation Division Kevin Maguire, Water Resources Comission, Boston, Mass. Edward G. Konieczny, Soil Conservation Service . James J. Elasmar, Soil...34, ’. R~CT C’ A~dJL IST’~CTCN July 1, 1974 BLACKBERRY IM-R WAERS "HED. Blackberry Site On June 24, 1974, the following met at the...Related Resources - Conn. Kevin iAlmguire Water Resources Comm~ission - Boston W. If. tieyers Berkshire Conservation Commissin Stetson Adams Department of
Farmers' Adoption of Soil Conservation Technologies: A Case Study from Osun State, Nigeria
ERIC Educational Resources Information Center
Junge, B.; Deji, O.; Abaidoo, R.; Chikoye, D.; Stahr, K.
2009-01-01
The main objective of this study was to determine the attitude of farmers towards erosion and the adoption of appropriate soil conservation technologies (SCTs). For the survey, farmers were selected from the communities Esa Oke, Elwure and Owode-Ede and Akoda in Osun State in Nigeria. In the first three communities farmers did receive training on…
USDA-ARS?s Scientific Manuscript database
With the need to increase crop production to meet the needs of growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under project...
USDA-ARS?s Scientific Manuscript database
We implemented conservation farming practices (winter cover cropping plus strip tillage) for a non-irrigated corn production system in the southern coastal plain of Georgia, USA that had been previously been managed under a plow and harrow tillage regime. Total soil carbon and nitrogen were measure...
USDA-ARS?s Scientific Manuscript database
Gypsum (calcium sulfate dihydrate, CaSO4·2H2O) has long been used to improve soils and crop production, and its use has recently been encouraged by the USDA-NRCS for soil conservation through a new Conservation Practice Standard: Code 333. However, there is concern regarding adverse effects of exce...
30 CFR 785.17 - Prime farmland.
Code of Federal Regulations, 2014 CFR
2014-07-01
... authority in consultation with the U.S. Soil Conservation Service shall determine the nature and extent of... a soil survey exists for those lands and whether soil mapping units in the permit area have been designated as prime farmland. If no soil survey exists, the applicant shall have a soil survey made of the...
30 CFR 785.17 - Prime farmland.
Code of Federal Regulations, 2011 CFR
2011-07-01
... authority in consultation with the U.S. Soil Conservation Service shall determine the nature and extent of... a soil survey exists for those lands and whether soil mapping units in the permit area have been designated as prime farmland. If no soil survey exists, the applicant shall have a soil survey made of the...
30 CFR 785.17 - Prime farmland.
Code of Federal Regulations, 2013 CFR
2013-07-01
... authority in consultation with the U.S. Soil Conservation Service shall determine the nature and extent of... a soil survey exists for those lands and whether soil mapping units in the permit area have been designated as prime farmland. If no soil survey exists, the applicant shall have a soil survey made of the...
30 CFR 785.17 - Prime farmland.
Code of Federal Regulations, 2012 CFR
2012-07-01
... authority in consultation with the U.S. Soil Conservation Service shall determine the nature and extent of... a soil survey exists for those lands and whether soil mapping units in the permit area have been designated as prime farmland. If no soil survey exists, the applicant shall have a soil survey made of the...
Soil Formation and Distribution in Missouri. Instructional Unit. Conservation Education Series.
ERIC Educational Resources Information Center
Castillon, David A.
This unit is designed to help vocational agriculture teachers incorporate information on soil formation and the soils geography of Missouri into their curriculum. The unit consists of: (1) a topic outline; (2) general unit objectives; (3) discussions of processes and factors of soil formation, the soils geography of Missouri, and some soil…
Soil Erosion. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Buydos, John F., Comp.
Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
Designed as enrichment materials for grades six through nine, this program is an interdisciplinary study of soils. As part of the program students: (1) examine soil organisms; (2) research history of local Native Americans to see how they and others have used the land and its soils; (3) investigate how soils are degraded and how they are conserved…
Analyzing ecological restoration strategies for water and soil conservation
Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro
2018-01-01
The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214
Analyzing ecological restoration strategies for water and soil conservation.
Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da
2018-01-01
The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.
Navarro, Albert; Fos, Simón; Laguna, Emilio; Durán, David; Rey, Luis; Rubio-Sanz, Laura; Imperial, Juan; Ruiz-Argüeso, Tomás
2014-01-01
Lupinus mariae-josephae is a recently discovered endemism that is only found in alkaline-limed soils, a unique habitat for lupines, from a small area in Valencia region (Spain). In these soils, L. mariae-josephae grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. We have previously shown that L. mariae-josephae plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using L. mariae-josephae trap-plants showed the absence or near absence of L. mariae-josephae-nodulating bacteria in “terra rossa” soils of Valencia outside of L. mariae-josephae plant patches, and in other “terra rossa” or alkaline red soils of the Iberian Peninsula and Balearic Islands outside of the Valencia L. mariae-josephae endemism region. Among the bradyrhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two strains, LmjC and LmjM3 were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural L. mariae-josephae populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. Our results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive. PMID:25019379
7 CFR 764.231 - Conservation loan uses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... not limited to: (1) The installation of conservation structures to address soil, water, and related... shelter belt purposes; (3) The installation of water conservation measures; (4) The installation of waste... 7 Agriculture 7 2012-01-01 2012-01-01 false Conservation loan uses. 764.231 Section 764.231...
NASA Astrophysics Data System (ADS)
Evenson, G. R.; Golden, H. E.; Lane, C.; Mclaughlin, D. L.; D'Amico, E.
2016-12-01
Geographically isolated wetlands (GIWs), defined as upland embedded wetlands, provide an array of ecosystem goods and services. Wetland conservation efforts aim to protect GIWs in the face of continued threats from anthropogenic activities. Given limited conservation resources, there is a critical need for methods capable of evaluating the watershed-scale hydrologic implications of alternative approaches to GIW conservation. Further, there is a need for methods that quantify the watershed-scale aggregate effects of GIWs to determine their regulatory status within the United States. We applied the Soil and Water Assessment Tool (SWAT), a popular watershed-scale hydrologic model, to represent the 1,700 km2 Pipestem Creek watershed in North Dakota, USA. We modified the model to incorporate an improved representation of GIW hydrologic processes via hydrologic response unit (HRU) redefinition and modifications to the model source code. We then used the model to evaluate the hydrologic effects of alternative approaches to GIW conservation prioritization by simulating the destruction/removal of GIWs by sub-classes defined by their relative position within the simulated fill-spill GIW network and their surface area characteristics. We evaluated the alternative conservation approaches as impacting (1) simulated streamflow at the Pipestem Creek watershed outlet; (2) simulated water-levels within the GIWs; and (3) simulated hydrologic connections between the GIWs. Our approach to modifying SWAT and evaluating alternative GIW conservation strategies may be replicated in different watersheds and physiographic regions to aid the development of GIW conservation priorities.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., animal, and related resources. This assistance may include conservation plan formulation, application... information on the conservation of soil, water, plant, animal, and related resources applicable specifically... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., animal, and related resources. This assistance may include conservation plan formulation, application... information on the conservation of soil, water, plant, animal, and related resources applicable specifically... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., animal, and related resources. This assistance may include conservation plan formulation, application... information on the conservation of soil, water, plant, animal, and related resources applicable specifically... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF...
NASA Astrophysics Data System (ADS)
Msita, H. B.; Kimaro, D. N.; Mtakwa, P. W.; Msanya, B. M.; Dondyene, S.; Poesen, J.; Deckers, J.
2012-04-01
Soil erosion by water is rampant mainly in mountainous areas of Tanzania leading to environmental hazards, low land productivity, low income and increased poverty. Despite the severity of the soil erosion problem, there is not much quantitative data on the erosion effects and effectiveness of indigenous soil and water conservation (SWC) measures. The consequence is that indigenous knowledge in SWC planning is ignored. The on-farm field experiment was conducted for three years in Migambo village, Lushoto district in Tanzania, to determine the effectiveness of improved Miraba (IM) an indigenous soil erosion control measure on reducing runoff and soil loss. Management practices were tested viz: control that is without any soil conservation measure (C), Miraba alone (M), Miraba with farmyard manure and mulching (MFM) replicated three times in CRD setting. Maize (Zea mays) and beans (Phaseolus vulgaris) were used as test crops, due to their importance as food crops and the high erosion rates on fields with these crops. The crops were planted in rotation, maize and beans in short and long rains respectively. Gerlach troughs and runoff plots were used to evaluate the physical effectiveness. Results show significant effects of IM against control on crop yields, soil loss, surface runoff and moisture retention. MFM is the most effective measure in reducing soil and water losses followed by MF and M. The results further showed that these management practices can be implemented to reduce soil erosion and nutrient losses in the study area and areas with similar ecological setting. To facilitate adoption of these practices further research works is recommended for identifying economically feasible indigenous SWC measures under different biophysical and socio-economic conditions.
NASA Astrophysics Data System (ADS)
Demelash, Nigus; Flagler, Jared; Renschler, Chris; Strohmeier, Stefan; Holzmann, Hubert; Feras, Ziadat; Addis, Hailu; Zucca, Claudio; Bayu, Wondimu; Klik, Andreas
2017-04-01
Soil degradation is a major issue in the Ethiopian highlands which are most suitable for agriculture and, therefore, support a major part of human population and livestock. Heavy rainstorms during the rainy season in summer create soil erosion and runoff processes which affect soil fertility and food security. In the last years programs for soil conservation and afforestation were initiated by the Ethiopian government to reduce erosion risk, retain water in the landscape and improve crop yields. The study was done in two adjacent watersheds in the Northwestern highlands of Ethiopia. One of the watersheds is developed by soil and water conservation structures (stone bunds) in 2011 and the other one is without soil and water conservation structures. Spatial distribution of soil textures and other soil properties were determined in the field and in the laboratory and a soil map was derived. A land use map was evaluated based on satellite images and ground truth data. A Digital Elevation Model of the watershed was developed based on conventional terrestrial surveying using a total station. At the outlet of the watersheds weirs with cameras were installed to measure surface runoff. During each event runoff samples were collected and sediment concentration was analyzed. The objective of this study is 1) to assess the impact of stone bunds on runoff and erosion processes by using simulation models, and 2) to compare the performance of two soil erosion models in predicting the measurements. The selected erosion models were the Soil and Water Assessment Tool (SWAT) and the Geospatial Interface to the Water Erosion Prediction Project (GeoWEPP). The simulation models were calibrated/verified for the 2011-2013 periods and validated with 2014-2015 data. Results of this comparison will be presented.
SOIL QUALITY RECOVERY IN PREVIOUSLY FARMED FIELDS SEEDED TO PERENNIAL WARM SEASON NATIVE GRASS
A study of twelve Conservation Reserve Program sites in northeastern Kansas was conducted to determine native grass species and selected soil textures influence on soil quality recovery.
Plant productivity, plant carbon and nitrogen concentrations, total soil nitrogen and car...
Identifying conservation hotspots using tillage erosion modeling
USDA-ARS?s Scientific Manuscript database
Tillage operations redistribute soil within agricultural landscapes due to deviations in the quantity of soil moved during tillage. Tillage erosion is the net loss or accumulation of soil at any spot within an agricultural landscape due to soil being directly moved by tillage; it is a dominant erosi...
NASA Astrophysics Data System (ADS)
Adgo, Enyew; Teshome, Akalu
2014-05-01
Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial internal rate of return (FIRR) was 301%. Other long-term impacts of terracing included farmers' growing of maize on terraced fields as a result of water conservation. Currently, farmers also grow barley on terraced fields for two crop seasons per year unlike the experiences on farms without terraces. Household incomes and food security had improved and soil erosion drastically reduced. Many farmers had adopted terracing doubling the original area under the soil conservation pilot project and consequently improving environmental conservation in the watershed.
NASA Astrophysics Data System (ADS)
Shi, Wenhai; Huang, Mingbin
2017-04-01
The Chinese Loess Plateau is one of the most erodible areas in the world. In order to reduce soil and water losses, suitable conservation practices need to be designed. For this purpose, there is an increasing demand for an appropriate model that can accurately predict storm-based surface runoff and soil losses on the Loess Plateau. The Chinese Soil Loss Equation (CSLE) has been widely used in this region to assess soil losses from different land use types. However, the CSLE was intended only to predict the mean annual gross soil loss. In this study, a CSLE was proposed that would be storm-based and that introduced a new rainfall-runoff erosivity factor. A dataset was compiled that comprised measurements of soil losses during individual storms from three runoff-erosion plots in each of three different watersheds in the gully region of the Plateau for 3-7 years in three different time periods (1956-1959; 1973-1980; 2010-13). The accuracy of the soil loss predictions made by the new storm-based CSLE was determined using the data for the six plots in two of the watersheds measured during 165 storm-runoff events. The performance of the storm-based CSLE was further compared with the performance of the storm-based Revised Universal Soil Loss Equation (RUSLE) for the same six plots. During the calibration (83 storms) and validation (82 storms) of the storm-based CSLE, the model efficiency, E, was 87.7% and 88.9%, respectively, while the root mean square error (RMSE) was 2.7 and 2.3 t ha-1 indicating a high degree of accuracy. Furthermore, the storm-based CSLE performed better than the storm-based RULSE (E: 75.8% and 70.3%; RMSE: 3.8 and 3.7 t ha-1, for the calibration and validation storms, respectively). The storm-based CSLE was then used to predict the soil losses from the three experimental plots in the third watershed. For these predictions, the model parameter values, previously determined by the calibration based on the data from the initial six plots, were used in the storm-based CSLE. In addition, the surface runoff used by the storm-based CSLE was either obtained from measurements or from the values predicted by the modified Soil Conservation Service Curve Number (SCS-CN) method. When using the measured runoff, the storm-based CSLE had an E of 76.6%, whereas the use of the predicted runoff gave an E of 76.4%. The high E values indicated that the storm-based CSLE incorporating the modified SCS-CN method could accurately predict storm-event-based soil losses resulting from both sheet and rill erosion at the field scale on the Chinese Loess Plateau. This approach could be applicable to other areas of the world once the model parameters have been suitably calibrated.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-01-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-05-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
7 CFR 12.23 - Conservation plans and conservation systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the field office technical guide are designed to achieve substantial reductions in soil erosion..., 1985, the measurement of erosion reduction achieved by applying a conservation plan or system shall be... in paragraph (b) which the conservation system or plan was designed to achieve. It is the...
Conservation Education: A Position Statement.
ERIC Educational Resources Information Center
Soil Conservation Society of America, Ankeny, IA.
The Soil Conservation Society of America's (SCSA) aim is to advance the science and art of good land and water use. Conservation education has a significant role in achieving the wise use of these resources. In this report, perspectives are offered on: (1) the requirements for effective conservation education programs; (2) rationale for…
Water Conservation Education with a Rainfall Simulator.
ERIC Educational Resources Information Center
Kok, Hans; Kessen, Shelly
1997-01-01
Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…
NASA Astrophysics Data System (ADS)
Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.
2016-11-01
Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there is scope to reduce the NGWP emissions by reducing one tillage operation as in RT and increase in crop residue by harvesting at 10 and 30 cm height with minimal impact on the crop yields. However, the trade-off between higher yield and soil health versus GHG emissions should be considered while promoting conservation agriculture. The NGWPcrop estimation method indicated considerable benefits of residues to the soil and higher potential of GHG mitigation than by the NGWPsoil method and may overestimate the potential of GHG mitigation in agriculture system.
Pradhan, Biswajeet; Chaudhari, Amruta; Adinarayana, J; Buchroithner, Manfred F
2012-01-01
In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.
Mini rainfall simulation for assessing soil erodibility
NASA Astrophysics Data System (ADS)
Peters, Piet; Palese, Dina; Baartman, Jantiene
2016-04-01
The mini rainfall simulator is a small portable rainfall simulator to determine erosion and water infiltration characteristics of soils. The advantages of the mini rainfall simulator are that it is suitable for soil conservation surveys and light and easy to handle in the field. Practical experience over the last decade has shown that the used 'standard' shower is a reliable method to assess differences in erodibility due to soil type and/or land use. The mini rainfall simulator was used recently in a study on soil erosion in olive groves (Ferrandina-Italy). The propensity to erosion of a steep rain-fed olive grove (mean slope ~10%) with a sandy loam soil was evaluated by measuring runoff and sediment load under extreme rain events. Two types of soil management were compared: spontaneous grass as a ground cover (GC) and tillage (1 day (T1) and 10 days after tillage (T2)). Results indicate that groundcover reduced surface runoff to approximately one-third and soil-losses to zero compared with T1. The runoff between the two tilled plots was similar, although runoff on T1 plots increased steadily over time whereas runoff on T2 plots remained stable.
China Report, Agriculture, No. 278.
1983-11-10
Radiation Successfully Used in Agriculture (XINHUA, 18 Oct 83) 2 Recent Agricultural Development Strategies (Zhang Lin; JINGJI YANJIU, No 9, 20...ABSTRACTS SOIL CONSERVATION SHUITU BAOCHI TONGBAO [BULLETIN OF SOIL AND WATER CONSERVATION], No 4, Aug 83 28 URBAN STUDIES JINGJI DILI [ECONOMIC...GEOGRAPHY], No 3, Aug 83 31 LAND USE JINGJI DILI [ECONOMIC GEOGRAPHY], No 3, Aug 83 33 CROP ROTATION JINGJI DILI fECONOMIC GEOGRAPHY], No
ERIC Educational Resources Information Center
Ware, George; McCollum, Howard P.
This publication is a revised edition of the teachers guide for teaching soil and water conservation in the elementary and junior high schools of Louisiana. The format of the guide includes a statement of concept, followed by discussion of the concept, suggested activities, and possible outcomes. There is a glossary of terms and a section that…
USDA-ARS?s Scientific Manuscript database
Conservation soil management practices may influence the soil acidity. Surface application of lime may be required in no-till systems to ameliorate soil acidity and to improve crop yields. The application of lime may also increase microbial activity on soil. Specifically, the microbial activity of s...
USDA-ARS?s Scientific Manuscript database
US-ModSoilParms-TEMPLE is a database composed of a set of geographic databases functionally storing soil-spatial units and soil hydraulic, physical, and chemical parameters for three agriculture management simulation models, SWAT, APEX, and ALMANAC. This paper introduces the updated US-ModSoilParms-...
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to four times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.
Estimating contamination potential at waste-disposal sites using a natural tracer
NASA Astrophysics Data System (ADS)
Stone, William J.
1992-05-01
Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.
NASA Astrophysics Data System (ADS)
Leomo, S.; Ginting, S.; Sabaruddin, L.; Tufaila, M.; Muhidin
2018-02-01
The Endanga basin is one part of the Konaweeha watershed located in South Konawe, Southeast Sulawesi Province, covering an area of 1,353.67 hectares. The land use patterns in Endanga Watershed contained forests, shrubs, oil palm plantations, pepper fields, and cultivated fields of field rice, corn monoculture and intercropping of peanuts and corn. This watershed needs serious attention because most of its territory is on slope of 15-40%, with erosion hazard levels (EHL) varying from mild erosion to severe erosion. The loss of organic carbon (C-organic) soil is measured from the soil carried along with the surface stream and into the reservoir on various land uses. The result measurement of C-organic soil loss on forest land use is 14.02 kg ha-1, shrubs land 22.71 kg ha-1, oil palm 151.32 kg ha-1, pepper garden 93.69 kg ha-1, field rice 313.80 kg.ha-1, monoculture of maize 142.44 kg ha-1, intercropped maize and corn 51.10 kg ha-1 and open land 1,909.16 kg ha-1. The forest land and shrubs is best in conserving soil C-organic, but economically unfavorable for the community, so land use pattern for intercropping and pepper plantation can be used for soil C-organic conservation
Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding
USDA-ARS?s Scientific Manuscript database
Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...
Calibration of the soil conditioning index (SCI) to soil organic carbon in the southeastern USA
USDA-ARS?s Scientific Manuscript database
Prediction of soil organic C sequestration with adoption of various conservation agricultural management approaches is needed to meet the emerging market for environmental services provided by agricultural land stewardship. The soil conditioning index (SCI) is a relatively simple model used by the ...
Conservation agricultural management to sequester soil organic carbon
USDA-ARS?s Scientific Manuscript database
Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality, fertility, and functioning of soil. This presentation describes relevant management approaches to avoid land degradation and foster soil organic C ...
Socioeconomic modifications of the universal soil loss equation
NASA Astrophysics Data System (ADS)
Erol, A.; Koşkan, Ö.; Başaran, M. A.
2015-08-01
While social scientists have long focused on socioeconomic and demographic factors, physical modelers typically study soil loss using physical factors. In the current environment, it is becoming increasingly important to consider both approaches simultaneously for the conservation of soil and water, and the improvement of land use conditions. This study uses physical and socioeconomic factors to find a coefficient that evaluates the combination of these factors. It aims to determine the effect of socioeconomic factors on soil loss and, in turn, to modify the universal soil loss equation (USLE). The methodology employed in this study specifies that soil loss can be calculated and predicted by comparing the degree of soil loss in watersheds, with and without human influence, given the same overall conditions. A coefficient for socioeconomic factors, therefore, has been determined based on adjoining watersheds (WS I and II), employing simulation methods. Combinations of C and P factors were used in the USLE to find the impact of their contributions to soil loss. The results revealed that these combinations provided good estimation of soil loss amounts for the second watershed, i.e., WS II, from the adjoining watersheds studied in this work. This study shows that a coefficient of 0.008 modified the USLE to reflect the socioeconomic factors, such as settlement, influencing the amount of soil loss in the studied watersheds.
NASA Astrophysics Data System (ADS)
El Jazouli, Aafaf; Barakat, Ahmed; Ghafiri, Abdessamad; El Moutaki, Saida; Ettaqy, Abderrahim; Khellouk, Rida
2017-12-01
The Ikkour watershed located in the Middle Atlas Mountain (Morocco) has been a subject of serious soil erosion problems. This study aimed to assess the soil erosion susceptibility in this mountainous watershed using Universal Soil Loss Equation (USLE) and spectral indices integrated with Geographic Information System (GIS) environment. The USLE model required the integration of thematic factors' maps which are rainfall aggressiveness, length and steepness of the slope, vegetation cover, soil erodibility, and erosion control practices. These factors were calculated using remote sensing data and GIS. The USLE-based assessment showed that the estimated total annual potential soil loss was about 70.66 ton ha-1 year-1. This soil loss is favored by the steep slopes and degraded vegetation cover. The spectral index method, offering a qualitative evaluation of water erosion, showed different degrees of soil degradation in the study watershed according to FI, BI, CI, and NDVI. The results of this study displayed an agreement between the USLE model and spectral index approach, and indicated that the predicted soil erosion rate can be due to the most rugged land topography and an increase in agricultural areas. Indeed, these results can further assist the decision makers in implementation of suitable conservation program to reduce soil erosion.
Uddin, Kabir; Murthy, M. S. R.; Wahid, Shahriar M.; Matin, Mir A.
2016-01-01
High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region. PMID:26964039
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2009-08-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
Zhu, T X
2016-03-01
In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.
Uddin, Kabir; Murthy, M S R; Wahid, Shahriar M; Matin, Mir A
2016-01-01
High levels of water-induced erosion in the transboundary Himalayan river basins are contributing to substantial changes in basin hydrology and inundation. Basin-wide information on erosion dynamics is needed for conservation planning, but field-based studies are limited. This study used remote sensing (RS) data and a geographic information system (GIS) to estimate the spatial distribution of soil erosion across the entire Koshi basin, to identify changes between 1990 and 2010, and to develop a conservation priority map. The revised universal soil loss equation (RUSLE) was used in an ArcGIS environment with rainfall erosivity, soil erodibility, slope length and steepness, cover-management, and support practice factors as primary parameters. The estimated annual erosion from the basin was around 40 million tonnes (40 million tonnes in 1990 and 42 million tonnes in 2010). The results were within the range of reported levels derived from isolated plot measurements and model estimates. Erosion risk was divided into eight classes from very low to extremely high and mapped to show the spatial pattern of soil erosion risk in the basin in 1990 and 2010. The erosion risk class remained unchanged between 1990 and 2010 in close to 87% of the study area, but increased over 9.0% of the area and decreased over 3.8%, indicating an overall worsening of the situation. Areas with a high and increasing risk of erosion were identified as priority areas for conservation. The study provides the first assessment of erosion dynamics at the basin level and provides a basis for identifying conservation priorities across the Koshi basin. The model has a good potential for application in similar river basins in the Himalayan region.
NASA Astrophysics Data System (ADS)
Zilioli, Diana Maria; Bini, Claudio; Wahsha, Mohammad; Ciotoli, Giancarlo
2011-12-01
Since 1997, the Department of Environmental Sciences of Ca' Foscari University of Venice has undertaken numerous research projects aimed at deepening understanding of pedogenic processes in the Dolomites, and at highlighting the fundamental contribution that soil science can give to the conservation of natural resources and achieve sustainable management of mountain ecosystems. A total of several hundred profiles have been described, analyzed and mapped. This paper reports the results from the analysis of pedo-environmental characters of profiles developed from different parent materials, at altitudes between 1300 m and 2900 m and in different conditions of slope, exposure and vegetation cover. Soil forming factors, landforms and land surfaces have been interpreted to understand the soil-landscape in the mapped areas and to develop a qualitative model of soil geography into the Dolomites scenery. The application of land evaluation methods in some of the investigated territories that are subjected to intensive tourist fluxes revealed some criticisms. Collected results also highlighted the high environmental heterogeneity of soils of the Dolomites.
Adekalu, K O; Olorunfemi, I A; Osunbitan, J A
2007-03-01
Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.
Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi
2018-02-27
The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.
NASA Astrophysics Data System (ADS)
Vanwalleghem, Tom; Giráldez, Juan Vicente
2013-04-01
Many courses on natural resources require hands-on practical knowledge and experience that students traditionally could only acquire by expensive and time-consuming field excursions. New technologies and social media however provide an interesting alternative to train students and help them improve their practical knowledge. AgroGeovid is a virtual excursion, based on Google Earth, Youtube, Facebook and Twitter that is aimed at agricultural engineering students, but equally useful for any student interested in soil management and conservation, e.g. geography, geology and environmental resources. Agrogeovid provides the framework for teachers and students to upload geotagged photos, comments and discussions. After the initial startup phase, where the teacher uploaded material on e.g. soil erosion phenomena, soil conservation structures and different soil management strategies under different agronomic systems, students contributed with their own material gathered throughout the academic year. All students decided to contribute via Facebook, in stead of Twitter, which was not known to most of them. The final result was a visual and dynamic tool which students could use to train and perfect skills adopted in the classroom using case-studies and examples from their immediate environment.
Beyond conservation agriculture
Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard
2015-01-01
Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139
Code of Federal Regulations, 2013 CFR
2013-01-01
... conservation districts, State soil and water conservation agencies, or State water quality agencies to... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM General § 634.3 Administration. At the national...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conservation districts, State soil and water conservation agencies, or State water quality agencies to... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM General § 634.3 Administration. At the national...
Code of Federal Regulations, 2014 CFR
2014-01-01
... conservation districts, State soil and water conservation agencies, or State water quality agencies to... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM General § 634.3 Administration. At the national...
NASA Astrophysics Data System (ADS)
Leu, Stefan; Mussery, Amir Mor; Budovsky, Arie
2014-08-01
One of the major reasons for desertification is unrestricted grazing leading to vegetation depletion, soil erosion and degradation, phenomena often considered irreversible in the short term. Here, we compare soil and biological parameters of degraded and conserved, recently rehabilitated arid shrubland in the Northern Negev, Israel. The study area was restored by conservation efforts including a strictly controlled grazing regime initiated in 1992. The visually recognizable improvement in the ecology of the restored shrubland is reflected in significant improvement in all examined biotic (herbaceous biomass, shrub patch density, and insect activity), and soil parameters (nutrients, organic matter content, moisture, and water infiltration). The difference is created predominantly by restoration of large biological patches composed of shrubs and other perennial plants often associated with ant or termite nests, where the most significant increases in productivity and soil quality were observed. In the conserved shrubland such patches covered 35 or 25 % of the area (in a normal and a drought year, respectively). In the degraded shrubland 5 % or less of the area was occupied by such patches that were much smaller and of lower biological complexity. With respect to plant biodiversity, six plant species were found only—and 18 others became significantly more common—in the rehabilitated area. The results of this article indicate that functional arid drylands can be restored within <16 years relying on strict conservation management with reduced grazing intensity.
Bedrossian, T.L.; Reynolds, S.D.
2007-01-01
In 2004, the California State Parks (CSP) agency contracted with the California Geological Survey (CGS) to update the 1991 Soil Conservation Guide-lines/Standards for Off-Highway Vehicle (OHV) Recreation Management. Per state legislation, the 1991 standards were updated to establish a generic and measurable standard at least sufficient to allow restoration of OHV areas and trails. Given the rapid increase in OHV use in California, the updated Soil Conservation Standard and Guidelines for OHV Recreation Management also allowed for sustainability of trail systems and recreation opportunities. A key part of the update was interaction with stakeholders, agencies, and other interest groups through public workshops and a Consulting Agency Review Committee composed of representatives from the U.S. Natural Resources Conservation Service, U.S. Forest Service, U.S. Bureau of Land Management, U.S. Geological Survey, California Department of Conservation, and CSP. CGS also assessed proposed revisions in three representative OHV areas to ensure that the updated Standard and Guidelines provided sufficient flexibility to allow their application to all sites state-wide, ecosystems with multiple geology and soils types, and a variety of vehicle uses. While geology was not the only basis for the guideline revisions, it was a major factor. CGS staff also had the breadth of knowledge and experience in engineering geology, hydrogeology, road and trail construction, erosion control, and OHV riding necessary to coordinate and develop the multidisciplinary and multi-stakeholder effort.
The Effects of Reduced Tillage on Phosphate Transport from Agricultural Land.
1981-01-01
SOLUBLE INORGANIC I’IIOSPIORUS IN RUNOFF ................................................... 12 .F.ECT OF PHOSPHATE FERTILI ZATION ON LOSSES OF AVAILABLE...an reverse side if necessary end identifY by block number) Conservation Tillage Soil Loss Phosphorus Loss Surface Runoff 20 AMThAC? fCinf--- mbb iV...tillage (primarily no till) versus conventional tillage on surface runoff , soil loss and phosphorus loss. The data show that conservation tillage
ERIC Educational Resources Information Center
Crozier, Carl
This guide provides agricultural extensionists with basic information that will help them design plans for the conservation of soils and the management of water runoff in specific agricultural plots. It is based on experiences with small hillside farms in Honduras and takes into account the resources and constraints commonly encountered there.…
Wang, Jitao; Peng, Jian; Zhao, Mingyue; Liu, Yanxu; Chen, Yunqian
2017-01-01
Ecological restoration can mitigate human disturbance to the natural environment and restore ecosystem functions. China's Grain-for-Green Programme (GFGP) has been widely adopted in the last 15years and exerted significant impact on land-use and ecosystem services. North-western Yunnan is one of the key areas of GFGP implementation in the upper Yangtze River. Promotion of ecosystem services in this region is of great importance to the ecological sustainability of Yangtze River watershed. In this study, remote sensing and modelling techniques are applied to analyse the impact of GFGP on ecosystem services. Results show that the transformation from non-irrigated farmland to forestland could potentially improve soil conservation by 24.89%. Soil conservation of restored forest was 78.17% of retained forest while net primary production (NPP) already reached 88.65%, which suggested different recovery rates of NPP and soil conservation. Increasing extent of GFGP implementation improved soil conservation but decreased NPP and water yield at sub-watershed scale, which revealed trade-offs between ecosystem services under ecological restoration. Future ecosystem management and GFGP policy-making should consider trade-offs of ecosystem services in order to achieve sustainable provision of ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Blasiak, Leah C.; Schmidt, Alex W.; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L.; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P.; Schmidt, Thomas M.; Hill, Russell T.
2014-01-01
Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas. PMID:24465484
Lü, Yihe; Fu, Bojie; Feng, Xiaoming; Zeng, Yuan; Liu, Yu; Chang, Ruiying; Sun, Ge; Wu, Bingfang
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000-2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world.
Lü, Yihe; Fu, Bojie; Feng, Xiaoming; Zeng, Yuan; Liu, Yu; Chang, Ruiying; Sun, Ge; Wu, Bingfang
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000–2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world. PMID:22359628
USDA-ARS?s Scientific Manuscript database
Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing...
USDA-ARS?s Scientific Manuscript database
It has become a standard practice for farmers to use a no-till production system where crop residue are left on the soil surface rather than incorporated into the soil. This practice helps reduce soil erosion, conserve energy, increase soil moisture, and reduce erosion. However, many plant pathogens...
Effect of tillage, cultivar and fungicide on Phomopsis longicolla and Cercospora kukuchii in soybean
USDA-ARS?s Scientific Manuscript database
It has become a standard practice for farmers to use a no-till production system where crop residue are left on the soil surface rather than incorporated into the soil. This practice helps reduce soil erosion, conserve energy, increase soil moisture, and reduce erosion. However, many plant pathogens...
USDA-ARS?s Scientific Manuscript database
Vineyard management practices to enhance soil conservation principally focus on increasing carbon (C) input, whereas mitigating impacts of disturbance through reduced tillage has been rarely considered. Furthermore, information is lacking on the effects of soil management practices adopted in the un...
ERIC Educational Resources Information Center
Soil Conservation Service (USDA), Washington, DC.
This book of enrichment materials is an interdisciplinary study of soil designed for students in grades 6-9. The materials are presented in three units. Unit 1 contains eight activities in which students investigate soil science and study the social impact of soil by examining the history of land use by local Native Americans. Unit 2 contains 10…
Code of Federal Regulations, 2010 CFR
2010-01-01
... delegation of authority to the Natural Resources Conservation Service (NRCS) to provide national leadership for the conservation, development, and productive use of the Nation's soil, water, and related...
Soil erodibility for water erosion: A perspective and Chinese experiences
NASA Astrophysics Data System (ADS)
Wang, Bin; Zheng, Fenli; Römkens, Mathias J. M.; Darboux, Frédéric
2013-04-01
Knowledge of soil erodibility is an essential requirement for erosion prediction, conservation planning, and the assessment of sediment related environmental effects of watershed agricultural practices. This paper reviews the status of soil erodibility evaluations and determinations based on 80 years of upland area erosion research mainly in China and the USA. The review synthesizes the general research progress made by discussing the basic concepts of erodibility and its evaluation, determination, and prediction as well as knowledge of its spatio-temporal variations. The authors found that soil erodibility is often inappropriately or inaccurately applied in describing soil loss caused by different soil erosion component processes and mechanisms. Soil erodibility indicators were related to intrinsic soil properties and exogenic erosional forces, measurements, and calculations. The present review describes major needs including: (1) improved definition of erodibility, (2) modified erodibility determinations in erosion models, especially for specific geographical locations and in the context of different erosion sub-processes, (3) advanced methodologies for quantifying erodibilities of different soil erosion sub-processes, and (4) a better understanding of the mechanism that causes temporal variations in soil erodibility. The review also provides a more rational basis for future research on soil erodibility and supports predictive modeling of soil erosion processes and the development of improved conservation practices.
7 CFR 1466.20 - Application for contracts and selecting applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...
7 CFR 1466.20 - Application for contracts and selecting applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., drainage, and other soil and water conservation and use facilities. (6) Loans to acquire and develop... improve: (i) Community water, sanitary sewage, solid waste disposal, and storm waste water disposal... Conservation Service (SCS), U.S. Department of Agriculture (USDA), to conserve and develop natural resources...
7 CFR 1466.20 - Application for contracts and selecting applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... concerning soil, water and air quality; wildlife habitat; and ground and surface water conservation; (vi... include water conservation or irrigation efficiency practices, the State Conservationist will give... conservation practices; (ii) The magnitude of the expected environmental benefits resulting from the...
Impact of weather and climate scenarios on conservation assessment outcomes
USDA-ARS?s Scientific Manuscript database
This paper reviews selected watershed studies of the Conservation Effects Assessment Project (CEAP) and interprets findings from the perspective of potential climate change impacts on conservation outcomes. Primary foci are runoff, soil erosion, sediment transport, watershed sediment yield, and asso...
Code of Federal Regulations, 2012 CFR
2012-01-01
... document that identifies the location and timing of conservation practices that the participant agrees to... Chief of NRCS, United States Department of Agriculture (USDA), or designee. Conservation district means... law for the express purpose of developing and carrying out a local soil and water conservation program...
Code of Federal Regulations, 2013 CFR
2013-01-01
... document that identifies the location and timing of conservation practices that the participant agrees to... Chief of NRCS, United States Department of Agriculture (USDA), or designee. Conservation district means... law for the express purpose of developing and carrying out a local soil and water conservation program...
Code of Federal Regulations, 2014 CFR
2014-01-01
... document that identifies the location and timing of conservation practices that the participant agrees to... Chief of NRCS, United States Department of Agriculture (USDA), or designee. Conservation district means... law for the express purpose of developing and carrying out a local soil and water conservation program...
Forest calcium depletion and biotic retention along a soil nitrogen gradient
Perakis, Steven S.; Sinkhorn, Emily R.; Catricala, Christina; Bullen, Thomas D.; Fitzpatrick, John A.; Hynicka, Justin D.; Cromack, Kermit
2013-01-01
High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated. Total soil N (0–100 cm) pools increased nearly threefold across the N gradient, leading to increased nitrate leaching, declines in soil pH from 5.8 to 4.2, 10-fold declines in soil exchangeable Ca, Mg, and K, and increased mobilization of aluminum. These results suggest that long-term N enrichment had acidified soils and depleted much of the readily weatherable base cation pool. Soil organic P increased with both soil N and C across the gradient, but soil inorganic P, biomass P, and P leaching loss did not vary with N, implying that historic symbiotic N fixation promoted soil organic P accumulation and P sufficiency for non-fixers. Even though soil pools of Ca, Mg, and K all declined as soil N increased, only Ca declined in biomass pools, suggesting the emergence of Ca deficiency at high N. Biotic conservation and tight recycling of Ca increased in response to whole-ecosystem Ca depletion, as indicated by preferential accumulation of Ca in biomass and surface soil. Our findings support a hierarchical model of coupled N–Ca cycling under long-term soil N enrichment, whereby ecosystem-level N saturation and nitrate leaching deplete readily available soil Ca, stimulating biotic Ca conservation as overall supply diminishes. We conclude that a legacy of biological N fixation can increase N and P accumulation in soil organic matter to the point that neither nutrient is limiting to subsequent non-fixers, while also resulting in natural N saturation that intensifies base cation depletion and deficiency.
18 CFR 801.9 - Watershed management.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Accordingly the Commission will maintain close liaison with Federal, State, and local highway, mining, soil... management including soil and water conservation measures, land restoration and rehabilitation, erosion...
18 CFR 801.9 - Watershed management.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Accordingly the Commission will maintain close liaison with Federal, State, and local highway, mining, soil... management including soil and water conservation measures, land restoration and rehabilitation, erosion...
Critical Source Area Delineation: The representation of hydrology in effective erosion modeling.
NASA Astrophysics Data System (ADS)
Fowler, A.; Boll, J.; Brooks, E. S.; Boylan, R. D.
2017-12-01
Despite decades of conservation and millions of conservation dollars, nonpoint source sediment loading associated with agricultural disturbance continues to be a significant problem in many parts of the world. Local and national conservation organizations are interested in targeting critical source areas for control strategy implementation. Currently, conservation practices are selected and located based on the Revised Universal Soil Loss Equation (RUSLE) hillslope erosion modeling, and the National Resource Conservation Service will soon be transiting to the Watershed Erosion Predict Project (WEPP) model for the same purpose. We present an assessment of critical source areas targeted with RUSLE, WEPP and a regionally validated hydrology model, the Soil Moisture Routing (SMR) model, to compare the location of critical areas for sediment loading and the effectiveness of control strategies. The three models are compared for the Palouse dryland cropping region of the inland northwest, with un-calibrated analyses of the Kamiache watershed using publicly available soils, land-use and long-term simulated climate data. Critical source areas were mapped and the side-by-side comparison exposes the differences in the location and timing of runoff and erosion predictions. RUSLE results appear most sensitive to slope driving processes associated with infiltration excess. SMR captured saturation excess driven runoff events located at the toe slope position, while WEPP was able to capture both infiltration excess and saturation excess processes depending on soil type and management. A methodology is presented for down-scaling basin level screening to the hillslope management scale for local control strategies. Information on the location of runoff and erosion, driven by the runoff mechanism, is critical for effective treatment and conservation.
Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni
2017-04-01
The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.
NASA Astrophysics Data System (ADS)
Li, L.; Schaeffer, S. M.
2017-12-01
Drying-rewetting cycles can induce carbon (C) depletion in soil, while conservation agricultural management aims at soil C sequestration. Understanding the combined effect of drying-rewetting cycles and conservation management is critical for sustaining agricultural soil under climate change. Soil organic C can be stored in a relatively rapidly cycling active pool, or a more slowly cycling passive pool. We conducted a 24-days mesocosm incubation using an agricultural soil from western Tennessee under 35-years of conservation management. Different lengths of drought period before rewetting of 0, 3, 6, and 24 days were applied on the mesocosms. To trace the fate of newly added C, 13C labeled glucose was added to the mesocosms at the beginning of the incubation. After 24 days, dissolvable organic C, microbial biomass C, accumulative microbial respiration, and extracellular enzyme activity were analyzed to evaluate the active C pool; hydrogen peroxide oxidation and aggregate size fractionation were used to examine the passive C pool. The highest cumulative microbial respiration was found in the 6-days treatment combining a N-fixing cover crop with no-tillage, and the lowest in the 24-day treatment with a wheat cover crop combined with conventional-tillage (1000.0±20.5 and 106.8±17.5 µg C-CO2 g-1 dry soil, respectively). The 6-days treatment induced 0.5-4.3 times higher cumulative C-CO2 emission than the 3-days treatment. The proportion of macroaggregates in bulk soil varied between 97.2% and 76.7%, and it was negatively correlated with drying-rewetting frequency. The proportion of microaggregates in bulk soil varied between 21.9% and 2.1%, and it was positively correlated with drying-rewetting frequency. 13C recovery rate in bulk soil varied between 11-53%. The vetch-cover-crop-with-no-tillage treatment facilitated 13C accumulation the most. Our results show that the N fixing cover crops combined with no-tillage treatment induced the highest C accumulation in bulk soil, while the no cover crop combined with conventional tillage induced the lowest C concentration. Our results show that frequent drying-rewetting cycles disrupt macroaggregates and release the microaggregates within macroaggregates, and favor greater C loss combined with greater C storage in less stable aggregate fractions.
Wauchope, R Don; Ahuja, Lajpat R; Arnold, Jeffrey G; Bingner, Ron; Lowrance, Richard; van Genuchten, Martinus T; Adams, Larry D
2003-01-01
We present an overview of USDA Agricultural Research Service (ARS) computer models and databases related to pest-management science, emphasizing current developments in environmental risk assessment and management simulation models. The ARS has a unique national interdisciplinary team of researchers in surface and sub-surface hydrology, soil and plant science, systems analysis and pesticide science, who have networked to develop empirical and mechanistic computer models describing the behavior of pests, pest responses to controls and the environmental impact of pest-control methods. Historically, much of this work has been in support of production agriculture and in support of the conservation programs of our 'action agency' sister, the Natural Resources Conservation Service (formerly the Soil Conservation Service). Because we are a public agency, our software/database products are generally offered without cost, unless they are developed in cooperation with a private-sector cooperator. Because ARS is a basic and applied research organization, with development of new science as our highest priority, these products tend to be offered on an 'as-is' basis with limited user support except for cooperating R&D relationship with other scientists. However, rapid changes in the technology for information analysis and communication continually challenge our way of doing business.
Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László
2016-04-01
Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.
7 CFR 611.2 - Cooperative relationships.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.2 Cooperative relationships. (a) Soil surveys on nonfederal lands are carried out cooperatively with State agricultural experiment... setting forth guidelines for actions to be taken by each cooperating party in the performance of soil...
7 CFR 611.2 - Cooperative relationships.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SOIL SURVEYS General § 611.2 Cooperative relationships. (a) Soil surveys on nonfederal lands are carried out cooperatively with State agricultural experiment... setting forth guidelines for actions to be taken by each cooperating party in the performance of soil...