Meteoric 10Be in soil profiles - A global meta-analysis
Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.
2010-01-01
In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747
Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei
2017-01-01
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
Global distribution of plant-extractable water capacity of soil
Dunne, K.A.; Willmott, C.J.
1996-01-01
Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.
NASA Astrophysics Data System (ADS)
Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus
2017-04-01
Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.
NASA Technical Reports Server (NTRS)
Holmes, Thomas; Owe, Manfred; deJeu, Richard
2007-01-01
Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.
NASA Astrophysics Data System (ADS)
Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.
2015-12-01
Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.
Olson, C.G.; Doolittle, J.A.
1985-01-01
Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors
Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei
2015-11-01
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping
2007-06-01
This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.
Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna
NASA Astrophysics Data System (ADS)
Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.
2017-12-01
The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.
Baskan, Oguz; Kosker, Yakup; Erpul, Gunay
2013-12-01
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.
Soil profiles' development and differentiation as revealed by their magnetic signal
NASA Astrophysics Data System (ADS)
Jordanova, Neli; Jordanova, Diana
2017-04-01
Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are enriched with stable SD magnetite-like fraction, likely originating from ferrihydrite transformations under repeating oxidative - reductive conditions. The major magnetic phase in illuvial horizons is hematite, while in eluvial and C-horizons magnetite dominates. These different trends in the evolution of mineralogy and magnetic grain size fractions along the depth of the various soil groups are useful indicators of the soil chemistry, as well as the dynamics of the main soil forming processes.
Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong
2014-01-01
Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700
NASA Astrophysics Data System (ADS)
Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.
2012-04-01
Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.
Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes
NASA Astrophysics Data System (ADS)
Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles
2010-05-01
The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.
Schimmack, W; Schultz, W
2006-09-15
The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].
Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang
2011-09-01
To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.
In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland)
NASA Astrophysics Data System (ADS)
Mavimbela, S. S. W.; van Rensburg, L. D.
2011-11-01
The soil water release (SWC) and permeability properties of layered soils following deep infiltration depends on the structural and layering composition of the profiles diagnostic horizons. Three layered soils, the Tukulu, Sepane and Swartland soil forms, from the Free State province of South Africa, were selected for internal drainage evaluation. The soil water release curves as a function of suction (h) and unsaturated hydraulic conductivity (K-coefficient) as a function of soil water content, SWC (θ), were characterised alongside the pedological properties of the profiles. The water hanging column in collaboration with the in-situ instantaneous profile method (IPM) was appropriate for this work. Independently, the saturated hydraulic conductivity (Ks) was measured using double ring infiltrometers. The three soils had a generic orthic A horizon but differed remarkable with depth. A clay rich layer was found in the Tukulu and Sepane at depths of 600 to 850 mm and 300 to 900 mm, respectively. The Swartland was weakly developed with a saprolite rock found at depth of 400-700 mm. During the 1200 h drainage period, soil water loss amounted to 21, 20 and 51 mm from the respective Tukulu, Sepane and Swartland profiles. An abrupt drop in Ks in conjunction with a steep K-coefficient gradient with depth was observed from the Tukulu and Sepane. Hydromorphic colours found on the clay-rich horizons suggested a wet soil water regime that implied restriction of internal drainage. It was therefore concluded that the clay rich horizons gave the Tukulu and Sepane soil types restricted internal drainage properties required for soil water storage under infield rainwater harvesting production technique. The coarseness of the Swartland promoted high drainage losses that proliferated a dry soil water regime.
NASA Astrophysics Data System (ADS)
Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia
2013-04-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.
NASA Astrophysics Data System (ADS)
Ma, Lin
2015-04-01
Lin Ma1, Yvette Pereyra1, Peter B Sak2, Jerome Gaillardet3, Heather L Buss4 and Susan L Brantley5, (1) University of Texas at El Paso, El Paso, TX, United States, (2) Dickinson College, Carlisle, PA, United States, (3) Institute de Physique d Globe Paris, Paris, France, (4) University of Bristol, Bristol, United Kingdom, (5) Pennsylvania State University Main Campus, University Park, PA, United States Uranium-series isotopes fractionate during chemical weathering and their activity ratios can be used to determine timescales and rates of soil formation. Such soil formation rates provide important information to understand processes related to rapid soil formation in tropical volcanic settings, especially with respect to their fertility and erosion. Recent studies also highlighted the use of U-series isotopes to trace and quantify atmospheric inputs to surface soils. Such a process is particularly important in providing mineral nutrients to ecosystems in highly depleted soil systems such as the tropical soils. Here, we report U-series isotope compositions in thick soil profiles (>10 m) developed on andesitic pyroclastic flows in Basse-Terre Island of French Guadeloupe. Field observations have shown heterogeneity in color and texture in these thick profiles. However, major element chemistry and mineralogy show some general depth trends. The main minerals present throughout the soil profile are halloysite and gibbsite. Chemically immobile elements such as Al, Fe, and Ti show a depletion profile relative to Th while elements such as K, Mn, and Si show a partial depletion profile at depth. Mobile elements such as Ca, Mg, and Sr have undergone intensive weathering at depths, and an addition profile near the surface, most likely related to atmospheric inputs. (238U/232Th) activity ratios in one soil profile from the Brad David watershed in this study ranged from 0.374 to 1.696, while the (230Th/232Th) ratios ranged from 0.367 to 1.701. A decrease of (238U/232Th) in the deep soil profile depth is observed, and then an increase to the surface. The (230Th /232Th) ratios showed a similar trend as (238U/232Th). Marine aerosols and atmospheric dust from the Sahara region are most likely responsible for the addition of U in shallow soils. Intensive chemical weathering is responsible for the loss of U at depth, consistent with these observations of major element chemistry and mineralogy. Furthermore, U-series chemical weathering model suggests that the weathering duration from 12m to 4m depth in this profile is about 250kyr, with a weathering advancing rate of ~30 m/Ma. The rate is also about one order of magnitude lower than the weathering rate (~300 m/Ma) determined by river chemistry for this watershed. In this profile, the augered core didn't reach the unweathered bedrock. Hence, the derived slow weathering rate most likely represents the intensive weathering of clay minerals, while the transformation of fresh bedrock to regolith occurs at much great depth beneath the thick regolith. The marine aerosols and atmospheric dust are important sources of mineral nutrients for highly depleted surface soils.
NASA Astrophysics Data System (ADS)
Fancy, Rubeca; Wilson, Brian R.; Daniel, Heiko; Osanai, Yui
2017-04-01
Carbon accumulation in surface soils is well documented but very little is known about the mechanisms and processes that result in carbon accumulation and long-term storage in the deeper soil profile. Understanding soil carbon storage and distribution mechanisms is critical to evaluate the sequestration potential of the soils of different land uses. Recent investigations have demonstrated that the movement of dissolved organic carbon (DOC) in the soil profile could contribute significantly to the carbon balance of terrestrial ecosystems. However, very little is known regarding the importance of DOC to vertical distribution of soil organic carbon (SOC) pool through the soil profile in different land-use systems, management practices and conditions prevalent in Australia. We investigated the quantity and distribution of SOC and DOC through the profile under three different land-use systems in northern NSW, Australia. A series of site clusters containing a representative range of land-uses (cultivated, improved pasture and woodland) were selected across the region. Within each land use, we determined SOC and DOC concentration and quantity down the soil profile to a depth of 0-100 cm using six soil depth increments. Here we discuss the distribution and relative importance of DOC down the soil profile to the storage and distribution of carbon. We compare and contrast the patterns associated with the different land use systems and explore potential mechanisms of carbon cycling in these soils. Near to the soil surface, SOC had larger concentrations in the order woodland>improved pasture>cropping at all sites studied. However, DOC was found in significantly larger concentrations in the woodland soils at all soil depths. The larger DOC:TOC ratio in woodland and improved pasture soils suggests a direct relationship between TOC and DOC but increased DOC:TOC ratio in deeper soil layers suggests an increasing importance of DOC in soil carbon cycling in these deeper soils under Australian conditions.
NASA Astrophysics Data System (ADS)
Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo
2012-12-01
Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.
Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William
2009-02-01
We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated that deep water sources did not maintain E which sharply declined in September, but played an important role in the recovery of tree Psi. Differences in sources of water uptake among these species and their ecological implications on tree-grass dynamics and soil water in semiarid environments are discussed.
Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach
Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
2014-01-01
Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135
Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †
Tate, Robert L.
1979-01-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393
Microbial activity in organic soils as affected by soil depth and crop.
Tate, R L
1979-06-01
The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.
USDA-ARS?s Scientific Manuscript database
Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...
Radar Cuts Subsoil Survey Costs
NASA Technical Reports Server (NTRS)
Johnson, R.; Glaccum, R.
1984-01-01
Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.
Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island
NASA Astrophysics Data System (ADS)
Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.
2017-12-01
Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.
Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)
Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1986-01-01
This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.
Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei
2018-07-15
Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but <45% in deep soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.
How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2016-12-01
Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin
2005-11-01
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.
Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin
Wynn, J.G.; Harden, J.W.; Fries, T.L.
2006-01-01
Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.
Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi
2009-04-15
Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.
NASA Astrophysics Data System (ADS)
Liu, F.; Wang, X.
2016-12-01
Lignin is widely considered as a major source of stable soil carbon, its content and degradation states are important indicators of soil carbon quality and stability. Few studies have explored the effects of plant communities on lignin characteristics in soils, and studies on lignin characteristics across soil depths resulted in contradictory findings. In this study, we investigated the lignin contents, their degradation states in the soil aggregates across three soil depths for four major plant communities in a subtropical mixed forest in central China. We found that lignin content in the litter of two deciduous species (Carpinus fargesii CF and Fagus Lucida FL) are higher than that in the two evergreen species ( Cyclobalanopsis multinervis CM and Schima parviflora SP). These differences maintained in the soil with a diminished scale. Lignin content showed a decreased trend in soil profiles of all plant communities, but no significant differences of degradation states were observed. The distribution of aggregation fractions was significantly different among plant communities, the SP community have higher percent of >2000 μm fraction (50.46%) and lower percent of <0.25 μm fraction (12.87%) than the CF community (40.05%, 21.90% respectively). The lignin content increased with decreasing aggregations size, however, no significant differences of lignin degradation states was observed among the four size aggregations. These results collectively reveal the influence of plant communities on lignin characteristics in soil, probably through litter input. Similar degradation states of lignin across soil profile and different size aggregates emphasized the importance of lignin movements association with soil water. This knowledge of lignin characteristics across soil profile can improve our understanding of soil carbon stability at different depths and how it may respond to changes in soil conditions.
Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals
1990-04-01
Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental
Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin
2014-06-01
Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.
Design of a soil cutting resistance sensor for application in site-specific tillage.
Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J; Perez-Ruiz, Manuel
2013-05-10
One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0-10, 10-20 and 20-30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Boutton, T. W.; Wu, X. B.
2016-12-01
Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.
Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki
2015-01-01
Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
NASA Astrophysics Data System (ADS)
Kramer, M. G.; Yuen, W.
2013-12-01
The mechanisms governing soil carbon stabilization in Mediterranean grasslands are poorly understood. Consequently, how soil carbon will respond to climate change in these ecosystems, remains uncertain. We examined the distribution of carbon and it's relationship to soil mineralogy with depth across a sequence of topographic positions of grassland soils in the Central Valley of Northern California. We sampled representative 2 m deep soil cores at mid slope topopositions (resulting in 4 detailed 20 cm interval depth profiles), in conjunction with replicated 1 m deep soil profiles under two types of parent material; marine sandstone and loamy marine clay deposits. For sequentially deeper samples, we measured bulk density, particle size, soil pH, oxalate and citrate-dithionite extractable Fe, Al and Si. Inorganic and organic carbon content were determined by measuring bulk C and in the various size fractions with and without carbonate removal using a hydrochloric acid vacuum fumigation technique. C and N stable isotope ratios were also measured for both bulk and organic carbon. We found significant differences in total C storage, inorganic and organic C amount between topographic positions. Differences in pedogenic materials (oxalate and citrate-dithionate extractable Al, Fe and Si) and particle size distribution were also found. All topographic positions showed a decline in organic carbon content down to the measured depth of 2 m. South facing slopes contained a greater proportion of inorganic carbon throughout the depth profiles, declining with depth, whereas total C storage was greater on north facing slopes, where total annual above ground biomass was greater. Overall, carbon storage varied between inorganic to organic C form across the toposequence and with more or less direct association with pedogenic materials (oxalate and citrate-diothionite extractable) depending on landform position. We conclude that inorganic carbon storage may increase in these grassland soils, as climate warming occurs in the region, although the fate of organic C loss or storage remains less clear.
NASA Astrophysics Data System (ADS)
Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.
2017-12-01
Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.
A simplified 137Cs transport model for estimating erosion rates in undisturbed soil.
Zhang, Xinbao; Long, Yi; He, Xiubin; Fu, Jiexiong; Zhang, Yunqi
2008-08-01
(137)Cs is an artificial radionuclide with a half-life of 30.12 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period of 1950s-1970s with the maximum rate of (137)Cs fallout from atmosphere in 1963. (137)Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Its subsequent redistribution is associated with movements of the soil or sediment particles. The (137)Cs nuclide tracing technique has been used for assessment of soil losses for both undisturbed and cultivated soils. For undisturbed soils, a simple profile-shape model was developed in 1990 to describe the (137)Cs depth distribution in profile, where the maximum (137)Cs occurs in the surface horizon and it exponentially decreases with depth. The model implied that the total (137)Cs fallout amount deposited on the earth surface in 1963 and the (137)Cs profile shape has not changed with time. The model has been widely used for assessment of soil losses on undisturbed land. However, temporal variations of (137)Cs depth distribution in undisturbed soils after its deposition on the ground due to downward transport processes are not considered in the previous simple profile-shape model. Thus, the soil losses are overestimated by the model. On the base of the erosion assessment model developed by Walling, D.E., He, Q. [1999. Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality 28, 611-622], we discuss the (137)Cs transport process in the eroded soil profile and make some simplification to the model, develop a method to estimate the soil erosion rate more expediently. To compare the soil erosion rates calculated by the simple profile-shape model and the simple transport model, the soil losses related to different (137)Cs loss proportions of the reference inventory at the Kaixian site of the Three Gorge Region, China are estimated by the two models. The over-estimation of the soil loss by using the previous simple profile-shape model obviously increases with the time period from the sampling year to the year of 1963 and (137)Cs loss proportion of the reference inventory. As to 20-80% of (137)Cs loss proportions of the reference inventory at the Kaixian site in 2004, the annual soil loss depths estimated by the new simplified transport process model are only 57.90-56.24% of the values estimated by the previous model.
Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying
2013-05-01
Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.
Ebrahimi, Ali; Or, Dani
2016-09-01
Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
There are few experimental data available on how herbicide sorption coefficients change across small increments within soil profiles. Soil profiles were obtained from three landform elements (eroded upper slope, deposition zone, and eroded waterway) in a strongly eroded agricultural field and segmen...
NASA Astrophysics Data System (ADS)
Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.
2013-06-01
This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.
The influence of agricultural management on soil's CO2 regime in semi-arid and arid regions
NASA Astrophysics Data System (ADS)
Eshel, G.; Lifshithz, D.; Sternberg, M.; Ben-Dor, E.; Bonfile, D. J.; Arad, B.; Mingelgrin, U.; Fine, P.; Levy, G. J.
2008-12-01
Two of the more important parameters which may help us better evaluate the impact of agricultural practices on the global carbon cycle are the in-situ soil pCO2 profile and the corresponding CO2 fluxes to the atmosphere. In an ongoing study, we monitored the pCO2 to a depth of 5 m in two adjacent irrigated Avocado orchards in the coastal plain of Israel (semi-arid region), and to a depth of 2 m in a semi- arid rain-fed and a arid rain-fed wheat fields in southern Israel. The soil pCO2 profiles and CO2 fluxes measurements were supplemented by measurements of soil moisture and temperature. The results showed differences in the CO2 profiles (both in the depth of the highest concentration and its absolute values) and the CO2 fluxes between the orchards and the wheat fields as well as along the year. In the irrigated Avocado orchards pCO2 values were in the range of 1.5 kPa at a depth of 0.5 m up to 8 kPa at depths of 3-5 m (even though Avocado trees are characterized by shallow roots). Such levels could affect reactions (e.g., enhancement of inorganic carbon dissolution) that may take place in the soil and some of its chemical properties (e.g., pH). As expected, soil pCO2 was affected by soil moisture and temperature, and the distance from the trees. Maximum soil respiration was observed during the summer when the orchards are under irrigation. In the wheat fields pCO2 level ranged from 0.2- 0.6 kPa at a depth of 0.2 m to 0.2-1 kPa at depths of 1-1.5 m (in arid and semiarid respectively). These pCO2 levels were much lower than those obtained in the irrigated orchards and seemed to depend on the wheat growing cycle (high concentration were noted at depth of 1-1.5 m close to the end of grain filling) and precipitation gradient (arid vs. semiarid). Since CO2 fluxes are directly affected by the pCO2 profile and soil moister and temperature the CO2 fluxes from the wheat fields were much lower (0.02- 0.2 ml min-1 m-2) compared to those obtained from the Avocado orchards (2-7 ml min-1 m-2). Our results clearly demonstrate the large variability in soil pCO2 concentration and flux to the atmosphere, and its dependence on the soil moisture regime (annual precipitation and irrigation) and type of cropping (orchard vs. field crop).
Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang
2014-04-01
Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg(-1)·year(-1) for SOM, 438.9 mg·g(-1)·year(-1) for C:P, 5.3 mg·g(-1)·year(-1) for C:K, and -3.23 mg·cm(-3)·year(-1) for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0-80-cm soil profile (P: -4.10 mg·kg(-1)·year(-1); pH: -0.0061 unit·year(-1); C:N: 167.1 mg·g(-1)·year(-1); K:P: 371.5 mg·g(-1) year(-1); N:K: -0.242 mg·g(-1)·year(-1); EC: 0.169 μS·cm(-1)·year(-1)), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance.
Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao
2017-12-31
Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development
Turner, Stephanie; Mikutta, Robert; Meyer-Stüve, Sandra; Guggenberger, Georg; Schaarschmidt, Frank; Lazar, Cassandre S.; Dohrmann, Reiner; Schippers, Axel
2017-01-01
Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand). Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate), O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR) and community patterns (T-RFLP) were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to subsoil conditions, especially in nutrient-depleted old soils. PMID:28579976
Direct mass spectrometric measurement of gases in soil monoliths.
Sheppard, S K; Lloyd, D
2002-07-01
An integrated approach to gas analysis in soil cores was conducted to provide a novel method for observing the gas dynamics associated with upland soil ecosystems. Depth profiles of the O(2), Ar, CO(2), CH(4), N(2) and NO(x) concentrations in intact soil monoliths were obtained simultaneously using membrane inlet mass spectrometry (MIMS). This technique enables the direct measurement of multiple gas species throughout the soil core with minimal disturbance. Depth profiles provided data on the vertical heterogeneity of gas concentrations, while horizontal heterogeneity was monitored by comparison between profiles. Detailed descriptions of the modifications to current MIMS methods for in situ environmental monitoring of terrestrial soils are provided. These included a thorough examination of calibration of the MIMS probe in gas phase, stirred and unstirred H(2)O, or between glass beads immersed in H(2)O. Calibration was also carried out in sterile (autoclaved) soil. The mean concentrations of CO(2) and CH(4) in the soil monoliths increased from 27 microM and undetectable levels respectively at the surface, to maximum values of 3.6 mM and 4.3 microM at 12-cm depth. These changes corresponded with decreases in mean O(2), Ar and N(2) concentration from 300, 20 and 720 microM respectively to 0-6, 10 and 574 microM at 12-cm depth. These data indicated the presence of a gradient within the core from an aerobic environment to an O(2)-depleted, but not in all cases a completely anaerobic, one. This transition corresponded, to some extent, with that between the upper and lower soil horizons. The increased methane and CO(2) concentrations observed at depth are indicative of anaerobic environments. General trends associated with the gradually changing vertical heterogeneity of these gas profiles and the transition towards anaerobiosis did not provide evidence for the existence of localised microsites. Some evidence for microsite-specific microbial communities was however, provided by observation of broad zones of accumulation of NO(x) species, but only at concentrations close to the limit of detection of the method. The ratio of each gas, to argon was calculated at each depth. This was done to correct for physical parameters, which influence inert and biologically active gases, equally. The amount of di-nitrogen as a ratio to Ar was seen to increase with depth. This could be evidence for denitrification in the lower horizon. An example of the dynamic 'online' data collection capabilities is provided for diurnal oscillations in subsurface (5 cm) soil gas concentrations.
Design of a Soil Cutting Resistance Sensor for Application in Site-Specific Tillage
Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J.; Perez-Ruiz, Manuel
2013-01-01
One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0–10, 10–20 and 20–30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy. PMID:23666127
Soil moisture profile variability in land-vegetation- atmosphere continuum
NASA Astrophysics Data System (ADS)
Wu, Wanru
Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.
Fowler, D.; King, Sammy L.; Weindorf, David C.
2014-01-01
Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.
Groundwater control of mangrove surface elevation: shrink and swell varies with soil depth
Whelan, K.R.T.; Smith, T. J.; Cahoon, D.R.; Lynch, J.C.; Anderson, G.H.
2005-01-01
We measured monthly soil surface elevation change and determined its relationship to groundwater changes at a mangrove forest site along Shark River, Everglades National Park, Florida. We combined the use of an original design, surface elevation table with new rod-surface elevation tables to separately track changes in the mid zone (0?4 m), the shallow root zone (0?0.35 m), and the full sediment profile (0?6 m) in response to site hydrology (daily river stage and groundwater piezometric pressure). We calculated expansion and contraction for each of the four constituent soil zones (surface [accretion and erosion; above 0 m], shallow zone [0?0.35 m], middle zone [0.35?4 m], and bottom zone [4?6 m]) that comprise the entire soil column. Changes in groundwater pressure correlated strongly with changes in soil elevation for the entire profile (Adjusted R2 5 0.90); this relationship was not proportional to the depth of the soil profile sampled. The change in thickness of the bottom soil zone accounted for the majority (R2 5 0.63) of the entire soil profile expansion and contraction. The influence of hydrology on specific soil zones and absolute elevation change must be considered when evaluating the effect of disturbances, sea level rise, and water management decisions on coastal wetland systems.
Pedoturbation by tree uprooting: the key pattern-forming factor in the forest soil
NASA Astrophysics Data System (ADS)
Bobrovsky, Maxim; Loyko, Sergey
2017-04-01
Treefalls with uprooting are the most powerful and ubiquitous biotic factor changing the structure of forest soil under free forest development. Practically every soil profile in a forest has a number of soil horizons anomalies which are located within the limits of the potential depth of treefall-related pedoturbations and these anomalies are indeed a result of treefalls in most cases. It is important to recognize signs of treefalls with uprooting in a soil profile even when signs of treefalls on the ground surface (pit-and-mound topography) are erased. Numerous field studies of forest soil in the European part of Russia and in the Western Siberia allowed us to generalize signs of treefalls in a soil profile, which can be used to distinguish the patterns of old treefall-related pedoturbations. We distinguish two main types of uprooting of a fallen tree: hinge and rotational tree uprooting (treefall). The signs of treefalls with uprooting in a soil profile are as follows: (1) treefall pits (cauldrons); (2) spotty or streaky structures of different degrees of contrast; (3) blocks of "buried material" from the upper soil layers; (4) washed (bleached) material depositing at the bottom of pits and filling soil pores and channels of various origins; (5) signs of hydrogenous changes of soil material resulting from water stagnation in the pits; (6) root channels at the bottom of the pit and (7) inclusions of litter and charcoal. We cleared that treefall-related pedoturbations affect soil profiles at a depth larger than the depth usually described by the soil horizons A, E, Bhs, etc. Therefore in most forest soils, the middle and lower parts of the profiles have patterns originating from the transfer of soil material upon treefalls. Age since the tree uprooting can be determined by dating of organic matter or charcoal located in old pits. We dated several tens of old tree uprooting pits by charcoal in sandy soil in the center and the east of the Russian Plain: they showed from a few hundreds to 4500 cal years BP. We also dated tens of old tree uprooting pits by mull humus in Luvic Phaeozems on loams in the center of the Russian Plain: they showed from 2500 to more than 8000 cal years BP. Discerning of old treefall-related patterns in soil profile significantly improves our understanding of the forest soil formation and leads to the necessity of serious corrections of pedogenesys concepts. This study was partly supported by the Russian Science Foundation (Grant 16-17-10045).
[Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].
Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang
2015-10-01
In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.
NASA Astrophysics Data System (ADS)
Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid
2017-04-01
Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover. This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.
NASA Astrophysics Data System (ADS)
Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.
2015-12-01
We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.
USDA-ARS?s Scientific Manuscript database
Soil respiration occurs at depths below the surface, but belowground data are lacking to support multilayer models of soil CO2 and N2O emissions. In particular, Q10s for CO2 and N2O within soil profiles are needed to determine if temperature sensitivities calculated at the surface are similar to th...
NASA Astrophysics Data System (ADS)
Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.
2014-12-01
Understanding critical zone evolution and function requires an accurate assessment of local soil properties. Two-dimensional (2D) digital soil mapping provides a general assessment of soil characteristics across a sampled landscape, but lacks the ability to predict soil properties with depth. The utilization of mass-preserving spline functions enable the extrapolation of soil properties with depth, extending predictive functions to three-dimensions (3D). The present study was completed in the Marshall Gulch (MG) catchment, located in the Santa Catalina Mountains, 30 km northwest of Tucson, Arizona, as part of the Santa Catalina-Jemez Mountains Critical Zone Observatory. Twenty-four soil pits were excavated and described following standard procedures. Mass-preserving splines were used to extrapolate mass carbon (kg C m-2); percent clay, silt, and sand (%); sodium mass flux (kg Na m-2); and pH for 24 sampled soil pits in 1-cm depth increments. Saturated volumetric water content (θs) and volumetric water content at 10 kPa (θ10) were predicted using ROSETTA and established empirical relationships. The described profiles were all sampled to differing depths; to compensate for the unevenness of the profile descriptions, the soil depths were standardized from 0.0 to 1.0 and then split into five equal standard depth sections. A logit-transformation was used to normalize the target variables. Step-wise regressions were calculated using available environmental covariates to predict the properties of each variable across the catchment in each depth section, and interpolated model residuals added back to the predicted layers to generate the final soil maps. Logit-transformed R2 for the predictive functions varied widely, ranging from 0.20 to 0.79, with logit-transformed RMSE ranging from 0.15 to 2.77. The MG catchment was further classified into clusters with similar properties based on the environmental covariates, and representative depth functions for each target variable in each cluster calculated. Mass-preserving splines combined with stepwise regressions are an effective tool for predicting soil physical, chemical, and hydrological properties with depth, enhancing our understanding of the critical zone.
Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J
2001-02-01
Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.
Implementing a conceptual model of physical and chemical soil profile evolution
NASA Astrophysics Data System (ADS)
Kirkby, Mike
2017-04-01
When soil profile composition is generalised in terms of the proportion, p, of bedrock remaining (= 1 - depletion ratio), then other soil processes can also be expressed in terms of p, and 'soil depth' described by the integral of (1-p) down to bedrock. Soil profile evolution is expressed as the advance of a sigmoidal weathering front into the critical zone under the action of upward ionic diffusion of weathering products; downward advection of solutes in percolating waters, with loss of (cleanish) water as evapotranspiration and (solute-laden) water as a lateral sub-surface flow increment; and mechanical denudation increment at the surface. Each component responds to the degree of weathering. Percolation is limited by precipitation, evapotranspiration demand and the degree of weathering at each level in the profile which diverts subsurface flow. Mechanical removal rates are considered to broadly increase as weathering proceeds, as grain size and dilation angle decreases. The implication of these assumptions can be examined for steady state profiles, for which observed relationships between mechanical and chemical denudation rates; and between chemical denudation and critical zone depth are reproduced. For non-steady state evolution, these relationships break down, but provide a basis for linking critical zone with hillslope/ landform evolution.
Numerical analysis of groundwater recharge through stony soils using limited data
NASA Astrophysics Data System (ADS)
Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.
1991-10-01
This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.
NASA Astrophysics Data System (ADS)
Kaste, J. M.; Heimsath, A. M.
2002-12-01
Hillslope soil processes can be difficult to quantify, but an understanding of soil and sediment dynamics is required for an accurate prediction of topographic evolution. Our data indicate that soil mixing processes and rates on hillslopes vary widely across different climatic and geologic settings. We use the depth-profiles of short-lived fallout radionuclides 210Pb, 137Cs, and 241Am measured in soils sampled from the Hubbard Brook Experimental Forest in NH (HBEF), USA, from Point Rays National Seashore (PRNS), CA, USA, and from the Nunnock River Valley (NR) in Southeastern Australia to study short-term (<100 y) soil mixing resulting from bioturbation. Results from the radionuclide analysis suggest that some fraction of the soil at NR is mixed from the surface to a depth of up to 0.5m on timescales of a few decades. These results support previous studies at NR quantifying soil mixing at millennial timescales using optically stimulated luminescence (OSL). Field evidence at NR corroborates these data, showing a clear lack of soil profile development and differentiation. However, in well-developed spodosols at the HBEF, radionuclide data suggests that mixing is confined to the forest floor (upper 12 cm of organic matter) and surface grains do not penetrate to significant depth in the profile on short timescales. Tree-throw seems to be the primary process mixing soil at the HBEF, which mixes soil on timescales of several centuries. At NR and PRNS however, bioturbation by insects and burrowing mammals mixes surface soil particles deep into the profile on timescales of decades. These differences in bioturbation rates result from different climatic and geologic settings, and we will discuss the implications for sediment transport mechanisms on hillslopes, as well as for soil carbon storage and the fate of atmospherically-delivered conaminants.
NASA Astrophysics Data System (ADS)
Green, Timothy R.; Erskine, Robert H.
2011-12-01
Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.
Design and field tests of an access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...
Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira
2017-01-01
Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.
de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira
2017-01-01
Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690
Impact of land management on soil structure and soil hydraulic properties
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna
2010-05-01
Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.
Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo
2015-01-01
Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012
Developing char-based soil amendments Soil carbon and char analysis via molecular beam mass spectrometry depth profiling, Fourier transform infrared [FTIR]) Rapid soil carbon analysis using analytical DRIFTS, 13C NMR, and py-MBMS to Characterize the Effects of Soil Science Oxidation Assays on Soil Organic
Inversion of soil electrical conductivity data to estimate layered soil properties
USDA-ARS?s Scientific Manuscript database
CBulk apparent soil electrical conductivity (ECa) sensors respond to multiple soil properties, including clay content, water content, and salt content (i.e., salinity). They provide a single sensor value for an entire soil profile down to a sensor-dependent measurement depth, weighted by a nonlinear...
Electrical methods of determining soil moisture content
NASA Technical Reports Server (NTRS)
Silva, L. F.; Schultz, F. V.; Zalusky, J. T.
1975-01-01
The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.
Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil
USDA-ARS?s Scientific Manuscript database
High exchangeable aluminum (Al3+) requires greater attention when preparing agricultural soils. However, research examining the relationship between natural levels of soil Al3+ and pedogenetic processes receives little priority, particularly regarding the number of soil profiles investigated. To rep...
NASA Astrophysics Data System (ADS)
Gray, H. J.; Tucker, G. E.; Mahan, S.
2017-12-01
Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.
Cheng, Li Ping; Liu, Wen Zhao
2017-07-18
Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.
Microbiomes structure and diversity in different horizons of full soil profiles
NASA Astrophysics Data System (ADS)
Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga
2017-04-01
Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons. Thus, ecological differences between soil horizons are important factor of differentiation of prokaryotic communities in soil profile; their structure can be specific for horizon type. This study was supported by Russian Science Foundation, project no. 14-26-00079
Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia
NASA Astrophysics Data System (ADS)
Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia
2017-04-01
The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.
Laclau, Jean-Paul; da Silva, Eder A.; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L.; Bouillet, Jean-Pierre; Gonçalves, José L. de Moraes; Jourdan, Christophe; Nouvellon, Yann
2013-01-01
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1–3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5–3.0 m deep. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses. PMID:23847645
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C
2007-01-01
A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.
Boulyga, Sergei F; Zoriy, Myroslav; Ketterer, Michael E; Becker, J Sabine
2003-08-01
The depth distribution of plutonium, americium, and 137Cs originating from the 1986 accident at the Chernobyl Nuclear Power Plant (NPP) was investigated in several soil profiles in the vicinity from Belarus. The vertical migration of transuranic elements in soils typical of the 30 km relocation area around Chernobyl NPP was studied using inductively coupled plasma mass spectrometry (ICP-MS), alpha spectrometry, and gamma spectrometry. Transuranic concentrations in upper soil layers ranged from 6 x 10(-12) g g(-1) to 6 x 10(-10) g g(-1) for plutonium and from 1.8 x 10(-13) g g(-1) to 1.6 x 10(-11) g g(-1) for americium. These concentrations correspond to specific activities of (239+240)Pu of 24-2400 Bq kg(-1) and specific activity of 241Am of 23-2000 Bq kg(-1), respectively. Transuranics in turf-podzol soil migrate slowly to the deeper soil layers, thus, 80-95%, of radionuclide inventories were present in the 0-3 cm intervals of turf-podzol soils collected in 1994. In peat-marsh soil migration processes occur more rapidly than in turf-podzol and the maximum concentrations are found beneath the soil surface (down to 3-6 cm). The depth distributions of Pu and Am are essentially identical for a given soil profile. (239+240)Pu/137Cs and 241Am/137Cs activity ratios vary by up to a factor of 5 at some sites while smaller variations in these ratios were observed at a site close to Chernobyl, suggesting that 137Cs is dominantly particle associated close to Chernobyl but volatile species of 137Cs are of relatively greater importance at the distant sites.
The whole-soil carbon flux in response to warming
NASA Astrophysics Data System (ADS)
Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.
2017-03-01
Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.
Federle, T W; Ventullo, R M; White, D C
1990-12-01
The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained from the same depth.
Soil Water and Temperature System (SWATS) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
2016-04-01
The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less
NASA Astrophysics Data System (ADS)
Gutiérrez del Arroyo, O.; Silver, W. L.
2015-12-01
We used the Canopy Trimming Experiment (CTE), an ongoing ecosystem manipulation study in the Luquillo Experimental Forest (LEF), Puerto Rico to determine the decadal-scale effects of canopy disturbance and debris deposition on biogeochemistry throughout the soil profile of a wet tropical forest. These manipulations represent the most significant effects of hurricanes, which may increase in frequency or intensity with warming, strengthening their ecosystem-level effects on carbon (C) and nutrient cycling. Four replicated treatments were applied in 2005 using a complete randomized block design: canopy trimming + debris deposition, canopy trimming only, debris deposition only, and untreated control. In 2015, we sampled soils at 10 cm intervals to 1 m depth in each of 12 plots (3 per treatment). We measured gravimetric moisture content, pH, HCl and citrate-ascorbate (CA) extractable iron (Fe) species, organic (Po) and inorganic fractions of NaHCO3 and NaOH phosphorus (P), as well as total C and nitrogen (N). Soil moisture decreased markedly with depth up to ~60-70 cm, and then stabilized at ~33% down to 1 m. Across all treatments, pH increased significantly with depth, ranging from 4.6 in surface soils (0-10 cm) of trimmed plots to 5.2 in deep soils (80-90 cm) of control plots. Canopy trimming decreased pH significantly, possibly due to increased root activity in surface soils as vegetation recovered. Both HCl and CA extractable Fe showed strong depth dependance, decreasing linearly to 50 cm, and stabilizing at very low concentrations (<0.2 mg/g) down to 1 m. Inorganic P concentrations were low and did not vary significantly with depth. The majority of P was associated with organic matter, with significantly higher values in the upper soil profile (<50 cm). Debris deposition significantly increased Po, revealing the role of hurricanes in subsidizing the available soil P pool in these highly productive, low-P wet tropical forests. Debris deposition also increased soil C and N concentrations in surface soils (<20 cm). Our results suggest that the dominant effects of disturbance are limited to the upper soil profile in this wet tropical forest. However, effects were persistent and detectable after ten years of the CTE, suggesting that hurricanes result in long-term changes in tropical forest biogeochemistry.
Soil Biogeochemistry Case Study: Cold Springs, Nevada
NASA Astrophysics Data System (ADS)
Morgan, T. A.; Verburg, P.
2016-12-01
The University of Nevada, Reno (UNR) Soil Biogeochemistry class, mentored by Dr. Robert Blank, United States Department of Agriculture/ Agricultural Research Service/ Great Basin Rangelands Research Unit (USDA/ARS/GBRRU) soil scientist, examined lithospheric biogeochemical cycles in a sagebrush ecosystem in Cold Springs, Nevada. The Cold Springs, Nevada area was selected to examine soil nutrient cycling under four landscape conditions: playa (no vegetation), invasive species mix of annual grasses and forbs, rabbitbrush (Ericameria nauseosa) encroached area, and sagebrush (Artemisia tridentata) dominant area. Five soil pits were excavated to describe pedons under each of the four landscape conditions. Soil samples were collected every 20 cm throughout a one meter profile, and were brought to the USDA/ARS/GBRRU laboratory for chemical analysis and characterization of physical and nutrient properties. In playa soils, solution-phase Na+ and SO4-2 had the highest concentrations on the top 20 cm. The invasive species soils showed a reduced molar NH4+ in mineral N throughout the profile. These soils also demonstrated a strong correlation between Fe and organic C. In the Rabbitbrush soils, extracted diethylenetriaminepentaacetic acid (DTPA) Fe appears to be cycled by depth across four of the five sites. However, the remaining rabbitbrush site which had the highest concentration of DTPA Fe, did not decline with depth. This indicated a nutrient specific lack of biogeochemical cycling. The rabbitbrush site also had almost double the organic C of the other four sites. Solution-phase K and Bicarb P expressed the highest concentrations in the 40-60 cm depth range. In three of the five sagebrush soils, the DTPA Mn concentration was highest at the surface and declined with depth. The remaining two sagebrush sites displayed the opposite trend. This case study revealed considerable variation in nutrient concentrations and biogeochemical cycling between soils and vegetation type.
NASA Astrophysics Data System (ADS)
Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.
2016-01-01
Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.
NASA Astrophysics Data System (ADS)
Golos, Peter
2016-04-01
Revegetation of sites following soil contamination can be challenging especially in identifying the most effective method for ameliorating phytotoxic effects in arid ecosystems. This study at a copper mine in the Great Sandy Desert of Western Australia investigated vegetation restoration of a site contaminated by acid (H2SO4) leach pad solution. Elevated soil copper at low soil pH is phytotoxic to plant roots inhibiting root elongation. In arid ecosystems where rapid root growth is crucial for seedling survival post germination physical or chemical barriers to root growth need to be identified and ameliorated. Initial attempt at rehabilitation of contaminated site with hydrated lime (CaOH2) at 2 tonnes/ha followed by ripping to 30 cm depth then seeding was ineffective as successful seedling emergence was followed by over 90% seedling mortality which was 10-fold greater than seedling mortality in an uncontaminated reference site. High mortality was attributed to seedling roots being impededed as soil water was more than 3-fold greater at 5 to 40 cm depth in contaminated site than reference site. In response to high seedling mortality after emergence test pits were dug to 1 m deep to collect soil samples at 10 cm intervals for phytotoxicity testing and to measure soil pH-CaCl2, copper (DPTA ion extraction), electrical conductivity and gravimetric water content in three replicate pits at three replicate sites. Also, soil impedance was measured down the soil profile at 5 cm intervals at six replicate points/pit. For phytotoxicity testing soil samples were placed into three replicate plastic pots/sample and seeded with 10 seeds of Avena sativa and watered daily. Seedlings were harvested after at least two weeks after seedling emergence and rooting depth in pots measured. There was no difference in seedling emergence and survival of seedlings between contaminated and uncontaminated soil samples however mean seedling root growth was significantly lower in soil samples collected at >10 cm depth than the control. Mean soil pH at 0-10 cm was higher (>7.2) at all sites treated with lime compared to uncontaminated soil (5.5). At depths greater than 10 cm soil pH was <4.6. Soil copper was >16 mg/kg in all contaminated soil samples compared to 0.5 mg/kg in control. High seedling mortality in contaminated site is attributed to low soil pH and elevated soil copper levels which inhibited plant root growth and hence access to soil water. While surface liming of soil increased soil pH ameliorating the effect of elevated soil copper, this was only effective in the top 10 cm due to low solubility of hydrated lime. To improve seedling survival lime will need to be incorporated into the contaminated soil profile to allow plants to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context. To improve the success of vegetation restoration of sites contaminated with acidic copper solution, lime needs to be incorporated into the contaminated soil profile to allow plant roots to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context.
Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang
2017-07-18
Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.
Effect of antecedent soil moisture on preferential flow in a texture-contrast soil
NASA Astrophysics Data System (ADS)
Hardie, Marcus A.; Cotching, William E.; Doyle, Richard B.; Holz, Greg; Lisson, Shaun; Mattern, Kathrin
2011-02-01
SummaryThe effect of soil moisture status on preferential flow in a texture-contrast soil was investigated by applying 25 mm Brilliant Blue dye tracer to soil profiles at high and low antecedent soil moisture. Differences in soil morphology and chemistry between soil profiles had little effect on the depth of dye infiltration and dye distribution down the profile. Antecedent soil moisture strongly influenced the type, depth and rate of dye tracer movement. In the wet treatment, the dye tracer infiltrated to depths between 0.24 and 0.40 m, at an average rate of 120 mm h -1. Whilst in the dry treatment, the same volume of dye tracer infiltrated to between 0.85 and 1.19 m depth at an average rate of 1160 mm h -1. In dry antecedent conditions, finger flow developed in the A1 horizon as a result of water repellency. In the wet treatment, the wetting front developed permutations but did not break into fingers. Despite similar particle size distributions, flow in the A2 e was slower than the A1 horizon, due to the absence of macropores. In the dry treatment, the dye tracer ponded on the upper surface of the B21 horizon, which then spilled down the sides of the large clay columns as rivulets, at rates of between 2000 and 3000 mm h -1. The dye tracer accumulated at the base of the columns resulting in backfilling of the inter column shrinkage cracks, at an estimated rate of 750 mm h -1. In the subsoil, water movement occurred via shrinkage cracks which resulted in flow by-passing 99% of the soil matrix in the B21 horizon and 94% of the soil matrix in the B22 horizon. Evidence of rapid and deep infiltration in 'dry' texture-contrast soils has implications for water and solute management. This knowledge could be used to: (i) improve irrigation and fertilizer efficiency (ii) explain variations in crop yield (iii) reduce salinity through improved leaching practices, (iv) reduce the risk of agrochemicals contaminating shallow groundwater.
Estimating the effect of shallow groundwater on diurnal heat transport in a vadose zone
NASA Astrophysics Data System (ADS)
Jiang, Jianmei; Zhao, Lin; Zhai, Zhe
2016-09-01
The influence of shallow groundwater on the diurnal heat transport of the soil profile was analyzed using a soil sensor automatic monitoring system that continuously measures temperature and water content of soil profiles to simulate heat transport based on the Philip and de Vries (PDV) model. Three experiments were conducted to measure soil properties at depths of 5 cm, 10 cm, 20 cm, and 30 cm when groundwater tables reached 10 cm, 30 cm, and 60 cm (Experiments I, II, and III). Results show that both the soil temperature near shallow groundwater and the soil water content were effectively simulated by the PDV model. The root mean square errors of the temperature at depths of 5 cm, 10 cm, and 20 cm were 1.018°C, 0.909°C, and 0.255°C, respectively. The total heat flux generated the convergent and divergent planes in space-time fields with valley values of-161.5W•m-2 at 7:30 and-234.6W•m-2 at 11:10 in Experiments II and III, respectively. The diurnal heat transport of the saturated soil occurred in five stages, while that of saturated-unsaturated and unsaturated soil profiles occurred in four stages because high moisture content led to high thermal conductivity, which hastened the heat transport.
Ecological restoration alters microbial communities in mine tailings profiles
NASA Astrophysics Data System (ADS)
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Ecological restoration alters microbial communities in mine tailings profiles.
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-04-29
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.
Ecological restoration alters microbial communities in mine tailings profiles
Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2016-01-01
Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064
Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric
2015-11-01
The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.
Hydrologic Regulation of Plant Rooting Depth and Vice Versa
NASA Astrophysics Data System (ADS)
Fan, Y.; Miguez-Macho, G.
2017-12-01
How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.
Vertical characterization of soil contamination using multi-way modeling--a case study.
Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka
2008-11-01
This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.
Life's Impact on the Soil Production Function
NASA Astrophysics Data System (ADS)
Harrison, Emma; Willenbring, Jane; Brocard, Gilles
2016-04-01
Soil melds life and lithology, but the top-down production of soil by the incorporation of organic matter has typically been viewed through a lens of soil biogeochemistry and the bottom-up weathering of bedrock viewed from a geomorphologic perspective. We merge these perspectives by developing a variation on the classic geomorphological soil production function [1] that accounts for the influence of top-down soil production by additions of organic material. In the classic view [1], production rate of soil from bedrock weathering is a function of the thickness of the soil horizon. Under steady state conditions, this thickness is controlled by a constant coefficient of diffusion and by the hillslope curvature. Across the globe, equilibrium landscapes can be hard to find. We explore the many ways that biota influence the upper soil horizons and move the soil-hillslope system out of steady state using measurements of in situ 10Be at depth in soil profiles. Our empirical case study is in the Luquillo Critical Zone Observatory of northeastern Puerto Rico, where long term ecological monitoring suggests an average of 375 m My-1 of litter fall [2] and as much as 17.5 m My-1 of dust [3] is contributed to the forest floor. This substantial volume of material forms an active surficial layer, functionally increasing the residence time of grains deeper in the soil profile. Litter recycling influences the cosmogenic dose rate to be higher by increasing the residence time of grains and to be lower by increasing environmental shielding. In unconstrained systems, probabilistic modeling can determine a range of solutions for the ages of grains determined with 10Be depth profiles[4]. We compare the probabilistic outcomes to actual measurements of the in situ 10Be at depth in soil profiles from the Luquillo Mountains. Life living in the soil, rather than on it, is of equal importance in the Luquillo Mountains. On average, the soil is occupied by 200 individual earthworms per m2 [5]. The depth of soil mixing in the soil profiles we collect is shown by the homogenization of 10Be concentrations in grains. Mixing changes the residence time of grains in soil. The length of this residence time is a critical component in the rate of weathering reactions, the mechanism by which material is lost to chemical dissolution and leaching. Additionally, mixing may drive the value of the diffusion coefficient, which determines the flux of sediment out of the soil mantle in the geomorphic soil production function. Life actively impacts the soil-hillslope system, and quantifying these effects is an essential modification of a fundamental paradigm in the geomorphology of soil-mantled landscapes. [1] Heimsath et al. 1997. Nature 388:358-361 [2] Zou et al., 1995. Forest Ecol. and Management 78:147-157 [3] Pett-Ridge et al., 2009. Geochim. Cosmochim. Acta 73:25-43 [4] Hidy et al. 2010. Geochem. Geophys., Geosys. 11 [5] González et al. 2007. Eur. J. Soil Biol. 43:S24-S32
NASA Astrophysics Data System (ADS)
Mabit, Lionel; Meusburger, Katrin; Iurian, Andra-Rada; Owens, Philip N.; Toloza, Arsenio; Alewell, Christine
2014-05-01
Soil and sediment related research for terrestrial agri-environmental assessments requires accurate depth incremental sampling of soil and exposed sediment profiles. Existing coring equipment does not allow collecting soil/sediment increments at millimetre resolution. Therefore, the authors have designed an economic, portable, hand-operated surface soil/sediment sampler - the Fine Increment Soil Collector (FISC) - which allows extensive control of soil/sediment sampling process and easy recovery of the material collected by using a simple screw-thread extraction system. In comparison with existing sampling tools, the FISC has the following advantages and benefits: (i) it permits sampling of soil/sediment samples at the top of the profile; (ii) it is easy to adjust so as to collect soil/sediment at mm resolution; (iii) it is simple to operate by one single person; (iv) incremental samples can be performed in the field or at the laboratory; (v) it permits precise evaluation of bulk density at millimetre vertical resolution; and (vi) sample size can be tailored to analytical requirements. To illustrate the usefulness of the FISC in sampling soil and sediments for 7Be - a well-known cosmogenic soil tracer and fingerprinting tool - measurements, the sampler was tested in a forested soil located 45 km southeast of Vienna in Austria. The fine resolution increments of 7Be (i.e. 2.5 mm) affects directly the measurement of the 7Be total inventory but above all impacts the shape of the 7Be exponential profile which is needed to assess soil movement rates. The FISC can improve the determination of the depth distributions of other Fallout Radionuclides (FRN) - such as 137Cs, 210Pbexand239+240Pu - which are frequently used for soil erosion and sediment transport studies and/or sediment fingerprinting. Such a device also offers great potential to investigate FRN depth distributions associated with fallout events such as that associated with nuclear emergencies. Furthermore, prior to remediation activities - such as topsoil removal - in contaminated soils and sediments (e.g. by heavy metals, pesticides or nuclear power plant accident releases), basic environmental assessment often requires the determination of the extent and the depth penetration of the different contaminants, precision that can be provided by using the FISC.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less
NASA Astrophysics Data System (ADS)
Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo
2017-04-01
Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.
Mobility and leachability of zinc in two soils treated with six organic zinc complexes.
Alvarez, J M; Novillo, J; Obrador, A; López-Valdivia, L M
2001-08-01
A study of soil columns was conducted to evaluate Zn movement potential in two reconstructed soil profiles. Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate were applied in the upper zone of the column. The different physicochemical properties of the two soils and the micronutrient source may influence Zn leaching, the distribution of Zn among soil fractions, and the Zn available to the plant in the depth of the layers. In Aquic Haploxeralf soil, the application of six fertilizers produced little migration and very small leaching of Zn in the soil profiles. In Calcic Haploxeralf soil, Zn-EDTA migrated and was distributed throughout the soil columns. This Zn chelate produces a loss of Zn by leaching, which was 36% of the added Zn. In the latter soil, Zn leached very little with the other five fertilizer treatments. The same as for these organic Zn complexes, the retention of added Zn indicated the potential of metal accumulation in the A(p) horizons of the two soil profiles. A large portion of applied Zn was available to plants [diethylenetriaminepentaacetic acid (DTPA) and Mehlich-3 extractable Zn] in the depths reached by the different commercial formulations. The relationship between the two methods was highly significant (Mehlich-3-Zn = 1.25 + 1.13 DTPA-Zn, R(2) = 99.19%). When Zn was added as Zn-EDTA, the amounts of the most labile fractions (water-soluble plus exchangeable and organically complexed Zn) increased throughout the entire profile column in comparison with the control columns, although in the B(t) horizon of the Aquic Haploxeralf soil they increased only slightly.
Seedling establishment and physiological responses to temporal and spatial soil moisture changes
Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos
2016-01-01
In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...
Soil-profile distribution of organic C and N at the end of 6 years of tillage and grazing management
USDA-ARS?s Scientific Manuscript database
Stocks of soil organic carbon (SOC) and total soil nitrogen (TSN) are key determinants for evaluating agricultural management practices to address climate change, environmental quality, and soil productivity issues. We determined SOC, TSN, and particulate organic C and N depth distributions and cum...
Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo
2015-01-01
Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Hamman, J.; Nijssen, B.
2017-12-01
Permafrost and seasonally frozen soils are a key characteristic of the terrestrial Arctic, and the fate of near-surface permafrost as a result of climate change is projected to have strong impacts on terrestrial biogeochemistry. The active layer thickness (ALT) is the layer of soil that freezes and thaws annually, and shifts in the depth of the ALT are projected to occur over large areas of the Arctic that are characterized by discontinuous permafrost. Faithful representation of permafrost in land models in climate models is a product of both soil dynamics and the coupling of air and soil temperatures. A common problem is a large bias in simulated ALT due to a model depth that is too shallow. Similarly, soil temperatures often show systematic biases, which lead to biases in air temperature due to poorly modeled air-soil temperature feedbacks in a coupled environment. In this study, we use the Regional Arctic System Model (RASM), a fully-coupled regional earth system model that is run at a 50-km land/atmosphere resolution over a pan-Arctic domain and uses the Variable Infiltration Capacity (VIC) model as its land model. To understand what modeling decisions are necessary to accurately represent near-surface permafrost and soil temperature profiles, we perform a large number of RASM simulations with prescribed atmospheric forcings (e.g. VIC in standalone mode in RASM) while varying the model soil depth, thickness of soil moisture layers, number of soil layers and the distribution of soil nodes. We compare modeled soil temperatures and ALT to observations from the Circumpolar Active Layer Monitoring (CALM) network. CALM observations include annual ALT observations as well as daily soil temperature measurements at three soil depths for three sites in Alaska. In the future, we will use our results to inform our modeling of permafrost dynamics in fully-coupled RASM simulations.
Annual soil CO_{2} production in Moscow Botanical Garden (Russia).
NASA Astrophysics Data System (ADS)
Udovenko, Maria; Goncharova, Olga; Matyshak, Georgy
2017-04-01
Soil respiration is an essential component of the carbon cycle, determining 25-40 % of carbon dioxide in the atmosphere. Urban soils are subject to significant anthropogenic influences. Anthropogenic impact affects both the plants and the soil microbiota. So, soil CO2 efflux and soil profile CO2 concentration probably differ in urban and natural soils. Influence of abiotic factors on soil carbon dioxide production is explored insufficiently. The research of their impact on soil carbon dioxide production is necessary to predict soil response to anthropogenic climate change. The aim of this study was estimation of annual soil CO2 production and the impact of climatic factors on it. The research took place in Moscow State University Botanical Garden Arboretum (southern taiga). Investigations were carried out at two sites: the areas planted with Picea obovata and Carpinus betulus. The study was conducted with 1-2 weeks intervals between November 2014 and December 2015. Emission measurement were carried out by closed chamber technique, profile concentration were measured by soil air sampling tubes method. Annual carbon dioxide soil surface efflux of soil planted with Picea obovata was 1370 gCO2/(m2 * year), soil planted with Carpinus betulus - 1590 gCO2/(m2 * year). Soil CO2 concentration increased with depth in average of 3300 to 12000 ppm (at 80 cm depth). Maximum concentration values are confined to the end of vegetation period (high biological activity) and to beginning of spring (spring ice cover of soil prevents CO2 emission). Soil CO2 efflux depends on soil temperature at 10 cm depth (R = 0.89; p <0.05), in a less degree it correlate with soil surface temperature and with soil temperature at 20 cm depth (r=0.88; p<0.05). Soil moisture has a little effect on CO2 efflux in the annual cycle (r=-0.16; p<0.05). However in vegetation period efflux of carbon dioxide largely depends on soil moisture, due to the fact, that soil moisture is limiting factor for soil microbiota activity and plant respiration.
Geophysical Sensing Applications on Claypan Soils
USDA-ARS?s Scientific Manuscript database
Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in precision agriculture practice and research. A number of ECa sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa rea...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and subsurface hydrology of the site, and soil characteristics, including cation exchange capacity, total organic..., concentration, and depth of migration of hazardous waste constituents in the soil as compared to their...
USDA-ARS?s Scientific Manuscript database
Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...
Legacy effects of grassland management on soil carbon to depth.
Ward, Susan E; Smart, Simon M; Quirk, Helen; Tallowin, Jerry R B; Mortimer, Simon R; Shiel, Robert S; Wilby, Andrew; Bardgett, Richard D
2016-08-01
The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management. © 2016 John Wiley & Sons Ltd.
Weathering profiles in soils and rocks on Earth and Mars
NASA Astrophysics Data System (ADS)
Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.
2017-12-01
Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.
An in situ method for real-time monitoring of soil gas diffusivity
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2016-04-01
Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.
USDA-ARS?s Scientific Manuscript database
Vera et al. (2009) compared estimates of soil profile water content (mm) to a depth of 0.8 m made with the neutron moisture meter (NMM) and a multi-depth capacitance probe (MDCP), using measurements replicated in four drainage lysimeters (5 m x 5 m x 1.5-m deep). The NMM estimates of water content w...
[Effect of long-term fertilizing regime on soil microbial diversity and soil property].
Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan
2014-03-04
To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J. A.; Baumberger, V.
1978-01-01
The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle.
A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass
NASA Astrophysics Data System (ADS)
Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.
2008-12-01
As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.
Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire
NASA Astrophysics Data System (ADS)
Jaszczyński, J.; Sapek, A.
2009-04-01
Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.
Profiling soil water content sensor
USDA-ARS?s Scientific Manuscript database
A waveguide-on-access-tube (WOAT) sensor system based on time domain reflectometry (TDR) principles was developed to sense soil water content and bulk electrical conductivity in 20-cm (8 inch) deep layers from the soil surface to depths of 3 m (10 ft) (patent No. 13/404,491 pending). A Cooperative R...
An Empirical Estimation of Underground Thermal Performance for Malaysian Climate
NASA Astrophysics Data System (ADS)
Mukhtar, Azfarizal; Zamri Yusoff, Mohd; Khai Ching, Ng
2017-12-01
In this study, the soil temperature profile was computed based on the harmonic heat transfer equations at various depths. The meteorological data ranging from January, 1st 2016 to December, 31st 2016 measured by local weather stations were employed. The findings indicted that as the soil depth increases, the temperature changes are negligible and the soil temperature is nearly equal to the mean annual air temperature. Likewise, the results have been compared with those reported by other researchers. Overall, the predicted soil temperature can be readily adopted in various engineering applications in Malaysia.
Wang, Yuying; Hu, Chunsheng; Ming, Hua; Oenema, Oene; Schaefer, Douglas A.; Dong, Wenxu; Zhang, Yuming; Li, Xiaoxin
2014-01-01
The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0–30, 30–60, 60–90, 90–150, 150–200, 200–250 and 250–300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha−1 year−1) in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick’s law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS). The top 0–60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm) was not a major source or sink of GHG, rather it acted as a ‘reservoir’. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile. PMID:24892931
NASA Astrophysics Data System (ADS)
Kapicka, A.; Grison, H.; Petrovsky, E.; Jaksik, O.; Kodesova, R.
2015-12-01
Field measurements of magnetic susceptibility were carried out on regular grid, resulting in 101 data points at Brumovice and 65 at Vidim locality. Mass specific magnetic susceptibility χ and its frequency dependence χFD was used to estimate the significance of SP ferrimagnetic particles of pedogenic origin in topsoil horizons. The lowest magnetic susceptibility was obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). Soil profiles unaffected by erosion were investigated in detail. The vertical distribution of magnetic susceptibility along these "virgin" profiles was measured in laboratory on samples collected with 2-cm spacing. The differences between the distribution of susceptibility in the undisturbed soil profiles and the magnetic signal after uniform mixing of the soil material as a result of erosion and tillage are fundamental for the estimation of soil loss in the studied test fields. Maximum cumulative soil erosion depth in Brumovice and Vidim is around 100 cm and 50 cm respectively. The magnetic method is suitable for mapping at the chernozem localities and measurement of soil magnetic susceptibility is in this case useful and fast technique for quantitative estimation of soil loss caused by erosion. However, it is less suitable (due to lower magnetic differentiation with depth) in areas with luvisol as dominant soil unit. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.
NASA Astrophysics Data System (ADS)
Harrison, Robert; James, Jason; Dietzen, Christiana; Littke, Kimberly
2017-04-01
Biomass, carbon and nitrogen pools in soil (1 m depth) and tree components in 68 intensively-managed Douglas-fir plantations in western Oregon and Washington USA, and British Columbia Canada. The potential removal of N with bole-only and total aboveground harvesting was compared to total ecosystem pools of N to determine the relative removals compared to the total ecosystem N pools to assign a risk rating to each potential harvest site for N removal, with <=10% of total removed being a threshhold at which there would be little potential for N removal concerns over a 55-year rotation, and 30% or greater a cause for significan concern or the potential amelioration of losses with N fertilization. Additional research on 22 of the sites for deep rooting and soil C and N pools up to 4 m depth showed that there were unanticipated and formerly unrecognized large pools of C and N below 1 m depth, and as deep as we were capable of sampling (4 m). Analysis of organic matter in the soil profiles indicate significant differences in binding of organic matter to mineral components of soil at depth, dependent on pH-dependent charge sources primarily associated with volcanic activity in the region. Characterization of PZNC and pH dependent charge at one site showed substantial anion exchange capacity and the ability to bind organic acids and DOC leaching through the soil profile.
NASA Astrophysics Data System (ADS)
Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide
2016-04-01
Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and FYM had the highest poten-tial N mineralisation. Microbial biomass and bacterial diversity decreased downwards the soil profile. Incorporation of crop residues alone showed no positive impacts on either biomass or diversity, whereas fertilization by FYM instead of mineral fertilizer did. Microbial community composition showed depth-related shifts: Proteobacteria and Actinobacteria dominated the upper layer, whereas Gemmatimonadetes showed the highest relative abundance in the mid-layers and Chloroflexi deeper in the soil profile. The main factor determining soil bacterial community composition in the entire dataset was not the treatments but the layers. Interesting-ly, the surface layers that we expected to be most impacted by the treatments were much more similar to each other, regardless of treatment or block, than samples from the deeper layers were to each other. This means that agricultural practices strongly influence the soil bacterial composition and reduce its wide natural heterogeneity. This calls for continuous efforts to study the deeper soil layers in the numerous long-term field experiments, where mostly the topsoils are currently studied in detail.
Weathering behavior of REE-Y in a granitic soil profile (Case of Strengbach watershed)
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Chabaux, François
2017-04-01
Rare earth elements and yttrium (REE-Y) can be used as tracers of bedrock weathering and soil formation. One of the aims of this study is to better understand the different phenomena which impact the REE-Y mobilization and modify the REE-Y pattern along a soil profile. Our study has been performed on a granitic soil profile and soil solutions corresponding, sampled in a forest parcel covered with spruces from the Strengbach catchment. The behavior of the REE-Y pattern are compared with previously published results. The samples were collected from 2009 to 2013 and ultra-filtered to determine the spatial and temporal influence as well as that of the colloidal and dissolved fractions on the evolution of the REE-Y patterns. The EFTi of the soil indicates that during alteration process, phosphate minerals and zircon might be dissolved and induce the formation of secondary mineral phase like xenotime in the deeper soil horizons. The ultra-filtered soil solutions from humic horizon show that the REE-Y are principally enriched in the colloidal fraction controlling the REE-Y dynamic while in the deeper soil solutions colloidal and dissolved fractions influence the REE-Y. The mobility of REE-Y is controlled by the dissolution of the zircon and phosphate minerals, the precipitation of the REE-Y(PO4) and the evolution of OC with depth. The comparative study of the soil profile, soil water extracts and soil solutions show that (Eu*/Eu)DS anomaly reflects weathering of plagioclase in the micropores and the migration of the released Eu to the macropores, the (Ce*/Ce) anomaly, is stabilized by the electron shuttling of the humic acid (aromaticity) and provides information on the redox conditions only in the deeper soil horizons depleted in humic acid and finally the HREE enrichment in the deeper soil solutions results from the partial dissolution of secondary minerals in the upper soil horizons (above 30 cm depth).
Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation
NASA Astrophysics Data System (ADS)
González Paloma, Hueso; Juan Francisco, Martinez-Murillo; Damian, Ruiz-Sinoga Jose; Hanoch, Lavee
2015-04-01
Hortonian overland-flow is responsible for significant amounts of soil loss in Mediterranean geomorphological systems. Restoring the native vegetation is the most effective way to control runoff and sediment yield. During the seeding and plant establishment, vegetation cover may be better sustained if soil is amended with an external source. Four amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (Pinus halepensis L.) (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. This research demonstrates the role played by the treatments in overland flow generation mechanism (runoff, overland flow and soil moisture along the soil profile). The general overland flow characteristics showed that in the C plots the average overland flow was 8.0 ± 22.0 l per event, and the HP plots produced a similar mean value (8.1 ± 20.1 l). The average overland flow per event was significantly less for soil amended with SM, PM or RU (2.7 ± 8.3 l; 1.3 ± 3.5 l and 2.2 ± 5.9 l, respectively). There was a similar trend with respect to the maximum overland flow. The mean sediment yield per event was relatively high in the C and HP plots (8.6 ± 27.8 kg and 14.8 ± 43.4 kg, respectively), while significantly lower values were registered in the SM, PM and RU plots (0.4 ± 1.0 kg; 0.2 ± 0.3 kg and 0.2 ± 0.3 kg, respectively). Very similar trends were found for the maximum sediment yield. Regarding to the soil moisture values, there was a difference in the trends between the C and HP plots and the SM, PM and RU plots. In the C and HP plots the general trend was for a decrease in soil moisture downward through the soil profile, while in the SM, PM and RU plots the soil moisture remained relatively constant or increased, except for the RU treatment in which the soil moisture decreased from 5 to 10 cm depth. According to the results, the hydrological and erosive response in the five treatments showed dissimilarities, despite having similar rainfall exposure and the same original soil properties. This means that the differences between the treatments play a key role in the soil moisture, overland flow and sediment yield values. The study has demonstrated the effects of various treatments on the generation of overland flow, and hence the sediment yield. In the C and HP plots, relatively large amounts of overland flow rapidly developed. This cannot be explained by saturation conditions, as the soil moisture content was highest near the surface and decreased with depth in the profile. This, together with the relatively low macro-porosity, proved that the mechanism of overland flow generation was of the Hortonian type. On the other hand, in the SM and PM plots, the high level of macro-porosity, together with the increase in soil moisture content with depth, explained the small quantities of overland flow and sediment yield. In the rare case that overland flow developed in these plots, it was minor in amount, and yielded little sediment because of saturation conditions. The processes in the RU plots were more complicated; from 10 cm depth the soil moisture content always increased with further depth, usually rapidly. Thus, water infiltrated continuously and there was no rainfall excess. Therefore, in terms of overland flow and sediment yield, the RU plots behaved in a similar way to the SM and PM plots. The fact that the soil moisture content was low at depths of 10 cm is because of the uptake of water at these depths by the roots of Carlina hispanica Lam. From a land management standpoint, the SM, PM and RU treatments were the most effective in reducing overland flow and sediment yield following afforestation. In addition, the soil profile became more wettable, which provided more water to support plant survival. However, when afforestation was combined with RU treatment, the vegetation cover resulting from the amendment treatment was the main factor controlling the hydrological processes. Application of the HP treatment caused a decrease in soil moisture content with depth in the soil profile, and overland flow and sediment yield were maximum in this treatment.
Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines
2010-11-01
Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Aggregating available soil water holding capacity data for crop yield models
NASA Technical Reports Server (NTRS)
Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.
1984-01-01
The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.
Soil amplification with a strong impedance contrast: Boston, Massachusetts
Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric M.
2016-01-01
In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern University (NEU) vertical seismometer array during the 2011 M 5.8 Mineral, Virginia, earthquake. Site response at the NEU vertical array results in amplification on the order of 10 times at a period between 0.7-0.8 s. The results from this study provide evidence that the mean short-period and mean intermediate-period amplification used in design codes (i.e., from the Fa and Fv site coefficients) may underpredict soil amplification in strong impedance contrast environments such as Boston.
Field tests of a down-hole TDR profiling water content measurement system
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...
1990-03-01
Antecedent soil water conditions were measured during the preceding fall using a neutron probe at three locations within each plot to a depth of 1.0 m. A...interrelated heat, water , and solute transfer through snow, residue and soil for a wide range of conditions . Because the model uses fundamental equations... water content profiles at the other sites were measured weekly. Frost depth was measured using cylindrical gypsum moisture blocks read every three hours
Exploitation of nutrient- and C-rich paleosols by deep rooting plants in Dutch drift- and coversands
NASA Astrophysics Data System (ADS)
Gocke, Martina; Kessler, Fabian; van Mourik, Jan; Jansen, Boris; Wiesenberg, Guido L. B.
2015-04-01
Plant roots are commonly assumed to be most abundant in topsoil, with strongly decreasing frequencies in underlying soil horizons with incrasing depth and almost absence of roots below the uppermost few dm due to unfavorable environmental conditions in terms of e.g. aeration, nutrient availability or water, that hamper root growth. It still remains unknown, to which extent roots might be able to exploit deeper parts of soils and underlying soil parent material as well as burried paleosols. The study site is located in SE Netherlands. Undisturbed oak forests developed about 200 years ago on stabilized driftsand, deposited on a plaggic Anthrosol after approximately 700 years of agricultural use. The soil profile, consisting of the recent initial Podzol in driftsand, overlying 1.1 m thick plaggic deposits that were established in a 0.5 m thick residual Podzol in coversand, was excavated in a pit of 2.3 m depth. Living and dead roots were counted throughout the profile on both, the vertical wall and horizontal levels. Additionally, soil or sediment samples free of visible root remains were collected in depth intervals between 0.05 m and 0.15 m from topsoil down to the coversand. A multi-proxy approach, including assessment of bulk elemental composition of soil, sediments and paleosol and molecular structure of organic matter therein, organic carbon contents, bulk density and pH was applied in order to comprehensively describe the varying environmental conditions within the soil profile and in transects from roots to root-free material. The burried agricultural soil revealed low density and high organic carbon contents compared to the coversand parent material, and especially in its lower part, high phosphorous contents. In contrast, the burried Podzol was characterized by completely different geochemical and physical properties, like increasing pH with depth and high iron and aluminium contents. In the recent initial Podzol, fine roots (≤ 2 mm), deriving from both oak trees and understory vegetation, immediately decreased from 476 m-2 to 24 m-2, whereas medium roots (2-5 mm) from oak trees continuously increased from 8 m-2 at the surface to 188 m-2 within the upper part of the agricultural soil. Both, frequencies of fine and medium roots peaked at 4.448 m-2 and 216 m-2, respectively, in the uppermost part of the burried Podzol, thus considerably exceeding topsoil abundances. Comparison of these results with those obtained at the profile wall demonstrated that fine root abundances might be considerably underestimated by the more traditional approach of profile wall investigation, because fine roots were growing vertically to exploit the nutrient-rich burried paleosols. Unlike fine roots, medium roots and even more, large roots (> 5 mm) were not able to penetrate the hard sesquioxide crusts of the burried Podzol in larger numbers. Our results show that roots are able to deeply penetrate the soil and underlying soil parent material or paleosols, if the latter provides nutrition benefits. Root distribution strongly depends on physical and chemical properties of the deep subsoil, which should be taken into account when interpreting complex soil profiles covering recent and paleosols.
Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation
Post, Wilfred M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2005-01-01
We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors related to the changes in storage of soil organic matter resulting from land conversion. The relationship between cultivated and uncultivated organic carbon and nitrogen storage in soils can be described by regression lines with uncultivated storage on the abscissa, and cultivated storage on the ordinate. The slope of the regression lines is less than 1 indicating that the amount of carbon or nitrogen lost is an increasing fraction of the intial amount stored in the soil. Average carbon loss for soils with high initial carbon is 23% for 1-meter depth. Average nitrogen loss for the same depth is 6%. In addition, for soils with very low uncultivated carbon or nitrogen storage, cultivation results in increases in storage. In soils with the same uncultivated carbon contents, profiles with higher C:N ratios lost more carbon than those with low C:N ratios, suggesting that decomposition of organic matter may, in general, be more limited by microbial ability to break carbon bonds than by nitrogen deficiency.
Influence of FGD gypsum on the properties of a highly erodible soil under conservation tillage
USDA-ARS?s Scientific Manuscript database
The performance of conservation tillage practices imposed on highly erodible soils may be improved by the use of amendments with a high solubility rate, and whose dissolution products are translocated at depth in the soil profile faster than normally used agricultural lime and fertilizer products. T...
Imaging a soil fragipans using a high-frequency MASW method
USDA-ARS?s Scientific Manuscript database
The objective of this study was to noninvasively image a fragipan layer, a naturally occurring dense soil layer, using a high-frequency (HF) multi-channel analysis of surface wave (MASW) method. The HF-MASW is developed to measure the soil profile in terms of the shear (S) wave velocity at depths up...
Effect of water table fluctuations on phreatophytic root distribution.
Tron, Stefania; Laio, Francesco; Ridolfi, Luca
2014-11-07
The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area
NASA Astrophysics Data System (ADS)
Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.
2017-10-01
The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.
NASA Astrophysics Data System (ADS)
Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary
2016-04-01
Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed different patterns as a function of contributing area. While soils on the polar facing slope became deeper, soils on the equatorial facing slope kept a uniform depth with increasing contributing area, pointing to different governing geomorphic processes at work. Using slope-area relationships analysis, polar facing slopes were found to be generally steeper and with longer distance to channel initiation point (if existent) than that of the equatorial facing slopes, strengthening the evidence of climate-affected differential geomorphic processes shaping the hillslope form. The results point out to the effect of climate on the development and coevolution of soil, vegetation and landform in the temperate part of Australia.
Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems
NASA Astrophysics Data System (ADS)
Gurdak, Jason
2017-04-01
Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, I.; McDonnell, J.
2009-05-01
We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.
NASA Astrophysics Data System (ADS)
Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.
2017-01-01
Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.
Minimum depth of soil cover above long-span soil-steel railway bridges
NASA Astrophysics Data System (ADS)
Esmaeili, Morteza; Zakeri, Jabbar Ali; Abdulrazagh, Parisa Haji
2013-12-01
Recently, soil-steel bridges have become more commonly used as railway-highway crossings because of their economical advantages and short construction period compared with traditional bridges. The currently developed formula for determining the minimum depth of covers by existing codes is typically based on vehicle loads and non-stiffened panels and takes into consideration the geometrical shape of the metal structure to avoid the failure of soil cover above a soil-steel bridge. The effects of spans larger than 8 m or more stiffened panels due to railway loads that maintain a safe railway track have not been accounted for in the minimum cover formulas and are the subject of this paper. For this study, two-dimensional finite element (FE) analyses of four low-profile arches and four box culverts with spans larger than 8 m were performed to develop new patterns for the minimum depth of soil cover by considering the serviceability criterion of the railway track. Using the least-squares method, new formulas were then developed for low-profile arches and box culverts and were compared with Canadian Highway Bridge Design Code formulas. Finally, a series of three-dimensional (3D) finite element FE analyses were carried out to control the out-of-plane buckling in the steel plates due to the 3D pattern of train loads. The results show that the out-of-plane bending does not control the buckling behavior of the steel plates, so the proposed equations for minimum depth of cover can be appropriately used for practical purposes.
Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun
2009-11-01
Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.
Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.
2015-01-01
Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0–10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10–90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils. PMID:26053257
Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V
2015-06-08
Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.
NASA Astrophysics Data System (ADS)
Harden, Jennifer W.; Hugelius, Gustaf; Koven, Charlie; Sulman, Ben; O'Donnell, Jon; He, Yujie
2016-04-01
Soils are capacitors for carbon and water entering and exiting through land-atmosphere exchange. Capturing the spatiotemporal variations in soil C exchange through monitoring and modeling is difficult in part because data are reported unevenly across spatial, temporal, and management scales and in part because the unit of measure generally involves destructive harvest or non-recurrent measurements. In order to improve our fundamental basis for understanding soil C exchange, a multi-user, open source, searchable database and network of scientists has been formed. The International Soil Carbon Network (ISCN) is a self-chartered, member-based and member-owned network of scientists dedicated to soil carbon science. Attributes of the ISCN include 1) Targeted ISCN Action Groups which represent teams of motivated researchers that propose and pursue specific soil C research questions with the aim of synthesizing seminal articles regarding soil C fate. 2) Datasets to date contributed by institutions and individuals to a comprehensive, searchable open-access database that currently includes over 70,000 geolocated profiles for which soil C and other soil properties. 3) Derivative products resulting from the database, including depth attenuation attributes for C concentration and storage; C storage maps; and model-based assessments of emission/sequestration for future climate scenarios. Several examples illustrate the power of such a database and its engagement with the science community. First, a simplified, data-constrained global ecosystem model estimated a global sensitivity of permafrost soil carbon to climate change (g sensitivity) of -14 to -19 Pg C °C-1 of warming on a 100 years time scale. Second, using mathematical characterizations of depth profiles for organic carbon storage, C at the soil surface reflects Net Primary Production (NPP) and its allotment as moss or litter, while e-folding depths are correlated to rooting depth. Third, storage of deep C is highly correlated with bulk density and porosity of the rock/sediment matrix. Thus C storage is most stable at depth, yet is susceptible to changes in tillage, rooting depths, and erosion/sedimentation. Fourth, current ESMs likely overestimate the turnover time of soil organic carbon and subsequently overestimate soil carbon sequestration, thus datasets combined with other soil properties will help constrain the ESM predictions. Last, analysis of soil horizon and carbon data showed that soils with a history of tillage had significantly lower carbon concentrations in both near-surface and deep layers, and that the effect persisted even in reforested areas. In addition to the opportunities for empirical science using a large database, the database has great promise for evaluation of biogeochemical and earth system models. The preservation of individual soil core measurements avoids issues with spatial averaging while facilitating evaluation of advanced model processes such as depth distributions of soil carbon, land use impacts, and spatial heterogeneity.
Depth Effects on the Decomposition Dynamics of Plant-derived C at Diverse Sites
NASA Astrophysics Data System (ADS)
Gregorich, E.; Ellert, B.; Janzen, H.; Beare, M.; Helgason, B. L.; Curtin, D.
2017-12-01
Decay of plant residues is tied to many ecosystem functions and affects atmospheric CO2, plant-available nutrients, microbial diversity, soil organic matter quality, among others. The rate of decay, in turn, is governed by soil type and management, location in the soil profile, and environmental variables, some of which may be changing in coming decades. Our objective in this study was to elucidate the decomposition dynamics of plant-derived C and N at different soil depths. To characterize the importance of these variables across a broad scale, we established a long-term study at two sites in Canada and one site in New Zealand. At each site, labelled barley straw (13C = 10.2 atom%,C = 37.9%; N = 0.95%; C:N = 40) was installed at 3 depths (5-10, 20-25 and 40-45 cm). Soil temperature was logged at each depth. Samples were collected at different times over 5-6 years after application of the residues. Results showed that substantial decay occurred at all depths within a relatively short time (< 1 year). Decay was greatest at the warmest site and depth affected the concentration of viable microbes. However, depth had no effect on residue decay after about 5 years.
NASA Astrophysics Data System (ADS)
Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.
2016-12-01
Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to <0.5% at 140cm depth. High-throughput sequencing highlighted distinct microbial communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these tropical subsoils contain small but metabolically active microbial communities that are highly OM limited and may persist via degradation of recent inputs.
Subsoil denitrification experiments at KBS MSU
NASA Astrophysics Data System (ADS)
Shcherbak, I.; Robertson, G. P.
2011-12-01
Denitrification is a major soil process that produces nitrous oxide (N2O), a potent greenhouse gas. Most research on denitrification has, for various reasons, concentrated on the top soil layer, ignoring depths below 10-20 cm. Although denitrification is considered to be the most active in top soil, this layer usually accounts for only 10% of the total volume of the soil profile. Our research addresses the questions: How significant is denitrification at depth in the soil profile and how does it vary with land-use? We have two field experiments at the W. K. Kellogg Biological Station (KBS) in southwest Michigan: 1) tilled versus no-tillage rainfed fertilized corn and 2) rainfed versus irrigated corn at six fertilizer levels, with N2O concentrations measured at 10 depths (3, 7, 15, 20, 25, 50, 55, 70, 75, 125 cm) and 5 depths (10, 20, 30, 50, 75 cm), respectively , along with N2O fluxes to the atmosphere in both. Soil environment data (texture, water content, temperature and nitrate content) represent a combination of measured values and simulated values using the SALUS (System Approach to Land Use Sustainability) model. We used diffusion and water balance equations that incorporated carbon dioxide concentrations and flux data collected simultaneously with N2O to determine diffusivity as a function of water content and soil temperature. We used the same diffusivity to obtain N2O production as function of moisture, temperature, and nitrate availability. Further validation of the production function was performed with data collected from the KBS Long-Term Ecological Research (LTER) site , where we also measured belowground concentrations during the 2011 growing season.
NASA Astrophysics Data System (ADS)
Stone, M.; Hockaday, W. C.; Plante, A. F.
2014-12-01
Tropical forests are the largest terrestrial carbon (C) sink, and tropical forest soils contribute disproportionately to the poorly-characterized deep soil C pool. The goal of this study was to evaluate how carbon chemistry and stability change with depth in tropical forest soils formed on two contrasting parent materials. We used soils from pits excavated to 140 cm depth that were stratified across two soil types (Oxisols and Inceptisols) at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We used 13C nuclear magnetic resonance (NMR) spectroscopy to characterize soil C chemistry and differential scanning calorimetry (DSC) coupled with evolved gas analysis (CO2-EGA) to evaluate the thermal stability of soil C during ramped combustion. Thirty-four samples with an initial C concentration ≥1% were chosen from discrete depth intervals (0, 30, 60, 90 & 140 cm) for 13C NMR analysis, while DSC was performed on 122 samples that included the NMR sample set and additional samples at 20, 50, 80 and 110 cm depth. Preliminary 13C NMR results indicate higher alkyl : O-alkyl ratios and an enrichment of aliphatic and proteinaceous C with depth, compared with greater aromatic and carbohydrate signals in surface soils. The energy density of soil C (J mg-1 C) also declined significantly with depth. In Oxisols, most CO2 evolution from combustion occurred around 300ºC, while most CO2 evolution occurred at higher temperatures (400-500ºC) in Inceptisols. Our findings suggest soil C is derived primarily of plant biomolecules in surface soils and becomes increasingly microbial with depth. Soil matrix-mediated differences in C transport and preservation may result in differences in C chemistry between the two soil types and a more thermally labile C pool in the Oxisols. We suggest that energy-poor substrates, combined with potentially stronger organo-mineral interactions in subsoils, may explain the long-term stability of deep C in highly weathered tropical soils.
Zhou, Xiaoqi; Dong, Haibo; Lan, Zhongming; Bacon, Gary; Hao, Yanbin; Chen, Chengrong
2017-10-01
Few studies have focused on the effects of long-term forest plantations on the soil profile of carbon (C) and nitrogen (N) stocks. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e., slash pine, hoop pine and kauri pine) and a Eucalyptus species in subtropical Australia. We measured soil extractable organic C (EOC) and N (EON) contents and total C and N stocks under different tree species on the forest floor and along a soil profile to 100 cm depth. The results showed that Eucalyptus had significantly higher soil EOC contents (3.3 Mg ha -1 ) than the other tree species (EOC of 1.9-2.3 Mg ha -1 ) and had significantly higher EON (156 kg ha -1 ) contents than slash pine (107 kg ha -1 ). Eucalyptus had significantly higher soil C (58.9 Mg ha -1 ) and N (2.03 Mg ha -1 ) stocks than the other tree species (22.3-27.6 Mg C ha -1 and 0.71-1.23 Mg N ha -1 ) at 0-100 cm depth. There were no differences in soil C stocks at the 0-100 cm depth among the coniferous tree species. Forest floor C stocks had stronger effects on mineral soil total N stocks than fine root biomass, whereas fine root biomass exerted stronger effects on soil total C stocks at the 0-100 cm depth than forest floor C and N stocks. Our results addressed large differences in soil C and N stocks under different tree species, which can provide useful information for local forest management practices in this region.
NASA Astrophysics Data System (ADS)
Chernitsova, Olga; Krechetov, Pavel
2017-04-01
The study is aimed at the identifying factors and mechanisms controlling the redistribution of nutrients in the profile of sod-podzolic soils (Umbric Albeluvisols Abruptic in WRB, 2006). The data of chemical analyzes of soil samples of soddy-pale-podzolic soils under mixed coniferous-deciduous forests, picked from the genetic horizons of 28 soil profiles up to the depth of 120-150 cm in the key area with a polygonal-block microrelief (58.39°N, 56.52°E) were used. Soil profiles were placed at the key area considering vegetation and microrelief. Samples were analyzed for humus content, available forms of N, P, K, Ca, Mg and soil texture. Published data on the capacity and the structure of biogeochemical cycling in forest phytocenoses of different ages in the southern taiga were summarized. Field sketches were used for the construction of the digital elevation model of the key area and for plotting the vegetation map showing the crowns' projections of trees and shrubs of different species. Using spatial interpolation in GIS, series of schematic maps were created that characterize the depth of the lower boundary of genetic horizons and their thickness, as well as the texture of the different soil horizons, humus content and distribution of nutrients at different depths. These schematic maps were analyzed for patterns of radial and lateral differentiation of all examined features. Pronounced textural differentiation of soils of micro-elevations and poor textural differentiation of soil of micro-depressions are revealed. It is shown that in the soils with the positions from micro-elevations through flat surfaces to micro-depressions the humus content in the upper layers (horizon A) increases 1.6-1.7 times, the content of nitrogen ‒ 1.4-1.5, phosphorus ‒ 2.6 8.4, calcium and magnesium cations ‒ 1.8-2.9 times. This differentiation in nutrients' content is coming along with the settlement of more demanding to soil fertility plants in micro-depressions. Also the bimodal distribution of the available forms of potassium, phosphorus, calcium, magnesium in the soil profile was revealed. The first maximum of nutrients content is detected in the humus-accumulative horizon A, the second - in the illuvial horizon Bt. The eluvial horizons EL are characterized by the minimum values. Considering the thickness of soil horizons, supplies of available forms of phosphorus, potassium, calcium and magnesium were estimated, which are 1.5-2.5 times higher in deeper soil horizons than in the upper ones. The complex ecological and geochemical structure of forest ecosystems is regulated by both the lateral additional supply of mobile chemical compounds by the surface and subsurface runoff, including melted snow water, as well as the peculiarities of biogeochemical cycling (the age of the forest, the penetration depth of suction roots of various species of trees, the chemical composition of the litter).
Savanna Vegetation Dynamics and their Influence on Landscape-Scale C, N, and P Biogeochemistry
NASA Astrophysics Data System (ADS)
Boutton, T. W.; Zhou, Y.; Wu, X. B.; Hyodo, A.
2017-12-01
Soil carbon (C), nitrogen (N) and phosphorus (P) cycles are strongly interlinked and controlled through biological processes, and the P cycle is further controlled through geochemical processes. In grasslands, savannas, and other dryland ecosystems throughout the world, woody plant encroachment often modifies soil C, N, and P stores, although it remains unknown if these three elements change proportionally in response to this vegetation change. We evaluated proportional changes and spatial patterns of soil organic C (SOC), total N (TN), and total P (TP) following woody encroachment by taking spatially-explicit soil cores to a depth of 1.2 m across a subtropical savanna landscape which has undergone encroachment by trees and shrubs during the past century in the Rio Grande Plains, USA. SOC and TN were coupled with respect to increasing magnitudes and spatial patterns along the soil profile following woody encroachment. In contrast, TP increased slower than SOC and TN in surface soils, but faster in subsurface soils. Spatial patterns of TP strongly resembled those of vegetation cover throughout the soil profile, but differed from those of SOC and TN, especially in deeper portions of the profile. The encroachment of woody plants into this P-limited ecosystem resulted in the accumulation of proportionally less soil P compared to C and N in surface soils; however, proportionally more P accrued in deeper portions of the profile beneath woody patches where alkaline soil pH and high carbonate concentrations would favor precipitation of P as relatively insoluble calcium phosphates. Structural equation models (SEM) showed that fine root density explained the greatest proportion of variation in SOC, TN, and TP in the surface soil. In deeper portions of the profile, SEM showed that silt and clay explained much of the variation in SOC and TN, while soil pH strongly controlled TP. This imbalanced relationship highlights that the relative importance of biotic vs. abiotic mechanisms controlling C and N vs. P accumulation following vegetation change may vary with depth in the profile. Our findings suggest that efforts to incorporate the effects of land cover changes into coupled climate-biogeochemical models should attempt to represent C-N-P imbalances that may arise following vegetation change.
Quantifying bioturbation and soil thickening over the late Quaternary
NASA Astrophysics Data System (ADS)
Wilkinson, M. T.; Pietsch, T.; Fox, J. F.
2009-04-01
We present geochemistry and biochemistry data to explore how bioturbation has operated in a residual sandstone-derived soil that thickened during the Holocene following aeolian deflation during the Last Glacial Maximum. Our site is located on a plateau cut into Triassic sandstones in humid Blue Mountains, SE Australia, where precipitation is ~1100 mm/a, and the mean annual maximum and minimum temperatures are 17°C and 5°C, respectively. Vegetation cover increase occurred ~13 ka, based on nearby palaeodune activity and pollen data from other highland sites. Our interpretation of terrestrial cosmogenic radionuclides (TCN) data suggests that ~30 cm of soil thickening has taken place since 13 ka, which includes 16 cm of bedrock lowering. Biofabrics preserve a short-term picture of biotically-displaced soil. In general, bioturbation decreases exponentially with increasing soil depth. The upper 21 cm of the profile is ~95% bioturbated; the middle 13 cm is 13 - 32% bioturbated; and the lowest 52 cm is 1 - 6% bioturbated. Tree roots penetrate weakness in the sandstone below this depth. Fallout radionuclides (7Be, 210Pb, and 137Cs) in the profile also suggest that vertical mixing in the upper 20 - 40 cm occurs over short—decadal—timescales. Optically stimulated luminescene (OSL) data records the time that quartz grains were last at the surface, and are used here to demonstrate vertical mixing of the profile over tens of thousands of years. OSL data indicates that some soil grains at all burial depths were once at the surface, consistent with modern process observations. Carbon and nitrogen isotopic values (delta 13C and delta 15N) of soil organic matter support the existence of soil organic matter turnover in the upper 30 cm of the soil column when regressed with log(SOC) and log(TN). Our carbon isotope data defy typical trends below ~30 cm for residual, undisturbed soils. We suggest this may reflect the absence of bioturbation during the LGM when the climate was cold and dry, and soil was deflated. Since ~13 ka, we believe the vegetation cover increased and bioturbation became affective, resulting in mixing of organic and mineral material, and concurrent soil thickening.
Microwave remote sensing of soil water content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1975-01-01
Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.
Lethal soil temperatures during burning of masticated forest residues
Matt D. Busse; Ken R. Hubbert; Gary O. Fiddler; Carol J. Shestak; Robert F. Powers
2005-01-01
Mastication of woody shrubs is used increasingly as a management option to reduce fire risk at the wildland-urban interface. Whether the resulting mulch layer leads to extreme soil heating, if burned, is unknown. We measured temperature profiles in a clay loam soil during burning of Arctostaphylos residues. Four mulch depths were burned (0, 2.5, 7.5...
Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns
NASA Astrophysics Data System (ADS)
Zhao, Lu Y. L.; Schulin, Rainer; Weng, Liping; Nowack, Bernd
2007-07-01
Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns with a metal-polluted topsoil and two unpolluted subsoils. Soil solution was collected using suction cups installed at centimeter intervals over depth. In the topsoil the concentrations of DOC, dissolved metals (Zn and Cu), major cations (Ca 2+ and Mg 2+) and anions ( NO3- and SO42-) increased with depth. In the subsoil, the Cu and Zn concentrations dropped to background levels within 2 cm. All compounds were much faster mobilized in the first 4 cm than in the rest of the topsoil. DOC and Cu concentrations were higher at higher flow rates for a given depth, whereas the concentrations of the other ions decreased with increasing flow rate. The decomposition of soil organic matter resulted in the formation of DOC, SO42-, and NO3- and was the main driver of the system. Regression analysis indicated that Cu mobilization was governed by DOC, whereas Zn mobilization was primarily determined by Ca and to a lesser extent by DOC. Labile Zn and Cu 2+ concentrations were well predicted by the NICA-Donnan model. The results highlight the value of high-resolution in-situ measurements of DOC and metal mobilization in soil profiles.
Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles
NASA Astrophysics Data System (ADS)
Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine
2015-04-01
Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth profile, with most of the adjacent sampling points also indicating perturbation. This perturbation shows the changes in N cycling, in this case N loss, from these depths due to permafrost aggradation. Deeper parts of some profiles at Stordalen peatland indicate with the same approach an N gain, maybe due to lateral N input to these nutrient poor ecosystems. Most of the uppermost samples in the δ15N depth profiles show no perturbation, potentially due to the adaptation of these soils to the new conditions. Both stable isotope (δ15N and δ13C) depth profiles are suitable to detect palsa uplifting by permafrost. The perturbation of the peat by uplifting as well as the potential nutrient input can be detected by δ15N when related to the C/N ratio. Conen, F., Yakutin, M. V., Carle, N., and Alewell, C. (2013): δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Commun. Mass Spectrom. 27: 1101-1104.
Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5
NASA Astrophysics Data System (ADS)
Gao, J.; Xie, Z.
2016-12-01
Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.
NASA Astrophysics Data System (ADS)
Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.
2018-06-01
Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.
Soil microbial community profiles and functional diversity in limestone cedar glades
Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram
2016-01-01
Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.
NASA Astrophysics Data System (ADS)
Knicker, Heike; González-Vila, Fransisco; Clemente-Salas, Luis
2017-04-01
The Doñana National Park is located at the mouth of the river Guadalquivir in Southern Spain and represents one of the largest marshlands reserves of Europe. Although vegetation fires are now prevented as far as possible, some of the areas were formerly subjected to frequent prescribed fires since 1628 (approximately every 25-30 years). The so formed pyrogenic organic matter (PyOM) is supposed to compose a major proportion of the slow-cycling carbon pools in soils and as such it is expected to affect quality and quantity of the soil organic matter (SOM) in the present reclaimed soils. In order to test this, the SOM of three profiles (Humaquepts) within the protected center region were analyzed by solid state 13C NMR spectroscopy. The respective pyrogenic organic carbon (PyOC) content was elucidated, using the chemical oxidation method. Two of the selected profiles had experienced no fire since installation of the park in 1969. Here, no major quantities of PyOC were recovered in the O layer, but an increase of aromaticity correlating with PyOC contents was revealed with soil depth. At both sites, PyOC accounted for more than 15% of the Ctot in the A/C horizon (> 50 cm). This clearly evidences a downward translocation of charcoal within the soil profile. The third profile suffered a severe fire in 1985. The fire combusted all of the O layer (0-20 cm), but after 19 years, it recovered to approximately 15 cm, although only minor contributions of PyOC were revealed. Whereas directly after the fire, the soil at a depths of 55 cm contained only 3 mg g-1 organic C without any evidence of PyOC, after 16 and 19 years a clear increase of Ctot (10-15 mg g-1) with a considerable contribution of PyOC (12% of Ctot) was revealed. Although the absolute concentration of PyOC did not decrease in the lower depths, its relative contribution to Ctot declined. This may be explained by the constant input of fresh litter l, which on a long term masks the presence of char. Alternatively, a more efficient downwards transport and subsequent stabilization of PyOC may have occurred. In summary, the studied profiles clearly demonstrate that not only in tropical soils but also in fire-affected soils of the temperate climatic zones, PyOC has an important contribution to the chemical composition of humic material in deeper horizons.
Vertical Profiling of Soil Vapor Concentrations Using a New Passive Diffusion Sampler at a UST Site
Understanding the transport of volatile contaminants in soil gas, particularly those associated with underground storage tanks (USTs), requires a detailed knowledge about the depth-dependent distribution of chemical species in the subsurface. Traditional monitoring wells generall...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id; Brotopuspito, Kirbani S.; Sismanto
The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several differentmore » offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.« less
Hydrologic regulation of plant rooting depth
Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos
2017-01-01
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change. PMID:28923923
Hydrologic regulation of plant rooting depth.
Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos
2017-10-03
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.
Hydrologic regulation of plant rooting depth
NASA Astrophysics Data System (ADS)
Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos
2017-10-01
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.
Ammonium, Nitrate, and Total Nitrogen in the Soil Water of Feedlot and Field Soil Profiles1
Elliott, L. F.; McCalla, T. M.; Mielke, L. N.; Travis, T. A.
1972-01-01
A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface. PMID:16349922
NASA Astrophysics Data System (ADS)
Angst, Gerrit; John, Stephan; Rethemeyer, Janet; Kögel-Knabner, Ingrid; Mueller, Carsten W.
2014-05-01
Subsoils can significantly contribute to the terrestrial C pool. While processes of C turnover and storage in topsoils are generally well understood, little is known about subsoils. Our project, embedded within the DFG research group FOR 1806, aims to contribute to the knowledge about subsoil C by differentiating soil organic matter (SOM) in terms of its origin and its composition. In order to obtain a meaningful sample set we studied three soil ditches, 3.15 m in length and 2.15 m in depth, in a podzolic Cambisol under European beech (Fagus sylvatica L.) north of Hannover, Germany. In a to date unique sampling approach we took 64 soil samples in a regular vertical grid in each of the soil profiles, thus identifying possible gradients between top- and subsoil. The samples were subjected to a combined density and particle size fractionation to separate particulate organic matter (POM) from mineral compartments. We especially aimed at obtaining the combined fine silt and clay fraction which is thought to be most important in the long term stabilization of SOM. The chemical composition of the so obtained fractions and the bulk soil was revealed by C, N and 13C CPMAS NMR measurements. The source of OM in the soil was investigated by tracing the biopolymers cutin and suberin across the soil profile. Cutin occurs mainly in the cuticula of leaves while suberin mainly constitutes the endodermal cell walls of plant roots. In soils the two polymers can thus be used as proxies for above and belowground OM input respectively. To release the constituting monomers of the two biopolymers from the soil samples the latter were pretreated with organic solvents to extract free lipids. The soil residues were subsequently subjected to a base hydrolysis and the so obtained extracts were measured with GC/MS. The organic C contents of the bulk soil decrease significantly with depth in all transects from around 15 mg g-1 to 2 mg g-1. This is likely associated with the very high sand and low clay concentrations and the decreasing POM content at greater depths in the soil profiles. The highest C contents were found in the POM fractions with 400 mg g-1 and the combined fine silt and clay fractions with 6 mg g-1. Interestingly the NMR spectra display an already highly processed POM in the uppermost soil horizon as indicated by high alkyl/O-alkyl C ratios. This, together with the absence of POM in greater depths, points towards a decomposition of aboveground OM predominantly in the upper zones of the soil and a confined root input to deeper soil regions.
Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David
2005-01-01
The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.
Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing
NASA Astrophysics Data System (ADS)
Laio, Francesco
2014-05-01
The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.
Soil formation in the Tsauchab Valley, Namibia
NASA Astrophysics Data System (ADS)
Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg
2016-04-01
The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.
NASA Astrophysics Data System (ADS)
Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio
2015-04-01
Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high soil input and the abundance of aromatic structures suggesting chemical recalcitrance, also, cellulose that lignin contents were also assayed. References -Ciavatta C., Govi M., Vittori Antisari L., Sequi P. (1990). Characterization of humified compounds by extraction and fractionation on solid polyvinylpyrrolidone. Journal of Chromatography, 509:141-146. -Dell'Abate M.T., Benedetti A., Trinchera A., Dazzi C. (2002). Humic substances along the profile of two Typic Haploxerert. Geoderma, 107:281-296.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; He, Zhili; Wang, Aijie
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; ...
2017-10-27
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye
2018-01-01
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.
Characterizing Extreme Environments for Army Testing
2004-12-01
necessary to evaluate the plain, upland), well-developed and variable soil capability to conduct a specific test at a given location. profiles ( oxisols ...m) to medium (up to 20m) width streams, with nominal nominal velocities (ងm/s). Soils: Oxisols , ultisols, inceptisols, minimum depth in the range
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy; Lipiec, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Due to the large variation of soil moisture in space and in time, obtaining soil water balance with an aid of data acquired from the surface is still a challenge. Microwave remote sensing is widely used to determine the water content in soil. It is based on the fact that the dielectric constant of the soil is strongly dependent on its water content. This method provides the data in both local and global scales. Very important issue that is still not solved, is the soil depth at which radiometer "sees" the incoming radiation and how this "depth of view" depends on water content and physical properties of soil. The microwave emission comes from its entire profile, but much of this energy is absorbed by the upper layers of soil. As a result, the contribution of each layer to radiation visible for radiometer decreases with depth. The thickness of the surface layer, which significantly contributes to the energy measured by the radiometer is defined as the "penetration depth". In order to improve the physical base of the methodology of soil moisture measurements using microwave remote sensing and to determine the effective emission depth seen by the radiometer, a new algorithm was developed. This algorithm determines the reflectance coefficient from Fresnel equations, and, what is new, the complex dielectric constant of the soil, calculated from the Usowicz's statistical-physical model (S-PM) of dielectric permittivity and conductivity of soil. The model is expressed in terms of electrical resistance and capacity. The unit volume of soil in the model consists of solid, water and air, and is treated as a system made up of spheres, filling volume by overlapping layers. It was assumed that connections between layers and spheres in the layer are represented by serial and parallel connections of "resistors" and "capacitors". The emissivity of the soil surface is calculated from the ratio between the brightness temperature measured by the ELBARA radiometer (GAMMA Remote Sensing AG) and the physical temperature of the soil surface measured by infrared sensor. As the input data for S-PM: volumes of soil components, mineralogical composition, organic matter content, specific surface area and bulk density of the soil were used. Water contents in the model are iteratively changed, until emissivities calculated from the S-PM reach the best agreement with emissivities measured by the radiometer. Final water content will correspond to the soil moisture measured by the radiometer. Then, the examined soil profile will be virtually divided into thin slices where moisture, temperature and thermal properties will be measured and simultaneously modelled via S-PM. In the next step, the slices will be "added" starting from top (soil surface), until the effective soil moisture will be equal to the soil moisture measured by ELBARA. The thickness of obtained stack will be equal to desired "penetration depth". Moreover, it will be verified further by measuring the moisture content using thermal inertia. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
Wang, Jian-Lin; Zhong, Zhi-Ming; Wang, Zhong-Hong; Chen, Bao-Xiong; Zhang, Xian-Zhou; Shen, Zhen-Xi; Hu, Xing-Xiang; Dacizhuoga
2013-12-01
The distribution characteristics of soil N/P ratio in alpine grassland ecosystem of Qinghai-Tibet Plateau were surveyed by field investigation and laboratory analysis. Horizontally, soil N/ P ratio was generally higher in west and lower in east in a manner of staggered patch distribution, with higher N/P ratios mainly centralized in the hinterland of northern part of Tibet Plateau and in the lake basin area of the northern foot of Himalayas. Significant differences in soil N/P ratio were observed among grassland types and natural transects. Vertically, the distribution of N/P ratio along the soil profile from aboveground to underground among different grass types could be categorized into five patterns, including low-high-low-high, low-high-low, low-high, high-low-high-low, and high-low-high. The N/P ratio showed a significant positive correlation with soil bulk density at 0-20 cm depth, soil water content at 20-30 cm depth, contents of soil available K and total nitrogen, respectively. However, it showed significant negative correlation with soil bulk density at 20-30 cm depth, contents of soil available P and total P, respectively.
Deep horizons: Soil Carbon sequestration and storage potential in grassland soils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel
2016-04-01
Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.
Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng
2015-09-01
The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the increasing soil depth from all plots.
NASA Astrophysics Data System (ADS)
Gocke, M. I.; Kessler, F.; van Mourik, J. M.; Jansen, B.; Wiesenberg, G. L. B.
2015-12-01
Soil studies commonly comprise the uppermost meter for tracing e.g. soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of e.g. nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift- and coversands. The study site is located at Bedafse Bergen (SE Netherlands) in a 200 year old oak stand. A recent Podzol developed on driftsand covering a Plaggic Anthrosol that established in a relict Podzol on Late Glacial eolian coversand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots maximized in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support and explain pedogenic investigations of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.
NASA Astrophysics Data System (ADS)
Gocke, Martina I.; Kessler, Fabian; van Mourik, Jan M.; Jansen, Boris; Wiesenberg, Guido L. B.
2016-10-01
Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10-15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2-5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m-2, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment-(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.
NASA Astrophysics Data System (ADS)
Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.
2017-12-01
Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.
Landscape scale estimation of soil carbon stock using 3D modelling.
Veronesi, F; Corstanje, R; Mayr, T
2014-07-15
Soil C is the largest pool of carbon in the terrestrial biosphere, and yet the processes of C accumulation, transformation and loss are poorly accounted for. This, in part, is due to the fact that soil C is not uniformly distributed through the soil depth profile and most current landscape level predictions of C do not adequately account the vertical distribution of soil C. In this study, we apply a method based on simple soil specific depth functions to map the soil C stock in three-dimensions at landscape scale. We used soil C and bulk density data from the Soil Survey for England and Wales to map an area in the West Midlands region of approximately 13,948 km(2). We applied a method which describes the variation through the soil profile and interpolates this across the landscape using well established soil drivers such as relief, land cover and geology. The results indicate that this mapping method can effectively reproduce the observed variation in the soil profiles samples. The mapping results were validated using cross validation and an independent validation. The cross-validation resulted in an R(2) of 36% for soil C and 44% for BULKD. These results are generally in line with previous validated studies. In addition, an independent validation was undertaken, comparing the predictions against the National Soil Inventory (NSI) dataset. The majority of the residuals of this validation are between ± 5% of soil C. This indicates high level of accuracy in replicating topsoil values. In addition, the results were compared to a previous study estimating the carbon stock of the UK. We discuss the implications of our results within the context of soil C loss factors such as erosion and the impact on regional C process models. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Navas, Ana; Serrano, Enrique; López-Martínez, Jerónimo; Gaspar, Leticia; Mink, Sandra
2013-04-01
Soils in ice-free areas of Elephant Island (South Shetland Islands, Antarctic Peninsula region) have been forming since the last deglaciation in an Antarctic maritime climate that is warmer and more humid than in interior Antarctica. The studied ice-free areas correspond mostly to coastal promontories and the underlain materials are composed of metamorphic rocks. A soil survey was carried out in the largest ice-free areas at the western coast of the island at Stinker Point and Lindsey Cape, as a part of a broader study on soils and geomorphology in maritime Antarctica. A soil sampling campaign was undertaken with the aim of characterizing soils developed on different geomorphic features and to investigate the processes involved in their development following the glacial retreat, that started in the area probably later than 4000 yr BP. Study sites have glacial deposits and raised marine surfaces and they include areas with different mosses and lichens coverage. Profiles were located at altitudes ranging from 30 to 90 m a.s.l. at Stinker Point and at 140 m a.s.l. at Lindsey Cape. A total of 8 soil profiles of variable depths were sampled at depth increment intervals of 5 cm until rock outcrop (15-30 cm). Distinctive geomorphic features have been described at the study sites to assess the extent of the relationship between soil characteristics and geomorphology. The main soil properties analysed were: pH, electrical conductivity, carbonate content, bulk density, soil texture and soil fertility indicators (organic matter and soil organic carbon content, nitrogen, available phosphorous and potassium). Analyses of stable elements and activities of fallout (FRN's) and environmental radionuclides (ERN's) were also performed in the interval samples. The studied Cryosols are stony with no clear horizon differentiation and the soil texture is mostly silty loam. The soils have in general low contents of organic matter (0.3-2.7 %), carbon (0.16 - 1.6 %) and nitrogen (< 0.33 %). Available K and P contents and N vary largely among the profiles in relation to ornithogenic activity. Carbonate contents are very low (< 1.0 %) and average electrical conductivity is 0.14 dS m-1. The pH ranges between 3.9 and 8.6 and variation from acid to alkaline profiles is related to the profile position. The major elements Al, Fe, Ca and Na, were the most abundant in that order, followed by Mg, K, Mn and then Pb, Ba and Sr whereas Cr, Zn, Li, Co, Ni and Cd are present as trace elements. In two profiles on intermediate marine platforms, the FRN's concentrate at the topsoil, where 137Cs and 210Pbex activities are 11 and 20 Bq/kg, respectively. The depth distribution of ERN's is quite homogeneous, especially for 226Ra and 232Th activities, whereas larger variations are observed for 40K and to less extent for 238U. The absence of 137Cs and depleted levels of 210Pbexin soils on till materials of moraines is likely related to the age of ice retreat but soil disturbance can not be disregarded. Cryogenic processes triggering the mechanical disintegration of bedrock by freezing-thaw cycles within the soil active layer and wetting-drying are main processes involved in soil development in Elephant Island. This research provides information on past environmental changes of interest to understand the soil response to actual changes.
Fate of 137Cs, 90Sr and 239+240Pu in soil profiles at a water recharge site in Basel, Switzerland.
Abraham, Johannes; Meusburger, Katrin; Waldis, Judith Kobler; Ketterer, Michael E; Zehringer, Markus
2018-02-01
An important process in the production of drinking water is the recharge of the withdrawn ground water with river water at protected recharge fields. While it is well known that undisturbed soils are efficiently filtering and adsorbing radionuclides, the goal of this study was to investigate their behaviour in an artificial recharge site that may receive rapid and additional input of radionuclides by river water (particularly when draining a catchment including nuclear power plants (NPP)). Soil profiles of recharge sites were drilled and analysed for radionuclides, specifically radiocesium ( 137 Cs), radiostrontium ( 90 Sr) and plutonium ( 239+240 Pu). The distribution of the analysed radionuclides were compared with an uncultivated reference soil outside the recharge site. The main activity of 137 Cs was located in the top soil (4.5-7.5 cm) and reached down to a depth of 84 cm and 48 cm for the recharge and the reference site, respectively. The found activities of 239+240 Pu originate from the global fallout after 1950. 239+240 Pu appeared to be strongly adsorbed onto soil particles. The shape of the depth profile was similar to 137 Cs, but also similar between the recharge and the reference site. In contrast, 90 Sr showed a uniform distribution over the entire depth of the recharge and reference profiles indicating that 90 Sr already entered the gravel zone and the ground water. Elevated inventories of the radionuclides were observed for the recharge site. The soil of the recharge field exhibited a threefold higher activity of 137 Cs compared to the reference soil. Also for 239+240 Pu higher inventories where observed for the recharge sites (40%). 90 Sr behaved differently, showing similar inventories between reference and recharge site. We estimate that 75-89% of the total inventory of 137 Cs in the soil at the recharge site (7.000 Bq/m 2 ) originated from the fallout of the Chernobyl accident and from emissions of Swiss NPPs. This estimate is based on the actual activity ratio of 137 Cs/ 239+240 Pu of 22 for global fallout. The investigations identified radiostrontium as potential threat to the ground water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Krutz, L Jason; Shaner, Dale L; Zablotowicz, Robert M
2010-01-01
The aim of this report is to inform modelers of the differences in atrazine fate between s-triazine-adapted and nonadapted soils as a function of depth in the profile and to recommend atrazine and metabolite input values for pesticide process submodules. The objectives of this study were to estimate the atrazine-mineralizing bacterial population, cumulative atrazine mineralization, atrazine persistence, and metabolite (desethylatrazine [DEA], deisopropylatrazine [DIA], and hydroxyatrazine [HA]) formation and degradation in Colorado and Mississippi s-triazine-adapted and nonadapted soils at three depths (0-5, 5-15, and 15-30 cm). Regardless of depth, the AMBP and cumulative atrazine mineralization was at least 3.8-fold higher in s-triazine-adapted than nonadapted soils. Atrazine half-life (T1/2) values pooled over nonadapted soils and depths approximated historic estimates (T1/2 = 60 d). Atrazine persistence in all depths of s-triazine-adapted soils was at least fourfold lower than that of the nonadapted soil. Atrazine metabolite concentrations were lower in s-triazine-adapted than in nonadapted soil by 35 d after incubation regardless of depth. Results indicate that (i) reasonable fate and transport modeling of atrazine will require identifying if soils are adapted to s-triazine herbicides. For example, our data confirm the 60-d T1/2 for atrazine in nonadapted soils, but a default input value of 6 d for atrazine is required for s-triazine adapted soils. (ii) Literature estimates for DEA, DIA, and HA T1/2 values in nonadapted soils are 52, 36, and 60 d, respectively, whereas our analysis indicates that reasonable T1/2 values for s-triazine-adapted soils are 10 d for DEA, 8 d for DIA, and 6 d for HA. (iii) An estimate for the relative distribution of DIA, DEA, and HA produced in nonadapted soils is 18, 72, and 10% of parent, respectively. In s-triazine-adapted soils, the values were 6, 23, and 71% for DIA, DEA, and HA, respectively. The effects of soil adaptation on metabolite distribution need to be confirmed in field experiments.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez
2014-01-01
Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meharg, A.A.; Shore, R.F.; Broadgate, K.
The toxicity and accumulation of arsenate was determined in the earthworm Lumbricus terrestris in soil from different layers of a forest profile. Toxicity increased fourfold between 2 and 10 d. Edaphic factors (pH, soil organic matter, and depth in soil profile) also affected toxicity with a three fold decrease in the concentration that causes 50% mortality with increasing depth in soil. In a 4-d exposure study, there was no evidence of arsenic bioconcentration in earthworm tissue, although bioaccumulation was occurring. There was a considerable difference in tissue residues between living and dead earthworms, with dead worms having higher concentrations. Thismore » difference was dependent on both soil arsenate concentration and on soil type. Over a wide range of soil arsenate concentrations, earthworm arsenic residues are homeostatically maintained in living worms, but this homeostasis breaks down during death. Alternatively, equilibration with soil residues may occur via accumulation after death. In long-term accumulation studies in soils dosed with a sublethal arsenate concentration, bioconcentration of arsenate did not occur until day 12, after which earthworm concentrations rose steadily above the soil concentration, with residues in worms three fold higher than soil concentrations by the termination of the study. This bioconcentration only occurred in depurated worms over the time period of the study. Initially, depurated worms had lower arsenic concentrations than undepurated until tissue concentrations were equivalent to the soil concentration. Once tissue concentration was greater than soil concentration, depurated worms had higher arsenic residues than undepurated.« less
Differential priming of soil carbon driven by soil depth and root impacts on carbon availability
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Graaff, Marie-Anne; Jastrow, Julie D.; Gillette, Shay
2013-11-15
Enhanced root-exudate inputs can stimulate decomposition of soil carbon (C) by priming soil microbial activity, but the mechanisms controlling the magnitude and direction of the priming effect remain poorly understood. With this study we evaluated how differences in soil C availability affect the impact of simulated root exudate inputs on priming. We conducted a 60-day laboratory incubation with soils collected (60 cm depth) from under six switchgrass (Panicum virgatum) cultivars. Differences in specific root length (SRL) among cultivars were expected to result in small differences in soil C inputs and thereby create small differences in the availability of recent labilemore » soil C; whereas soil depth was expected to create large overall differences in soil C availability. Soil cores from under each cultivar (roots removed) were divided into depth increments of 0–10, 20–30, and 40–60 cm and incubated with addition of either: (1) water or (2) 13C-labeled synthetic root exudates (0.7 mg C/g soil). We measured CO2 respiration throughout the experiment. The natural difference in 13C signature between C3 soils and C4 plants was used to quantify cultivar-induced differences in soil C availability. Amendment with 13C-labeled synthetic root-exudate enabled evaluation of SOC priming. Our experiment produced three main results: (1) switchgrass cultivars differentially influenced soil C availability across the soil profile; (2) small differences in soil C availability derived from recent root C inputs did not affect the impact of exudate-C additions on priming; but (3) priming was greater in soils from shallow depths (relatively high total soil C and high ratio of labile-to-stable C) compared to soils from deep depths (relatively low total soil C and low ratio of labile-to-stable C). These findings suggest that the magnitude of the priming effect is affected, in part, by the ratio of root exudate C inputs to total soil C and that the impact of changes in exudate inputs on the priming of SOC is regulated differently in surface soil compared to subsoil.« less
NASA Astrophysics Data System (ADS)
Hobley, E.; Honermeier, B.; Don, A.; Gocke, M. I.; Amelung, W.; Kogel-Knabner, I.
2016-12-01
We investigated the effects of pre-crops with and without biological nitrogen fixation capacity (fava beans, clover mulch, fodder maize) and fertilization (no fertilizer, NPK fertilizer, PK fertilizer) on soil physico-chemical properties (bulk density, electrical conductivity, soil organic carbon (SOC) concentration and stocks, N concentration and stocks) and their depth distribution (down to 1 m) at a long-term field experiment set up in 1982 in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the entire soil profile. The soil was physically and chemically affected by the type of pre-crop. Plots with fava beans and maize had lower bulk densities in the subsoil than those with clover. Pre-crop type also significantly affected the depth distribution of both N and SOC. Specifically, clover pre-cropping led to an enrichment of N at the surface compared with fava beans and maize. SOC enrichment at the surface was also observed under clover, with the effect most pronounced under PK fertilization. Combined with the bulk density effects, this shift in N distribution resulted in significantly higher N stocks under clover than under fava beans. However, the total stocks of SOC were not affected by pre-crop or fertilizer regime. Our results indicate that humans influence C and N cycling and distribution in soils through the selection of pre-crops and that the influence of crop type is greater than that of fertilization regimes. Pre-cropping with clover, which is used as a mulch, leads to N enrichment in the topsoil, reducing the need for N fertilizer for the subsequent cereal crop. In contrast, the use of fava beans as a pre-crop does not lead to N enrichment. We believe this is due to the greater rooting depth of fava beans compared with clover, resulting in lower bulk density in the subsoil and associated lower stocks. Additionally, the harvest of fava beans removes N-rich biomass from the soil, lowering N-input. Lastly, the uptake of water at depth may facilitate subsoil N uptake, so that fava bean N is utilized by the cereal crop but does not lead to its enrichment in the subsoil.
NASA Astrophysics Data System (ADS)
Coppola, A.; Santini, A.; Botti, P.; Vacca, S.; Comegna, V.; Severino, G.
2004-06-01
This paper aims mainly to provide experimental evidence of the consequences of urban wastewater reuse in irrigation practices on the hydrological behavior of soils. The effects on both the hydraulic and dispersive properties of representative soils in southern Sardinia are illustrated. Ten undisturbed soil monoliths, 120 cm in height and 40 cm in diameter, were collected from plots previously selected through a soil survey. Soil hydraulic and solute transport properties were determined before and after application of wastewater using transient water infiltration and steady state-solute transport column experiments. Detailed spatial-temporal information on the propagation of water and solute through the soil profiles were obtained by monitoring soil water contents, θ, pressure heads, h, and solute concentrations, C, measured by a network of time domain reflectometry probes, tensiometers and solution samplers horizontally inserted in each column at different depths. A disturbed layer at the soil surface, which expands in depth with time, was observed, characterized by reduced soil porosity, translation of pore size distribution towards narrower pores and consequent decrease in water retention, hydraulic conductivity and hydrodynamic dispersion. It is shown that these changes occurring in the disturbed soil layer, although local by nature, affect the hydrological behavior of the whole soil profile. Due to the disturbed layer formation, the soil beneath never saturates. Such behavior has important consequences on the solute transport in soils, as unsaturated conditions mean higher residence times of solutes, even of those normally characterized by considerable mobility (e.g. boron), which may accumulate along the profile. The results mainly provide experimental evidence that knowledge of the chemical and microbiological composition of the water is not sufficient to evaluate its suitability for irrigation. Other factors, mainly soil physical and hydrological characteristics, should be considered in order to define appropriate guidelines for wastewater management.
Gutiérrez Del Arroyo, Omar; Silver, Whendee L
2018-04-01
Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny
2017-04-01
Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water stable aggregates in the profile under arable land. These data indicate the correlation between the wettability of soils with the content of organic matter and their influence on the formation of water stable structure, as well as the negative impact of tillage on the analyzed characteristics.
NASA Astrophysics Data System (ADS)
Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.
2017-12-01
Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers is essential to: i) quantify more accurately C source/sink fluxes as part of the global carbon budget, ii) improve the current biogeochemical models predicting the effect of drought periods on greenhouse gas effluxes, and iii) identify more sustainable silvicultural practices for tropical planted forests in a context of climate change.
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng
2018-04-01
Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.
NASA Astrophysics Data System (ADS)
Hagimoto, Y.; Cuenca, R. H.
2015-12-01
Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.
NASA Astrophysics Data System (ADS)
Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.
2017-12-01
Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.
Spatial and temporal variability of soil moisture on the field with and without plants*
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.
2012-04-01
Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.
Isotopic ratios of 36Cl/Cl in Japanese surface soil
NASA Astrophysics Data System (ADS)
Seki, R.; Matsuhiro, T.; Nagashima, Y.; Takahashi, T.; Sasa, K.; Sueki, K.; Tosaki, Y.; Bessho, K.; Matsumura, H.; Miura, T.
2007-06-01
We have measured the 36Cl/Cl ratio of uncultivated surface soil samples collected from 11 areas distributed throughout Japan to determine the undisturbed value of the ratio. The ratio was found to be on the order of 10-13 except for the Tokai-mura area, where four research reactors, two commercial nuclear power plants and a nuclear fuel reprocessing plant have been operated. The observed ratio in the Tokai-mura area was higher than 10-12. Notably, soil samples collected from a site of commercial BWR nuclear power plants in Fukushima prefecture showed no significant increase in 36Cl/Cl ratio. The 36Cl/Cl ratio depth profiles of soil samples collected at both of Makabe-town and Tokai-mura were also measured. Since Makabe-town is located about 50 km apart from Tokai-mura, we do not expect it to be affected by the nuclear facilities. No large variations were observed in the Makabe depth profile; the measured ratios ranged from ∼3 to ∼5 × 10-13. The result obtained for Tokai-mura is significantly different in that from the surface to about 80 cm depth, the measured ratios, ∼10-12, are much higher than any at Makabe. At depth below 80 cm, the Tokai-mura ratios are lower and become indistinguishable from those at Makabe. The 36Cl/Cl ratio in unaffected areas of Japan is estimated to be 3-4 × 10-13.
Evaluation of HCMM data for assessing soil moisture and water table depth. [South Dakota
NASA Technical Reports Server (NTRS)
Moore, D. G.; Heilman, J. L.; Tunheim, J. A.; Westin, F. C.; Heilman, W. E.; Beutler, G. A.; Ness, S. D. (Principal Investigator)
1981-01-01
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables.
Schaub, Monika; Alewell, Christine
2009-05-01
Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r = 0.80) which goes in parallel with increasing (visible) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate delta(13)C value (-27.5 per thousand) for affected wetland soil horizons (0-12 cm) between upland (aerobic metabolism, relatively heavier delta(13)C of -26.6 per thousand) and wetland isotopic signatures (anaerobic metabolism, relatively lighter delta(13)C of -28.6 per thousand). Carbon isotopic signature and SOC content are found to be sensitive indicators of short- and long-term soil erosion processes. Copyright (c) 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jakab, Gergely; Hegyi, István; Fullen, Michael; Szalai, Zoltán
2017-04-01
In addition to the serious environmental hazard soil erosion forms and reforms the soil surface. The intensity of these degrading and burial processes is highly variable, it fluctuates in time. One can only get a single view of the current status by the spatial analysis of soil depth and properties. Present study aims to estimate the dynamics of the former driving processes in detail those resulted the recent form of the landscape. Soil samples were taken along two intensively cultivated catenas from the surface to the parent material in vertical and from the ridge to the toe in horizontal direction. A non disturbed soil profile under continuous forest was also sampled as the initial, control status. Soil organic carbon (SOC), total nitrogen (TN), carbon nitrogen ratio (C/N), 13C and 15N stable isotope ratios were measured. Soil redistribution was supposed to be started right after the forest clearance 300 years before. Results indicated that the whole amount of solum (1 m) was taken by erosion in some local spots. Most of the soil loss was deposited at the toe, while vertical SOC and δ13C distributions (peaks) in the deposited profiles indicated the original soil surface at various depth. SOC peak in the profile indicated deeper in situ solum compared to the vertical peaks of the C/N and δ13C values. Presumably the layer of the highest SOC values in the sedimentation profiles is also formed by the deposition of initial soil loss from the upper parts of the catena. At this initial phase the selectivity of erosion was supposed to be quite effective for SOC that resulted the highest value. Therefore C/N and δ13C peaks fingerprint the original, in situ soil surface more adequately. The most effective erosion and deposition period was immediately after forest clearance. This emphasized that continuous tillage erosion had subordinate role compared to that of relief. Moreover, SOC erosion and burial in the present case was a sink in terms of mitigation of the atmospheric carbon content. G. Jakab was supported by the János Bolyai scholarship of the HAS, which is kindly acknowledged.
Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.
Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio
2016-01-01
Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J. L.
1980-01-01
The author has identified the following significant results. Day thermal data were analyzed to assess depth to groundwater in the test site. HCMM apparent temperature was corrected for atmospheric effects using lake temperature of the Oahe Reservoir in central South Dakota. Soil surface temperatures were estimated using an equation developed for ground studies. A significant relationship was found between surface soil temperature and depth to groundwater, as well as between the surface soil-maximum air temperature differential and soil water content (% of field capacity) in the 0 cm and 4 cm layer of the profile. Land use for the data points consisted of row crops, small grains, stubble, and pasture.
NASA Astrophysics Data System (ADS)
Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.
2009-07-01
The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.
Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.
Sipos, Péter; Németh, Tibor; Mohai, Ilona
2005-02-01
Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.
Wood, Warren W.; Petraitis, Michael J.
1984-01-01
Partial pressures of CO2, O2, N2, and Ar were monitored at two locations in the Ogallala aquifer system on the Southern High Plains of Texas. Samples were collected monthly during parts of 1980–1981 from nine depths ranging from 0.6 to 36 meters below land surface. PCO2 was observed to be greater at depth than in the active soil zone and thus appears to contradict the normal process in which CO2 is generated in the soil zone and diffuses upward to the atmosphere and downward to the water table. The δ13C of the CO2 gas was quite uniform and averaged −17.9 per mil. PO2 declined with depth, suggesting in situ generation of CO2 by the oxidation of carbon. Several hypotheses were considered to explain the origin of the CO2 at depth. It was concluded that the most probable hypothesis was that dissolved and particulate organic carbon introduced by recharging water was oxidized to CO2 by the aerobic microbial community that utilized oxygen diffusing in from the atmosphere. This hypothesis is consistent with the CO2 concentration profile, calculated production profile of CO2, δ13C values of CO2 gas, caliche, soil humic acid fraction, and dissolved carbonate in groundwater. The abundance of CO2, its concentration profile, and its probable origin provide information for evaluating the observed complex sequence of caliche dissolution and precipitation known to occur in the aquifer.
Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie
2018-05-01
UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at 285/365-700 nm.
Coupling data from U-series and 10Be CRN to evaluate soil steady-state in the Betic Cordillera
NASA Astrophysics Data System (ADS)
Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Granet, Mathieu; Chabaux, François
2015-04-01
The regolith mantel is produced by weathering of bedrock through physical and biochemical processes. At the same time, the upper part of the regolith is eroded by gravity mass movements, water and wind erosion. Feedback's between production and erosion of soil material are important for soil development, and are essential to reach long-term steady-state in soil chemical and physical properties. Nowadays, long-term denudation rates of regolith can be quantified by using in-situ cosmogenic nuclides (CRN). If the soil thickness remains constant over sufficiently long time, soil production rates can be determined. However, the a priori assumption of long-term steady-state can be questionable in highly dynamic environments. In this study, we present analytical data from two independent isotopic techniques, in-situ cosmogenic nuclides and Uranium series disequilibrium. The disequilibrium of Uranium isotopes (238U, 234U, 230Th, 226Ra) is an alternative method that allows assessing soil formation rates through isotopic analysis of weathering products. Nine soil profiles were sampled in three different mountain ranges of the Betic Cordillera (SE Spain): Sierra Estancias, Filabres, Cabrera. All soils overly fractured mica schist and are very thin (< 60cm). In each soil profile, we sampled 4 to 6 depth slices in the soil profile, the soil-bedrock interface and (weathered) bedrock. Three of the nine soil profiles were sampled for U-series isotope measurements at EOST (University of Strasbourg). The surface denudation rates (CRN) are about the same in the Sierra Estancias and Filabres (26 ± 10 mm/ky) and increase up to 103 ± 47 mm/ky in the Sierra Cabrera. The spatial variation in soil denudation rates is in agreement with the variation in catchment-wide denudation rates presented by Bellin et al. (2014) which present the highest rates in the Sierra Cabrera (104-246mm/kyr). Moreover it roughly coincides with the pattern of long-term exhumation of the Betic Cordillera. Results from first simulations of the U-series disequilibrium model rather suggest that soil production rates are of the same order of magnitude in the Sierra Estancias and Cabrera. In the Sierra Filabres, the U-series disequilibrium in the depth profile do not respect the hypotheses of the model therefore no rates of soil production could be constrain for this profile. Thanks to the coupling of the two isotopic datasets the long term soil development will be explored in two profiles. This study highlights that comparison and combination of analytical techniques is useful to further unravel the mechanisms of chemical and physical weathering in such dynamic environments. Bellin, N., Vanacker, V., and Kubik, P. W., 2014, Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera: Earth and Planetary Science Letters, v. 390, p. 19-30.
Patterns and drivers of fungal community depth stratification in Sphagnum peat
USDA-ARS?s Scientific Manuscript database
Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to 1) examine how fungi are influenced by depth in the peat profile, water table (WT) and plant functional group (PFG) at the ons...
Distribution of soil organic carbon in the conterminous United States
Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.
2014-01-01
The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.
Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu
2013-01-01
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0-100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0-20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0-60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0-60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0-60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0-60 cm depth were increased by 64.9-91.9%, 42.5-56.9%, and 74.7-99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization.
Observational Evidence of Changes in Soil Temperatures across Eurasian Continent
NASA Astrophysics Data System (ADS)
Zhang, T.
2015-12-01
Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.
Ginocchio, Rosanna; Carvallo, Gastón; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepúlveda, Nancy
2004-01-01
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.
Wang, Na; Xu, Wen Qiang; Xu, Hua Jun; Feng, Yi Xing; Li, Chao Fan
2017-07-18
The southern margin desert of Junggar Basin in the central arid region of Asia was selec-ted as the study area. To gain insight into the distribution characteristic of stable carbon isotope and the relationship between the change of soil carbon and the distance to oasis of soil organic carbon (SOC) and soil inorganic carbon (SIC), three belt transects were set according to the distance between the desert and the oasis in edge, middle and hinterland of the desert respectively, and collected the soil profile samples with depth of 2 m. The results indicated that the SOC content reduced with the soil depth, and the variation with the distance to oasis was the edge> the middle> the hinterland. The δ 13 C value of SOC varied in the range of -21.92‰ to -17.41‰, and decreased with the depth; the range in the middle and hinterland was -25.20‰ to -19.30‰, and increased then declined with the depth. Therefore, we could infer that the C3 plants played a dominant role in the central of desert, and had experienced the succession from C3 plants to C4 plants. The average content of SIC was 38.98 g·kg -1 in the edge of desert, which was about 6.01 folds as large as the content in the hinterland. This indicated that a large number of SIC with 0-2 m depth were clustered in the edge of the desert. The δ 13 C value of SIC increased first then decreased with the soil depth, and enriched in the bottom layer, which was mainly affected by the original carbonate content and soil carbon dioxide.
NASA Astrophysics Data System (ADS)
Guzmán, Gema; Gómez, José Alfonso
2017-04-01
Magnetic iron oxide has been used as a tracer to monitor top soil movement and to identify source of sediments at the short-term scale, after high intensity rainfall events (Guzmán et al., 2010; Obereder et al., 2016) and periods up to two years (Guzmán et al., 2013). As it can be strongly bound to soil particles, its use allows the tacking of tagged soil all over the years until all this soil is lost or it is totally diluted with blank soil making the signal undetectable. Olive orchards planted on Vertisols are subject not only to tillage operations modifying soil profile but also to expansion-compression cycles and cracks appearance due to soil moisture changes. The aim of communication is to assess the soil movement at the mid-term scale, taking advantage of a tracer trial already performed by Guzmán et al. (2013) and a new sampling after 8 years of soil disturbance. In October 2008 two plots of 330 m2 were delimited and in which the top 5 cm of the inter tree rows were tagged with magnetite. Seventy locations at both plots were sampled so as to measure magnetic susceptibility twice (just after the tagging and March 2010), at three depth intervals (0-1, 1-8 and 8-12 cm) and distinguishing two zones: tree and inter tree rows. A third sampling was carried out at 0-2, 2-10 and 10-20 cm in August 2016 at the same locations and zones. Furthermore, in twenty of the sampling points additional samples from 20-30, 30-40, 40-50 and 50-60 cm were taken to check if tagged soil went deeper into the soil profile. Background values of susceptibility and bulk density at each depth, were characterized as well at the three sampling campaigns. Rainfall, soil management during these years and the inherent characteristics of a Vertisol have enhanced the movement of top soil not only superficially but also within the soil profile. First results comparing the evolution of magnetite distribution along soil profile indicate that while in 2008 and 2010 background values were measured at 12 cm, in 2016, in both zones (tree and inter tree rows) magnetite decreases slightly from the 10-20 cm interval but still finding tagged soil at a depth of 60 cm where background values were nearly reached. The implications of these results on the use of erosion magnetic tracers in long-term erosion experiments and soil vertical fluxes in Vertic soils will be discussed. References: Guzmán G., Vanderlinden K., Giráldez J.V., Gómez J. A. 2013. Assessment of spatial variability in water erosion rates in an olive orchard at plot scale using a magnetic iron oxide tracer. Soil Science Society of America Journal, 77(2), 350-361. Guzmán G., Barrón V., Gómez J.A. 2010. Evaluation of magnetic iron oxides as sediment tracers in water erosion experiments. Catena, 82(2), 126-133. Obereder E., Klik A., Wakolbinger S., Guzmán G., Strohmeier S., Demelash N., Gómez, J.A. 2016. Investigation of the impact of stone bunds on erosion and deposition processes combining conventional and tracer methodology in the Gumara Maksegnit watershed, Northern highlands of Ethiopia. In EGU General Assembly Conference Abstracts (Vol. 18, p. 2455).
NASA Astrophysics Data System (ADS)
Huo, Z.; Liu, Z.; Wang, X.; Qu, Z.
2016-12-01
Groundwater from the shallow aquifers can supply substantial water for evapotranspiration of crops. However, it is difficult to quantify to the contribution of groundwater on crop's water consumption. In present study, regional scale evapotranspiration and the groundwater contribution to evapotranspiration were estimated by the soil water balance equation in Hetao irrigation distric with shallow aquifers, China. Estimates used an 8-year (2006-2013) hydrological dataset including soil moisture, the depth to water table, irrigation amounts, rainfall data, and drainage water flow. The 8-year mean evapotranspiration was estimated to be 664 mm. The mean groundwater supported evapotranspiration (ETg) was estimated to be 228 mm, with variation from 145 mm to 412 mm during the crop growth period. Analysis of the positive correlation between evapotranspiration and the sum of irrigation and rainfall, and the analysis of the negative correlation between ETg/ET and the sum of irrigation and rainfall, reflect the need of groundwater to meet the evapotranspiration demand. Approximately 20% to 40% of the evapotranspiration is from the shallow aquifers in the study area. Furthermore, a new method estimating daily ETg during the crop growing season was developed. The effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered in the model. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is a good agreement with the measured data for four soil profiles and different depths to groundwater table. These results could be useful for the government to understand the significant role of the groundwater and make reasonable water use policy in the semiarid agricultural regions.
Lupi, Leonardo; Miglioranza, Karina S B; Aparicio, Virginia C; Marino, Damian; Bedmar, Francisco; Wunderlin, Daniel A
2015-12-01
Glyphosate (GLY) and AMPA concentrations were determined in sandy soil profiles, during pre- and post-application events in two agricultural soybean fields (S1 and S2). Streamwater and sediment samples were also analyzed. Post-application sampling was carried out one month later from the event. Concentrations of GLY+AMPA in surface soils (0-5 cm depth) during pre-application period showed values 20-fold higher (0.093-0.163 μg/g d.w.) than control area (0.005 μg/g d.w.). After application event soils showed markedly higher pesticide concentrations. A predominance of AMPA (80%) was observed in S1 (early application), while 34% in S2 for surface soils. GLY+AMPA concentrations decreased with depth and correlated strongly with organic carbon (r between 0.74 and 0.88, p<0.05) and pH (r between -0.81 and -0.76, p<0.001). The slight enrichment of pesticides observed from 25 cm depth to deeper layer, in addition to the alkaline pH along the profile, is of high concern about groundwater contamination. Sediments from pre-application period showed relatively lower pesticide levels (0.0053-0.0263 μg/g d.w.) than surface soil with a predominance of glyphosate, indicating a limited degradation. Levels of contaminants (mainly AMPA) in streamwater (ND-0.5 ng/mL) denote the low persistence of these compounds. However, a direct relationship in AMPA concentration was observed between sediment and streamwater. Despite the known relatively short half-life of glyphosate in soils, GLY+AMPA occurrence is registered in almost all matrices at different sampling times (pre- and post-application events). The physicochemical characteristics (organic carbon, texture, pH) and structure of soils and sediment in addition to the time elapsed from application determined the behavior of these contaminants in the environment. As a whole, the results warn us about vertical transport trough soil profile with the possibility of reaching groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuo, D.; Gao, G.; Fu, B.
2017-12-01
Precipitation is one of the most important limit factor affect soil organic carbon (SOC) and total nitrogen (TN) following re-vegetation; however, the effect of precipitation on the C and N cycling in deep soils is poorly understood. This study was designed to measure SOC and TN stocks and C/N ratio to a depth of 300 cm following re-vegetation along a precipitation gradient (280 to 540 mm yr-1) on the Loess Plateau of China. The results showed that the relationship of soil C-N coupling after cropland abandoned was related to mean annual precipitation (MAP) and soil depth. SOC and TN stocks in the shallow layers of 0-100 cm were 3.8 and 0.41 kg m-2, respectively, and that in the deep layers of 100-300 cm can represent about 62.7-72.5% and 60.2-88.7% to a depth of 0-300 cm, respectively. Positive linearly relationships were obtained between MAP and SOC and TN stocks at most soil layers of 0-300 cm (p < 0.05). The relationships between the MAP and changes of SOC and TN stocks following short-term restoration were highly dependent on soil depth. Changes of SOC and TN stocks after re-vegetation in shallow soils (0-100 cm) were gaining at regional scale, but in deep soils (100-300 cm), which were losing at wetter sites (MAP > 400 mm). The initial soil C loss may be attributed to greater C decomposition and lower belowground C input. The change of C/N ratio had significantly negatively correlation with MAP in each soil depth, except for 0-20 cm, indicating the effect of soil N on C accumulation is higher at drier areas rather than wetter sites. Based on the investigated factors, precipitation, soil water and clay had a dominant control over the spatial distribution of SOC, TN and C/N ratio to a 300 cm soil depth. This information is helpful our understanding of the dynamics of soil C and N of deep soils following re-vegetation in the semiarid regions.
Chang, Yanping; Bu, Xiangpan; Niu, Weibo; Xiu, Yu; Wang, Huafang
2013-01-01
Relatively little information is available regarding the variability of microbial communities inhabiting deeper soil layers. We investigated the distribution of soil microbial communities down to 1.2 m in 5-year-old Robinia pseudoacacia 'Idaho' soil by 454 sequencing of the 16S RNA gene. The average number of sequences per sample was 12,802. The Shannon and Chao 1 indices revealed various relative microbial abundances and even distribution of microbial diversity for all evaluated sample depths. The predicted diversity in the topsoil exceeded that of the corresponding subsoil. The changes in the relative abundance of the major soil bacterial phyla showed decreasing, increasing, or no consistent trends with respect to sampling depth. Despite their novelty, members of the new candidate phyla OD1 and TM7 were widespread. Environmental variables affecting the bacterial community within the environment appeared to differ from those reported previously, especially the lack of detectable effect from pH. Overall, we found that the overall relative abundance fluctuated with the physical and chemical properties of the soil, root system, and sampling depth. Such information may facilitate forest soil management.
Quesada, Carlos Alberto; Hodnett, Martin G; Breyer, Lacê M; Santos, Alexandre J B; Andrade, Sérgio; Miranda, Heloisa S; Miranda, Antonio Carlos; Lloyd, Jon
2008-03-01
Changes in soil water content were determined in two cerrado (sensu stricto) areas with contrasting fire history and woody vegetation density. The study was undertaken near Brasília, Brazil, from 1999 to 2001. Soil water content was measured with a neutron probe in three access tubes per site to a depth of 4.7 m. One site has been protected from fire for more than 30 years and, as a consequence, has a high density of woody plants. The other site had been frequently burned, and has a high herbaceous vegetation density and less woody vegetation. Soil water uptake patterns were strongly seasonal, and despite similarities in hydrological processes, the protected area systematically used more water than the burned area. Three temporarily contiguous patterns of water absorption were differentiated, characterized by variation in the soil depth from which water was extracted. In the early dry season, vegetation used water from throughout the soil profile but with a slight preference for water in the upper soil layers. Toward the peak of the dry season, vegetation had used most or all available water from the surface to a depth of 1.7 m, but continued to extract water from greater depths. Following the first rains, all water used was from the recently wetted upper soil layers only. Evaporation rates were a linear function of soil water availability, indicating a strong coupling of atmospheric water demand and the physiological response of the vegetation.
Andraski, Brian J.
1997-01-01
Soil-water movement under natural-site and simulated waste-site conditions were compared by monitoring four experimental sites in the Mojave Desert, Nevada, during a 5-year period: one vegetated soil profile, one soil profile where vegetation was removed, and two nonvegetated test trenches. Precipitation ranged from 14 to 162 mm/yr. Temporal changes in water content measured by neutron probe were limited to the upper 0.5–1 m; values ranged from 0.01 to 0.19 m3/m3. Water potential and temperature were measured by thermocouple psychrometers; 77% remained operable for ≥4.5 years. For vegetated soil, precipitation that accumulated in the upper 0.75 m of soil was removed by evapotranspiration: water potentials decreased seasonally by 4 to >8 MPa. During 2 years with below-average precipitation, water potentials below the app arent root zone decreased by 2.3 (1.2-m depth) to 0.4 MPa (5-m depth), and the gradients became predominantly upward. Water potentials then rebounded during 2 years with near- and above-average precipitation, and seasonally variant water potential gradients were reestablished above the 4.2-m depth. Under nonvegetated waste-site conditions, data indicated the long-term accumulation and shallow, but continued, penetration of precipitation: water potentials showed moisture penetration to depths of 0.75−1.85 m. The method of simulated-waste drum placement (stacked versus random) and the associated differences in subsidence showed no measurable influence on the water balance of the trenches: subsidence totaled ≤13 mm during the study. Water potentials below the trenches and below the 2-m depth for the nonvegetated soil remained low (≈−5.5 to −7.5 MPa) and indicated the persistence of typically upward driving forces for isothermal water flow. Water fluxes estimated from water potential and temperature data suggested that isothermal liquid, isothermal vapor, and nonisothermal vapor flow need to be considered in the conceptualization of unsaturated flow at the field sites. Below the depth of temporal water content change, the estimated liquid fluxes ranged from 10−10 to 10−15 cm/s, isothermal vapor fluxes ranged from 10−10 to 10−13 cm/s, and the nonisothermal vapor fluxes ranged from 10−8 to 10−10cm/s.
[Influence of organochlorine pesticides in wastewater on the soil along the channel].
Xu, Liang; Zhang, Cai-Xiang; Liu, Min; Liao, Xiao-Ping; Yao, Lin-Lin; Li, Jia-Le; Xiang, Qing-Qing
2013-08-01
Nine profile soil samples and two sewage water samples were collected from Xiaodian sewage irrigation area in Taiyuan city, concentrations of organochlorine pesticides (OCPs) were determined by the gas chromatography coupled with electron capture detector (GC-ECD) to analyze the influence of the leakage of sewage water. The result shows that OCPs in sewage water were mainly composed of HCHs. Concentrations of DDTs and other organochlorine pesticides were very low or out of the detection limit. Concentrations of sigmaOCPs and HCHs in eight profiles near irrigation channels to some extend decreased with the increasing of the linear distance off the channel, which shows influences of the leakage of sewage water on the soil nearby. Concentrations of HCHs clearly decreased with the increasing of soil depth in most profile soils. For the horizontal direction, concentrations of HCHs also decreased with the increasing of the linear distance off the channel. The correlation between HCHs and TOC was positive, but no correlation between pH and HCHs was found.
Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong
2017-02-01
Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter and Rhodospirillaceae, were found to be the significantly increased by the BOF addition and the genus Lysobacter may identify members of this group effective in biological control-based plant disease management and the members of family Rhodospirillaceae had an important role in fixing molecular nitrogen. These results strengthen the understanding of responses to the BOF and possible interactions within bacterial communities in soil that can be associated with disease suppression and the accumulation of carbon and nitrogen. The increase of apple yields after the application of BOF might be attributed to the fact that the application of BOF increased SOM, and soil total nitrogen, and changed the bacterial community by enriching Rhodospirillaceae, Alphaprotreobateria, and Proteobacteria.
Microbial activity in the profiles of gray forest soil and chernozems
NASA Astrophysics Data System (ADS)
Susyan, E. A.; Rybyanets, D. S.; Ananyeva, N. D.
2006-08-01
Soil samples were taken from the profiles of a gray forest soil (under a forest) and southern chernozems of different textures under meadow vegetation. The microbial biomass (MB) was determined by the method of substrate-induced respiration; the basal respiration (BR) and the population density of microorganisms on nutrient media of different composition were also determined in the samples. The microbial metabolic quotient ( qCO2 = BR/MB) and the portion of microbial carbon (C mic) in C org were calculated. The MB and BR values were shown to decrease down the soil profiles. About 57% of the total MB in the entire soil profile was concentrated in the layer of 0-24 cm of the gray forest soil. The MB in the C horizon of chernozems was approximately two times lower than the MB in the A horizon of these soils. The correlation was found between the MB and the C org ( r = 0.99) and between the MB and the clay content ( r = 0.89) in the profile of the gray forest soil. The C mic/C org ratio in the gray forest soil and in the chernozems comprised 2.3-6.6 and 1.2-9.6%, respectively. The qCO2 value increased with the depth. The microbial community in the lower layers of the gray forest soil was dominated (88-96%) by oligotrophic microorganisms (grown on soil agar); in the upper 5 cm, these microorganisms comprised only 50% of the total amount of microorganisms grown on three media.
Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.
2006-01-01
Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of fossil fuels, and possibly lead from other anthropogenic sources (e.g., pesticides), could account for Pb isotope variations in the soil profiles. In agricultural regions, our preliminary data show that the extensive use of arsenical pesticides and herbicides can be a significant anthropogenic source of arsenic and lead to stream sediments and soils.
NASA Astrophysics Data System (ADS)
Serach, L.; Breecker, D.
2016-12-01
The increases in the stable C isotope ratio (δ13C) of soil organic carbon (SOC) with depth common in well-drained soils are widely accepted as being due to the C isotope fractionation between CO2 and SOC during microbial respiration. However, results from previous studies that investigate C isotope fractionation during respiration are conflicting. Respired CO2 with 13C values lower, higher and not significantly different than the associated SOC have been reported in the literature. This project aims to quantify the contribution of isotopic fractionation during microbial respiration to the down-profile shift in δ13C values by means of a long-term (2 year) incubation of topsoil (0-2cm). The topsoil used in the incubations was collected from undisturbed temperate and tropical forests. At each location, soil profiles from 0-20 cm depth were also collected and the down profile trends in concentrations and δ13C values of bulk organic carbon were measured. The CO2-SOC carbon isotope enrichment factor ɛCO2-SOM required to explain each profile was then calculated. We compared these calculated ɛCO2-SOM values with empirical values determined from soil incubations. ɛCO2-SOM values were determined from incubations as the difference between δ13C values of headspace CO2 and bulk SOC. We have thus far measured these δ13C values at 1,4 and 7 months, allowing us to track if and when empirical ɛCO2-SOM values reach the magnitude required to explain the profiles. Thus far, all empirical ɛCO2-SOM values are either too small or of the wrong sign to explain the profiles, suggesting that a mechanism other than C isotope fractionation during microbial respiration may be responsible. Therefore, we are also investigating the possibility that the anthropogenic increase in concentrations of atmospheric CO2, through its influence on δ13C values of C3 plants, explains a substantial portion of the typical down profile increase in SOC δ13C values.
Response to Comment on "The whole-soil carbon flux in response to warming".
Hicks Pries, Caitlin E; Castanha, C; Porras, R; Phillips, Claire; Torn, M S
2018-02-23
Temperature records and model predictions demonstrate that deep soils warm at the same rate as surface soils, contrary to Xiao et al 's assertions. In response to Xiao et al 's critique of our Q 10 analysis, we present the results with all data points included, which show Q 10 values of >2 throughout the soil profile, indicating that all soil depths responded to warming. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Nitrous Oxide Emissions From Northern Forested and Harvested Ecosystems
NASA Astrophysics Data System (ADS)
Kavanaugh, K. M.; Kellman, L. M.
2005-12-01
Very little is known about how deforestation alters the soil subsurface production and surface emissions of N2O from northern forest soils. Soil N2O surface fluxes and subsurface concentrations from two 3 year old harvested and intact forest pairs of contrasting soil texture were monitored during the 2004 and 2005 growing seasons in the Acadian forest of Atlantic Canada in order to: 1) quantify N2O emissions associated with each land-use type, 2) examine spatial and temporal variations in subsurface concentrations and surface fluxes at each site, and 3) determine the suitability of a photoacoustic gas monitor (PGM) for in- situ field measurements vs. field sample collection and laboratory analysis on a gas chromatograph. Each site was instrumented with 11 permanent collars for surface flux measurements designed to capture the microsite variability at the sites. Subsurface soil gas samplers, designed to identify the important zones of N2O production in the vertical profile were installed at depths of 0, 10, 20 and 35 cm below the organic-mineral soil interface. Surface fluxes were measured with non-steady-state vented surface flux chambers with measurements of all surface flux and subsurface data made on a bi-weekly basis. Results suggest that spatial and temporal variability in surface emissions are very high and routinely close to zero. Subsurface profile concentration data shows vertical concentration profiles at intact forest sites with concentrations close to atmospheric, while harvested sites show a pattern of increasing N2O concentration with depth, reaching a maximum of approximately 27000ppb at 35cm.
NASA Astrophysics Data System (ADS)
Rejman, Jerzy; Rafalska-Przysucha, Anna; Paluszek, Jan
2014-05-01
Soil erosion processes lead to redistribution of soils and soil organic carbon (SOC) in the landscape. In this study, we aimed to evaluate the effect of runoff connectivity on horizontal and vertical SOC concentration in the catchment. SOC concentration was examined in a small agricultural catchment located in deep loess area of the Lublin Upland, Poland (51019'55"N, 22023'16"E). The catchment area of 5.6 ha is divided into 11 parcels. Conventional tillage is performed on each of the parcel and plow includes of 1-2 moldboard and 1 cultivator operations per year. Tillage is performed along the longest side of parcels. Crop rotation includes wheat, barley, sugar beets, potatoes and maize. Connectivity of temporal overland flow in the catchment is disturbed by grassed borders of the parcels. SOC concentration was studied in 151 sampling points in a grid 20 by 20 m. Structure of soil profile was studied in each of the sampling points, and soil cores were taken from two soil layers of 0-25 and 25-50 cm, and from 7 profiles located within the closed depression and the areas where line of temporary overland flow cross the grassed parcel borders. SOC concentration in soil samples was determined by wet combustion with dichromate solution. Depositional soils represented 57 profiles in the catchment. The thickness of accumulated soil layer varied from 20 to 151 cm with a mean of 55 cm. SOC concentration ranged from 8.4 to 15.0 g kg-1 (with a mean of 11.0 g kg-1) in the upper and from 2.9 to 14.5 g kg-1 (7.5) in the deeper soil layer. Coefficient of variation was 12.9% in the layer 0-25 cm, and 44.5% in the layer 25-50 cm. To find the reasons of high variability of SOC concentration in deeper soil layer, the location of depositional soils in the catchment was analyzed. The analysis enabled to distinguish two groups of depositional soils of different SOC concentration at the depth of 25-50 cm. Depositional soils located in the zones of temporal stagnation of overland flow (i.e. closed depressions and the areas where the lines of concentrated flow cross the parcel borders) characterized higher SOC concentration with a mean of 10.10 g kg-1, and depositional soils located on slopes - lower (4.10 g kg-1). The first group represented 33 profiles, the second 24. Coefficient of variation in each group of soil was 19%. Vertical SOC concentration showed a large variation in profiles of depositional soils, with layers of higher and smaller SOC concentration at different depth. Soils located in the zones where lines of concentrated temporary flow cross the field borders showed a high SOC enrichment in buried Ab horizons (at the depth >80 cm) in comparison to soils located in closed depressions. The difference could be a result of larger area that contributes to overland flow in the case of sites located at lines of flow in comparison to the contribution area of closed depressions. The exception is a profile SP6, where the SOC concentration in Ab is similar to the Ab horizon in depressions. The SP6 profile is located in the lower part of the catchment at the end of a parcel of the length of 110 m. The other profiles (SP2, and SP5) are in the areas were distance between the parcel borders is 40-60 m, and SP7 is at the catchment outlet. It seems that the difference in SOC concentration in Ab between SP6 and SP2-SP5 is a result of more effective decrease of velocity of overland flow by closely located grassed borders of the parcels. The studies showed that grassed parcel borders fill an effective role in an increase of soil carbon stock in the areas where lines of temporary overland flow cross the parcel border. The effectiveness of SOC accumulation was larger in the past, as it is proved by high SOC concentration in buried Ab horizon, and was dependent on the distance between the grassed borders.
Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China.
Yu, Zaipeng; Wang, Minhuang; Huang, Zhiqun; Lin, Teng-Chiu; Vadeboncoeur, Matthew A; Searle, Eric B; Chen, Han Y H
2018-03-01
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0-150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C-N-P stoichiometry across subtropical China, where soils are P-impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C-N-P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO 2 concentration and regional warming. Our findings revealed that the responses of soil C-N-P and stoichiometry to long-term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan
2016-04-01
As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.
Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim
2012-07-01
Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.
Impact of drainage on wettability of fen peat-moorsh soils
NASA Astrophysics Data System (ADS)
Szajdak, L.; Szatyłowicz, J.; Brandyk, T.
2009-04-01
High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.
Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.
Corwin, Dennis L; Ahmad, Hamaad Raza
2015-10-01
Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.
Infiltration and runoff generation processes in fire-affected soils
Moody, John A.; Ebel, Brian A.
2014-01-01
Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.
Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.
2008-01-01
SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the crop growth and soil water components of SWAT could be further refined to better simulate the hydrology of agricultural watersheds. ?? 2008 Elsevier B.V. All rights reserved.
Hrachowitz, Markus; Maringer, Franz-Josef; Steineder, Christian; Gerzabek, Martin H
2005-01-01
Measurements of 137Cs fallout have been used in combination with a range of conversion models for the investigation of soil relocation mechanisms and sediment budgets in many countries for more than 20 yr. The objective of this paper is to develop a conversion model for quantifying soil redistribution, based on Chernobyl-derived 137Cs. The model is applicable on uncultivated as well as on cultivated sites, taking into account temporal changes in the 137Cs depth distribution pattern as well as tillage-induced 137Cs dilution effects. The main idea of the new model is the combination of a modified exponential model describing uncultivated soil with a Chapman distribution based model describing cultivated soil. The compound model subsequently allows a dynamic description of the Chernobyl derived 137Cs situation in the soil and its change, specifically migration and soil transport processes over the course of time. Using the suggested model at the sampling site in Pettenbach, in the Austrian province of Oberösterreich 137Cs depth distributions were simulated with a correlation coefficient of 0.97 compared with the measured 137Cs depth profile. The simulated rates of soil distribution at different positions at the sampling site were found to be between 27 and 60 Mg ha(-1) yr(-1). It was shown that the model can be used to describe the temporal changes of 137Cs depth distributions in cultivated as well as uncultivated soils. Additionally, the model allows to quantify soil redistribution in good correspondence with already existing models.
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Impact of land use on soil organic carbon distribution in toposequences of the Central Rif, Morocco
NASA Astrophysics Data System (ADS)
Mesrar, Haytam; Sadiki, Abdelhamid; Faleh, Ali; Quijano, Laura; Gaspar, Leticia; Navas, Ana
2017-04-01
Mediterranean mountain agroecosystems are sensitive areas to soil degradation mainly due to erodible soils, occasional heavy rainfalls and anthropogenic activities that have transformed large surfaces of natural forest into croplands. In the mountains of the central Rif (Morocco) the anthropogenic pressure by intensive agriculture on steep slopes and grazing practices is causing large impacts on soils. In the region soil losses have further indirect impact on water resources due to siltation of water bodies from canals, small check dams to large reservoirs. Besides the loss of the upper rich organic soil horizons containing the largest amounts of organic matter is causing decreases in soil fertility and losses in crop productivity. Soil erosion affects the spatial variability of soil nutrients of which soil organic carbon (SOC) is one of the most important because is directly linked to soil quality and soil functions. The artificially emitted 137Cs has been found to effectively trace soil redistribution because of its associated movement with fine soil particles including the organic matter. To assess the contents of SOC under different land uses a set of transects were set up in the Sahla catchment that holds a reservoir and is representative of the Rif mountain agroecosystems. Along the transects soil sampling was done to collect soil cores extending until a depth of 25 cm that were sectioned at 5cm depth intervals. The SOC content (%) was measured by the oxidation method in the < 2mm fraction of the interval subsamples. The lateral and vertical variations of SOC contents were examined in combination with the 137Cs profiles to gain information on the nutrient content in the soils under the most characteristic land uses existing in the catchment. In general the SOC contents are low but the mean contents in the croplands are much lower than in the uncultivated lands that present the highest variations in the SOC percentages. In croplands the depth distribution of SOC is homogeneous and the SOC profiles match the vertical distribution of 137Cs revealing the mixing of the soil by tillage. The lateral and vertical distributions of SOC allowed to gain information on the status of soil degradation under the different land uses which is of interest to support management practices aimed to preserve the soils and maintain the sustainability of agroecosystems.
Assessment of metal and PAH profiles in SUDS soil based on an improved experimental procedure.
Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Kovacs, Yves; Gromaire, Marie-Christine
2017-11-01
The increasing use of infiltration-based systems for stormwater management questions the soil's ability to act as a long-term filter for runoff contaminants, and brings about operational matters regarding the most effective maintenance practices to enhance contaminant retention in SUDS. This paper reports the vertical extent of metal and PAH contamination in the soil of seven source-control devices in operation for more than 10 years, assessed via a two-step sampling strategy to optimize the representativeness of the contamination profiles. Metal distribution was typically characterized by a significant surface buildup, followed by a decrease in concentrations with increasing depth, usually coming close to the background values. PAH were more heterogeneously distributed with depth, but their accumulation was globally restricted to the upper 10-40 cm. This indicates an interesting potential for pollution interception by the upper horizons of soil, but does not necessarily prevent from downward fluxes, even while measuring low surface contents, as deeper strata may have lesser retention capacities. Specific amendments of the surface soil may help prevent this problem. Surface soil renewal - which would be necessary over 2.5-30 cm in four sites, according to the "strictest" standards for soil remediation - may regenerate the soil's sorption potential, but such a practice could disrupt the interactions with the local ecosystem, so this should be carried out exceptionally and not as a preventive measure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Li, Qifei; Xi, Min; Wang, Qinggai; Kong, Fanlong; Li, Yue
2018-02-01
In this study, the characteristics of soil salinization and the effects of main land use/land cover and other factors in typical estuarine area of the Jiaozhou Bay are investigated. Soil samples were collected in the parallel coastal zone, vertical coastal zone and longitudinal profile depth in the area to determine the soil salt content. The correlation analysis and principal component analysis are used to address the general characteristics of soil salinization in the study area. In the horizontal direction, there are moderate salinization, severe salinization and saline soil state. The farther from the sea (within 1.1 km), the lower the soil salinization degree. In the direction of longitudinal profile depth, there are severe salinization and saline soil state, and the soil salt content is accumulated in the surface and bottom. The Na+ and Cl- are the dominant cation and anion, respectively, the distributions of which are consistent with that of salt content. All the salinization indexes, except for soil pH, are of moderate/strong variability. The invasion of Spartina alterniflora results in the increase of soil salt content and salinization degree, the effects of which are mainly determined by the physiological characteristics and the growth years. The degree of soil salinization increased significantly in the aquaculture ponds, which is mainly caused by the use of chemicals. The correlation between soil salt content and Na+, Cl- is particularly significant. From the results of principal component analysis, Na+, Cl-, Ca2+, Mg2+ and SO42- could be used as main diagnostic factors for salinization in typical estuarine area of the Jiaozhou Bay. The effects of NaCl and sulfate on salt content further affect the degree of salinization in the estuarine area.
Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.
Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing
2016-10-01
Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.
2012-05-01
Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.
[Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].
Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin
2015-10-01
To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.
USDA-ARS?s Scientific Manuscript database
The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for non-linear systems was applied to the Root Zone Water Quality Model. Measured soil moisture data at four different depths (5cm, 20cm, 40cm and 60cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were us...
Microplastic transport in soil by earthworms.
Rillig, Matthias C; Ziersch, Lisa; Hempel, Stefan
2017-05-02
Despite great general benefits derived from plastic use, accumulation of plastic material in ecosystems, and especially microplastic, is becoming an increasing environmental concern. Microplastic has been extensively studied in aquatic environments, with very few studies focusing on soils. We here tested the idea that microplastic particles (polyethylene beads) could be transported from the soil surface down the soil profile via earthworms. We used Lumbricus terrestris L., an anecic earthworm species, in a factorial greenhouse experiment with four different microplastic sizes. Presence of earthworms greatly increased the presence of microplastic particles at depth (we examined 3 soil layers, each 3.5 cm deep), with smaller PE microbeads having been transported downward to a greater extent. Our study clearly shows that earthworms can be significant transport agents of microplastics in soils, incorporating this material into soil, likely via casts, burrows (affecting soil hydraulics), egestion and adherence to the earthworm exterior. This movement has potential consequences for exposure of other soil biota to microplastics, for the residence times of microplastic at greater depth, and for the possible eventual arrival of microplastics in the groundwater.
A novel in-situ method for real-time monitoring of gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils. Gas transport in soil is commonly assumed to be governed by molecular diffusion and is usually described by the soil gas diffusion coefficient DS characterizing the ability of the soil to "transport passively" gas through the soil. One way to determine DS is sampling soil cores in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious. Moreover, a few previous field studies identified other gas transport processes in soil to significantly enhance the diffusive gas transport. However, until now, no method is available to measure gas transport in situ in the soil. We developed a novel method to monitor gas transport in soil in situ. The method includes a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has several sampling depths and can be easily installed into a vertical hole drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the depth profile of DS. Gas transport in the soil surrounding the gas-sampling-device/soil system was modeled using the Finite Element Modeling program COMSOL . We tested our new method both in the lab and during two short field studies and compared the results with a reference method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. During a longer monitoring field campaign, typical soil-moisture effects upon gas diffusivity such as an increase during a drying period or a decrease after rain could be observed consistently. Under windy conditions we additionally measured for the first time the direct enhancement of gas transport in soil due to wind-induced pressure-pumping which could increase the effective DS up to 30% in the topsoil. Our novel monitoring method can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows monitoring physical modifications of soil gas diffusivity due to rain events or evaporation but it also allows studying non-diffusive gas transport processes in the soil.
Brinkhoff, James; Hornbuckle, John; Dowling, Thomas
2017-12-26
Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.
Quinones, Jason L; Carpi, Anthony
2011-01-01
Mercury flux from HgCl2-treated sand and untreated soil samples of varying thickness (0.5-15 mm) were measured in dark and light under a Teflon dynamic flux chamber. Mean emissions over a 5.5-d sampling period showed an increase with depth for sand samples between 0.5 and 2 mm, but increasing depth above 2 mm had no effect. First-order kinetic models showed strong goodness of fit to the data and explained a high degree ofvariability in the emissions profile of all sand samples (R = 0.70-0.98). Soil samples showed an initial emissions peak that was not correlated with depth, suggesting a very shallow process at work. However, longer-term "baseline" emissions, measured as mean emissions between days 4.5 and 5.5, did show a relationship with depth. First-order kinetic models showed good fit for soil samples up to 4 mm thick (R2 = 0.66-0.91); however, thicker samples did not show a consistent fit to first- or second-order kinetic models (1 degree R2 = 0.00-0.46; 2 degree R2 = 0.00-0.54). The data suggest that mercury emissions from soil samples may follow a multicomponent model for which more
Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment
Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng
2018-01-01
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981
Hetherington, S L; Anderson, J M
1998-11-01
Bracken (Pteridium aquilinum) is aggressively displacing heather (Calluna vulgaris) on many moorlands in Britain. We investigated the use of lignin derivatives to identify the distribution of soil organic matter (SOM) derived from bracken in moorland soil profiles formed under heather. Phenylpropanoids extracted from recently senesced litters, roots and SOM, using alkaline CuO oxidation, showed distinct signatures for bracken and heather, with vanillyl moieties dominating bracken litter extracts and vanillyl and syringyl dominating heather litter extracts. Ratios of vanillyl and syringyl concentrations characterised the SOM derived from heather and bracken better than the concentrations of the individual moieties. The analysis showed up to a depth of 5 cm under pure bracken cover, and at the interface between heather and bracken, the SOM was largely derived from bracken litter but below that depth SOM was apparently derived from heather. The use of these methods to identify the plant origin of SOM not only enables understanding the effects of changing vegetation cover on organic matter dynamics in moorland soils but could also facilitate management techniques in moorland/heathland restoration which involve the removal of comparatively nutrient-rich SOM derived from bracken.
NASA Astrophysics Data System (ADS)
Liu, Ruhai; Zhang, Yanyan; Wang, Yan; Zhao, Jin; Shan, Huayao
2018-02-01
Wetlands often show different small-scale topography, such as riffle, habitat island, deep water, shallow water zone and dry zone. Core soils in different micro topographical landforms of Nandagang and Beidagang wetlands in North China were sampled for THg and MeHg to analyze the influence of microtopography. Results showed that THg content in surface soil (<2 cm) was little higher than that at depth 2-4 cm of all stations. There were several peaks in the profile, which reflected mercury pollution in past. High THg content in undisturbed natural wetland soil implied accumulation of mercury. Harvest of plant, drained water decreased the accumulation of mercury in wetlands. Water level caused by microtopography affected the production of MeHg. Depth of the highest MeHg content decreased from N1, N2, N6, N3 to N4 following the increase of water level. Plant type and coverage also affected the vertical distribution of MeHg. More detailed profiles of MeHg, organic matter and total phosphorus in different sites show strong differences in soil chemistry, suggesting a complex interplay among hydrology, biogeochemistry and microtopography.
NASA Astrophysics Data System (ADS)
Grishko, V. N.; Syshchikova, O. V.
2010-02-01
In the profiles of ordinary and southern chernozems, the total numbers of amylolytic microorganisms and actinomycetes decreased with the depth by 2.4-4.2 and 3.4 times, respectively; in the profiles of solonetz and solonchak soils, by 4.2-5.3 and 4.8 times, respectively. In the genetic horizons of the ordinary and southern chernozems, the share of actinomycetes amounted to 29-30% of the total population of microorganisms; in the saline soils, it increases with the depth from 23 to 43%. In the chernozems, Streptomyces violaceomaculatus (Roseus section), St. sporoherbeus (Azureus), St. aerionidulus (Cinereus), St. enduracidicus (Cinereus), and St. grisinus (Cinereus) predominated; in the saline soils, St. violaceomaculatus and St. aerionidulus prevailed. In the ordinary chernozem, the Berger-Parker index was 1.5 times higher than in the southern chernozem. High similarity was found between the streptomycete communities in the chernozems (the Sorensen coefficient was 0.78). In the solonetzes, the species richness of the streptomycetes was higher by 1.7 times than in the solonchaks. In the chernozems, the similarity of the streptomycete communities was higher than in the solonchaks (0.78 and 0.60, respectively).
Baisden, W.T.; Amundson, Ronald; Brenner, D.L.; Cook, A.C.; Kendall, C.; Harden, J.W.
2002-01-01
We examine soil organic matter (SOM) turnover and transport using C and N isotopes in soil profiles sampled circa 1949, 1978, and 1998 (a period spanning pulse thermonuclear 14C enrichment of the atmosphere) along a 3-million-year annual grassland soil chronosequence. Temporal differences in soil ??14C profiles indicate that inputs of recently living organic matter (OM) occur primarily in the upper 20-30 cm but suggest that OM inputs can occur below the primary rooting zone. A three-pool SOM model with downward transport captures most observed variation in ??14C, percentages of C and N, ??13C, and ??15N, supporting the commonly accepted concept of three distinct SOM pools. The model suggests that the importance of the decadal SOM pool in N dynamics is greatest in young and old soils. Altered hydrology and possibly low pH and/or P dynamics in highly developed old soils cause changes in soil C and N turnover and transport of importance for soil biogeochemistry models.
Patterns and drivers of fungal community depth stratification in Sphagnum peat
Louis J. Lamit; Karl J. Romanowicz; Lynette R. Potvin; Adam R. Rivers; Kanwar Singh; Jay T. Lennon; Susannah G. Tringe; Evan S. Kane; Erik A. Lilleskov
2017-01-01
Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with...
NASA Astrophysics Data System (ADS)
Taghizadeh-Toosi, Arezoo; Elsgaard, Lars; Ernstsen, Vibeke; Clough, Tim J.; Petersen, Søren O.
2017-04-01
In North Western Denmark, organic soils are extensively under agricultural management for cereal and high-value cash crop production or as grazing land. The area (overlying raised seabed) has been classified as potentially acid sulfate soil. Drainage and tillage of organic soil is known to promote emissions of nitrous oxide (N2O), but a previous monitoring program found annual N2O emissions from adjacent fields with rotational grass and potato that were, respectively, 3 and 5 times higher than default values proposed by The Intergovernmental Panel on Climate Change (IPCC, 2014). In order to study underlying mechanisms, the same two sites and two new reference sites along an East-West transect were investigated during 2015. The four sites (i.e. two with rotational grass and two sites with a potato crop) were equipped for weekly monitoring of soil surface N2O emissions and sub-soil N2O concentrations to 1 m depth during spring and autumn 2015. Also, various environmental variables (precipitation, air and soil temperature, soil moisture, groundwater level, and soil mineral N) were monitored. In April and August 2015, intact cores to 1 m depth were collected at the paired grassland and potato sites and analysed for pH, EC, nitrite, reactive Fe, acid volatile S (AVS) and chromium-reducible S (CRS). Nitrous oxide concentrations in the soil profile showed strong temporal dynamics reflecting water table changes, as well as precipitation and in some cases fertilization. At the paired site concentrations in the potato field (reaching 2000 μL N2O L-1) were much higher than in the adjacent grassland (up to 20 μL N2O L-1). Soil pH averaged 4.9 at the two paired sites. The difference was confirmed at reference sites. Accumulated emissions of N2O during monitoring periods (in total 151-174 d) corresponded to 18 and 48 kg N ha-1 at potato sites, but only 3 and 4 kg N ha-1 at the grassland sites. Nitrous oxide accumulated at depth in the soil during phases of declining water table in spring, but also when the water table raised to near the surface due to precipitation. On several occasions N2O also accumulated at shallow depth, and with elevated emissions, in connection with rainfall. Total reactive iron and sulfur content, including AVS and CRS, showed great heterogeneity in the profiles of both grassland and potato fields, and no clear relationships have been found between reactive iron or sulfur compounds and N2O concentrations in soil profile. However, controlled incubation experiments are on-going to identify possible mechanisms behind the accumulation and extremely high emissions of N2O from potato fields, especially whether acidifying processes can be linked to soil nitrate or nitrite reduction (e.g., through oxidation of ferrous iron to ferric iron, and sulfide to sulfate). Key words: Acid sulfate soils, organic soils, agricultural management, nitrous oxide emissions, environmental variables
Numerical determination of vertical water flux based on soil temperature profiles
NASA Astrophysics Data System (ADS)
Tabbagh, Alain; Cheviron, Bruno; Henine, Hocine; Guérin, Roger; Bechkit, Mohamed-Amine
2017-07-01
High sensitivity temperature sensors (0.001 K sensitivity Pt100 thermistors), positioned at intervals of a few centimetres along a vertical soil profile, allow temperature measurements to be made which are sensitive to water flux through the soil. The development of high data storage capabilities now makes it possible to carry out in situ temperature recordings over long periods of time. By directly applying numerical models of convective and conductive heat transfer to experimental data recorded as a function of depth and time, it is possible to calculate Darcy's velocity from the convection transfer term, thus allowing water infiltration/exfiltration through the soil to be determined as a function of time between fixed depths. In the present study we consider temperature data recorded at the Boissy-le-Châtel (Seine et Marne, France) experimental station between April 16th, 2009 and March 8th, 2010, at six different depths and 10-min time intervals. We make use of two numerical finite element models to solve the conduction/convection heat transfer equation and compare their merits. These two models allow us to calculate the corresponding convective flux rate every day using a group of three sensors. The comparison of the two series of calculated values centred at 24 cm shows reliable results for periods longer than 8 days. These results are transformed in infiltration/exfiltration value after determining the soil volumetric heat capacity. The comparison with the rainfall and evaporation data for periods of ten days shows a close accordance with the behaviour of the system governed by rainfall evaporation rate during winter and spring.
Determination of Pu and 241Am in soils by instrumental methods
NASA Astrophysics Data System (ADS)
Yaroshevich, O. J.; Zhuk, I. V.; Lomonosova, E. M.; Svetlakova, N. N.; Mironov, V. P.; Kudryashov, V. P.; Bushuev, A. V.
1995-06-01
A method based on the detection of x- and low energy γ-radiation for determining the activity of plutonium and americium-241 in soils and sediments is described. The results of x- and γ-radiation spectral measurements are presented. Possible ways to increase the sensitivity of the method are discussed. The results of measurements of α-particle activity distributions with solid state nuclear track detectors for depth profiling of different types of soils are also presented.
Prediction methods of spudcan penetration for jack-up units
NASA Astrophysics Data System (ADS)
Zhang, Ai-xia; Duan, Meng-lan; Li, Hai-ming; Zhao, Jun; Wang, Jian-jun
2012-12-01
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.
NASA Astrophysics Data System (ADS)
Chandran, Deepu; Anbazhagan, P.
2017-10-01
Recently, site response analysis has become a mandatory step for the design of important structures. Subsurface investigation is an essential step, from where the input parameters for the site response study like density, shear wave velocity (Vs), thickness and damping characteristics, etc, are obtained. Most site response studies at shallow bedrock sites are one-dimensional (1D) and are usually carried out by using Vs from multi-channel analysis of surface waves (MASW) or a standard penetration test (SPT) for N values with assumptions that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock regions as soil deposits are heterogeneous. The objective of this study is to generate the actual subsurface profiles in two-dimensions at shallow bedrock regions using integrated subsurface investigation testing. The study area selected for this work is Bangalore, India. Three survey lines were selected in Bangalore at two different locations; one at the Indian Institute of Science (IISc) Campus and the other at Whitefield. Geophysical surveys like ground penetrating radar (GPR) and 2D MASW were carried out at these survey lines. Geophysical test results are compared and validated with a conventional geotechnical SPT. At the IISc site, the soil profile is obtained from a trench excavated for a proposed pipeline used to compare the geophysical test results. Test results show that GPR is very useful to delineate subsurface layers, especially for shallow depths at both sites (IISc Campus and Whitefield). MASW survey results show variation of Vs values and layer thickness comparatively at deeper depths for both sites. They also show higher density soil strata with high Vs value obtained at the IISc Campus site, whereas at the Whitefield site weaker soil with low shear velocity is observed. Combining these two geophysical methods helped to generate representative 2D subsurface profiles. These subsurface profiles can be further used to understand the difference between 1D and 2D site response.
NASA Astrophysics Data System (ADS)
Demand, D.; Blume, T.; Weiler, M.
2017-12-01
Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.
Mapping Soil Organic Matter with Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel
2014-05-01
Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.
Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan
2017-03-01
Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0-40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10-40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.
Sub-soil microbial activity under rotational cotton crops in Australia
NASA Astrophysics Data System (ADS)
Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily
2016-04-01
Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.
Water and chloride transport in a fine-textured soil in a feedlot pen.
Veizaga, E A; Rodríguez, L; Ocampo, C J
2015-11-01
Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.
2009-04-01
The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was attributed to an increased rigidity of the carboxyl systems. Very likely COOH groups may form hydrogen bondings with other hydrophilic HA components that were progressively revealed at deeper depths. On the other hand, increasing of TCH values of alkyl components was explained with a progressive enhancement of branched chains number. In fact, branches may favor molecular flexibility, thereby enabling faster molecular tumbling and longer cross polarization times. Since the amount of branched chains in the alkyl moieties appeared to increase from the top to the bottom of the soil horizons, the amount of poorly protonated carbons placed in the branch nodes also increases with soil depth. For this reason, proton spin diffusion becomes more difficult and T1rho(H) values increase with the soil depth. Reduced protonation degree may also account for increasing T1rho(H) values of COOH groups. Ackowledgments. The NMR experiments were done at Centro Grandi Apparecchiature (CGA) - UniNetLab of the University of Palermo (Italy).
Huang, Ping; Zhang, Jiabao; Zhu, Anning; Li, Xiaopeng; Ma, Donghao; Xin, Xiuli; Zhang, Congzhi; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol
2018-01-01
Irrigation and nitrogen (N) fertilization in excess of crop requirements are responsible for substantial nitrate accumulation in the soil profile and contamination of groundwater by nitrate leaching during intensive agricultural production. In this on-farm field trial, we compared 16 different water and N treatments on nitrate accumulation and its distribution in the soil profile (0-180cm), nitrate leaching potential, and groundwater nitrate concentration within a summer-maize (Zea mays L.) and winter-wheat (Triticum aestivum L.) rotation system in the Huang-Huai-Hai Plain over five cropping cycles (2006-2010). The results indicated that nitrate remaining in the soil profile after crop harvest and nitrate concentration of soil solutions at two depths (80cm and 180cm) declined with increasing irrigation amounts and increased greatly with increasing N application rates, especially for seasonal N application rates higher than 190kgNha -1 . During the experimental period, continuous torrential rainfall was the main cause for nitrate leaching beyond the root zone (180cm), which could pose potential risks for contamination of groundwater. Nitrate concentration of groundwater varied from 0.2 to 2.9mgL -1 , which was lower than the limit of 10mgL -1 as the maximum safe level for drinking water. In view of the balance between grain production and environmental consequences, seasonal N application rates of 190kgNha -1 and 150kgNha -1 were recommended for winter wheat and summer maize, respectively. Irrigation to the field capacity of 0-40cm and 0-60cm soil depth could be appropriate for maize and wheat, respectively. Therefore, taking grain yields, mineral N accumulation in the soil profile, nitrate leaching potential, and groundwater quality into account, coupled water and N management could provide an opportunity to promote grain production while reducing negative environmental impacts in this region. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaller, M.; Ehlers, T. A.; Lang, K. A. H.; Schmid, M.; Fuentes-Espoz, J. P.
2018-05-01
The Earth surface is modulated by interactions among tectonics, climate, and biota. The influence of each of these factors on hillslope denudation rates is difficult to disentangle. The Chilean Coastal Cordillera offers a strong climate and vegetation gradient from arid and unvegetated in the North to humid and vegetated in the South. A similar (convergent) plate tectonic boundary lies to the West of the Coastal Cordillera. We present eight depth profiles analyzed for in situ-produced cosmogenic 10Be in four study areas. These profiles reveal denudation rates of soil-mantled hillslopes and the depth of mobile layers. Depth profiles were investigated from both S- and N-facing mid-slope positions. Results indicate the depth of the mobile layers in the four study areas increase from N to S in latitude. When mixing is present in the mobile layers they are completely mixed. In the S- and N-facing hillslopes of each study area, mid-slope positions do not show a systematic change in depth of the mobile layers nor in denudation rates based on cosmogenic depth profiles. From N to S in latitude, modelled denudation rates of hillslopes increase from ∼0.46 to ∼5.65 cm/kyr and then decrease to ∼3.22 cm/kyr in the southernmost, highest vegetation cover, study area. Calculated turnover times of soils decrease from ∼30 to ∼11 kyr and then increase to ∼22 kyr. In this work, the increasing denudation rates are attributed to increasing mean annual precipitation from N to S. However, despite the ongoing increase in precipitation from N to S, the denudation rate in the southernmost location does not continue to increase due to the protective nature of increasing vegetation cover. This indicates a vegetation induced non-linear relationship with denudation rates.
NASA Astrophysics Data System (ADS)
Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.
2018-06-01
Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.
NASA Astrophysics Data System (ADS)
Mestas Valero, R. M.; Báez Bernal, D.; García Pomar, M. I.; Paz González, A.
2009-04-01
Frequency domain reflectometry (FDR) is becoming increasingly used for indirect water content determination in soils. In Galica, located in NW Spain, the humid region of this country, annual precipitation exceeds evapotranspiration. However, the yearly distribution of rainfall is irregular, so that supplementary irrigation during the dry warm summer is required often. This study aims to evaluate soil water use by grasslands and soil water regime patterns during the warm season from soil moisture measured at successive depths using FDR. The study sity is located at the experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo, latitude 43°14' N and longitude 08°15' W. Soil moisture was monitored at six experimental plots from July to October 2008 two times per week using a portable FDR sensor. Measurements were made from 10 to 160 cm depth at 10 cm intervals. Moreover one of the plots was equipped with a continuous recording FDR-EnviroSCAN probe. Crop potential evapotranspiration (ETc) was estimated according to the of FAO version of the Penman-Monteith equation and the meteorological information required to apply this method was provided by a station located in the place experimental field. Cumulative rainfall along the study period was 195 mm, which is above the long-term mean and cumulative potential evapotranspiration was 264.7 mm. Using the water balance method the total value of actual evapotranspiration was estimated at 205.2 mm. Analysis of soil moisture content profiles allowed a description of soil water regime and main soil water withdrawal patterns under grassland. In general, grassland roots extracted most soil water from the 0-40 cm depth. In contrast, moisture content at the bottom of the profile was close to saturation, even the driest weeks of the study period. Continuous monitoring of soil water content allowed a more detailed characterization of dry and wet periods during the study season. The study data set may be useful for assessing draught risks and supplementary irrigation needs.
Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, Brian J.
2007-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipitation, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measurements of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data contained in the computer generated data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological, soil-water content, and evapotranspiration data.
Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem
NASA Astrophysics Data System (ADS)
Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.
2009-12-01
Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.
NASA Astrophysics Data System (ADS)
Kessouri, P.; Buvat, S.; Tabbagh, A.
2012-12-01
Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.
NASA Astrophysics Data System (ADS)
Mendez-Millan, Mercedes; Dignac, Marie-France; Rumpel, Cornelia; Rasse, Daniel P.; Derenne, Sylvie
2010-05-01
The turnover of soil organic matter (SOM) is generally studied in the topsoil horizons, where the highest concentrations of organic carbon (OC) are found. Subsoils, although containing lower amounts of organic carbon compared to topsoils, greatly contribute to the total carbon stocks within a soil profile. An increase in SOM aliphaticity was observed during SOM degradation, and also down the soil profile, suggesting that the stable pool of SOM is enriched in aliphatic structures. These alkyl-C structures might mainly derive from cutins and suberins, two biomacromolecules, which contain biomarkers specific for shoot and root plant biomass. The aim of this study was to use cutin and suberin structural units to follow the incorporation of plant biomass originating from roots and shoots throughout an agricultural soil profile. We measured the 13C natural abundance of root and shoot biomarkers in samples taken from 15 to 105 cm depth in a C3/C4 chronosequence. After 9 years of maize (C4) cropping, the distribution of root biomarkers (diacids) significantly changed and their concentration increased compared to the wheat (CC3) soil. The largest increase was observed at 60-75 cm where diacids reached up to 134 ?g/gOC compared to 23 ?g/gOC in the wheat soil. Higher inputs from maize root biomass are also suggested by an average 13C enrichment of the root markers in the maize compared to the wheat soil.
Microbial community changes as a possible factor controlling carbon sequestration in subsoil
NASA Astrophysics Data System (ADS)
Strücker, Juliane; Jörgensen, Rainer Georg
2015-04-01
In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
NASA Astrophysics Data System (ADS)
Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.
2013-08-01
Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the Santa Rita Experimental Range field site, the calibrated COSMIC model provided an effective mechanism for translating model-calculated soil moisture profiles into aboveground fast-neutron count when applied with two radically different approaches used to remove the bias between data and model.
NASA Astrophysics Data System (ADS)
Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire
2018-01-01
Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep-rooted trees modify OC inputs to soil, a process that deserves further study given its potential effects on SOC dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahaney, W.C.; Boyer, M.G.
1986-08-01
Microflora (bacteria and fungi) distributions in several paleosols from Mount Kenya, East Africa, provide important information about contamination of buried soil horizons dated by radiocarbon. High counts of bacteria and fungi in buried soils provide evidence for contamination by plant root effects or ground water movement. Profiles with decreasing counts versus depth appear to produce internally consistent and accurate radiocarbon dates. Profiles with disjunct or bimodal distributions of microflora at various depths produce internally inconsistent chronological sequences of radiocarbon-dated buried surfaces. Preliminary results suggest that numbers up to 5 x 10/sup 2/ g/sup -1/ for bacteria in buried A horizonsmore » do not appear to affect the validity of /sup 14/C dates. Beyond this threshold value, contamination appears to produce younger dates, the difference between true age and /sup 14/C age increasing with the amount of microflora contamination.« less
Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu
2013-01-01
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization. PMID:23437161
Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.
Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L
2018-04-01
In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.
NASA Astrophysics Data System (ADS)
Shuler, J.; McNamara, J. P.; Benner, S. G.; Kohn, M. J.; Evans, S.
2017-12-01
The ecohydrologic separation (ES) hypothesis states that streams and plants return different soil water compartments to the atmosphere and that these compartments bear distinct isotopic compositions that can be used to infer soil water mobility. Recent studies have found isotopic evidence for ES in a variety of ecosystems, though interpretations of these data vary. ES investigations frequently suffer from low sampling frequencies as well as incomplete or missing soil moisture and matric potential data to support assumptions of soil water mobility. We sampled bulk soil water every 2-3 weeks in the upper 1 m of a hillslope profile from May 2016 to July 2017 in a semi-arid watershed outside Boise, ID. Twig samples of three plant species were also collected concurrently. Plant and soil water samples extracted via cryogenic vacuum distillation were analyzed for δ2H and δ18O composition. Soil moisture and soil matric potential sensors were installed at five and four depths in the profile, respectively. Shallow bulk soil water was progressively enriched in both isotopes over the growing season and plotted along a soil evaporation line in a plot of δ2H versus δ18O. Plant water during the growing season plotted below both the Local Meteoric Water Line and soil evaporation line. Plant water isotopic composition could not be traced to any source sampled in this study. Additionally, soil moisture and matric potential data revealed that soils were well-drained and that mobile soil water was unavailable throughout most of the growing season at the depths sampled. Soil water isotopic composition alone failed to predict mobility as observed in soil moisture and matric potential data. These results underscore the need for standard hydrologic definitions for the mobile and immobile compartments of soil water in future studies of the ES hypothesis and ecohydrologic processes in general.
Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng
2010-03-01
By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.
NASA Astrophysics Data System (ADS)
Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.
2015-07-01
Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 under bare soil. The sequestration of SOC in the 1-2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.
NASA Astrophysics Data System (ADS)
Tregubova, Valentina; Semal, Victoria; Nesterova, Olga; Yaroslavtsev, Alexis
2017-04-01
The most common soils of the southern Far East are Brownzems under Russian classification (Cambisols), which are the zonal ones, emerging on the steep slopes and tops of hills, on high river terraces under broad-leaved and cedar-broad-leaved forests. Those soils formed due to two processes: organic matter metamorphism and clayization by siallite, leading to the formation of clay-metamorphic horizon Bw. The main morphological features of Cambisols are not deep soil profile (50 - 70 cm), weak horizons differentiation, with lots of cobble. Chemically those soils are low saturated, even in the humus horizon. Distribution of total absorbed bases is mostly accumulative, which is related to the distribution of humus in these soils, and the predominant type of clay fraction distribution of. The only exception are Humic Cambisols and Humic Cambisols Calcic which were formed on redeposited products of limestone rock weathering. Fine-grained deposits are mainly loams with a low content of silt. Silt distribution has an accumulative character with a gradual decrease in the content of silt down from the top of the profile. Layer of fresh leaf fall is very common for the Humic Cambisols surfaces, and under it there is the litter of plant residues with different degrees of decomposition. Accumulative humus horizon is dark gray with brownish tint, thin, from 10 to 15 cm in depth, loose, crumbly, highly penetrated by roots, with a strong granular structure, with aggregates tightly attached to the root hairs, sandy loam or sandy clay loam. The middle horizon is brown, yellowish-brown, divided into sub-horizons, with different color intensity, density, soil texture and amount of cobble. Dystric Cambisols are acidic or strongly acidic with low saturation of soil absorbing complex. Due to amount and distribution of organic matter these soils can be divided into two groups. The first group is soils with accumulative humus distribution: with a low depth humus-accumulative horizon (11 - 12 cm) and high content of organic matter (23 - 26 %); humus in the upper horizons mainly consists of humic acids, while in lower horizons it is with higher ratio of fulvic acids. The second group is soils with a gradual humus distribution along the profile and with a smaller amount of organic matter in the upper horizon (9 - 13 %) and with no differentiation in humus composition. Folic Cambisols are formed on the watershed surfaces, on the steep slopes under pine and oak trees. Under thin litter horizon these soils have organic-accumulative horizon of well decomposed organic matter, but in contrast with Dystric Cambisols it doesn't have strong granular structure. At the bottom the organic horizon is humic-impregnated or has clear streaks of humus. Humic Cambisols are formed in the lower parts of slopes, on steep slopes and high river terraces under pine and deciduous forests. All this soils have humified litter horizon, which is up to 7 cm in depth, weak differentiation of the soil profile, deep humus-accumulative horizon (18 - 31 cm) with dark gray, almost black color, with strong granular structure and loam or clay loam texture. Soil acidity is determined by the lithogenic basis. Base saturation is quite high (77 - 90%) in mineral horizons and is up to 70 % in organic and accumulative ones. There is a high amount of humus on the entire profile (5 - 16 %), which consists of humic acids in the upper half of the profile and of fulvates at the bottom. Humic Cambisols Gleyic are located in the lower parts of gentle slopes under mixed forest. Due to higher moisture at the lower parts of slopes this soils have signs of weak gley process in dense subsoil horizons in the form of small light grey spots. Humic Leptosols are weakly developed soils formed on rocky hills, boulders, rocky outcrops, under thick moss layer, under which is a layer of weathered gravel rock. Humic Cambisols (Calcic) are formed on the surface sediments of limestone. They have a deep soil profile, up to 40 cm and it's humus-accumulative horizon is dark gray or black, gradually passing into soil-forming rock. Bw horizon, typical for Cambisols, is weak.
Dynamics of Gross Methane Production and Oxidation in a Peatland Soil
NASA Astrophysics Data System (ADS)
McNicol, G.; Yang, W. H.; Teh, Y.; Silver, W. L.
2012-12-01
Globally, peatlands are major sources of the potent greenhouse gas methane (CH4) that is implicated in 20% of the post-industrial increase in radiative forcing. Many temperate peatlands have been drained for alternative land-use and are characterized by a layer of unsaturated soil overlying the remnant organic histosol. Drained soil layers may attenuate surface CH4 emissions from deeper, flooded peat layers via microbial CH4 consumption. We measured gross rates of CH4 production and oxidation seasonally across a range of topographic landforms in a partially drained peatland on Sherman Island, California. Net CH4 fluxes across the soil-atmosphere interface ranged from -7.4 to 1096 mg-C m-2 d-1 across all landforms. Fluxes were highest in May and in irrigation ditches (date, p < 0.001; landform, p < 0.001; n = 55). Gross CH4 production rates ranged from 0-1461 mg-C m-2 d-1 and oxidation rates ranged from 0-40 mg-C m-2 d-1. Excluding the irrigation ditches, gross fluxes did not vary seasonally. Gross CH4 fluxes were significantly higher in the hollow/hummock than in the slope. We subsequently selected the hollow/hummock based upon the observation of a strong redox gradient with depth and characterized gross fluxes of CH4 both in the field and in laboratory incubations of four soil depth increments (0-10 cm, 10-30 cm, 30-60 cm, 60-80 cm). The laboratory incubation consisted of 3 separate gross flux experiments: the first using fresh soil under ambient headspace, the second after incubation in an N2 headspace, and the third after incubation in an ambient headspace. Gross CH4 fluxes in the field varied from a slight sink (-0.11 mg-C m-2 d-1) to a large source (23.9 mg-C m-2 d-1). In 3 plots net fluxes were reduced by competing CH4 oxidation. In the depth profile experiment, production and consumption were observed in the fresh soil, but without a clear depth trend. In contrast, we found that consumption rates increased with depth following the aerobic incubation and production showed the same trend with depth under N2. Our field results demonstrate that flooded drainage ditches can act as CH4 emission hotspots in drained peatlands due to high production rates and low oxidation rates, disproportionately impacting ecosystem CH4 emissions. In contrast CH4 oxidation rates in the drained landforms even led to negative fluxes at times. The depth profile experiment showed that the strongest potential for both production and consumption of CH4 was at depths close to, or below, the water table. Thus despite significant CH4 production potential at depth, drained peatlands may be only minor sources, or even slight sinks, of CH4 if the extent and persistence of flooded landforms is minimal.
1992-04-15
an ofcial endorsement or approval of the use of such commercial products. This report may not be cited for purposes of advertisement . "EngineersM M7...Logs Appendix C. Laboratory Results of Soil Samples Appendix D. Concentration of Contaminants vs . Depth in Soils Appendix E. Lithologic Profiles of...dramatic difference in concentrations of explosives in areas outside the lagoons vs . concentrations beneath the lagoons. The results confirm that ES-I
Soil water content spatial pattern estimated by thermal inertia from air-borne sensors
NASA Astrophysics Data System (ADS)
Coppola, Antonio; Basile, Angelo; Esposito, Marco; Menenti, Massimo; Buonanno, Maurizio
2010-05-01
Remote sensing of soil water content from air- or space-borne platforms offer the possibility to provide large spatial coverage and temporal continuity. The water content can be actually monitored in a thin soil layer, usually up to a depth of 0.05m below the soil surface. To the contrary, difficulties arise in the estimation of the water content storage along the soil profile and its spatial (horizontal) distribution, which are closely connected to soil hydraulic properties and their spatial distribution. A promising approach for estimating soil water contents profiles is the integration of remote sensing of surface water content and hydrological modeling. A major goal of the scientific group is to develop a practical and robust procedure for estimating water contents throughout the soil profile from surface water content. As a first step, in this work, we will show some preliminary results from aircraft images analysis and their validation by field campaigns data. The data extracted from the airborne sensors provided the opportunity of retrieving land surface temperatures with a very high spatial resolution. The surface water content pattern, as deduced by the thermal inertia estimations, was compared to the surface water contents maps measured in situ by time domain reflectometry-based probes.
NASA Astrophysics Data System (ADS)
Kellman, Lisa; Kumar, Sanjeev; Diochon, Amanda
2014-07-01
This study investigates whether clear-cut forest harvesting leads to alterations in the decadal-scale biogeochemical nitrogen (N) cycles of moist temperate forest ecosystems. Using a harvested temperate red spruce (Picea rubens Sarg.) forest chronosequence in Nova Scotia, Canada, representing <1 to >80 year old postharvest conditions, alongside a reference old-growth (125+ year old) site with no documented history of disturbance, we examine harvesting-related changes in soil N pools and fluxes. Specifically, we quantify soil N storage with depth and age across the forest chronosequence, examine changes in physical fractions and δ15N of soil N through depth and time, and quantify gross soil N transformation rates through depth and time using a 15N isotope dilution technique. Our findings point to a large loss of total N in the soil pool, particularly within the deep soil (>20 cm) and organomineral fractions. A pulse of available mineralized N (as ammonium) was observed following harvesting (mean residence time (MRT) > 6 days), but its MRT dropped to <1 day 80 years following harvesting, in contrast to the MRT of 2-3 days observed in the reference old-growth forest site. These mineralization patterns coupled with inferred leaching losses to groundwater are consistent with storage estimates that suggest soil N may not reaccrue for almost a century following this disturbance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erel, Y.
The isotopic composition of Pb measured in soil samples was used to determine rates and mechanisms of anthropogenic Pb migration in the soil. Petrol-Pb found in soluble halogenated aerosols migrates into the soil and is retained in the soil by the stationary soil particles. Lead infiltration velocity is approximately 5 {times} 10{sup {minus}1} cm/year, and its retardation factor is estimated to be on the order of 1 {times} 10{sup 3}. The infiltration of Pb into the soil is best described by the advection-dispersion equation under the assumption that the time scale of the longitudinal dispersion is much longer than themore » time scale of advection. Therefore, the contribution of dispersion to the solution of the advection-dispersion equation is negligible. As a result, the soil profile of petrol-Pb resembles the time-dependent input function of petrol-Pb. The estimated petrol-Pb penetration velocity and the isotopic composition profile of Pb in off-road soil are used for the computation of the fraction of anthropogenic Pb in this soil. It is calculated that the fraction of anthropogenic Pb in the acid-leached soil samples and in the soil residue of this soil profile drops from 60 and 22% near the surface to 6 and 0% at a depth of 33 cm, respectively. The downward migration velocity of Pb in soils of the studied area, which are typically 50 to 100 cm deep, implies a residence time of Pb in the soil of 100 to 200 years.« less
Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki
2016-04-01
The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon
2009-01-01
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.
222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland).
Malczewski, Dariusz; Zaba, Jerzy
2007-01-01
Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.
Predicting and mapping soil available water capacity in Korea.
Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo
2013-01-01
The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.
Morphology and spatial patterns of Macrotermes mounds in the SE Katanga, D.R. Congo
NASA Astrophysics Data System (ADS)
Bazirake Mujinya, Basile; Mees, Florias; Erens, Hans; Baert, Geert; Van Ranst, Eric
2015-04-01
The spatial distribution patterns and morphological characteristics of Macrotermes falciger mounds were investigated in the Lubumbashi area, D.R. Congo. Examination of the spatial patterns of M. falciger mounds on high resolution satellite images reveals a mean areal number density of 2.9 ± 0.4 mounds ha-1. The high relative number of inactive mounds in the region, along with their regular distribution pattern, suggests that current termite mound occurrences are largely palaeostructures. Mound positions in the habitat are consistent with intraspecific competition rather than soil and substrate characteristics as controlling factor. Detailed morphological description of five deep termite-mound profiles (~7 m height/depth) shows that carbonate pedofeatures are present in all studied profiles, in contrast to the control soils. They mainly occur in the form of soft powdery masses, nodules and coatings on ped faces, all clearly pedogenic. Carbonate coatings occur mainly between 1 m above the soil surface and 1 m below that level in all mound profiles. Carbonate nodules do show a different distribution pattern at each site. Furthermore, when the studied profiles are considered to represent a toposequence, the stone layer occurs at greater depth in topographically low areas compared to crest and slope positions, which is mainly conditioned by erosion. The clay content of epigeal mounds increases from the summit to the toe slope, which can be largely related to differences in parent material. The Mn-Fe oxide concentrations occurring in all studied termite mound profiles reflect a seasonally high perched water table beneath the mound, which is more pronounced at the lower slope positions.
Examination of soil effect upon GPR detectability of landmine with different orientations
NASA Astrophysics Data System (ADS)
Ebrahim, Shereen M.; Medhat, N. I.; Mansour, Khamis K.; Gaber, A.
2018-06-01
Landmines represent a serious environmental problem for several countries as it causes severe injured and many victims. In this paper, the response of GPR from different parameters of the landmine targets has been shown and the data is correlated with observed field experiment made in 2012 at Miami Crandon Park test site. The ability of GPR for detecting non-metallic mines with different orientations was revealed and soil effect upon the GPR signal was examined putting into consideration the soil parameters in different locations in Egypt such as in Sinai and El Alamein. The simulation results showed that PMN-2 landmine was detected at 5 cm and 15 cm depths, even at the minimum radar cross section vertical orientation. The B-Scan (2D GPR profiles) of PMN-2 target at 15 cm depth figured out high reflectivity for Wadi deposits due to large contrast between PMN-2 landmine material and soil of sand dunes.
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-06-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Prior, C.; Lambie, S.; Tate, K.; Bruhn, F.; Parfitt, R.; Schipper, L.; Wilde, R. H.; Ross, C.
2006-12-01
Soil organic matter contains more C than terrestrial biomass and atmospheric CO2 combined, and reacts to climate and land-use change on timescales requiring long-term experiments or monitoring. The direction and uncertainty of soil C stock changes has been difficult to predict and incorporate in decision support tools for climate change policies. Moreover, standardization of approaches has been difficult because historic methods of soil sampling have varied regionally, nationally and temporally. The most common and uniform type of historic sampling is soil profiles, which have commonly been collected, described and archived in the course of both soil survey studies and research. Resampling soil profiles has considerable utility in carbon monitoring and in parameterizing models to understand the ecosystem responses to global change. Recent work spanning seven soil orders in New Zealand's grazed pastures has shown that, averaged over approximately 20 years, 31 soil profiles lost 106 g C m-2 y-1 (p=0.01) and 9.1 g N m{^-2} y-1 (p=0.002). These losses are unexpected and appear to extend well below the upper 30 cm of soil. Following on these recent results, additional advantages of resampling soil profiles can be emphasized. One of the most powerful applications afforded by resampling archived soils is the use of the pulse label of radiocarbon injected into the atmosphere by thermonuclear weapons testing circa 1963 as a tracer of soil carbon dynamics. This approach allows estimation of the proportion of soil C that is `passive' or `inert' and therefore unlikely to respond to global change. Evaluation of resampled soil horizons in a New Zealand soil chronosequence confirms that the approach yields consistent values for the proportion of `passive' soil C, reaching 25% of surface horizon soil C over 12,000 years. Across whole profiles, radiocarbon data suggest that the proportion of `passive' C in New Zealand grassland soil can be less than 40% of total soil C. Below 30 cm, 1 kg C m-2 or more may be reactive on decadal timescales, supporting evidence of soil C losses from throughout the soil profiles. Information from resampled soil profiles can be combined with additional contemporary measurements to test hypotheses about mechanisms for soil C changes. For example, Δ14C in excess of 200‰ in water extractable dissolved organic C (DOC) from surface soil horizons supports the hypothesis that decadal movement of DOC represents an important translocation of soil C. These preliminary results demonstrate that resampling whole soil profiles can support substantial progress in C cycle science, ranging from updating operational C accounting systems to the frontiers of research. Resampling can be complementary or superior to fixed-depth interval sampling of surface soil layers. Resampling must however be undertaken with relative urgency to maximize the potential interpretive power of bomb-derived radiocarbon.
NASA Astrophysics Data System (ADS)
Hoon, Stephen R.; Felde, Vincent J. M. N. L.; Drahorad, Sylvie L.; Felix-Henningsen, Peter
2015-04-01
Soil penetrometers are used routinely to determine the shear strength of soils and deformable sediments both at the surface and throughout a depth profile in disciplines as diverse as soil science, agriculture, geoengineering and alpine avalanche-safety (e.g. Grunwald et al. 2001, Van Herwijnen et al. 2009). Generically, penetrometers comprise two principal components: An advancing probe, and a transducer; the latter to measure the pressure or force required to cause the probe to penetrate or advance through the soil or sediment. The force transducer employed to determine the pressure can range, for example, from a simple mechanical spring gauge to an automatically data-logged electronic transducer. Automated computer control of the penetrometer step size and probe advance rate enables precise measurements to be made down to a resolution of 10's of microns, (e.g. the automated electronic micropenetrometer (EMP) described by Drahorad 2012). Here we discuss the determination, modelling and interpretation of biologically crusted dryland soil sub-surface structures using automated micropenetrometry. We outline a model enabling the interpretation of depth dependent penetration resistance (PR) profiles and their spatial differentials using the model equations, σ {}(z) ={}σ c0{}+Σ 1n[σ n{}(z){}+anz + bnz2] and dσ /dz = Σ 1n[dσ n(z) /dz{} {}+{}Frn(z)] where σ c0 and σ n are the plastic deformation stresses for the surface and nth soil structure (e.g. soil crust, layer, horizon or void) respectively, and Frn(z)dz is the frictional work done per unit volume by sliding the penetrometer rod an incremental distance, dz, through the nth layer. Both σ n(z) and Frn(z) are related to soil structure. They determine the form of σ {}(z){} measured by the EMP transducer. The model enables pores (regions of zero deformation stress) to be distinguished from changes in layer structure or probe friction. We have applied this method to both artificial calibration soils in the laboratory, and in-situ field studies. In particular, we discuss the nature and detection of surface and buried (fossil) subsurface Biological Soil Crusts (BSCs), voids, macroscopic particles and compositional layers. The strength of surface BSCs and the occurrence of buried BSCs and layers has been detected at sub millimetre scales to depths of 40mm. Our measurements and field observations of PR show the importance of morphological layering to overall BSC functions (Felde et al. 2015). We also discuss the effect of penetrometer shaft and probe-tip profiles upon the theoretical and experimental curves, EMP resolution and reproducibility, demonstrating how the model enables voids, buried biological soil crusts, exotic particles, soil horizons and layers to be distinguished one from another. This represents a potentially important contribution to advancing understanding of the relationship between BSCs and dryland soil structure. References: Drahorad SL, Felix-Henningsen P. (2012) An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability, J. Plant Nutr. Soil Sci., 175, 519-520 Felde V.J.M.N.L., Drahorad S.L., Felix-Henningsen P., Hoon S.R. (2015) Ongoing oversanding induces biological soil crust layering - a new approach for BSC structure elucidation determined from high resolution penetration resistance data (submitted) Grunwald, S., Rooney D.J., McSweeney K., Lowery B. (2001) Development of pedotransfer functions for a profile cone penetrometer, Geoderma, 100, 25-47 Van Herwijnen A., Bellaire S., Schweizer J. (2009) Comparison of micro-structural snowpack parameters derived from penetration resistance measurements with fracture character observations from compression tests, Cold Regions Sci. {& Technol.}, 59, 193-201
Stability of organic carbon in deep soil layers controlled by fresh carbon supply.
Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia
2007-11-08
The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun
2015-01-01
This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.
Agricultural Geophysics: Past, present, and future
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
Giovannini, Camilla; Garcia-Mina, Josè M; Ciavatta, Claudio; Marzadori, Claudio
2009-06-10
The use of N-(n-butyl)thiophosphoric triamide (NBPT), as a urease inhibitor, is one of the most successful strategies utilized to increase the efficiency of urea-based fertilization. To date, NBPT has been added to the soil incorporated in fertilizers containing either urea or the inhibitor at a fixed percentage on the urea weight. The possibility of using NBPT physically separated from urea-based fertilizers could make its use more flexible. In particular, a granulated product containing NBPT could be utilized in soils treated with different urea-based fertilizers including livestock urine, the amount depending on soil characteristics and/or the urea source (e.g., mineral fertilizer, organo-mineral fertilizer, or animal slurry). In this study, a multilayer soil column device was used to investigate the influence of an experimental granular product (RV) containing NBPT and a garlic extract, combining the ability to protect NBPT by oxidation and nitrification inhibition activity, on (a) spatial variability of soil urease and nitrification activities and (b) timing of urea hydrolysis and mineral-N form accumulation (NO(2)(-), NO(3)(-), NH(4)(+)) in soil treated with urea. The results clearly demonstrated that RV can, effectively, inhibit the soil urease activity along the soil column profile up to 8-10 cm soil layer depth and that the inhibition power of RV was dependent on time and soil depth. However, nitrification activity is not significantly influenced by RV addition. In addition, the soil N transformations were clearly affected by RV; in fact, RV retarded urea hydrolysis and reduced the accumulation of NH(4)(+)-N and NO(2)(-)-N ions along the soil profile. The RV product was demonstrated to be an innovative additive able to modify some key ureic N trasformation processes correlated with the efficiency of the urea-based fertilization, in a soil column higher than 10 cm.
Influence of Heavy Metal Stress On Water Regime of A Model Forest Ecosystem
NASA Astrophysics Data System (ADS)
Menon, M.; Abbaspour, K. C.; Schulin, R.
Among various toxic substances that contaminate the soil, the effects of heavy metals are particularly severe on all aspects of soil-plant system. The Swiss Federal Institute for Forest Snow and Land Research (WSL) is addressing comprehensively the issue of heavy metal toxicity in a forest ecosystem in a project titled Sfrom cell to treeT. As & cedil; part of the above project an investigation is being carried out to evaluate the impact of heavy metal stress on water regime of a young forest ecosystem grown in sixteen open top lysimeters. The factorial treatments of the lysimeters include variations of rainwa- ter acidity (acidic, neutral), subsoil type (acidic, calcareous), and heavy metal con- centration (with and without heavy metals in the top 20 cm). Filling of lysimeters was completed in November 1999. Each model ecosystem was planted in spring 2000 with the same collection of trees and herbaceous plants. Each lysimeters is equipped with tensiometers for monitoring of pressure head, time domain reflectometry for moni- toring of water content, and sprinkler devices for application of controlled irrigation. Drainage water data are measured regularly from the canisters installed at the bot- tom of lysimeters and evapotranspiration is calculated through water balancing. Our preliminary analyses of the data shoed the following results. Weekly data collected from May to October 2001 indicated higher amount of percolating water in acidic soil compared to the neutral soil due to textural difference. At 12 cm depth in both soils, control and acidic rain showed lower water potential than heavy metal and combina- tion of acidic rain with heavy metal treatments. In lower depths, water potential did not show much difference between treatments. Water contents showed differences be- tween treatments in the upper part of the profile where the soil is contaminated with heavy metals. Higher water content was observed in heavy metal treatment at 0-25 cm depth than 25-50 cm depth. This indicates higher root activity at deeper soil profile where heavy metal is not present. The overall results indicated differences in water regime of the heavy metal-treated soils. We expect this difference to be more signifi- cant in the next years as trees grow larger and exert a stronger water demand.
Fractal behavior of soil water storage at multiple depths
NASA Astrophysics Data System (ADS)
Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.
2016-08-01
Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Barbeta, Adrià; Sardans, Jordi
Soils provide physical support, water, and nutrients to terrestrial plants. Upper soil layers are crucial for forest dynamics, especially under drought conditions, because many biological processes occur there and provide support, water and nutrients to terrestrial plants. We postulated that tree size and overall plant function manifested in the metabolome composition, the total set of metabolites, were dependent on the depth of upper soil layers and on water availability. We sampled leaves for stoichiometric and metabolomic analyses once per season from differently sized Quercus ilex trees under natural and experimental drought conditions as projected for the coming decades. Different sizedmore » trees had different metabolomes and plots with shallower soils had smaller trees. Soil moisture of the upper soil did not explain the tree size and smaller trees did not show higher concentrations of biomarker metabolites related to drought stress. However, the impact of drought treatment on metabolomes was higher in smaller trees in shallower soils. Our results suggested that tree size was more dependent on the depth of the upper soil layers, which indirectly affect the metabolomes of the trees, than on the moisture content of the upper soil layers. Metabolomic profiling of Q. ilex supported the premise that water availability in the upper soil layers was not necessarily correlated with tree size. The higher impact of drought on trees growing in shallower soils nevertheless indicates a higher vulnerability of small trees to the future increase in frequency, intensity, and duration of drought projected for the Mediterranean Basin and other areas. Metabolomics has proven to be an excellent tool detecting significant metabolic changes among differently sized individuals of the same species and it improves our understanding of the connection between plant metabolomes and environmental variables such as soil depth and moisture content.« less
NASA Astrophysics Data System (ADS)
Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.
2017-12-01
Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.
Modeling carbon cycle process of soil profile in Loess Plateau of China
NASA Astrophysics Data System (ADS)
Yu, Y.; Finke, P.; Guo, Z.; Wu, H.
2011-12-01
SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.
NASA Astrophysics Data System (ADS)
Navas, A.; Laute, K.; Beylich, A. A.; Gaspar, L.
2014-01-01
In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties to assess if soil profile characteristics and pattern of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significant lower mass activities of FRNs are found in soils on the moraines than on colluviums. Variations of ERNs activities in the valleys are related to characteristics soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.
NASA Astrophysics Data System (ADS)
Peli, Marco; Raffelli, Giulia; Barontini, Stefano; Bostick, Benjamin C.; Donna, Filippo; Lucchini, Roberto G.; Ranzi, Roberto
2017-04-01
For the last forty years (1974-2015), a ferroalloy industry has been working in Bagnolo Mella, a municipality nearby the city of Brescia (Northern Italy), producing particulate emissions enriched in heavy metals: manganese (Mn) in particular, but also lead (Pb), iron (Fe), aluminum (Al) and arsenic (As). Although some of these metals are required trace elements for most living organisms and can be largely found in natural environments (e.g. Mn being the fifth most abundant metal in the Earth crust), they all lead to toxic effects when they contaminate work and life environments of the exposed population. Aiming at contributing to quantify the exposure of the population to environmental pollution near the factory, as well as the heavy metals possible tendency to migrate through the considered soil matrix, in this work we investigated metals speciation and fluxes within the Earth Critical Zone. The factory is located near residential areas in a plain characterised by little wind and shallow water table with a great number of water resurgences. Three test sites were identified among the pronest ones to particulate matter deposition, on the basis of data collected during a previous experimental field campaign and of the local wind rose. One more site was selected upwind to the factory as a reference site minimally prone to particulate matter deposition, on the basis of the previous investigations. Sites where lawns have been maintained at least for the last forty years where selected in order to avoid agriculture—induced effects on the metals movement. Total soil metal concentrations were measured by means of a portable X-Ray Fluorescence (XRF) device along the soil profiles, down to the depth of 40 cm from the soil surface. Four loose soil samples were collected at each site, at depths ranging from 5 to 30 cm, and they were later subjected to sequential extractions procedure and ICP—MS analyses, in order to investigate differences in heavy metals speciation along the considered soil profiles. The XRF metal total content profiles show an accumulation of metals in the subsurface soil layers, around 5 cm under the soil surface (this feature is highlighted in the normalized profiles). They also give evidence of the plant activity consequences, with the closest downwind site showing values which are for all metals at least one order of magnitude -two for Mn- higher than the ones in the test site. The speciation profiles, besides describing loosely the same pattern, show how the amorphous oxides species is always prevalent for Mn and Pb along the whole profile, while for As the species associated with crystalline oxides is always the prevalent one.
NASA Astrophysics Data System (ADS)
Zhidkin, Andrey
2015-04-01
New method of quantitative assessments of vertical soil solid phase transport (pedoturbations) is based on redistribution of spherical magnetic particles (SMP) in soil profiles. SMP - are fly ash components, which mainly produce during coal burning. The main sources of SMP on studied object were locomotives on the railroads, which used coal at the turn of the XIX century. SMP income into the soil only from the atmosphere, very stable for destructions, can be preserved in soils for centuries, and have the same size and weight as the soil matter. So SMP redistribution reflects soil solid phase transport. SMP used as tracers of soil erosion (Olson et.al., 2013), but for the first time applied for quantitative assessments of pedoturbations. In Belgorod region of Russia studied vertical distribution of SMP in soils in different types of land use: a) arable chernozem about 160-year plowing, b) arable chernozem 120-year plowing, c) dark-gray forest soil, which didn't plow at least last 150 years. All three sites are located nearby for the same physical-geography conditions. Distribution of SMP studied layer by layer (thickness of the layer 7 cm) from the top to 70 cm depth, in triplicate soil columns in every land use type (totally 90 soil samples). The period of SMP kept in studied soils is about 115 years. Revealed the different depth of SMP penetration (burial) in soil profiles for this period: 49 cm in the soil of 160-year arable land, 58 cm in the soil of 120-year arable land and 68 cm in the virgin forest soil. Different depth of SMP penetration is connected with different activity of pedoturbations, which differs according to the composition of soil flora and fauna, root activity, and animal mixing work. It is supposed that in the arable land single cropping can reduce the thickness of the active layer and as a result the zone of active pedoturbation depth. Based on SMP distribution counted rates of vertical soil solid phase transport, which are equaled: 31 t/ha/year in the soil of 160-year arable land, 28 t/ha/year in the soil of 120-year arable land, 24 t/ha/year in the virgin forest soil. Certainly raised rates of vertical transport in arable land relative to forest is connected with agricultural plowing. Revealed the connection between the period of plowing and rates of vertical soil transport. Also worth noting is that the rates of pedoturbation in virgin forest soils are rather high and only 1,2-1,3 times less than on arable land uses. This research is funded by Russian Foundation for Basic Research - Project 14-05-31141. 1. Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M.V., Golosov V.N., Lang J.M. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates // Catena. - 2013. - V. 104 - P. 103-110.
Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.
Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R
2015-07-21
Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.
Lacey, Corey; Armstrong, Shalamar
2015-03-01
There is a dearth of knowledge on the ability of cover crops to increase the effectiveness of fall-applied nitrogen (N). The objective of this study was to investigate the efficacy of two cover crop species to stabilize inorganic soil N after a fall application of N. Fall N was applied at a rate of 200 kg N ha into living stands of cereal rye, tillage radish, and a control (no cover crop) at the Illinois State University Research and Teaching Farm in Lexington, Illinois. Cover crops were sampled to determine N uptake, and soil samples were collected in the spring at four depths to 80 cm to determine the distribution of inorganic N within the soil profile. Tillage radish (131.9-226.8 kg ha) and cereal rye (188.1-249.9 kg ha N) demonstrated the capacity to absorb a minimum of 60 to 80% of the equivalent rate of fall-applied N, respectively. Fall applying N without cover crops resulted in a greater percentage of soil NO-N (40%) in the 50- to 80-cm depth, compared with only 31 and 27% when tillage radish and cereal rye were present at N application. At planting, tillage radish stabilized an average of 91% of the equivalent rate of fall-applied N within the 0- to 20-cm, depth compared with 66 and 57% for the cereal rye and control treatments, respectively. This study has demonstrated that fall applying N into a living cover crop stand has the potential to reduce the vulnerability of soil nitrate and to stabilize a greater concentration of inorganic N within the agronomic depths of soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Alteration of soil microbial communities and water quality in restored wetlands
Bossio, D.A.; Fleck, J.A.; Scow, K.M.; Fujii, R.
2006-01-01
Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage. ?? 2005 Elsevier Ltd. All rights reserved.
Holdo, Ricardo M
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.
Holdo, Ricardo M.
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID:23950900
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M.
2017-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet. PMID:28163564
Verginelli, Iason; Yao, Yijun; Suuberg, Eric M
2016-01-01
In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.
A Canadian upland forest soil profile and carbon stocks database.
Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner
2018-04-01
"A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve accuracy in modeled predictions. The current database is being used to develop soil carbon model parameters linked to soil taxonomy and leading tree species and, by various governmental and nongovernmental organizations, to improve digital mapping of ecosite types and soil properties regionally, nationally, and internationally. © Her Majesty the Queen in Right of Canada, 2018. Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: exercise due diligence in ensuring the accuracy of the materials reproduced; indicate the complete title of the materials reproduced, and the name of the author organization; indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at copyright.droitdauteur@nrcan-rncan.gc.ca. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate
2017-04-01
Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials. The diffusivity function predicted values of a similar range as shown in other studies. Overall, the model was able to emulate soil moisture time series for low measurement depths, but deviated increasingly at larger depths. This indicates that some of the model parameters are not constant throughout the profile. However, overall seepage fluxes were still predicted correctly. In the near future we will apply the inversion method to lower frequency soil moisture data from different sites to evaluate the model's ability to predict preferential flow seepage fluxes at the field scale.
Huang, Xuexia; Li, Ning; Wu, Qihang; Long, Jianyou; Luo, Dinggui; Zhang, Ping; Yao, Yan; Huang, Xiaowu; Li, Dongmei; Lu, Yayin; Liang, Jianfeng
2016-12-01
The objective of this paper is to assess the influence of irritating paddy fields with acid mine drainage containing thallium (Tl) to rice plant-soil system and potential health risks for local residents. Vertical distribution of Tl, pH, organic matter (OM), and cation exchange capacity (CEC) in 24 paddy soil profiles around Yunfu pyrite mine area was investigated. Rice plant samples were collected from the corresponding soil sampling site. The results showed that Tl concentrations in paddy soils at 0-60 cm depth range from 3.07 to 9.42 mg kg -1 , with a mean of 5.74 mg kg -1 , which were significantly higher than the background value of soil in China (0.58 mg kg -1 ). On the whole, Tl contents in paddy soil profiles increased quickly with soil depth from 0 to 30 cm and decreased slowly with soil depth from 30 to 60 cm. The soil Tl content was significant negatively correlated with soil pH. The mean content of Tl in the root, stem, leaf, and rice was 4.36, 1.83, 2.74, and 1.42 mg kg -1 , respectively, which exceeded the proposed permissible limits for foods and feedstuffs in Germany. The Tl content in various tissues of the rice plants followed the order root > leaf > stem (rice), which suggested that most Tl taken up by rice plants retained in the root, and a little migrated to the leaf, stem, and rice. Correlation analysis showed that Tl content in root was significant positively correlated with Tl content in leaf and rice. The ranges of hazard quotient (HQ) values were 4.08∼24.50 and 3.84∼22.38 for males and females, respectively. Males have higher health risk than females in the same age group. In childhood age groups (2 to <21 years) and adult age groups (21 to <70 years), the highest health risk level was observed in the 11 to 16 age group and 21 to 50 age group, respectively. The findings indicated that regular irrigation with Tl-bearing acid mine drainage led to considerable contamination of Tl in paddy soil and rice plant. Local government should take various measures to treat Tl contamination, especially the tailings.
NASA Astrophysics Data System (ADS)
Abakumov, Evgeny
2016-04-01
Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This method allow identify soil heterogeneity, because the ER values are strongly affected by soil properties and intensively changes on the border of different geochemical regimes, i.e. on the border of active layer and permafrost. VES data obtained show that the upper border of the permafrost layer coincides with that border, which were identified in field on the base of soil profile morphology. The VERS method also can used for identification of Gleyic, Histic and Podzolic layers. It has been also shown that permafrost layer is less homogenous in upper part of permafrost, than in lower one. It is caused by number of cracks, channels and other paths of dissolved organic matter and iron containing compounds migration. VES methodology is useful for preliminary soil survey in the regions with permafrost affected soil cover. It is also can be applied for detalization of soil-permafrost layer stratification in field soil pits.
Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.
2002-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological and soil-water content data. Substantial precipitation at the end of an El Ni?o cycle in early 1998 resulted in measurable water penetration to a depth of 1.25 meters at one of the four experimental soil-monitoring sites.
Application of geophysical methods to agriculture: An overview
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.
Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang
2016-01-01
Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by alleviating SWD in critical growth period and increasing SWS in 20-80 cm soil depth. The results allow us to conclude that AS-50 can be adopted as an effective approach to increase crop productivity, alleviate water stress, and improve soil water availability for spring maize in northern China.
Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model
NASA Astrophysics Data System (ADS)
Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik
2014-05-01
The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony Spanish farmlands and (iii) strongly weathered Brazilian soils, relatively recently taken into cultivation. Model results confirm the hypothesis that meteoric 10Be can be a useful tracer to investigate human induced soil fluxes. However, interpretation of meteoric 10Be inventories along the profile must be performed with sufficient care: it is of utmost importance to jointly interpret meteoric 10Be inventories and depth dependent concentration. Long periods of human disturbance are clearly recognizable in the modeled meteoric 10Be signatures whereas the recognition of shorter periods of human impact critically depends on the boundary conditions. A sensitivity analysis points towards the essential role of soil chemistry in controlling depth dependent meteoric 10Be concentrations and associated lateral meteoric 10Be movement. The Be2D model is a step forward in unraveling the dynamic interplay between vertical meteoric 10Be migration and horizontal soil fluxes and is therefore very suited to underpin empirical work. In a first phase the Be2D model can be used as an exploration tool to select sampling locations whereas in a later phase, the model may be used to extrapolate experimental observations to the broader landscape scale. Sadler, P., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569-584.
NASA Astrophysics Data System (ADS)
Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.
NASA Astrophysics Data System (ADS)
Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; González-Pérez, José A.; Jordán, Antonio; Zavala, Lorena M.; González-Vila, Francisco J.; Coppola, Elio
2014-05-01
Soil is the largest carbon reservoir of terrestrial ecosystems, this reservoir is not inert, but it is constantly in a dynamic phase of accumulation an depletion. After the addition, in the soil, of organic residues of different origin and nature, two processes can occur in charge of SOM (Soil Organic Matter) during the pedogenesis: mineralization and humification. The accumulation of SOM in soil is controlled by the balance between carbon inputs and losses through mineralization and/or leaching. In particular the humification process leads to the formation of organic compounds (in some cases even complex organo-mineral) chemically stable able to distribute itself in the soil second rules of site-specific pedogenesis. The transport process along the profile can take very different forms which may extend in the formation of Bh horizons of accumulation in depth also strongly cemented (so-called ortstein). The transport process along the profile occurs for the occurrence of certain conditions such as deposition of high amounts of organic residues on the top of the profile, high porosity of the soil for the presence of coarse solid fractions (coarse sands or skeleton) that determinate a strong infiltrating capacity of the circulating waters, extreme temperatures can slow or stop the process of mineralization and/or humification in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of percolating water related to intense rainfall. The nature of the forest cover influence the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation and production of intermediate metabolites. Two soils from Campania region located in Monte Santa Croce (Caserta, Italy) with andic properties, different forest cover (pine and chestnut) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The content of the different soil C fractions was assessed for each soil profile and included: total extractable C, (TEC), total organic C (TOC), total extractable lipds (TEL), humified C (humic and fulvic acids, HA & FA) and non humic C (NHC), lignin C, cellulose C. Also were calculated parameters of humification, humification degree (DH), humification rate (HR), total level of humification (HU) and humification index (HI) The results are discussed in terms of how soil use and vegetation influences the identified C pools, and the humification indexes.
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François
2014-04-01
Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some aspects of the behavior of trace elements in soil solutions and in the soil profile but, also the competition between trace elements in complexation with DOC. The results of this study are important for the understanding of the mobility and the migration of pollutants (as heavy metals or radionuclides) as well as nutrients in natural ecosystems. WE PrN/YbN is constant between 3 and 16 cm depth whereas SS PrN/YbN slightly decreases from 0.80 at 5 cm depth to 0.74 at 10 cm depth. This results from Pr (LREE) enrichment in the soil solution of the upper soil compartment caused by vegetation controlled LREE recycling and/or atmospheric depositions (see above). WE PrN/YbN and SS PrN/YbN show similar depth dependent distributions including the enrichment at 30 cm depth. It results from Yb depletion at this depth and enrichment in the deeper soil compartment compared to Pr. Similar to Marsac et al. (2012, 2013) one might suggest that there is competition between Fe3+, Al3+ and REE for the binding with DOC. They have a high affinity with the same organic functional groups which is confirmed by the classification scheme (Fig. 8). The studies of Marsac et al. suggest that at acidic pH and low metal/DOC ratios, Fe3+and Al3+ compete more with HREE than LREE; moreover, at high metal/DOC ratios and acidic pH, Al3+ competes with LREE. The Fig. 13 showing the variations of WECEN for Al and Fe in function of WECEN LREE and HREE confirms Marsac et al.’s observations. The slope of the extrapolation line resulting from WECEN Al and HREE values remains rather unchanged for the OM depleted and enriched soil compartments; thus, the change in the metal/DOC ratio in the soil does not change the extraction behavior of Al and HREE. However, the WECEN Fe strongly increase compared to the corresponding HREE values in the OM enriched compartment pointing to the competition between Fe and HREE. Alternatively, one observes that the WECEN Fe and LREE values in the OM enriched compartment plot on the extrapolation line derived from OM depleted soil samples. Thus, in this case, the change in the metal/DOC ratio does not affect the extraction behavior of Fe and LREE. However, the WECEN values for Al and corresponding LREE of samples from the OM enriched soil compartment plot below the extrapolation line and point to the competition between Al and LREE. These results are also in agreement with the REE distribution pattern of the soil solutions from the same site which are at greater depth LREE depleted (Stille et al., 2009).
NASA Astrophysics Data System (ADS)
Plaza, C.; Schuur, E.; Maestre, F. T.
2015-12-01
Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com
NASA Astrophysics Data System (ADS)
Ziadi, Noura; Morel, Christian
2017-04-01
The use of conservation tillage for crops production worldwide has increased markedly over recent years. Nutrient distributions under no-till (NT) compared with conventional moldboard tillage (CT) management in the cold, humid region of the eastern Canada need to be assessed for future placement, quantity, and type of fertilizers to efficiently match crop demands. We determined soil-profile distributions of soil total C (TC), total N (TN), and phosphate ions concentration (CP) in soil solution to a depth of 0.4 m after 23 years of continuous CT and NT management at different P fertilization rates on a clay loam soil in eastern Canada cropped with grain maize -soybean rotation. The experimental site was initiated in 1992 in southern Quebec, Canada. In August 2014, soil samples were collected at five profiles: 0 to 5, 5 to 10, 10 to 20, 20 to 30 and 30 to 40 cm under CT and NT fertilized at three P fertilizations (0 (P0), 17.5 (P0.5), and 35 (P1) kg P ha-1 applied as triple superphosphate on maize at 5 cm depth). To refine CNP stratification analysis for NT-P0 and NT-P1, supplemental soils of the 0-5 cm layer were sampled in P0 and P1 and then cutting into 5 layers of 1 cm. Different patterns for CP in relation to P fertilization under CT and NT were observed at the five profiles. The CP values did not differ significantly within ploughed layer but increased with P fertilization, e.g. 0.031, 0.066, and 0.075 mg P L-1 for P0, P0.5 and P1, respectively. Significant decline was observed in deeper depth beyond the plough. The Cp results in NT-P0 did not differ significantly to those of MP-P0. By contrast, highly significant P stratifications were observed in NT-P0.5 and NT-P1, especially marked in NT-P1 for which the CP value in 0-5 cm layer (0.35 mg P L-1) was 50 times greater than that in 30-40 cm layer (0.007 mg P L-1). To refine the C, N, and P stratifications, supplemental sampling was carried out in the 0-5 cm to cut this layer every 1 cm depth for P0 and P1. Most dramatic changes occurred within the 0-5 cm depth. The CP value in the first cm of soil (0.20 mg P L-1) was four times greater than that in the 4-5 cm layer (0.049 mg P L-1) of soil. The main reason for the large P accumulation in the first centimeter of soil is the annual return of plant residues to the soil surface. The stratification of TC and TN within the 0-5 cm layer showed similar trends irrespective of P fertilization. Under NT, the magnitude of CNP stratifications within the 0-1 cm layer to the 4-5 cm layer is equivalent to that observed in the 0-5 cm layer to the 30-40 cm layer.
Determining rates of chemical weathering in soils - Solute transport versus profile evolution
Stonestrom, David A.; White, A.F.; Akstin, K.C.
1998-01-01
SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.
NASA Astrophysics Data System (ADS)
García-Gil, Juan Carlos; Soler-Rovira, Pedro Angel; García López de Sa, Esther; Polo, Alfredo
2013-04-01
Soil tillage practices exert a significant influence on the dynamic of soluble organic C and N pools, affecting nutrient cycling in agricultural systems by enhancing its mineralization through microbial activities or stabilization in soil microaggregates, which contribute to mitigate greenhouse gases emissions. The objective of the present research was to determine the influence of three different soil management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) obtained from wastewater treatment processes on dissolved organic C (water-soluble organic C -WSOC-, carbohydrates, phenolic compounds) and soluble N (total-N, NH4+, NO3-) pools in a long-term field experiment (27 years) conducted on a sandy-loam soil at the experimental station "La Higueruela" (40° 03'N, 4° 24'W) under semi-arid conditions. Both organic amendments were applied at a rate of 30 tonnes per hectare prior to tillage practices. Unamended soils were used as control for each tillage system. Soil sampling was performed two months after tillage practices at the following depths for each treatment: 0-10 cm, 10-20 cm and 20-30 cm. Results obtained for unamended soils showed that no-tillage management increased total-N, NH4+ and NO3- contents at the 0-10 cm depth samples, meanwhile WSC and carbohydrates contents were larger at 20-30 cm depth samples in both moldboard and no-tillage plots. CS and TSS-amended soils presented a general increase in soluble C and N compounds, being significantly higher in TSS-amended soils, as TSS contains a great amount of labile organic C and N substrates due to the lack of stabilization treatment. TSS-amended soils under no-tillage and chisel plowing showed larger N, NH4+ and NO3- content at the 0-10 cm samples, meanwhile moldboard management exhibited larger NH4+ and NO3- content at 10-20 and 20-30 cm samples, possibly due to the incorporation of TSS at deeper depths (20-40 cm). CS and TSS-amended soils in no-tillage system showed the largest content of organic C pools at 0-10 cm depth samples due to less soil disturbance and the input of organic substrates with CS and TSS on soil surface. CS and TSS-amended soils under chisel plowing exhibited similar contents of soluble organic C pools at 10-20 and 20-30 cm depth samples and only TSS-amended soils increased significantly WSOC content at 0-10 cm samples. Similarly, contents of WSOC and carbohydrates in moldboard plowing were distributed more uniformly throughout the soil profile due to the turnover of soil and CS and TSS amendments into the plow layer. Acknowledgements: this research was supported by the Spanish CICYT, Project no. CTM2011-25557.
NASA Astrophysics Data System (ADS)
Girona García, Antonio; Badía-Villas, David; González-Pérez, José Antonio; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara
2015-04-01
The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) (Carceller and Vallejo, 1996). Stable isotopic signatures of light elements (d13C, d15N) in soils and plants are valuable proxies for the identification of biogeochemical processes and their rates in the pedosphere (Andreeva et al., 2013 and refs therein). In this work the C and N stable isotopic analysis is used as a proxy to detect changes in SOM surrogated to the effect of centennial replacement of beech by the Scots pinewood. Two acid soil profiles, developed on quartzites under a humid climate at an altitude of 1400-1500 masl, have been sampled in Moncayo (Iberian range, NE-Spain). For each soil profile three O-layers (litter: OL, fragmented litter OF and humified litter OH) and mineral soil horizons (Ah, E, Bhs and C) were sampled. Content and bulk isotopic signature of light elements (C and N) were analysed in a Flash 2000 elemental micro-analyser coupled via a ConFlo IV interface to a Delta V Advantage isotope ratio mass spectrometer (IRMS) (Thermo Scientific, Bremen, Germany). Isotopic ratios are reported as parts per thousand deviations from appropriate standards. The standard deviations of d13C and d15N were typically less than ± 0.05 per thousand, ± 0.2 per thousand, respectively. After 100 years since the pine afforestation, no differences on C content were observed in the O-layers, ranging from 30-47% in pine soils and 37-47 % in beech soils. Similarly, no differences on N content were observed in the O-layers, ranging from 1.24-1.86 % in pine soils and 1.70-1.71 % in beech soils. C and N contents decrease progressively in depth with the exception of E-horizons where the lowest C and N content values were found. C/N ratio is higher in pine soil (20.7-38.1) than in beech O soil horizons (21.8-27.5), showing similar behavior with soil depth. Pine biomass was slightly enriched in 13C as compared to that from beech (OL enrichment factor= 1.24 ± 0.13 per thousand). Along the soil profile the C isotopic signature (d13C) reflects the main vegetation signature being higher in pine than beech in the organic soil horizons (OL, OF and OH) down to the first mineral Ah horizon. At deeper horizons d13C value tends to equal that of the original beech soil indicating a limited influence of the afforested specie with depth even 100 years after afforestation. A consistent enrichment in d15N with depth was observed in the two profiles. This N enrichments have been related with progressive N losses being particularly pronounced in forest soils (Szpak, 2014 and refs therein). This phenomenon can be also related to migrations of N forms in a more evolved organic matter. In this view N losses in organic layers under beech seem to be less pronounced that under the alien pine. REFERENCES: Andreeva BD, Zech M, Glaser B, Erbajeva MA, Chimitdorgieva, Ermakova OD, Zech, W. (2013). Stable isotope (δ13C, δ15N, δ18O) record of soils in Buryatia, southern Siberia: Implications for biogeochemical and paleoclimatic interpretations. Quaternary International 290-291 (2013) 82-94 pp. Carceller F, Vallejo VR (1996). Influencia de la vegetación en los procesos de podsolización en los suelos de la Sierra del Moncayo (Zaragoza). Geogaceta 1127-1130. Szpak P (2014). Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front. Plant Sci. 5: 288 1-19 pp. Acknowledgements: This study is part of the results of the FUEGOSOL (CGL2013-43440-R) and GEOFIRE Projects (CGL2012-38655-C04-01) funded by the Spanish Ministry for Economy and Competitiveness. N.T Jiménez-Morillo is funded by a FPI research grant (BES-2013-062573).
On radon emanation as a possible indicator of crustal deformation
King, C.-Y.
1979-01-01
Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 ?? 10-4 cm sec-1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement. ?? 1979.
Torn, M. S.; Chabbi, A.; Crill, P.; ...
2015-08-24
The soil profile encompasses a remarkably large range of biogeochemical conditions, processes, and fluxes. For example, in most soils the turnover time of soil organic carbon (SOC) varies more between the soil surface and 1m deep than between surface soils in the tropics vs. the Arctic (Torn et al., 2009). Moreover, radiocarbon observations in different soil types show that SOC decomposition rates decrease with depth, with residence times of years to decades at the soil surface to over 10 000 years at 1m deep (e.g., Torn et al., 2002). There are many competing hypotheses for this steep decline in SOCmore » turnover with depth. They can be grouped loosely into physical–chemical accessibility, energetic limits to microbial activity, microclimate and pH, and physical disconnect between decomposers and substrate. While all of these mechanisms control deep SOC cycling, data are lacking for unraveling their relative importance in different soils under different environmental conditions. However, critical knowledge for predicting soil responses to global change, because fairly rapid loss (or gain) of old and/or deep SOC stocks is possible and more than 80% of the world’s SOC is found below 20 cm depth (Jobbágy and Jackson, 2000). Currently, the soil modules within Earth system models are parameterized for surface soil and lack mechanisms important for stabilization and losses of deep SOC. We, therefore, suggest that a critical challenge is to achieve process-level understanding at the global level and the ability to predict whether, and how, the large stores of deep, old SOC are stabilized and lost under global change scenarios.« less
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548
Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems.
Mahía, Jorge; Martín, Angela; Carballas, Tarsy; Díaz-Raviña, Montserrat
2007-05-25
The content of atrazine and its metabolites (hydroxyatrazine, deethylatrazine and deisopropylatrazine) as well as the activities of two soil enzymes (urease and beta-glucosidase) were evaluated in an acid agricultural soil, located in a temperate humid zone (Galicia, NW Spain), with an annual ryegrass-maize rotation under conventional tillage (CT) and no tillage (NT). Samples were collected during two consecutive years from the arable layer at two depths (0-5 cm and 5-20 cm) and different times after atrazine application. Hydroxyatrazine and deisopropylatrazine were the main metabolites resulting from atrazine degradation in the acid soil studied, the highest levels being detected in the surface layer of the NT treatment. A residual effect of atrazine was observed since hydroxyatrazine was detected in the arable layer (0-5 cm, 5-20 cm) even one year after the herbicide application. Soil enzyme activities in the upper 5 cm layer under NT were consistently higher than those in the same layer under CT. Urease and beta-glucosidase activities decreased with depth in the profile under NT but they did not show any differences between the two depths for the plots under CT. For both tillage systems enzyme activities also reflected temporal changes during the maize cultivation; however, no consistent effect of the herbicide application was observed.
NASA Astrophysics Data System (ADS)
Naughton, H.; Keiluweit, M.; Fendorf, S. E.; Farrant, D. N.
2016-12-01
Soil organic carbon (SOC) chemistry is known to impact carbon preservation via mineral associations and physical protection, which chemically or physically block SOC from microbial enzymatic access for decomposition. However, SOC decay models that include these processes do not reliably predict SOC dynamics. We propose that the energetics of respiration additionally regulate SOC cycling. Specifically, organic carbon will only be respired if the available electron acceptors yield enough energy for microbial growth when metabolically coupled to the SOC. To test this hypothesis, we constructed dual pore domain reactors in which water flows normal to a column of packed soil, allowing oxygen to diffuse from the upper channel through the soil and establish a redox gradient. With increasing depth into the soil column, the soil experiences a typical redox profile indicative of anaerobic respiration processes: after oxygen is consumed, nitrate, Mn, Fe, and sulfate serve as electron acceptors. We measure porewater and effluent for nitrate, sulfate, Fe(II) and Mn(II) and take microsensor profiles of dissolved oxygen and H2S to characterize the redox gradient and respiration pathways. To this we couple incubations of solid material at each depth post-experiment and quantify CO2 and CH4 production to assess respiration potential along the redox gradient. Porewater SOC chemistry is analyzed via spectroscopy and mass spectrometry to interpret SOC oxidation state and composition and thus test thermodynamic predictions on SOC stability given the available redox acceptors at a given depth in the reactor. Within 0.5 cm of the soil surface, oxygen concentrations drop below detection and signs of anaerobic respiration (Fe(II) production, loss of nitrate) initiate while respiration rates drops precipitously. More oxidized SOC is preferentially utilized with progression along the redox gradient, supporting thermodynamic predictions. This work highlights the potential of SOC chemistry within specific redox metabolic zones of soils and sediments to drive carbon utilization. An improved understanding on organic carbon utliization is critical to predict SOC dynamics under changing hydrology (e.g. saltwater intrusion, permafrost melting), temperature, and other factors impacting microbial respiration energetics.
NASA Astrophysics Data System (ADS)
Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy
2016-04-01
To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.
SoilGrids250m: Global gridded soil information based on machine learning
Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. PMID:28207752
SoilGrids250m: Global gridded soil information based on machine learning.
Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
Knoepp, Jennifer D; Vose, James M; Michael, Jerry L; Reynolds, Barbara C
2012-01-01
Imidacloprid is a systemic insecticide effective in controlling the exotic pest (hemlock woolly adelgid) in eastern hemlock () trees. Concerns over imidacloprid impacts on nontarget species have limited its application in southern Appalachian ecosystems. We quantified the movement and adsorption of imidacloprid in forest soils after soil injection in two sites at Coweeta Hydrologic Laboratory in western North Carolina. Soils differed in profile depth, total carbon and nitrogen content, and effective cation exchange capacity. We injected imidacloprid 5 cm into mineral soil, 1.5 m from infested trees, using a Kioritz soil injector. We tracked the horizontal and vertical movement of imidacloprid by collecting soil solution and soil samples at 1 m, 2 m, and at the drip line from each tree periodically for 1 yr. Soil solution was collected 20 cm below the surface and just above the saprolite, and acetonitrile-extractable imidacloprid was determined through the profile. Soil solution and extractable imidacloprid concentrations were determined by high-performance liquid chromatography. Soil solution and extractable imidacloprid concentrations were greater in the site with greater soil organic matter. Imidacloprid moved vertically and horizontally in both sites; concentrations generally declined downward in the soil profile, but preferential flow paths allowed rapid vertical movement. Horizontal movement was limited, and imidacloprid did not move to the tree drip line. We found a negative relationship between adsorbed imidacloprid concentrations and soil microarthropod populations largely in the low-organic-matter site; however, population counts were similar to other studies at Coweeta. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Beyer, Matthias; Gaj, Marcel; Königer, Paul; Tulimeveva Hamutoko, Josefina; Wanke, Heike; Wallner, Markus; Himmelsbach, Thomas
2018-03-01
The estimation of groundwater recharge in water-limited environments is challenging due to climatic conditions, the occurrence of deep unsaturated zones, and specialized vegetation. We critically examined two methods based on stable isotopes of soil water: (i) the interpretation of natural isotope depth-profiles and subsequent approximation of recharge using empirical relationships and (ii) the use of deuterium-enriched water (2H2O) as tracer. Numerous depth-profiles were measured directly in the field in semiarid Namibia using a novel in-situ technique. Additionally, 2H2O was injected into the soil and its displacement over a complete rainy season monitored. Estimated recharge ranges between 0 and 29 mm/y for three rainy seasons experiencing seasonal rainfall of 660 mm (2013/14), 313 mm (2014/15) and 535 mm (2015/16). The results of this study fortify the suitability of water stable isotope-based approaches for recharge estimation and highlight enormous potential for future studies of water vapor transport and ecohydrological processes.
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
Evaluation of the interaction between plant roots and preferential flow paths
NASA Astrophysics Data System (ADS)
Zhang, Yinghu; Niu, Jianzhi; Zhang, Mingxiang; Xiao, Zixing; Zhu, Weili
2017-04-01
Introduction Preferential flow causing environmental issues by carrying contaminants to the groundwater resources level, occurs throughout the world. Soil water flow and solute transportation via preferential flow paths with little resistance could bypass soil matrix quickly. It is necessary to characterize preferential flow phenomenon because of its understanding of ecological functions of soil, including the degradation of topsoil, the low activity of soil microorganisms, the loss of soil nutrients, and the serious source of pollution of groundwater resources (Brevik et al., 2015; Singh et al., 2015). Studies on the interaction between plant roots and soil water flow in response to preferential flow is promising increasingly. However, it is complicated to evaluate soil hydrology when plant roots are associated with the mechanisms of soil water flow and solute transportation, especially preferential flow (Ola et al., 2015). Root channels formed by living/decayed plant roots and root-soil interfaces affect soil hydrology (Tracy et al., 2011). For example, Jørgensen et al. (2002) stated that soil water flow was more obvious in soil profiles with plant roots than in soil profiles without plant roots. The present study was conducted to investigate the interaction between plant roots and soil water flow in response to preferential flow in stony soils. Materials and methods Field experiments: field dye tracing experiments centered on experimental plants (S. japonica Linn, P. orientalis (L.) Franco, and Q. dentata Thunb) were conducted to characterize the root length density, preferential flow paths (stained areas), and soil matrix (unstained areas). Brilliant Blue FCF (C.I. Food Blue 2) as dye solution (50 L) was applied to the experimental plots. Laboratory analyses: undisturbed soil columns (7-cm diameter, 10 cm high) obtained from soil depths of 0-20, 20-40, and 40-60 cm, respectively, were conducted with breakthrough curves experiments under different conditions maintaining (1) a constant hydraulic head of 1ṡ0 cm of water with various solution concentrations of 0ṡ5, 1ṡ0, and 1ṡ5 g L-1, and (2) a constant solution concentration of 1ṡ0 g L-1 with various hydraulic heads of 0ṡ5, 1ṡ0, and 1ṡ5 cm of water, and those columns were conducted under saturated and unsaturated soil conditions, respectively. The effluent samples were measured with an ultraviolet spectrometer subsystem to determine the relative concentration. The plant root-water interaction (PRWI) was recognized as an indicator of the influences of plant roots on soil water flow. Results Our study showed that (1) fine plant roots in preferential flow paths decreased with soil depth and was mostly recorded in the upper soil layers to a depth of 20 cm for all experimental plots. The root length density of preferential flow paths made up at least 50% of the total root length density at each soil depth; (2) preferential flow effects were most apparent on soil water flow at the 0-20-cm soil depth compared with the other depths (20-40 and 40-60 cm); (3) positive correlations between fine plant roots and the plant root-water interaction (PRWI) were observed. References Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K. 2015. The interdisciplinary nature of SOIL. SOIL 1: 117-129. DOI: 10.5194/soil-1-117-2015. Singh YP, Nayak AK, Sharma DK, Singh G, Mishra VK, Singh D. 2015. Evaluation of Jatropha curcas genotypes for rehabilitation of degraded sodic lands. Land Degradation & Development 26(5): 510-520. DOI: 10.1002/ldr.2398. Ola A, Dodd IC, Quinton JN. 2015. Can we manipulate root system architecture to control soil erosion? SOIL 1: 603-612. DOI: 10.5194/soild-2-265-2015. Tracy SR, Black CR, Roberts JA, Mooney SJ. 2011. Soil compaction: a review of past and present techniques for investigating effects on root growth. Journal of the Science of Food & Agriculture 91: 1528-1537. DOI: 10.1002/jsfa.4424. Jørgensen PR, Hoffmann M, Kistrup JP, Bryde C, Bossi R, Villholth KG. 2002. Preferential flow and pesticide transport in a clay-rich till: field, laboratory, and modeling analysis. Water Resources Research 38: 1246-1261. DOI: 10.1029/2001WR000494.
The Presence and Distribution of Salts as a Palaeoprecipitation Proxy in Atacama Soils
NASA Astrophysics Data System (ADS)
McKay, Lucy; Claire, Mark
2016-04-01
The Atacama Desert in northern Chile (17 to 27° S) is the driest and oldest warm desert on Earth and contains unique abundances of atmospherically-derived salts such as nitrate and perchlorate (Ewing et al., 2006; Jackson et al., 2015). Near-surface accumulation of extremely soluble salts indicates a scarcity of long-term precipitation-driven leaching from Atacama soils. The prolonged absence of substantial precipitation has enabled nitrate and perchlorate to accumulate for millions of years to measurable levels, while interacting with occasional rainfall to move vertically through the soil profile. We investigate the near-surface presence and distribution of atmospherically-generated soluble salts at Earth's most arid extreme, aiming to quantify Atacama palaeoprecipitation during the Quaternary. Previous field and modelling studies have revealed a strong correlation between the depth of peak nitrate and past precipitation events in the U.S. desert southwest (Walvoord et al., 2003; Marion et al., 2008). We extend these studies to regions of much lower rainfall, and report the largest ever near-surface concentrations of nitrate and perchlorate in Earth's soils. We present salt distribution profiles from soil pits in six localities, spanning ~1000 km of the south-to-north (27° to 24° S) natural rainfall and ecosystem function gradient that spans the arid to hyperarid transition (from 20 to <1 mm rainfall y-1). Localities include the well-characterised Yungay desert research station, initially declared as the driest place on Earth beyond the limit for microbial life (McKay et al., 2003). Importantly, our nitrate and perchlorate data confirm and extend suspicions that drier localities than Yungay exist (Azua-Bustos et al., 2015). For example, our "km40" site reveals 10 mg/kg of perchlorate at the surface, with a peak of 35 mg/kg at 10 cm depth. At "PONR", perchlorate peaks at >100 mg/kg at 120 cm depth, with an astonishing 22 mg/kg at the surface. In comparison, perchlorate peaks at ~4 mg/kg at 90 cm depth in our Yungay soil profile. Given that perchlorate is the most soluble naturally-existing salt, "km40" and "PONR" indicate a complete lack of recent precipitation and are candidates for the driest place on Earth. We use the numerical model of Marion et al. (2008) to quantitatively constrain the maximum rainfall distributions and event frequencies that are permitted by our measured profiles. Our Atacama soil profiles exhibit vertical variation in their geochemistry, suggesting considerable climatic and precipitation variability in recent years, enabling constraints on both maximum rainfall events and their temporal occurrence. Through geochemistry and modelling, this research identifies a unique quantitative palaeoprecipitation proxy for Earth's driest desert, with significant consequences for understanding and predicting the future ecohydrological cycle in desert ecosystems, as well as for the planet-wide desert on Mars. References Azua-Bustos A., et al., 2015. Environmental Microbiology Reports, 7, pp.388-394 Ewing S.A., et al., 2006. Geochimica et Cosmochimica Acta, 70, pp.5293-5322 Jackson W.A., et al., 2015. Geochimica et Cosmochimica Acta, 164, pp.502-522 Marion G.M., et al., 2008. Journal of Arid Environments, 72, pp.1012-1033 McKay C.P., et al., 2003. Astrobiology, 3, pp.393-406 Walvoord M.A., et al., 2003. Science, 302, pp.1021-1024
Hyperfine and radiological characterization of soils of the province of Buenos Aires, Argentina
NASA Astrophysics Data System (ADS)
Montes, M. L.; Taylor, M. A.; Mercader, R. C.; Sives, F. R.; Desimoni, J.
2010-03-01
The depth profile concentration of both natural and anthropogenic gamma-ray-emitter nuclides were determined in soil samples collected in an area located at 34° 54.452' S, 58° 8.365' W, down to 50 cm in depth, using an hyper-pure Ge spectrometer. The soil samples were also characterized by means of Mössbauer spectrometry and X-ray diffraction. The activities of 238U and 232Th natural chains remain constant in depth at 41 Bq/kg and 46 Bq/kg, respectively, while the 40K activity increases from 531 Bq/kg to 618 Bq/kg between 2.5 cm y 25.5 cm of depth. The only anthropogenic detected nuclide is 137Cs, whose activity changes form 1.4 Bq/kg to values lower than the detection limit (LD) for depths below 25 cm, exhibiting a maximum at 10 cm beneath the surface. The Mössbauer spectra show two magnetic sextets associated with α-Fe2O3 and Fe3O4, as well as two Fe+3 Fe+2 doublets, probably originated in octahedral and tetrahedral sites of paramagnetic phases. The Fe3+ paramagnetic signal relative fraction increases up to 82% at the expense of the α-Fe2O3 one when de depth increases. No correlation between Fe3O4 and the 137Cs was identificated.
Oxygen Isotope Compositions of Meteoric Water Across an Elevation Gradient in Southern Peru
NASA Astrophysics Data System (ADS)
Xu, D. R.; White, E.; Cassel, E. J.; Lynch, B.; Yanites, B.; Breecker, D.
2017-12-01
The Central Andes is a prime example of elevated topography generated by oceanic plate subduction. Whereas previous stable isotope studies have investigated the paleoelevation of the Andean Eastern Cordillera, little is known about the paleoelevation of the Western Cordillera, where arc volcanism now occurs. As a first step towards studying the paleoelevation of this region, we investigated the change in δ18O values of modern soil waters across an elevation gradient from sea level to about 4725 meters in southern Peru. We sampled soil profiles from 5 to 80 cm in 15-20cm increments, and we sampled water from flowing natural streams at various elevations. We used cryogenic vacuum extraction to quantitatively remove non-structural water from soil samples. The δ18O values of water extracted from soil samples varies with the depth in the soil due to the diminishing effect of seasonality and evaporation. Every high elevation (>3500m) soil profile we measured had nearly constant δ18O values below 5cm and a total range of δ18O values between -12.8‰ and -17.1‰, apart from the Cusco profile. In the Cusco profile, the δ18O values ranged from -7.2 ‰ at 5 cm to -21.8 ‰ at 60 cm, defining a strong monotonic decrease not seen in other soil profiles. The δ18O trend in the Cusco profile may be different due to the impact of evaporation, soil hydrology, and/or seasonality in the δ18O values of precipitation. Further spatial analysis must be conducted to pinpoint a specific cause. Considering only the samples collected below 40cm, which are likely the best estimate of mean annual precipitation, the δ18O values decrease with increasing elevation at a rate higher than the global mean, suggesting that oxygen isotope paleoaltimetry can work in this study region.
Vs30 mapping at selected sites within the Greater Accra Metropolitan Area
NASA Astrophysics Data System (ADS)
Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina
2018-06-01
A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.
A numerical model for the movement of H 2O, H 218O, and 2HHO in the unsaturated zone
NASA Astrophysics Data System (ADS)
Shurbaji, Abdel-Rahman M.; Phillips, Fred M.
1995-09-01
Vertical profiles of H 218O and 2HHO concentrations have yielded useful information on evaporation and infiltration processes in soils. However, in the field, quantitative interpretation of such profiles has been limited by the restrictions inherent in the quasi-steady-state and transient analytical models available to describe the physical processes. This study presents a flexible numerical model that simulates transient fluxes of heat, liquid water, water vapor, and isotopic species. The model can simulate both infiltration and evaporation under fluctuating meteorological conditions and thus should be useful in reproducing changes in field isotope profiles. A transition factor is introduced in the isotope transport equation. This factor combines hydrologic and isotopic parameters and changes slowly with depth in the soil profile but strongly in the evaporation zone, owing to the rapid change in the dominant phase of water from liquid to vapor. Using the transition factor in the isotope transport equation facilitates obtaining the typical shape of the isotope profile (bulge at the evaporation zone). This factor also facilitates producing broad isotope enrichment peaks that may be seen in very dry soils.
Vertical and lateral particle and element fluxes across soil catenas in southern Brazil
NASA Astrophysics Data System (ADS)
Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie
2016-04-01
At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data show a systematic increase in chemical weathering intensity with distance from the ridge top.
Soil methane and CO2 fluxes in rainforest and rubber plantations
NASA Astrophysics Data System (ADS)
Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu
2017-04-01
Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old rubber plantations. Conversion the forest into rubber plantation decreased soil respiration in young plantation and it recovered during rubber development. However, the CH4consumption by tropical upland forest soil decreased in converted rubber plantations of all ages, with more decrement in old plantation. Change forest into rubber plantations weakened the soil function as CH4 sink.
Joint Multifractal Analysis of penetration resistance variability in an olive orchard.
NASA Astrophysics Data System (ADS)
Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.
2016-04-01
Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.
Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products
NASA Astrophysics Data System (ADS)
Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László
2016-04-01
Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.
Rejman, Jerzy; Rafalska-Przysucha, Anna; Rodzik, Jan
2014-01-01
The change of primary forest areas into arable land involves the transformation of relief and modification of soils. In this study, we hypothesized that relatively flat loess area was largely transformed after the change of land use due to erosion. The modifications in soil pedons and distribution of soil properties were studied after 185 years of arable land use. Structure of pedons and solum depth were measured in 128 and soil texture and soil organic carbon in 39 points. Results showed that soils of noneroded and eroded profiles occupied 14 and 50%, respectively, and depositional soils 36% of the area. As a consequence, the clay, silt, and SOC concentration varied greatly in the plowed layer and subsoil. The reconstructed profiles of eroded soils and depositional soils without the accumulation were used to develop the map of past relief. The average inclination of slopes decreased from 4.3 to 2.2°, and slopes >5° vanished in the present topography. Total erosion was 23.8 Mg ha−1 year−1. From that amount, 88% was deposited within the study area, and 12% was removed outside. The study confirmed the hypothesis of the significant effect of the land use change on relief and soils in loess areas. PMID:25614883
Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition.
Viscarra Rossel, Raphael A; Lobsey, Craig R; Sharman, Chris; Flick, Paul; McLachlan, Gordon
2017-05-16
Soil information is needed for environmental monitoring to address current concerns over food, water and energy securities, land degradation, and climate change. We developed the Soil Condition ANalysis System (SCANS) to help address these needs. It integrates an automated soil core sensing system (CSS) with statistical analytics and modeling to characterize soil at fine depth resolutions and across landscapes. The CSS's sensors include a γ-ray attenuation densitometer to measure bulk density, digital cameras to image the measured soil, and a visible-near-infrared (vis-NIR) spectrometer to measure iron oxides and clay mineralogy. The spectra are also modeled to estimate total soil organic carbon (C), particulate, humus, and resistant organic C (POC, HOC, and ROC, respectively), clay content, cation exchange capacity (CEC), pH, volumetric water content, available water capacity (AWC), and their uncertainties. Measurements of bulk density and organic C are combined to estimate C stocks. Kalman smoothing is used to derive complete soil property profiles with propagated uncertainties. The SCANS provides rapid, precise, quantitative, and spatially explicit information about the properties of soil profiles with a level of detail that is difficult to obtain with other approaches. The information gained effectively deepens our understanding of soil and calls attention to the central role soil plays in our environment.
NASA Astrophysics Data System (ADS)
Lark, R. M.; Rawlins, B. G.; Lark, T. A.
2014-05-01
The LUCAS Topsoil survey is a pan-European Union initiative in which soil data were collected according to standard protocols from 19 967 sites. Any inference about soil variables is subject to uncertainty due to different sources of variability in the data. In this study we examine the likely magnitude of uncertainty due to the field-sampling protocol. The published sampling protocol (LUCAS, 2009) describes a procedure to form a composite soil sample from aliquots collected to a depth of between approximately 15-20. A v-shaped hole to the target depth is cut with a spade, then a slice is cut from one of the exposed surfaces. This methodology gives rather less control of the sampling depth than protocols used in other soil and geochemical surveys, this may be a substantial source of variation in uncultivated soils with strong contrasts between an organic-rich A-horizon and an underlying B-horizon. We extracted all representative profile descriptions from soil series recorded in the memoir of the 1:250 000-scale map of Northern England (Soil Survey of England and Wales, 1984) where the base of the A-horizon is less than 20 cm below the surface. The Soil Associations in which these 14 series are significant members cover approximately 17% of the area of Northern England, and are expected to be the mineral soils with the largest organic content. Soil Organic Carbon content and bulk density were extracted for the A- and B-horizons, along with the thickness of the horizons. Recorded bulk density, or prediction by a pedotransfer function, were also recorded. For any proposed angle of the v-shaped hole, the proportions of A- and B-horizon in the resulting sample may be computed by trigonometry. From the bulk density and SOC concentration of the horizons, the SOC concentration of the sample can be computed. For each Soil Series we drew 1000 random samples from a trapezoidal distribution of angles, with uniform density over the range corresponding to depths 15-20 cm and zero density for angles corresponding to depths larger than 21 cm or less than 14 cm. We computed the corresponding variance of sample SOC contents. We found that the variance in SOC determinations attributable to variation in sample depth for these uncultivated soils was of the same order of magnitude as the estimate of the subsampling + analytical variance component (both on a log scale) that we previously computed for soils in the UK (Rawlins et al., 2009). It seems unnecessary to accept this source of uncertainty, given the effort undertaken to reduce the analytical variation which is no larger (and often smaller) than this variation due to the field protocol. If pan-European soil monitoring is to be based on the LUCAS Topsoil survey, as suggested by an initial report, uncertainty could be reduced if the sampling depth was specified to a unique depth, rather than the current depth range. LUCAS. 2009. Instructions for Surveyors. Technical reference document C-1: General implementation, Land Cover and Use, Water management, Soil, Transect, Photos. European Commission, Eurostat. Rawlins, B.G., Scheib, A.J., Lark, R.M. & Lister, T.R. 2009. Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale. European Journal of Soil Science 60, 740-747
Low-field NMR logging sensor for measuring hydraulic parameters of model soils
NASA Astrophysics Data System (ADS)
Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard
2011-08-01
SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average <1/ T2, Sample> with decreasing saturation speaks for a enhancement of the surface relaxation as the soil dries, in concordance with results found by other authors. In conclusion, this low-field mobile NMR technique has proven itself to be a fast and a non-invasive mean to investigate the hydraulic behavior of soils and to explore microscopical aspect of the water retained in them. In the future, the sensor should allow easy soil moisture measurements on-field.
Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain
NASA Astrophysics Data System (ADS)
Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.
2009-04-01
Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is not possible to conclude that the actual contamination by zinc is due to atmospheric deposition or spill. However, some samples in this same area present lightly higher zinc concentration in topsoil than in subsoil indicating a cursory atmospheric deposition. Regarding to lead, one of the industrial areas showed a very active atmospheric deposition, with concentrations higher than 900 mg/kg in topsoil decreasing until less than 10 mg/kg to 30 cm depth. Oppositely, the lead concentration in natural soil is constant in the profile. On the other hand, the range of cadmium concentrations in the different depths of the profiles was, generally, low. Only one sample from the industrial area shows high concentration in the first centimetre of soil, decreasing quickly with the depth, supporting the hypothesis that the atmospheric deposition is the main pathway of cadmium contamination. Studding the copper concentration, only in agricultural soil atmospheric deposition is observed, probably due to application of pesticides. Oppositely to the rest of metals, manganese increases its concentration with the depth in natural soil, probably due to that the parent material (metamorphic rock) is rich in this metal. In the case of chromium has not been detected atmospheric deposition in any sampling point. Finally, only one sample located at the industrial area, nickel concentration shows a higher level in topsoil than subsoil, indicating atmospheric deposition. Acknowledgements: to "Fundación Séneca" of "Comunidad Autónoma de Murcia" for its financial support
NASA Astrophysics Data System (ADS)
Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William
2013-01-01
Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.
Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling
2017-09-01
Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.
Profile of a city: characterizing and classifying urban soils in the city of Ghent
NASA Astrophysics Data System (ADS)
Delbecque, Nele; Verdoodt, Ann
2017-04-01
Worldwide, urban lands are expanding rapidly. Conversion of agricultural and natural landscapes to urban fabric can strongly influence soil properties through soil sealing, excavation, leveling, contamination, waste disposal and land management. Urban lands, often characterized by intensive use, need to deliver many production, ecological and cultural ecosystem services. To safeguard this natural capital for future generations, an improved understanding of biogeochemical characteristics, processes and functions of urban soils in time and space is essential. Additionally, existing (inter)national soil classification systems, based on the identification of soil genetic horizons, do not always allow a functional classification of urban soils. This research aims (1) to gain insight into urban soils and their properties in the city of Ghent (Belgium), and (2) to develop a procedure to functionally incorporate urban soils into existing (inter)national soil classification systems. Undisturbed soil cores (depth up to 1.25 m) are collected at 15 locations in Ghent with different times since development and land uses. Geotek MSCL-scans are taken to determine magnetic susceptibility and gamma density and to obtain high resolution images. Physico-chemical characterization of the soil cores is performed by means of detailed soil profile descriptions, traditional lab analyses, as well as proximal soil sensing techniques (XRF). The first results of this research will be presented and critically discussed to improve future efforts to characterize, classify and evaluate urban soils and their ecosystem services.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
NASA Astrophysics Data System (ADS)
Jin, L.; Hamilton, S. K.; Walter, L. M.
2004-12-01
Hydrologic processes control the residence time of water in the soil column. This is of central importance in understanding mineral weathering rates in terms of reaction kinetics and solute transport. In order to better quantify the coupling between water and solute mass transport and to better define controls on carbonate and aluminosilicates weathering rates, we have conducted bromide-tracer introduction experiments at four replicate soil monoliths (4 m3 volume) instrumented and managed by the KBS-LTER. Monolith soils are developed on the pitted outwash plain of the morainic system left by the last retreat of the Wisconsin glaciation, around 12,000 years ago. Soil profiles from the monolith sections extend to 200 cm and they were sampled and characterized texturally and mineralogically. Quartz and feldspar are dominant throughout the soil profile, while carbonates and hornblende occur only in deeper soil horizons. The four replicate monoliths are instrumented with gas and soil water sampling devices (Prenart tension lysimeters) at various depths. The monoliths also have a large capacity tray at the bottom, which permits collection of water for weight and chemical determinations. A bromide tracer solution (as lithium bromide) was applied to coincide as closely as possible with a major snowmelt event (2/27/04). The saturated and unsaturated transport of bromide through the four monoliths was followed as a function of time and soil profile depth for the duration of the snowmelt as well as intermittent rain events. Because the soil was saturated at the time of bromide application, the bromide solution is expected to move rapidly through macropores, followed by slower movement into micropores. The unsaturated transport of bromide is largely controlled by the intensity and duration of the rains if it is dominated by piston flow as opposed to preferential channel flow. In general, the tracer moved through the shallow soils very quickly, which is shown by early sharp peaks in bromide concentrations. Transport of bromide into deeper soil horizons, however, differs markedly among the four monoliths. Even within a given monolith, waters sampled at the same depth by different tension lysimeters show a very different pattern of bromide transport over time with some lyimeters suggesting piston flow, while others in the same monolith suggest preferential channel flow. These differences are likely driven by heterogeneous soil textures. The water recovered from the monolith trays over the first three months of the study period is between 80 and 90 percent of the total precipitation recorded at the LTER site. This recovery is reasonable given the fact that temperature was low and crops were not yet actively growing. The recovery of bromide is different among the monoliths and in general is less than 50 percent, which means more than 50 percent of tracer is still in the soils even after three months. Residence time of water has been calculated after some assumptions on the breakthrough curve. The water mass transport constraints imposed by the bromide tracer study will be utilized in concert with additional data on soil water geochemistry.
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2011-10-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
NASA Astrophysics Data System (ADS)
Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd
2014-05-01
Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.; Tokunaga, T.; Benson, S.M.
1997-10-01
This report describes research relevant to selenium (Se) speciation, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1994 to September 1996. Much of the focus of this research was on long-term, Reservoir-wide changes in Se concentrations and distribution; estimation and prediction of the physical extent ephemeral pools; and the quantification and prediction of Se levels in ephemeral pools waters and underlying sediments. Chapter 2 contains descriptions of fieldmore » monitoring of soil processes. In Section 2.1, elevated Se concentrations observed in groundwater in the northern part of Pond 9 are investigated. The past removal of the original surface soil in the northern Pond 9 area resulted in the enhancement of Se transport into the shallow groundwater in this area. Removal of the most organic-rich surface soil horizon left the remaining profile with a lower capacity to generate and sustain reducing conditions needed to immobilize Se. Furthermore, removal of the lower permeability surface soil left the remaining profile more hydraulically conductive since sands are encountered at fairly shallow depths. These conditions result in Se remaining oxidized down to the 2.00 m depth throughout the year.« less
Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin
2015-03-01
Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.
NASA Astrophysics Data System (ADS)
Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.
2015-12-01
In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.
Direct push driven in situ color logging tool (CLT): technique, analysis routines, and application
NASA Astrophysics Data System (ADS)
Werban, U.; Hausmann, J.; Dietrich, P.; Vienken, T.
2014-12-01
Direct push technologies have recently seen a broad development providing several tools for in situ parameterization of unconsolidated sediments. One of these techniques is the measurement of soil colors - a proxy information that reveals to soil/sediment properties. We introduce the direct push driven color logging tool (CLT) for real-time and depth-resolved investigation of soil colors within the visible spectrum. Until now, no routines exist on how to handle high-resolved (mm-scale) soil color data. To develop such a routine, we transform raw data (CIEXYZ) into soil color surrogates of selected color spaces (CIExyY, CIEL*a*b*, CIEL*c*h*, sRGB) and denoise small-scale natural variability by Haar and Daublet4 wavelet transformation, gathering interpretable color logs over depth. However, interpreting color log data as a single application remains challenging. Additional information, such as site-specific knowledge of the geological setting, is required to correlate soil color data to specific layers properties. Hence, we exemplary provide results from a joint interpretation of in situ-obtained soil color data and 'state-of-the-art' direct push based profiling tool data and discuss the benefit of additional data. The developed routine is capable of transferring the provided information obtained as colorimetric data into interpretable color surrogates. Soil color data proved to correlate with small-scale lithological/chemical changes (e.g., grain size, oxidative and reductive conditions), especially when combined with additional direct push vertical high resolution data (e.g., cone penetration testing and soil sampling). Thus, the technique allows enhanced profiling by means of providing another reproducible high-resolution parameter for analysis subsurface conditions. This opens potential new areas of application and new outputs for such data in site investigation. It is our intention to improve color measurements by means method of application and data interpretation, useful to characterize vadose layer/soil/sediment characteristics.
Li, Changzhen; Zhao, Luhong; Sun, Pingsheng; Zhao, Fazhu; Kang, Di; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin
2016-01-01
In the Loess Hilly Region of China, the widespread conversion of cropland to forestland and grassland has resulted in great increased in organic carbon (C), nitrogen (N) and phosphorus (P) stocks in the shallow soil layers. However, knowledge regarding changes in C, N, and P in deep soil is still limited. To elucidate the responses of deep soil C, N, and P stocks and stoichiometry in response to changes in land use, the soil from a 0-200 cm soil profile was collected from the following three typical land use patterns in the heartland of the region: forestland, grassland, and cropland. Compared with cropland, forestland and grassland had improved soil organic carbon (SOC) and total nitrogen (TN) contents and stocks at most soil depths but decreased total phosphorus (TP) contents and stocks. At soil depths of 0-200 cm in the forestland and grassland, the cumulative SOC stocks were improved by 34.97% and 7.61%, respectively, and the TN stocks were improved by 54.54% and 12.47%, respectively. The forestland had higher SOC, TN and TP contents and stocks compared to the grassland in almost all soil layers. The soil depths of 100-200 cm contained the highest percentages of SOC, TN and TP stocks (47.80%-49.93%, 46.08%-50.05% and 49.09%-52.98%, respectively). Additionally, the forestland and grassland showed enhanced soil C:P, N:P and C:N:P ratios, and the forestland had higher C:P, N:P and C:N:P ratios compared to the grassland. Furthermore, the SOC and TN stocks had significant impacts on the soil C:N, C:P and N:P ratios. It was concluded that afforestation was the best choice for soil nutrient restoration of degraded land, and deep soil provided an extremely important resource for evaluating soil C, N and P pools and cycling.
Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models
NASA Astrophysics Data System (ADS)
García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle
2010-05-01
To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, H.; Zhang, T.C.
1997-12-31
The pH and redox potential profiles in TNT-contaminated soils with and without plants were investigated using microelectrode techniques. The new pH cocktail and double-barreled structure greatly improved the performance of the pH microelectrode. For soil without plants, there is almost no pH difference at different locations with different heights; while for the TNT-contaminated soils with plants there exist pH profiles. The soil immediately near the root of the plant has the lowest pH value. The pH value increases as the distance between the measuring point and the plant roots increases. The pH gradient (the increased pH value over the unitmore » distance) decreases with an increase of the distance between the measuring point and the plant roots. These results show that the plant presence can greatly affect the pH distribution. In vegetated soil, the redox potentials in the layer nearest the plant roots are higher than those in the bulk soil without plants. The redox potentials in the central part of the plant are lower than those in the soil around the plant and soil without the plant. The redox potentials in the soil without plants decrease with an increase of depth.« less
Impacts of Land use and Cover Change on Soil Hydraulic Properties, Rondonia, Brazil
NASA Astrophysics Data System (ADS)
Schultz, K. J.; McGlynn, B. L.; Elsenbeer, H.
2004-05-01
There is a great deal of concern in the scientific community and the popular media about the global impacts of tropical rainforest deforestation. Soil quality does not receive that same media coverage but is greatly affected by deforestation and is a major concern in the tropics, especially in areas undergoing rapid land use and land cover change. Deforestation can lead to changes in the hydrologic regime, loss of topsoil, increased sediment and nutrient loads in waterways, and decreased soil fertility. These impacts are often related to a soil's infiltration capacity and hydraulic conductivity (Ksat). Our research site, Rancho Grande, Rondonia, Brazil, lies in the heart of the most rapid tropical rainforest deforestation in the world. Two watersheds of similar size, comparable topographic relief, and same soil type, were tested for differences in hydraulic conductivity. The two watersheds are differentiated by land use and land cover; one in a primary forest and the other in an actively grazed pasture. We measured infiltration capacity at 13 locations in the primary forest watershed and at 24 locations in the actively grazed pasture. Approximately 150 measurements of Ksat were made at regular depth intervals in both watersheds. Our research focuses on assessing the impact of land use and land cover change (primary rainforest to pasture/grazing) on soil infiltration capacity and subsurface saturated hydraulic conductivity. Statistically significant differences in infiltration capacity and hydraulic conductivity were detected between the pasture and forest sites at depths of 0, 12.5, and 20 cm. Differences between the two sites at depths of 50 and 90cm were not significant. These results demonstrate that the affect of land cover and land use change on soil hydraulic conductivity was confined to shallower depths in the soil profile. Coupled with ongoing watershed runoff studies at Rancho Grande, this research will help clarify how land cover change affects soil hydraulic properties and resulting runoff dynamics.
Sampling protocol recommendations for measuring soil organic carbon stocks in the tropics
NASA Astrophysics Data System (ADS)
van Straaten, Oliver; Veldkamp, Edzo; Corre, Marife D.
2013-04-01
In the tropics, there is an urgent need for cost effective sampling approaches to quantify soil organic carbon (SOC) changes associated with land-use change given the lack of reliable data. The tropics are especially important considering the high deforestation rates, the huge belowground carbon pool and the fast soil carbon turnover rates. In the framework of a pan-tropic (Peru, Cameroon and Indonesia) land-use change study, some highly relevant recommendations on the SOC stocks sampling approaches have emerged. In this study, where we focused on deeply weathered mineral soils, we quantified changes in SOC stock following land-use change (deforestation and subsequent establishment of other land-uses). We used a space-for-time substitution sampling approach, measured SOC stocks in the top three meters of soil and compared recently converted land-uses with adjacent reference forest plots. In each respective region we investigated the most predominant land-use trajectories. In total 157 plots were established across the three countries, where soil samples were taken to a depth of three meters from a central soil pit and from the topsoil (to 0.5m) from 12 pooled composite samples. Finding 1 - soil depth: despite the fact that the majority of SOC stock from the three meter profile is found below one meter depth (50 to 60 percent of total SOC stock), the significant changes in SOC were only measured in the top meter of soil, while the subsoil carbon stock remained relatively unchanged by the land-use conversion. The only exception was for older (>50 yrs) cacao plantations in Cameroon where significant decreases were found below one meter. Finding 2 - pooled composite samples taken across the plot provided more spatially representative estimates of SOC stocks than samples taken from the central soil pit.
Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining
2015-03-01
Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir.
Soil internal drainage: temporal stability and spatial variability in succession bean-black oat
NASA Astrophysics Data System (ADS)
Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.
2012-04-01
There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.
Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)
NASA Astrophysics Data System (ADS)
Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander
2016-04-01
It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).
NASA Astrophysics Data System (ADS)
Jung, Patrick; Briegel-Williams, Laura; Simon, Anika; Thyssen, Anne; Büdel, Burkhard
2018-02-01
Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, non-destructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose, based on confocal laser scanning microscopy (CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM-IA) to 3-D biomaps, C coming from photosynthetic active organisms could be visualized as depth profiles with C peaks at 0.5 to 2 mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17 % total organic carbon, identified by loss on ignition.
Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin
2015-01-01
Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391
NASA Astrophysics Data System (ADS)
Coppola, A.; Comegna, V.; de Simone, L.
2009-04-01
Non-point source (NPS) pollution in the vadose zone is a global environmental problem. The knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and sub disciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. The main issues encountered by NPS groundwater vulnerability assessment, as discussed by Stewart [2001], are the large spatial scales, the complex processes that govern fluid flow and solute transport in the unsaturated zone, the absence of unsaturated zone measurements of diffuse pesticide concentrations in 3-D regional-scale space as these are difficult, time consuming, and prohibitively costly, and the computational effort required for solving the nonlinear equations for physically-based modeling of regional scale, heterogeneous applications. As an alternative solution, here is presented an approach that is based on coupling of transfer function and GIS modeling that: a) is capable of solute concentration estimation at a depth of interest within a known error confidence class; b) uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application; c) can dynamically support decision making through thematic mapping and 3D scenarios This result was pursued through 1) the design and building of a spatial database containing environmental and physical information regarding the study area, 2) the development of the transfer function procedure for layered soils, 3) the final representation of results through digital mapping and 3D visualization. One side GIS modeled environmental data in order to characterize, at regional scale, soil profile texture and depth, land use, climatic data, water table depth, potential evapotranspiration; on the other side such information was implemented in the up-scaling procedure of the Jury's TFM resulting in a set of texture based travel time probability density functions for layered soils each describing a characteristic leaching behavior for soil profiles with similar hydraulic properties. Such behavior, in terms of solute travel time to water table, was then imported back into GIS and finally estimation groundwater vulnerability for each soil unit was represented into a map as well as visualized in 3D.
10Be accumulation in a soil chronosequence
Pavich, M.J.; Brown, L.; Klein, J.; Middleton, R.
1984-01-01
We have measured the concentration of the cosmogenic isotope 10Be in soil samples from various horizons at six sites, including three independently dated Rappahannock River terraces and a previously undated Piedmont soil to which we have assigned an age. All of the incident 10Be can be accounted for in one of these soils and a second is within a factor of two. In three soils, whose concentrations vary widely with depth, a significant fraction of the incident 10Be cannot be accounted for. Incomplete sampling, and enhanced Be mobility caused by organic components, are the probable reasons for the low inventory of Be from these three soils. Overall, the data from these six sites indicate that 10Be accumulation could be used to assign ages to soils if Be is not mobilized and lost from the soil profile. ?? 1984.
Depth-dependent erodibility: representing burnt soils as a two-layered cohesive/non-cohesive system
NASA Astrophysics Data System (ADS)
Nyman, P.; Sheridan, G. J.; Moody, J. A.; Smith, H. G.; Lane, P. N.
2011-12-01
Immediately after wildfire there is an abundant supply of non-cohesive ash, soil and gravel which is easily entrained by overland flow. Under these conditions the sediment flux on hillslopes can be assumed to be equal to the transport capacity of the flow. However, the supply of material is finite and at some point the hillslope could shift towards a system where entrainment is restricted by armouring and soil cohesion. In this study we test the notion that burnt hillslopes can be represented as a two-layered system of non-cohesive and cohesive soils. Using a combination of i) shear vane measurements, ii) confined hillslope flow experiments and iii) a laboratory flume, we demonstrate how erosion on burnt hillslopes primarily takes place in a distinct layer of non-cohesive soil with erosion properties that are very different to the underlying soil matrix. Shear vane measurements were taken at 5 soil depths at more than 50 points along transects in order to quantify the depth and spatial distribution of non-cohesive soil in two small (0.5 ha) and steep (30 deg) convergent basins (SE Australia) that were burnt at high severity. The measurements showed that the recently burnt hillslopes were mantled with non-cohesive soil to an average depth of 18mm and 20mm at the two sites which were situated in different geologic terrain but in similar eucalyptus dominated forests. In the hillslope flow experiments, the rapid entrainment of non-cohesive material resulted in very high sediment concentration (50-60% by volume) in the initial surge from the test area. During the flow experiments the sediment concentration decreased exponentially with time until the erosion rate reached a steady state reflecting the erodibility of the underlying cohesive soil. The formation of shallow rills and the presence of large clasts (>16cm) within the test area resulted in incomplete removal of the non-cohesive material at shear stress < 50 Ncm-2. At shear stress > 50 Ncm-2 all material was removed, and the erosion depth at the end of the experiments was equal to the depth of non-cohesive material measured using the shear vane. In a separate set of experiments, a laboratory flume was used to measure the erodibility at different soil depths using soil cores that were burnt at moderate to high severity. Unlike the field based flow experiments, the erodibility measurements of non-cohesive soils in the flume were not restricted by the transport capacity of the flow. Results from the flume experiments showed a two order of magnitude decrease in erodibility within the top 2cm of the soil profile for soil cores from both chaparral and coniferous forests (western US). In summary, these results indicate that a majority of hillslope sediment may be generated from a relatively shallow layer of non-cohesive and highly erodible material. The depth of this material may be an important property that can help determine the post-fire erosion and debris flow potential, particularly in systems where other sources of sediment are limited. The study confirms that erodibility of burnt soil shows strong variation with depth and that the assumption of a constant erodibility factor may lead to misrepresentation of important processes.
NASA Astrophysics Data System (ADS)
Pawlik, Łukasz; Kasprzak, Marek
2018-01-01
Following previous findings regarding the influence of vascular plants (mainly trees) on weathering, soil production and hillslope stability, in this study, we attempted to test a hypothesis regarding significant impacts of tree root systems on soil and regolith properties. Different types of impacts from tree root system (direct and indirect) are commonly gathered under the key term of "biomechanical effects". To add to the discussion of the biomechanical effects of trees, we used a non-invasive geophysical method, electrical resistivity tomography (ERT), to investigate the profiles of four different configurations at three study sites within the Polish section of the Outer Western Carpathians. At each site, one long profile (up to 189 m) of a large section of a hillslope and three short profiles (up to 19.5 m), that is, microsites occupied by trees or their remnants, were made. Short profiles included the tree root zone of a healthy large tree, the tree stump of a decaying tree and the pit-and-mound topography formed after a tree uprooting. The resistivity of regolith and bedrock presented on the long profiles and in comparison with the short profiles through the microsites it can be seen how tree roots impact soil and regolith properties and add to the complexity of the whole soil/regolith profile. Trees change soil and regolith properties directly through root channels and moisture migration and indirectly through the uprooting of trees and the formation of pit-and-mound topography. Within tree stump microsites, the impact of tree root systems, evaluated by a resistivity model, was smaller compared to microsites with living trees or those with pit-and-mound topography but was still visible even several decades after the trees were windbroken or cut down. The ERT method is highly useful for quick evaluation of the impact of tree root systems on soils and regolith. This method, in contrast to traditional soil analyses, offers a continuous dataset for the entire microsite and at depths not normally reached by standard soil excavations. The non-invasive nature of ERT studies is especially important for protected areas as it was shown in the present study.
NASA Astrophysics Data System (ADS)
Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.
2010-12-01
Coalbed natural gas (CBNG) production in the Powder River Basin (PRB) in northeastern Wyoming has increased rapidly since 1997. CBNG production involves the extraction of large amounts of water containing >2000 mg/L total dissolved solids, dominantly sodium bicarbonate. Subsurface drip irrigation (SDI) is a beneficial disposal method of produced waters, provided that waters and associated salts are managed properly. We are studying how water and solute distributions change in soils with progressive irrigation at two PRB sites using a combination of geophysical, geochemical, and mineralogical analyses. Perennial crops are grown at both sites, drip tapes are located at 92 cm depth, and water is applied year-round. The first SDI site is located at the confluence of Crazy Woman Creek and the Powder River. Baseline ground-based and helicopter-borne frequency domain electromagnetic induction (EMI) surveys were completed in 2007 and 2008, respectively, prior to the installation of the SDI system. Since installation, additional ground-based EMI, resistivity, and downhole geophysical log surveys have been completed along with soil geochemical and mineralogical analyses. Determining baseline physical, chemical, and electrical soil characteristics at this study site is an important step in linking the EMI measurements to the soil characteristics they are intended to assess. EMI surveys indicate that soil conductivity has generally increased with irrigation, but lateral migration of water away from the irrigated blocks is minimal. Median downhole electrical conductivity was positively correlated with soil mass wetness but not correlated with soil mineralogy. Soil-water extract results indicate existing salts are chemically heterogeneous throughout the site and in depth. The observed EMI conductivity variations are therefore primarily attributed to water content changes and secondarily to soil texture. The second SDI site, located northeast of Sheridan, WY, has been operating for six years and includes irrigated alfalfa and grass and adjacent non-irrigated grass fields. A single ground-based EMI survey was performed in Feb. 2010, which helped direct subsequent soil sampling. Gypsum distribution can be differentiated into two soil zones: an upper, gypsum-poor zone and a lower gypsum-rich zone. The break between zones is 30 cm deeper in the irrigated soil and is probably due to dissolution and displacement of gypsum by SDI waters infiltrating from the drip tape. Resistivity profiles were acquired in June 2010 over the soil sampling sites and are consistent with the EMI data, which show higher conductivity values in the irrigated fields. In the SDI alfalfa field, there is a strong negative correlation between mass wetness and resistivity with a 75% increase in mass wetness (0.2-0.35 g/g) at 3 m depth corresponding to a 30% resistivity decrease (15-10 ohm-m). When compared to the non-irrigated field profile, the SDI alfalfa field data show a 50% resistivity decrease (20-10 ohm-m) below 3 m depth, indicating a possible accumulation of irrigated waters below the SDI system.
Soil moisture decline due to afforestation across the Loess Plateau, China
NASA Astrophysics Data System (ADS)
Jia, Xiaoxu; Shao, Ming'an; Zhu, Yuanjun; Luo, Yi
2017-03-01
The Loess Plateau of China is a region with one of the most severe cases of soil erosion in the world. Since the 1950s, there has been afforestation measure to control soil erosion and improve ecosystem services on the plateau. However, the introduction of exotic tree species (e.g., R. pseudoacacia, P. tabulaeformis and C. korshinskii) and high-density planting has had a negative effect on soil moisture content (SMC) in the region. Any decrease in SMC could worsen soil water shortage in both the top and deep soil layers, further endangering the sustainability of the fragile ecosystem. This study analyzed the variations in SMC following the conversion of croplands into forests in the Loess Plateau. SMC data within the 5-m soil profile were collected at 50 sites in the plateau region via field survey, long-term in-situ observations and documented literature. The study showed that for the 50 sites, the depth-averaged SMC was much lower under forest than under cropland. Based on in-situ measurements of SMC in agricultural plots and C. korshinskii plots in 2004-2014, SMC in the 0-4 m soil profile in both plots declined significantly (p < 0.01) during the growing season. The rate of decline in SMC in various soil layers under C. korshinskii plots (-0.008 to -0.016 cm3 cm-3 yr-1) was much higher than those under agricultural plots (-0.004 to -0.005 cm3 cm-3 yr-1). This suggested that planting C. korshinskii intensified soil moisture decline in China's Loess Plateau. In the first 20-25 yr of growth, the depth-averaged SMC gradually decreased with stand age in R. pseudoacacia plantation, but SMC somehow recovered with increasing tree age over the 25-year period. Irrespectively, artificial forests consumed more deep soil moisture than cultivated crops in the study area, inducing soil desiccation and dry soil layer formation. Thus future afforestation should consider those species that use less water and require less thinning for sustainable soil conservation without compromising future water resources demands in the Loess Plateau.
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
NASA Astrophysics Data System (ADS)
Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio
2016-04-01
The ability to determine and monitor the effects of salts on soils and plants, are of great importance to agriculture. To control its harmful effects, soil salinity needs to be monitored in space and time. This requires knowledge of its magnitude, temporal dynamics, and spatial variability. Conventional ground survey procedures by direct soil sampling are time consuming, costly and destructive. Alternatively, soil salinity can be evaluated by measuring the bulk electrical conductivity (σb) directly in the field. Time domain reflectometry (TDR) sensors allow simultaneous measurements of water content, θ, and σb. They may be calibrated for estimating the electrical conductivity of the soil solution (σw). However, they have a relatively small observation window and thus they are thought to only provide local-scale measurements. The spatial range of the sensors is limited to tens of centimeters and extension of the information to a large area can be problematic. Also, information on the vertical distribution of the σb soil profile may only be obtained by installing sensors at different depths. In this sense, the TDR may be considered as an invasive technique. Compared to the TDR, other geophysical methods based for example on Electromagnetic Induction (EMI) techniques are non-invasive methods and represent a viable alternative to traditional techniques for soil characterization. The problem is that all these techniques give depth-weighted apparent electrical conductivity (σa) measurements, depending on the specific depth distribution of the σb, as well as on the depth response function of the sensor used. In order to deduce the actual distribution of the bulk electrical conductivity, σb, in the soil profile, one needs to invert the signal coming from EMI. Because of their relatively lower observation window, TDR sensors provide quasi-point values and do not adequately integrate the spatial variability of the chemical concentration distribution in the soil solution (and of the water content) induced by natural soil heterogeneity. Thus, the variability of TDR readings is expected to come from a combination of smaller and larger-scale variations. By contrast, an EMI sensor reading partly smoothes the small-scale variability seen by a TDR probe. As a consequence, the variability revealed by profile-integrated EMI and local (within a given depth interval) TDR readings may have completely different characteristics. In this study, a comparison between the variability patterns of σb revealed by TDR and EMI sensors was carried out. The database came from a field experiment conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari). The soil was pedologically classified as Colluvic Regosol, consisting of a silty loam with an average depth of 60 cm on a shallow fractured calcareous rock. The experimental field (30m x 15.6 m; for a total area of 468 m2) consisted of three transects of 30 m length and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3dS/m, 6dS/m). Each transect consisted of seven crop rows irrigated by a drip irrigation system (dripper discharge q=2 l/h.). Water salinity was induced by adding CaCl2 to the tap water. All crop-soil measurements were conducted along the middle row at 24 monitoring sites, 1m apart. The spatial and temporal evolution of bulk electrical conductivity (σb) of soil was monitored by i) an Electromagnetic Induction method (EM38-DD) and ii) Time Domain Reflectometry (TDR). Herein we will focus on the methodology we used to elaborate the database of this experiment. Mostly, the data elaboration was devoted to make TDR and EMI data actually comparable. Specifically, we analysed the effect of the different observation windows of TDR and EMI sensors on the different spatial and temporal variability observed in the data series coming from the two sensors. After exploring the different patterns and structures of variability of the original EMI and TDR data series the study assessed the potential of applying a Fourier's analysis to filter the original data series to extract the predominant, high-variance signal after removing the small- scale (high frequency) variance observed in the TDR data series.
Effect of soil moisture on the temperature sensitivity of Northern soils
NASA Astrophysics Data System (ADS)
Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.
2017-12-01
Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.
A (137)Cs erosion model with moving boundary.
Yin, Chuan; Ji, Hongbing
2015-12-01
A novel quantitative model of the relationship between diffused concentration changes and erosion rates using assessment of soil losses was developed. It derived from the analysis of surface soil (137)Cs flux variation under persistent erosion effect and based on the principle of geochemistry kinetics moving boundary. The new moving boundary model improves the basic simplified transport model (Zhang et al., 2008), and mainly applies to uniform rainfall areas which show a long-time soil erosion. The simulation results for this kind of erosion show under a long-time soil erosion, the influence of (137)Cs concentration will decrease exponentially with increasing depth. Using the new model fit to the measured (137)Cs depth distribution data in Zunyi site, Guizhou Province, China which has typical uniform rainfall provided a good fit with R(2) = 0.92. To compare the soil erosion rates calculated by the simple transport model and the new model, we take the Kaixian reference profile as example. The soil losses estimated by the previous simplified transport model are greater than those estimated by the new moving boundary model, which is consistent with our expectations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D
2013-03-15
Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Observational needs for estimating Alaskan soil carbon stocks under current and future climate
Vitharana, U. W. A.; Mishra, U.; Jastrow, J. D.; ...
2017-01-24
Representing land surface spatial heterogeneity when designing observation networks is a critical scientific challenge. Here we present a geospatial approach that utilizes the multivariate spatial heterogeneity of soil-forming factors—namely, climate, topography, land cover types, and surficial geology—to identify observation sites to improve soil organic carbon (SOC) stock estimates across the State of Alaska, USA. Standard deviations in existing SOC samples indicated that 657, 870, and 906 randomly distributed pedons would be required to quantify the average SOC stocks for 0–1 m, 0–2 m, and whole-profile depths, respectively, at a confidence interval of 5 kg C m -2. Using the spatialmore » correlation range of existing SOC samples, we identified that 309, 446, and 484 new observation sites are needed to estimate current SOC stocks to 1 m, 2 m, and whole-profile depths, respectively. We also investigated whether the identified sites might change under future climate by using eight decadal (2020–2099) projections of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change. These analyses determined that 12 to 41 additional sites (906 + 12 to 41; depending upon the emission scenarios) would be needed to capture the impact of future climate on Alaskan whole-profile SOC stocks by 2100. The identified observation sites represent spatially distributed locations across Alaska that captures the multivariate heterogeneity of soil-forming factors under current and future climatic conditions. This information is needed for designing monitoring networks and benchmarking of Earth system model results.« less
Observational needs for estimating Alaskan soil carbon stocks under current and future climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitharana, U. W. A.; Mishra, U.; Jastrow, J. D.
Representing land surface spatial heterogeneity when designing observation networks is a critical scientific challenge. Here we present a geospatial approach that utilizes the multivariate spatial heterogeneity of soil-forming factors—namely, climate, topography, land cover types, and surficial geology—to identify observation sites to improve soil organic carbon (SOC) stock estimates across the State of Alaska, USA. Standard deviations in existing SOC samples indicated that 657, 870, and 906 randomly distributed pedons would be required to quantify the average SOC stocks for 0–1 m, 0–2 m, and whole-profile depths, respectively, at a confidence interval of 5 kg C m -2. Using the spatialmore » correlation range of existing SOC samples, we identified that 309, 446, and 484 new observation sites are needed to estimate current SOC stocks to 1 m, 2 m, and whole-profile depths, respectively. We also investigated whether the identified sites might change under future climate by using eight decadal (2020–2099) projections of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change. These analyses determined that 12 to 41 additional sites (906 + 12 to 41; depending upon the emission scenarios) would be needed to capture the impact of future climate on Alaskan whole-profile SOC stocks by 2100. The identified observation sites represent spatially distributed locations across Alaska that captures the multivariate heterogeneity of soil-forming factors under current and future climatic conditions. This information is needed for designing monitoring networks and benchmarking of Earth system model results.« less
S-World: A high resolution global soil database for simulation modelling (Invited)
NASA Astrophysics Data System (ADS)
Stoorvogel, J. J.
2013-12-01
There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.
Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data
NASA Astrophysics Data System (ADS)
hatte, C.; Balesdent, J.; Guiot, J.
2012-12-01
Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Are catenas relevant to soil maps and pedology in Iowa in the twenty-first century?
NASA Astrophysics Data System (ADS)
Richter, Jennifer; Burras, C. Lee
2014-05-01
The modern intensity of agriculture brings to question whether anthropogenic impacts on soil profiles and catenas in agricultural areas are minor or dominant pedogenic influences. Answering this question is crucial to evaluating the modern relevance of historic soil maps, which use the traditional catena model as their foundation. This study quantifies the magnitude of change within the soil profile and across the landscape that result from decadal scale agriculture. Four benchmark catenas located on the Des Moines Lobe in Iowa, USA, were re-examined to determine the changes that occurred in the soils over the intervening years. The first site was initially studied by Walker and Ruhe in the mid 1960's. Burras and Scholtes initially examined the second catena in the early 1980's, while the remaining two catenas were first studied in the early 1990's by Steinwand and Fenton, and the late 1990's by Konen. Thus, the catenas were re-sampled for this study roughly 50, 30, 20, and 15 years, respectively, after the initial study. In this part of Iowa, continuous row crop agriculture (primarily Zea mays and Glycine max) and extensive subsurface drainage are very common. All study sites are closed-basin catenas located within 40 km of each other with a parent material of Late Wisconsinan glacial till. Soil cores to a depth of approximately two meters were taken with a truck mounted Giddings hydraulic soil sampler at 27 to 30 meter intervals along one transect for each of the four catenas, resulting in a total of forty-eight cores. The soil cores were then brought to the laboratory where soil descriptions and laboratory analyses are being completed. Soil descriptions include information about horizon type and depth, Munsell color, texture, rock fragments, structure, consistence, clay films, roots, pores, presence of carbonates, and redoximorphic features. Laboratory analyses include bulk density, particle size, total carbon and nitrogen content, cation exchange capacity, stable aggregate content, and pH. The resulting data is being analyzed and compared to historic data and models of pedogenesis. Preliminary and anticipated results indicate that soil properties such as bulk density, pH, geometric mean particle size, structure, A-horizon thickness, carbon distribution, depth to carbonates, and redoximorphic features have been altered by agricultural land use over the past 50 years. This indicates that anthropogenic impacts due to agriculture are a significant pedogenic influence, which is decreasing the scientific value of historic soil maps.
NASA Astrophysics Data System (ADS)
Pal Singh, Bhupinder; Fang, Yunying; Boersma, Mark; Matta, Pushpinder; Van Zwieten, Lukas; Macdonald, Lynne
2014-05-01
Carbon (C) sequestration potential of biochar depends on its stability and stabilisation of native or added organic C in soil. However, the processes of biochar degradation, fate in soil organic matter pools, and downward translocation in the soil profile, and the influence of biochar on emissions or stabilisation of native organic C sources are poorly understood under field conditions. An Eucalyptus saligna green-waste biochar (δ13C -36.6o; total C 66.8%) produced by slow pyrolysis at 450° C was applied at 29.2 t ha-1 to 10-cm depth in circular (0.66-m diameter) micro-plots, encompassing three soils [Tenosol, Dermosol and Ferrosol (Australian Soil Classification); Arenosol, Planosol, Ferralsol (approximate WRB Classification] under contrasting pasture systems across New South Wales and Tasmania (Australia). The aims of this study were to (i) monitor the fate of biochar C in respired CO2 and quantify biochar stability and stabilisation under field conditions, (ii) determine the influence of biochar on native soil C emissions, and (iii) track downward migration of the surface (0-10 cm) applied biochar over a 1-year period. We also periodically monitored the impact of biochar on microbial biomass carbon (MBC) and aboveground biomass production. The soils were separated into light and heavy C fractions and the C recovery of applied biochar C was calculated at 0-8, 8-12, 12-20 and 20-30 cm depths. Biochar C mineralisation rates were generally higher, albeit fluctuated widely, in the first 3 to 4 months. Over the first 7 months, the proportion of added biochar C mineralised in soils ranged between 1.4 and 5.5% and followed the sequence: Tenosol < Dermosol < Ferrosol. The mean residence time (MRT) of biochar ranged from 29 and 70 years. These values of MRT should be treated as highly conservative values, as they mainly reflect the MRT of relatively labile C components in biochar. The cumulative CO2-C emission over the 7-month period from native soil and plant sources was larger in the biochar-amended Tenosol, whereas lower in the biochar-amended Dermosol and Ferrosol, relative to the corresponding controls. As the aboveground biomass production was similar between the biochar-amended and control micro-plots during the first 7 months, the higher cumulative CO2-C emission in the biochar versus control Tenosol may be related to positive priming of native SOC mineralisation by biochar, and/or greater belowground allocation of plant-assimilated C, or possibly alternative effects (i.e. negative priming or lower belowground plant C allocation) in the Dermosol and Ferrosol. At 4 months, most of the applied biochar was recovered in the top 12 cm depth, with the total recovery of 72.1% in the Tenosol, 103.7% in the Dermosol and 79.2% in the Ferrosol. Biochar C was clearly migrated downward from the application depth (0-10 cm) within 4 months, particularly in Tenosol and Ferrosol, with the recovery of 4.8%, 2.7% and 12.7% in the 12-20 cm profile, and 6.0%, 1.1% and 9.1% at the 20-30 cm profile, across the Tenosol, Dermosol and Ferrosol, respectively. At 4 months, MBC was higher in the biochar-amended Tenosol and Dermosol than the corresponding controls, whereas, biochar had no effect on MBC in the Ferrosol, possibly due to its higher native organic C content cf. the other soil types. The updated results will be presented at the conference.
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range
McClain, Cynthia N.; Fendorf, Scott; Webb, Samuel M.; ...
2016-11-22
Here, hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation bymore » Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2/yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2/yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California’s drinking water limit.« less
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.
McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate
2017-01-03
Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.
Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site
NASA Astrophysics Data System (ADS)
Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.
2014-12-01
A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.
Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...
2015-08-31
Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less
Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters
NASA Astrophysics Data System (ADS)
Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.
2016-12-01
The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change into the future with clear ramifications for Arctic coastal environments.
NASA Astrophysics Data System (ADS)
Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.
2015-04-01
In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.
Michel, R; Handl, J; Ernst, T; Botsch, W; Szidat, S; Schmidt, A; Jakob, D; Beltz, D; Romantschuk, L D; Synal, H-A; Schnabel, C; López-Gutiérrez, J M
2005-03-20
Forty-eight soil profiles down to a depth of 40 cm were taken in Russia and Ukraine in 1995 and 1997, respectively, in order to investigate the feasibility of retrospective dosimetry of the 131I exposure after the Chernobyl accident via the long-lived 129I. The sampling sites covered areas almost not affected by fallout from the Chernobyl accident such as Moscow/Russia and the Zhitomir district in Ukraine as well as the highly contaminated Korosten and Narodici districts in Ukraine. 129I was analyzed by radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS). 127I was measured for some profiles by RNAA or ion chromatography (IC). The results for 127I demonstrated large differences in the capabilities of the soils to store iodine over long time spans. The depth profiles of 129I and of 137Cs showed large differences in the migration behavior between the two nuclides but also for each nuclide among the different sampling sites. Though it cannot be quantified how much 129I and 137Cs was lost out of the soil columns into deeper depths, the inventories in the columns were taken as proxies for the total inventories. For 129I, these inventories were at least three orders of magnitude higher than a pre-nuclear value of 0.084+/-0.017 mBq m(-2) derived from a soil profile taken in 1939 in Lutovinovo/Russia. From the samples from Moscow and Zhitomir, a pre-Chernobyl 129I inventory of (44+/-24) mBq m(-2) was determined, limiting the feasibility of 129I retrospective dosimetry to areas where the 129I inventories exceed 100 mBq m(-2). Higher average 129I inventories in the Korosten and Narodici districts of 130 and 848 mBq m(-2), respectively, allowed determination of the 129I fallout due to the Chernobyl accident. Based on the total 129I inventories and on literature data for the atomic ratio of 129I/131I=13.6+/-2.8 for the Chernobyl emissions and on aggregated dose coefficients for 131I, the thyroid exposure due to 131I after the Chernobyl accident was estimated for the inhabitants of four villages in the Korosten and of three villages in the Narodici districts. The limitations and uncertainties of the 129I retrospective dosimetry are discussed.
NASA Astrophysics Data System (ADS)
Akter, Masuda; Kader, Md. Abdul; Pierreux, Sofie; Boeckx, Pascal; Kamal, Ahammad Mostafa; Sleutel, Steven
2016-04-01
Water-saving irrigation such as AWD may significantly alter depth profiles of moisture content, pH, Eh and soil microbial activity. Modelling the effect of irrigation management on soil N mineralization, therefore requires detailed insight into depth distribution of these variables and dissolved organic carbon (DOC), and evolution of electron acceptors. We set up a field experiment at Bangladesh Agricultural University from January to May' 2015. The cultivated rice variety (BRRI dhan28) was grown under continuous flooding (CF) and alternate wetting and drying (AWD) management, with 120 kg N ha-1(N120) or without (N0)N fertilizer application. We measured soil mineral N and plant N uptake to evaluate N mineralization. CH4 emissions were monitored with timely gas sample collection and GC-analysis. Soil Eh at four depths and temperature at two depths were monitored continuously by Eh/T°-probes connected to a HYPNOS III data logger (MVH, The Netherlands). Simultaneously, soil solution from three depths were sampled with rhizon samplers to track DOC, Fe and Mn in solution. Over the growing season soil and air temperature increased by 8°C, and soil pH stayed near neutral (6.7 to 7.8). In all depths of AWD and CF, Eh dropped sharply to methanic conditions within 21 days after transplanting (DAT). Low redox-potential continued until 77DAT in all cases, except in the puddle layers under AWD, where redox raised to -200mV during drainage. Fe and Mn in soil solution increased gradually over the growing season, indicating continued reductive dissolution of Fe and Mn (hydro-)oxides. DOC increased continuously as well in all depths. Besides to release of DOC bound to pedogenic oxides upon their reductive dissolution, higher plant and soil microbial activity with increasing soil temperature (till 28°C) through the growing season explains the increasing DOC levels. Increasing methanogenic activity as indicated by the high CH4 emissions at 70-84DAT under both CF and AWD is logically linked. The elevated redox potential in puddle layer depth increments during AWD drainage events, significantly (p<0.01) declined the cumulative CH4 emission by 47% when compared to CF management. Moreover, seasonal CH4 emissions in N-fertilized fields (N120) decreased by 29 and 8% under CF and AWD, respectively relative to the control (N0), possibly due to promotion of methanotrophs, which were N-limited in N0. Mostly, mineral N content in N120 plots of AWD and CF exceeded contents in the N0 fields. Contrary to CH4 emission, irrigation management did not affect evolutions of pH, Fe, Mn and DOC in soil solution. Likewise, soil exchangeable N content evolution was unaffected and followed zero-order kinetics (N120: R2=0.53 to 0.81; N0: R2=0.12 to 0.48). Our results generally indicate that in Northern Bangladesh's Boro season, evolutions in paddy soil solution chemistry and CH4 emission are strongly depending on course soil temperature and only secondarily on irrigation management. Whether temperature steers microbial activity and methanogenesis directly or via concomitant plant activity and exudation is not known. Key words: Redox, CH4, emission, mineralization, Fe, Mn, DOC, water management
Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties
NASA Astrophysics Data System (ADS)
Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka
2014-05-01
A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319
NASA Astrophysics Data System (ADS)
Kul Yahşi, Bilgehan; Ersoy, Hakan
2018-06-01
The aim of this study was to determine the soil profile of the Yeşilyurt Landslide Area (NE Turkey) and to investigate the stability of the landslide area after the excavation planned by back analysis for support design. For these purposes, after the 1/1000 scaled engineering geological map was prepared, seismic refraction, electrical resistivity tomography and ground penetrating radar measurements were performed on different profiles to understand vertical and horizontal homogeneity of the landslide materials and undisturbed/disturbed soil samples were obtained from the test pits to determine the geotechnical properties of the soil. The results of the geophysical measurements showed that the landslide material was composed of two different soil zones. While the maximum thickness of the upper zone is 2.5, the thickness of the lower zone is about 5 m. The depth of dasidic rock mass is about 7 m. Residual cohesions of the soil samples obtained upper and lower zones were determined as 38 kPa and 44 kPa, and their residual friction angles were determined as 18° and 15° respectively. Unit weight values of the soil samples obtained from both zones were 16.9 kN m-3. The data obtained from laboratory tests showed that the landslide material is a uniform lithology. The geophysical measurements indicate that the wave velocity and resistivity values of these profiles differ from each other due to groundwater at a depth of 2.5 m. Limit equilibrium analysis were carried out with Slide v5.0 software using data obtained from the field measurements and laboratory tests to evaluate current and supported cases of the studied area. Because the safety factor of the slope obtained from the LE analyses is 0.99 and the studied soil environment is considered as unstable, the reliable and economical reinforcement was suggested using the retaining wall. The back-analysis method was evaluated to ensure the stability for a 1.5 safety factor and finally the lateral active forces for the retaining wall were calculated in the LE analysis as 718 kN and 1839 kN for without and with seismic load respectively.
NASA Astrophysics Data System (ADS)
Townsend, M. A.; Macko, S. A.
2004-12-01
Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
Lejon, David P H; Chaussod, Rémi; Ranger, Jacques; Ranjard, Lionel
2005-11-01
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of "Breuil-Chenue" in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0-5, 5-10, and 10-15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation-extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.
NASA Astrophysics Data System (ADS)
Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike
2016-04-01
Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and consumption sites of soil gases in the adjacent soil. Soils at both sites took up CH4 and N2O and emitted CO2. Soil gas profiles at the Black Forest showed only CH4 and N2O consumption. CH4 uptake was much larger by the well aerated Black Forest soil than by the loamy-clay soil in the White Carpathians. Here, it was possible to stratify the apparently homogenous site into two plots, one having redoximorphic features in the soil profiles, the other plot without. It seemed that CH4 and N2O were mainly produced in the deeper soil at the plot with temporarily reducing conditions. Beech stems mostly took up N2O from the atmosphere at both sites, whereas CH4 was emitted. The stem CH4 flux was higher for the White Carpathians than for the Black Forest site. Thus, the tree and soil flux of CH4 seems to be affected by soil structure, soil water content and the redox potential in the rooting space. We conclude from our results that trees might provide preferential pathways for greenhouse gases produced in the subsoil thereby enhancing the release of greenhouse gases. Acknowledgement This research was financially supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik for technical support and Sinikka Paulus for help by field measurements.
Miniregoliths. I - Dusty lunar rocks and lunar soil layers
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1978-01-01
A detailed Monte-Carlo model for rock surface evolution shows that erosion processes alone cannot account for the shapes of the solar flare particle track profiles generally observed at depths of about 100 microns and less in rocks. The observed profiles are easily explained by a steady accumulation of fine dust at a rate of 0.3 to 3 mm per m.y., depending on the micrometeoroid impact rate which controls the dust cover and results in maximum dust thicknesses on the order of 100 microns to 1 mm. The commonly used lunar soil track parameters are derived in terms of parameters characterizing the exposure of soil grains in the few-millimeter-thick surface mixing and maturation zone which is one form of miniregolith. Correlation plots permit determining the degree of mixing in soil samples and the amount of processing (maturation) in surface miniregoliths. It is shown that the sampling process often artificially mixes together finer distinct layers, and that ancient miniregolith layers on the order of a millimeter thick are probably common in the lunar soil.
Harden, J.W.
1982-01-01
A soil development index has been developed in order to quantitatively measure the degree of soil profile development. This index, which combines eight soil field properties with soil thickness, is designed from field descriptions of the Merced River chronosequence in central California. These eight properties are: clay films, texture plus wet consistence, rubification (color hue and chroma), structure, dry consistence, moist consistence, color value, and pH. Other properties described in the field can be added when more soils are studied. Most of the properties change systematically within the 3 m.y. age span of the Merced River chronosequence. The absence of properties on occasion does not significantly affect the index. Individual quantified field properties, as well as the integrated index, are examined and compared as functions of soil depth and age. ?? 1982.
NASA Astrophysics Data System (ADS)
Johnson, M.; Gloor, M.; Lloyd, J.
2012-04-01
Soils are complex systems which hold a wealth of information on both current and past conditions and many biogeochemical processes. The ability to model soil forming processes and predict soil properties will enable us to quantify such conditions and contribute to our understanding of long-term biogeochemical cycles, particularly the carbon cycle and plant nutrient cycles. However, attempts to confront such soil model predictions with data are rare, although increasingly more data from chronosquence studies is becoming available for such a purpose. Here we present initial results of an attempt to reproduce soil properties with a process-based soil evolution model similar to the model of Kirkby (1985, J. Soil Science). We specifically focus on the basaltic soils in both Hawaii and north Queensland, Australia. These soils are formed on a series of volcanic lava flows which provide sequences of different aged soils all with a relatively uniform parent material. These soil chronosequences provide a snapshot of a soil profile during different stages of development. Steep rainfall gradients in these regions also provide a system which allows us to test the model's ability to reproduce soil properties under differing climates. The mechanistic, soil evolution model presented here includes the major processes of soil formation such as i) mineral weathering, ii) percolation of rainfall through the soil, iii) leaching of solutes out of the soil profile iv) surface erosion and v) vegetation and biotic interactions. The model consists of a vertical profile and assumes simple geometry with a constantly sloping surface. The timescales of interest are on the order of tens to hundreds of thousand years. The specific properties the model predicts are, soil depth, the proportion of original elemental oxides remaining in each soil layer, pH of the soil solution, organic carbon distribution and CO2 production and concentration. The presentation will focus on a brief introduction of the model, followed by a description of novel methods using tracers such as optically stimulated luminescence (OSL) dates and meteoric 10Be to evaluate the modelled processes of bioturbation and surface erosion. We will also discuss comparisons of modelled properties with observations and conclude with implications on our understanding of soil evolution.
NASA Astrophysics Data System (ADS)
Goffin, S.; Parent, F.; Plain, C.; Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Longdoz, B.
2012-12-01
The overall aim of this study is to contribute to a better understanding of mechanisms behind soil CO2 efflux using carbon stable isotopes. The approach combines a soil multilayer analysis and the isotopic tool in an in situ study. The specific goal of this work is to quantify the origin and the determinism of 13CO2 and 12CO2 production processes in the different soil layers using the gradient-efflux approach. To meet this, the work includes an experimental setup and a modeling approach. The experimental set up (see also communication of Parent et al., session B008) comprised a combination of different systems, which were installed in a Scot Pine temperate forest at the Hartheim site (Southwestern Germany). Measurements include (i) half hourly vertical profiles of soil CO2 concentration (using soil CO2 probes), soil water content and temperature; (ii) half hourly soil surface CO2 effluxes (automatic chambers); (iii) half hourly isotopic composition of surface CO2 efflux and soil CO2 concentration profile and (iv) estimation of soil diffusivity through laboratory measurements conducted on soil samples taken at several depths. Using the data collected in the experimental part, we developed and used a diffusive transport model to simulate CO2 (13CO2 and 12CO2) flows inside and out of the soil based on Fick's first law. Given the horizontal homogeneity of soil physical parameters in Hartheim, we treated the soil as a structure consisting of distinctive layers of 5 cm thick and expressed the Fick's first law in a discrete formalism. The diffusion coefficient used in each layer was derived from (i) horizon specific relationships, obtained from laboratory measurements, between soil relative diffusivity and its water content and (ii) the soil water content values measured in situ. The concentration profile was obtained from in situ measurements. So, the main model inputs are the profiles of (i) CO2 (13CO2 and 12CO2) concentration, (ii) soil diffusion coefficient and (iii) soil water content. Once the diffusive fluxes deduced at each layer interface, the CO2 (13CO2 and 12CO2) production profile was calculated using the (discretized) mass balance equation in each layer. The results of the Hartheim measurement campaign will be presented. The CO2 source vertical profile and its link with the root and the Carbon organic content distribution will be showed. The dynamic of CO2 sources and their isotopic signature will be linked to climatic variables such soil temperature and soil water content. For example, we will show that the dynamics of CO2 sources was mainly related to temperature while changing of isotopic signature was more correlated to soil moisture.
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
Assessment of soil nitrogen variability related to N doses applied through fertirrigation system.
NASA Astrophysics Data System (ADS)
Castellanos, M. T.; Tarquis, A. M.; Ribas, F.; Cabello, M. J.; Arce, A.; Cartagena, M. C.
2009-04-01
The knowledge of water and nitrogen dynamics in soils under drip irrigation and fertilizer application is essential to optimizing water and nitrogen management. Recent studies of water and nitrogen distribution in the soil under drip irrigation focus on water and inorganic nitrogen distribution around the drip emitters. Results of the studies are not verified with field experimental data. Reasons might include difficulties in obtaining field experimental data under irrigation and nitrogen fertilization [1]. N is an element which produces a stronger crop response, accelerates vegetative growth, plant development and yield increase. Accumulation and redistribution of N within the soil varies depending on management practices, soil characteristics, and growing season precipitation. Soil N high content at post-harvest is usually provided as evidence that N fertilizer had been applied in excess. The aim of this study is to characterize mineral N distribution in the soil profile measured at 5, 15, 25, 35, 45 and 55 cm of depth at the end of melon crop that received three N treatments: 93 (N93), 243 (N243) and 393 kg N ha-1(N393). The agronomic practices created a higher variability in soil Nitrogen content. NH4- N reduction in the soil profile can also be explained by the nitrification process. The high absorption and rapid nitrification of NH4+ ions in the plot layer are the main reason of a reduce movement downstream. NO3- ions present higher mobility in the soil profile. [1] Rahil, M.H.; Antonopoulos, V.Z. 2007. Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater. Agricultural Water Management 92, 142 - 150. Acknowledgements: This project has been supported by INIA-RTA04-111
NASA Astrophysics Data System (ADS)
Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael
2017-04-01
The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.
A porewater-based stable isotope approach for the investigation of subsurface hydrological processes
NASA Astrophysics Data System (ADS)
Garvelmann, J.; Külls, C.; Weiler, M.
2012-02-01
Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.
Chernozems microbial community under anthropogenic impact (Russia)
NASA Astrophysics Data System (ADS)
Ivashchenko, Kristina; Ananyeva, Nadezhda; Sushko, Sofia; Vasenev, Viacheslav
2017-04-01
Chernozems is important natural resource, which in the last decade under intense influence as a result of plowing and urbanization. The parameters of soil microbial community functioning might be identify some soil deterioration under the impacts. Our research was focused on assessment of microbial community status in different soil layers of virgin steppe, bare fallow and urban ecosystems (Kursk region). In each ecosystem, we chose randomly 3-5 spatially distributed sites, where soil samples were collected by auguring up to 0.5 m depth (each layer 10 cm thickness) and up to 1.5 m depth (0-10, 10-50, 50-100, 100-150 cm layers), totally 127 samples. The bulk density was measured for these soil layers. In all soil samples the microbial biomass carbon content (Cmic) was analyzed by substrate-induced respiration (SIR) method and basal respiration (BR) was assessed by CO2 rate production. The fungi-to-bacteria ratio (selective inhibition technique with antibiotics) was determined and portion of Cmic in soil organic carbon (Corg) content was calculated in topsoil (0-10 cm). The Corg (dichromate oxidation) and pHw (potentiometry) values were measured. The Cmic and BR profile pools were calculated using bulk density and thickness of studied layers. The Cmic (0-10 cm) was varied from 84 to 1954 µg C g-1 soil, in steppe it was on average 3-4 times higher than those in bare fallow and urban. The BR rate was amounted from 0.20 to 1.57 µg CO2-C g-1 soil h-1, however no significant difference between studied ecosystems was found. It was shown the relationship between Cmic, BR and Corg (the linear regression, R2=0.92 and 0.75, respectively, p<0.05). The Cmic / Corg ratio in steppe was on average 3.3%, it was significantly higher those bare fallow and urban (1.6 and 0.7%, respectively). The fungi-to-bacteria ratio was decreased along ecosystems row: virgin steppe>bare fallow>urban, and it was on average 6.0, 5.2 and 1.8, respectively. The Cmic profile pool (0.5 m) of steppe was reached up on average 206 g C m-2, and it was 2.0 and 2.5 times higher those bare fallow and urban, respectively. The BR profile pool (0.5 m) in steppe and bare fallow was reached up 5.9 and 5.8 g CO2-C m-2 d-1, respectively, it was on average 2 times higher urban. The Cmic profile pool (1.5 m) in steppe was amounted to 372 g C m-2, and it was essentially higher those in bare fallow and urban (138 and 140 g C m-2, respectively). The BR profile pool (1.5 m) was also decreased along ecosystems row: steppe> fallow>urban, and it was on average 13.0, 8.0 and 5.6 g CO2-C m-2 d-1, respectively. Thus, we found a significant decreasing soil microbial biomass content, its portion in soil Corg, fungi content, and the Cmic and BR profile pools along Chernozems' ecosystems gradient from natural (virgin steppe) to anthropogenically transformed (bare fallow, urban). It might be illustrated some deterioration of soil microbial community functioning under plowing and urbanization. This research was supported by RFBR grants Nos. 15-04-00915 and 16-34-00398
SOIL Geo-Wiki: A tool for improving soil information
NASA Astrophysics Data System (ADS)
Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael
2014-05-01
Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference soil classification system) and allow experts to upload and share scientifically rigorous soil data; and an application oriented towards the general public, which will be more focused on describing well observed, individual soil properties using simplified classification keys. The latter application will avoid the use of soil science related terminology and focus on the most useful soil parameters such as soil surface features, stone content, soil texture, soil plasticity, calcium carbonate presence, soil color, soil pH, soil repellency, and soil depth. Collection of soil and landscape pictures will also be supported in Soil Geo-Wiki to allow for comprehensive data collection while simultaneously allowing for quality checking by experts.
NASA Astrophysics Data System (ADS)
Oswald, S. E.; Scheiffele, L. M.; Baroni, G.; Ingwersen, J.; Schrön, M.
2017-12-01
One application of Cosmic-Ray Neutron Sensing (CRNS) is to investigate soil moisture on agricultural fields during the crop season. This fully employs the non-invasive character of CRNS without interference with agricultural practices of the farmland. The changing influence of vegetation on CRNS has to be dealt with as well as spatio-temporal influences, e.g. by irrigation or harvest. Previous work revealed that the CRNS signal on farmland shows complex and non-unique response because of the hydrogen pools in different depths and distances. This creates a challenge for soil moisture estimation and subsequent use for irrigation management or hydrological modelling. Thus, a special aim of our study was to assess the uncertainty of CRNS in cropped fields and to identify underlying causes of uncertainty. We have applied CRNS at two field sites during the growing season that were accompanied by intensive measurements of soil moisture, vegetation parameters, and irrigation events. Sources of uncertainty were identified from the experimental data. A Monte Carlo approach was used to propagate these uncertainties to CRNS soil moisture estimations. In addition, a sensitivity analysis was performed to identify the most important factors explaining this uncertainty. Results showed that CRNS soil moisture compares well to the soil moisture network when the point values were converted to weighted water content with all hydrogen pools included. However, when considered as a stand-alone method to retrieve volumetric soil moisture, the performance decreased. The support volume including its penetration depth showed also a considerable uncertainty, especially in relatively dry soil moisture conditions. Of seven factors analyzed, actual soil moisture profile, bulk density, incoming neutron correction and calibrated parameter N0 were found to play an important role. One possible improvement could be a simple correction factor based on independent data of soil moisture profiles to better account for the sensitivity of the CRNS signal to the upper soil layers. This is an important step to improve the method for validation of remote sensing products or agricultural water management and establish CRNS as an applied monitoring tool on farmland.
Controls on deep drainage beneath the root soil zone in snowmelt-dominated environments
NASA Astrophysics Data System (ADS)
Hammond, J. C.; Harpold, A. A.; Kampf, S. K.
2017-12-01
Snowmelt is the dominant source of streamflow generation and groundwater recharge in many high elevation and high latitude locations, yet we still lack a detailed understanding of how snowmelt is partitioned between the soil, deep drainage, and streamflow under a variety of soil, climate, and snow conditions. Here we use Hydrus 1-D simulations with historical inputs from five SNOTEL snow monitoring sites in each of three regions, Cascades, Sierra, and Southern Rockies, to investigate how inter-annual variability on water input rate and duration affects soil saturation and deep drainage. Each input scenario was run with three different soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also created artificial snowmelt scenarios to test how snowmelt intermittence affects deep drainage. Results indicate that precipitation is the strongest predictor (R2 = 0.83) of deep drainage below the root zone, with weaker relationships observed between deep drainage and snow persistence, peak snow water equivalent, and melt rate. The ratio of deep drainage to precipitation shows a stronger positive relationship to melt rate suggesting that a greater fraction of input becomes deep drainage at higher melt rates. For a given amount of precipitation, rapid, concentrated snowmelt may create greater deep drainage below the root zone than slower, intermittent melt. Deep drainage requires saturation below the root zone, so saturated hydraulic conductivity serves as a primary control on deep drainage magnitude. Deep drainage response to climate is mostly independent of soil texture because of its reliance on saturated conditions. Mean water year saturations of deep soil layers can predict deep drainage and may be a useful way to compare sites in soils with soil hydraulic porosities. The unit depth of surface runoff often is often greater than deep drainage at daily and annual timescales, as snowmelt exceeds infiltration capacity in near-surface soil layers. These results suggest that processes affecting the duration of saturation below the root zone could compromise deep recharge, including changes in snowmelt rate and duration as well as the depth and rate of ET losses from the soil profile.
Soil thermal properties at two different sites on James Ross Island in the period 2012/13
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Láska, Kamil
2015-04-01
James Ross Island (JRI) is the largest island in the eastern part of the Antarctic Peninsula. Ulu Peninsula in the northern part of JRI is considered the largest ice free area in the Maritime Antarctica region. However, information about permafrost on JRI, active layer and its soil properties in general are poorly known. In this study, results of soil thermal measurements at two different sites on Ulu Peninsula are presented between 1 April 2012 and 30 April 2013. The study sites are located (1) on an old Holocene marine terrace (10 m a. s. l.) in the closest vicinity of Johann Gregor Mendel (JGM) Station and (2) on top of a volcanic plateau named Johnson Mesa (340 m a. s. l.) about 4 km south of the JGM Station. The soil temperatures were measured at 30 min interval using platinum resistance thermometers Pt100/8 in two profiles up to 200 cm at JGM Station and 75 cm at Johnson Mesa respectively. Decagon 10HS volumetric water content sensors were installed up 30 cm at Johnson Mesa to 50 cm at JGM Station, while Hukseflux HFP01 soil heat flux sensors were used for direct monitoring of soil physical properties at 2.5 cm depth at both sites. The mean soil temperature varied between -5.7°C at 50 cm and -6.3°C at 5 cm at JGM Station, while that for Johnson Mesa varied between -6.9°C at 50 cm and -7.1°C at 10 cm. Maximum active layer thickness estimated from 0 °C isotherm reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively which corresponded with maximum observed annual temperature at 50 cm at both sites. The warmest part of both profiles detected at 50 cm depth corresponded with maximum thickness of active layer, estimated from 0°C isotherm, reached 52 cm at JGM Station and 50 cm at Johnson Mesa respectively. Volumetric water content at 5 cm varied around 0.25 m3m-3 at both sites. The slight increase to 0.32 m3m-3 was observed at JGM Station at 50 cm and at Johnson Mesa at 30 cm depth. Soil texture analysis showed distinctly higher share of coarser fraction >2 mm at Johnson Mesa than at JGM Station. Comparison of both sites indicated that mean ground temperature at 50 cm depth was higher by 1.2 °C at JGM station, although the active layer was thicker by 2 cm only. It can therefore be concluded that soil physical properties like texture and moisture may significantly affect thermal regime at boundary between AL and permafrost table during individual thawing seasons.
Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo
2016-01-01
Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602
Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.
McLaughlin, Stephen J; Kalita, Prasanta K; Kuhlenschmidt, Mark S
2013-12-15
Vegetative Filter Strips (VFS) have long been used to control the movement of agricultural nutrients and prevent them from reaching receiving waters. Earlier studies have shown that VFS also dramatically reduce both the kinetics and extent of Cryptosporidium parvum (C. parvum) oocysts overland transport. In this study, we investigated possible mechanisms responsible for the ability of VFS to reduce oocyst overland transport. Measurement of the kinetics of C. parvum adhesion to individual sand, silt, and clay soil particles revealed that oocysts associate over time, albeit relatively slow, with clay but not silt or sand particles. Measurement of oocyst overland transport kinetics, soil infiltration depth, distance of travel, and adhesion to vegetation on bare and vegetated soil surfaces indicate that oocysts move more slowly, and penetrate the soil profile to a greater extent on a vegetated surface than on a bare soil surface. Furthermore, we demonstrate a small fraction of the oocysts become attached to vegetation at the soil-vegetation interface on VFS. These results suggest VFS function to reduce oocyst overland transport by primarily decreasing oocyst surface flow enough to allow penetration within the soil profile followed by subsequent adhesion to or entrapment within clay particle aggregates, and to a lesser extent, adhesion to the surface vegetation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Schwartz, Robert C.; Howell, Terry A.; Louis Baumhardt, R.; Copeland, Karen S.
2012-12-01
Weighing lysimeters and neutron probes (NP) are both used to determine the change in soil water storage needed to solve for evapotranspiration (ET) using the soil water balance equation. We compared irrigated cotton ET determined using two large (3 × 3 × 2.4-m deep) weighing lysimeters and eight NP soil water profiles located outside the lysimeters in cotton fields during the BEAREX08 field campaign (see [16] Evett et al., 2012). The objectives were to (i) determine if lysimeter-based ET fluxes were representative of those from the fields, designated NE and SE, in which the lysimeters were centered, and (ii) investigate different methods of computing the soil water balance using NP data. Field fluxes were determined from the soil water balance using neutron probe measurements of change in profile water content storage. Fluxes of ET from the SE lysimeter were representative of those from the field throughout the season and can be used with reasonable certainty for comparisons of ET fluxes and energy balance closure derived from Bowen ratio (BR) and eddy covariance (EC) measurements whose footprints lay in the SE field. Comparisons of ET fluxes from EC and BR systems to those from the NE lysimeter should consider that NE lysimeter fluxes were up to 18% larger than those from the NE field during the period of rapid vegetative growth. This was due to plants on the lysimeter having greater height and width than those in the field. Nevertheless, the data from this and companion studies documents substantial underestimation of crop ET by EC stations under the conditions of BEAREX08. Comparison of zero flux plane (ZFP) and simple soil water balance methods of calculating ET from NP data showed them to be equivalent in this study; and for the ZFP method, the depth of the control volume should be determined by the depth at which the hydraulic gradient reverses, not by the depth of calculated minimum flux. If supported by a sufficiently dense and widespread network of deep soil water balance based estimates of ET in the surrounding patch and by ancillary measurements of crop stand and growth within the lysimeter and in the surrounding patch, a weighing lysimeter can provide accurate ET ground truth for comparisons with ET estimated using flux stations or ET calculated using satellite imagery. It must be emphasized that the water balance measurements must include soil profile water content measurements to well below (e.g., 0.5 to 1 m below) the root zone in order to close the water balance.
A Vs30-derived Near-surface Seismic Velocity Model
NASA Astrophysics Data System (ADS)
Ely, G. P.; Jordan, T. H.; Small, P.; Maechling, P. J.
2010-12-01
Shallow material properties, S-wave velocity in particular, strongly influence ground motions, so must be accurately characterized for ground-motion simulations. Available near-surface velocity information generally exceeds that which is accommodated by crustal velocity models, such as current versions of the SCEC Community Velocity Model (CVM-S4) or the Harvard model (CVM-H6). The elevation-referenced CVM-H voxel model introduces rasterization artifacts in the near-surface due to course sample spacing, and sample depth dependence on local topographic elevation. To address these issues, we propose a method to supplement crustal velocity models, in the upper few hundred meters, with a model derived from available maps of Vs30 (the average S-wave velocity down to 30 meters). The method is universally applicable to regions without direct measures of Vs30 by using Vs30 estimates from topographic slope (Wald, et al. 2007). In our current implementation for Southern California, the geology-based Vs30 map of Wills and Clahan (2006) is used within California, and topography-estimated Vs30 is used outside of California. Various formulations for S-wave velocity depth dependence, such as linear spline and polynomial interpolation, are evaluated against the following priorities: (a) capability to represent a wide range of soil and rock velocity profile types; (b) smooth transition to the crustal velocity model; (c) ability to reasonably handle poor spatial correlation of Vs30 and crustal velocity data; (d) simplicity and minimal parameterization; and (e) computational efficiency. The favored model includes cubic and square-root depth dependence, with the model extending to a depth of 350 meters. Model parameters are fit to Boore and Joyner's (1997) generic rock profile as well as CVM-4 soil profiles for the NEHRP soil classification types. P-wave velocity and density are derived from S-wave velocity by the scaling laws of Brocher (2005). Preliminary assessment of the new model is preformed with ground motion simulations for a selection of likely M > 7 scenario events for Southern California (as define by the SCEC Big Ten project).
NASA Astrophysics Data System (ADS)
van de Graaff, R.
2012-04-01
The role of regolith and soil development with respect to assessing heavy metal contamination in urban soils with particular reference to iron. Robert H.M. van de Graaff, PhD Van de Graaff & Associates Pty Ltd, 14 Linlithgow Street, Mitcham, Victoria, 3132, Australia Environmental assessors investigating brown and green development areas in inner and peripheral urban land in Australia routinely collect soil samples at prescribed depths, e.g. 0.1 - 0.5 - 1.0 - etc., in the soil profile. These sampling depths take no notice of the natural horizonation of a soil profile and hence are blind to geomorphological and weathering history of the site. In a continent like Australia, which largely has been spared the wholesale removal and re-deposition of soil and rock materials by Pleistocene glaciers, the vertical and lateral movement of heavy metals, including iron, nearly always explains the occurrence of elevated concentrations of As, Cu, Pb, V, Co, Cr, Zn and Ni in certain strata of the soil profile. The localised accumulation of these metals is normally controlled by changing redox potentials, which in turn are affected by translocation of clay and differences in soil hydraulic conductivity between A, B and C soil horizons. In other cases, the soil profile has operated like a chromatogram over many thousands of years. In Australian cities many urban soils do not have anthropogenic origins. This paper will give some examples of misinterpreted contamination scares in relation to As, Ba, Cr and V that sometimes caused large financial budget overruns at developments in Melbourne. These examples are all based on practical consulting experience but elucidated by reference to the scientific literature. Because of its huge spread, the greater Melbourne Metropolitan region extends from its western extremity with 450 mm annual rainfall to its eastern extremity with 900 mm, a distance of 70 km. A similar rainfall gradient may well have operated during much of the Quaternary, although during the Glacial phases the climate is thought to have been much drier. Likewise, the region spreads out over several very different "hard rock" lithologies from Quaternary basalt to Silurian sedimentary rocks and Devonian granites. However, there are landscapes in the region that probably date back to the Tertiary, 5-10 M years ago, without much change, and basalt landscapes 2 M years old. The geochemical inheritance of this long period of weathering and soil formation on such different parent materials must be understood, or at least appreciated, to interpret the results of soil chemical analyses for environmental assessments. In Victoria, the majority of environmental assessors do not have a sound background in geomorphology, soil science and geochemistry but come from a geotechnical, civil or chemical engineering background, or have studied environmental science more generally. Therefore there are professional opportunities for those that have the desirable educational basis. Finally, assessment of potential soil contamination by heavy metals would be greatly assisted by including analytical methods that selectively dissolve sesquioxides to determine the proportion of total heavy metals that is released by this procedure. It can explain so much!
Characteristics and engineering properties of residual soil of volcanic deposits
NASA Astrophysics Data System (ADS)
Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.
2018-02-01
Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.
AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile
NASA Astrophysics Data System (ADS)
Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.
2013-12-01
Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated annealing to minimize a cost function. Considering the required accuracy and reasonableness of the computational cost, and guided by in-situ field observations from several sites and prior field campaigns, the inversion algorithm parameters are chosen judiciously after extensive simulations using synthetic and real radar data. The ancillary data necessary to characterize a pixel are readily available. For example, the slope of each pixel is included in the radar data delivered by JPL. For land cover type within the continental United States, we use the National Land Cover Database (NLCD). Soil texture data are available from the Soil Survey Geographic (SSURGO) database for the United States. The handling and processing of the ancillary data is an involved and detailed process that will be briefly presented at the talk. We apply the retrieval method to the data acquired over several AirMOSS sites, and validate the results using in-situ soil moisture measurements. Retrieved profiles from several specific pixels at each site, the retrieval errors, and the retrieved moisture maps of the 100 km by 25 km imaged domains will be reported at the talk.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou
2015-11-01
Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain more SOC and TN stocks than walnut monoculture and that agroforestry is a sustainable management pattern for vegetation restoration in the Loess Plateau area.
NASA Astrophysics Data System (ADS)
Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.
2015-12-01
To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.
Towards quantitative usage of EMI-data for Digital Soil Mapping
NASA Astrophysics Data System (ADS)
Nüsch, A.-K.; Wunderlich, T.; Kathage, S.; Werban, U.; Dietrich, P.
2009-04-01
As formulated in the Thematic Strategy for Soil Protection prepared by the European Commission soil degradation is a serious problem in Europe. The degradation is driven or exacerbated by human activity and has a direct impact on water and air quality, biodiversity, climate and human life-quality. High-resolution soil property maps are one major prerequisite for the specific protection of soil function and restoration of degraded soils as well as sustainable land use, water and environmental management. However, the currently available techniques for (digital) soil mapping still have deficiencies in terms of reliability and precision, the feasibility of investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats at this scale. The focus of the iSOIL (Interactions between soil related science - Linking geophysics, soil science and digital soil mapping) project is on improving fast and reliable mapping of soil properties, soil functions and soil degradation threats. This requires the improvement as well as integration of geophysical and spectroscopic measurement techniques in combination with advanced soil sampling approaches, pedometrical and pedophysical approaches. Many commercially available geophysical sensors and equipment (EMI, DC, gamma-spectroscopy, magnetics) are ready to use for measurements of different parameters. Data collection with individual sensors is well developed and numerously described. However comparability of data of different sensor types as well as reproducibility of data is not self-evident. In particular handling of sensors has to be carried out accurately, e.g. consistent calibration. Soil parameters will be derived from geophysical properties to create comprehensive soil maps. Therefore one prerequisite is the comparison of different geophysical properties not only qualitative but also quantitative. At least reproducibility is one of the most important conditions for monitoring tasks. The first parameter we focussed on is apparent electrical conductivity (ECa). It is an important geophysical properity in soil science since soil parameters (water content, etc.) can be deduced. Nowadays mobile geophysical platforms allow to survey large areas comprehensively in a short time period. These platforms have been equipped with EM38DD (Geonics) and Profiler EMP-400 (GSSI) - two different types of electromagnetic induction (EMI) instruments - within first iSOIL field campaign. While EM38DD measures in horizontal and vertical mode at the same time, Profiler measures three frequencies simultaneously and magnetic susceptibility additionally. Coil separation of the instruments is nearly the same, so penetration depth is similar. On the other hand, frequencies are arbitrary at Profiler but fixed at EM38DD. These differences in penetration depth have to taken into account. By our measurement we tested the comparability of the data to show differences between instruments of the same type (EM38DD-EM38DD) using different settings, and different types (EM38DD-Profiler). Moreover both sensors work in continuous as well in discontinuous mode. The results show that quality of data is comparable, but the quantities are varying. This has to be considered for further interpretations and monitoring. In the next steps we have to determine how to convert relative data into absolute data since ECa data from different locations are not comparable to each other in a quantitative way. In the talk we will give an introduction in the application of EMI for soil monitoring, followed by an overview about comparability and reproducibility of data.
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers
Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-01-01
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0–100 cm. According to the calibration results, the degree of fitting (R2) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0–1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R2 of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R2 between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R2 between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy. PMID:29883420
Design and Test of a Soil Profile Moisture Sensor Based on Sensitive Soil Layers.
Gao, Zhenran; Zhu, Yan; Liu, Cheng; Qian, Hongzhou; Cao, Weixing; Ni, Jun
2018-05-21
To meet the demand of intelligent irrigation for accurate moisture sensing in the soil vertical profile, a soil profile moisture sensor was designed based on the principle of high-frequency capacitance. The sensor consists of five groups of sensing probes, a data processor, and some accessory components. Low-resistivity copper rings were used as components of the sensing probes. Composable simulation of the sensor’s sensing probes was carried out using a high-frequency structure simulator. According to the effective radiation range of electric field intensity, width and spacing of copper ring were set to 30 mm and 40 mm, respectively. A parallel resonance circuit of voltage-controlled oscillator and high-frequency inductance-capacitance (LC) was designed for signal frequency division and conditioning. A data processor was used to process moisture-related frequency signals for soil profile moisture sensing. The sensor was able to detect real-time soil moisture at the depths of 20, 30, and 50 cm and conduct online inversion of moisture in the soil layer between 0⁻100 cm. According to the calibration results, the degree of fitting ( R ²) between the sensor’s measuring frequency and the volumetric moisture content of soil sample was 0.99 and the relative error of the sensor consistency test was 0⁻1.17%. Field tests in different loam soils showed that measured soil moisture from our sensor reproduced the observed soil moisture dynamic well, with an R ² of 0.96 and a root mean square error of 0.04. In a sensor accuracy test, the R ² between the measured value of the proposed sensor and that of the Diviner2000 portable soil moisture monitoring system was higher than 0.85, with a relative error smaller than 5%. The R ² between measured values and inversed soil moisture values for other soil layers were consistently higher than 0.8. According to calibration test and field test, this sensor, which features low cost, good operability, and high integration, is qualified for precise agricultural irrigation with stable performance and high accuracy.
Hyperarid Soils in the Atacama Desert: A Terrestrial Guide to Mars Soil Formation
NASA Astrophysics Data System (ADS)
Amundson, R.; Stephanie, E.; Justine, O.; Brad, S.; Nishiizumi, K.; William, D.; Chris, M.
2005-12-01
Hyperarid soils on Earth provide a framework for interpreting the growing Mars regolith database and for developing testable hypotheses for the origin of Mars soils. On Earth, dust and aerosol deposition are strongly coupled with soil formation. Long term atmospheric deposition in the Atacama Desert, coupled with small and highly stochastic rain and fog events, produce a set of soil features diagnostic of pedogenic processes and indicative of the direction of liquid water flow: (1) Extreme hyperaridity results in the retention of nearly all atmospheric inputs within the upper 3 m of the soil profile, but the infrequent rainfall events vertically separate salts by solubility, forming polygonally cracked, sulfate-cemented near-surface crusts which overlie variably concentrated layers of the more soluble chloride, nitrate, and Na-sulfate salts. (2) Pedogenic sulfates in the Atacama desert exhibit unique depth-dependent S, O and Ca isotope trends caused by isotopic fractionation during downward aqueous migration and chemical reaction. (3) Pedogenic sulfates and nitrates contain a distinctive mass independent O isotope signal indicative of a tropospheric origin, and in the case of nitrate, the retention of this signal persists only under near-abiotic conditions. Taken together, the morphology and the depth-dependent chemical and isotopic composition of hyperarid soils provides quantitative information on the origin of solutes, direction of water flow, and degree of biological activity. Depth-dependent measures of these parameters on Mars can therefore be used to test a pedogenic hypothesis for the origin of the widely distributed sulfate layers and can be used to design experiments for future missions that may more fully illuminate the history of Mars surface processes.
The Influence of Tree Species on Subsurface Stormflow at the Hillslope Scale
NASA Astrophysics Data System (ADS)
Jost, G.; Weiler, M.
2006-12-01
This study investigates the effect of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.), two very common tree species in Central Europe, on soil water storage and runoff response to precipitation. We postulate that on the same type of soil, spruce with its shallow rooting system leads to different soil water storage and runoff responses than the deep rooting beech. To test this hypothesis, we chose a beech and a spruce stand with comparable soil type, a stagnic cambisol with a stagnic layer in about 50 cm soil depth. In each of the two stands we sprinkled a hillslope of 6 m by 10 m with intensities of 100 mm/h and 60 mm/h for one hour each. Surface and shallow interflow as well as interflow in different soil depths was collected by inserted sheet metals and gutters in 10 cm, 30 cm and 60 cm soil depth. Soil water storage responses were measured by 48 multiplexed TDR sensors at each hillslope. TDR wave-guides (20 cm long) were installed in a 45° angle in 10 cm, 30 cm, 50 cm and 70 cm soil depth. Volumetric water content was measured in 6 minute intervals. Sprinkling experiments show that even at intensities of 100 mm/h all the applied water infiltrates, independent of the vegetation cover. The deeper soil horizons respond immediately to the applied precipitation. This vertical water flux response is larger under beech. Under spruce most of the water transport happens in the topsoil layers (upper 40 cm), whereas under beech the entire soil profile down to 80 cm soil depth reacts to sprinkling. Under spruce at intensities of 100 mm/h the whole pore space is almost filled. The larger pores in the topsoil under beech stemming from higher biogenic activity and in the subsoil from more intense rooting are still far from reaching their maximum capacity. High antecedent soil water content (around field capacity) still doesn't cause infiltration excess overland flow but the time that it takes for the soil water storage to drain to its initial value is less than one hour. The hillslope at the spruce stand produces between 23% and 28% runoff. However, the beech hillslope produces roughly twice as much. These experiments show that the interactions between tree species and soil in the vadose zone lead to different pore systems and thus different responses to subsurface stormflow. Beech with its deeper rooting systems and its higher biogenic activity (lower C/N ratio) creates a very effective preferential flow path system that leads to greater amounts of subsurface stormflow. Under high antecedent soil water storage, saturation excess overland flow is more likely to occur in soils under spruce with its smaller preferential flow system.
NASA Astrophysics Data System (ADS)
dos Anjos Leal, Otávio; Pinheiro Dick, Deborah; Cylene Lombardi, Kátia; Gonçalves Maciel, Vanessa
2014-05-01
In some regions in Brazil, charcoal is usually applied to the soil with the purpose to improve its fertility and its organic carbon (SOC) content. In Brazil, the use of charcoal waste from steel industry with agronomic purposes represents also an alternative and sustainable fate for this material. In this context, the objective of this work was to evaluate the impact of Eucalyptus charcoal waste application on the SOC content and on the soil organic matter (SOM) composition. Increasing doses of charcoal (0, 10, 20 and 40 Mg ha-1) were applied to an Haplic Cambisol, in Irati, South-Brazil. Charcoal was initially applied on the soil surface, and then it was incorporated at 10 cm with a harrow. Soil undisturbed and disturbed samples (four replicates) were collected in September 2011 (1 y and 9 months) after charcoal incorporation. Four soil depths were evaluated (0-5, 5-10, 10-20 and 20-30 cm) and each replicate was composed by three subsamples collected within each plot. The soil samples were air dried, passed through a 9.51 mm sieve and thereafter through a 2.00 mm sieve. The SOC content and total N were quantified by dry combustion. The SOM was concentrated with fluoridric acid 10% and then the SOM composition was evaluated by thermogravimetric analysis along the soil profile. The main impact of charcoal application occurred at the 0-5 cm layer of the area treated with the highest dose: SOC content increased in 15.5 g kg-1 in comparison to the soil without charcoal application. The intermediary doses also increased the SOC content, but the differences were not significant. No differences for N content were found in this soil depth. Further results were observed in the 10-20 cm soil depth, where the highest dose increased the SOC content and N content. Furthermore, this treatment increased the recalcitrance of the SOM, mainly at the 0-5 cm and 10-20 cm soil layers. No differences between doses of charcoal application were found in the 20-30 cm soil depth, suggesting that the charcoal has not migrated so deep in soil even after almost two years of its incorporation.
Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen
2016-03-01
In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.
[Distribution pattern of meso-micro soil fauna in Eucalyptus grandis plantation].
Huang, Yumei; Zhang, Jian; Yang, Wanqin
2006-12-01
In this paper, meso-micro soil fauna were extracted and collected by Baermann's and Tullgren' s method, and their distribution pattern in the Eucalyptus grandis plantation of Hongya County, Sichuan Province was studied. A total of 13 550 specimens were collected, belonging to 6 phyla, 13 classes, and 26 orders. Acarina, Nematoda, Collembola were the dominant groups, and Enchytraeidae was the frequent one. The group and individual numbers of meso-micro soil fauna varied with seasons, being the maximum in autumn or winter, fewer in summer, and the minimum in spring. The density of meso-micro soil fauna in soil profile decreased rapidly with increasing soil depth, but a converse distribution was observed from time to time in 5 - 10 cm and 10 - 15 cm soil layers. The meso-micro soil fauna collected by Baermann's and Tullgren's method had a density of 3. 333 x 10(3) - 2. 533 x 10(5) ind x m(-2) and 1.670 x 10(2) - 2.393 x 10(5) ind x m(-2), respectively, and the decreasing rate of the density with the increase of soil depth was higher for those collected by Tullgren's method. The density-group index of meso-micro soil fauna in the E. grandis plantation was the lowest in spring, but the highest in autumn or summer. There were no significant differences in the density of meso-micro soil fauna and in the density-group index between E. grandis plantation and Quercus acutissima secondary forest.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.
2010-01-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.
Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.
Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T
2010-02-01
During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.
NASA Astrophysics Data System (ADS)
Sivandran, Gajan; Bras, Rafael L.
2012-12-01
In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.
NASA Astrophysics Data System (ADS)
Fattakhova, Leysan; Shinkarev, Alexandr; Ryzhikh, Lyudmila; Kosareva, Lina
2017-04-01
In normal practice, the thickness of the arable horizon is determined on the basis of field morphological descriptions, allowing the subjectivity of perception and judgment at the crucial role of experience of the researcher. The subject of special interest are independent analytical and technically relatively simple in design approaches to the diagnosis of the lower boundary of the blended plowing the profiles part. Theoretical premises to use spectrophotometry and magnetometry to arable horizon depth diagnose is based on the concept of regular color and magnetic properties vertical differentiation in a profile of virgin soils. This work is devoted to the comparative assessment of the possibility to objectively and reliably diagnose the lower boundary of the arable horizon in gray forest soils by determining the color characteristics and the magnetic susceptibility of their layer-wise samples. It was shown with arable gray forest soil (Cutanic Luvisols (Anthric)) as example that the magnetic susceptibility profile distribution curves can provide more reliable and objective assessment of the arable horizon thickness spatial variability than the profile curves of the color characteristics in the CIELAB coordinates. Therefore, magnetic measurements can be a useful tool for the tillage erosion estimation in the monitoring of soil characteristics in connection with the development of precision agriculture technologies and the organizing of agricultural field plot experiments.
Improved Absolute Radiometric Calibration of a UHF Airborne Radar
NASA Technical Reports Server (NTRS)
Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.;
2015-01-01
The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Zehe, Erwin; Elsner, Martin; Palm, Juliane; Schneider, Dorothee; Schröder, Boris; Steinbeiss, Sibylle; West, Stephanie
2010-05-01
Preferential flow in macropores is a key process which strongly affects infiltration and may cause rapid transport of pesticides into depths of 80 to 150 cm. At these depths they experience a much slower degradation, may leach into shallow groundwater or enter a tile-drain and are transported into surface water bodies. Therefore, preferential transport might be an environmental problem, if the topsoil is bypassed, which has been originally thought to act as a filter to protect the subsoil and shallow groundwater. To investigate the behaviour of two pesticides with different chemical characteristics and to compare their transport behaviour in soil and into the tile drain an irrigation experiment was performed on a 400 m² field site. The experimental plot is located in the Weiherbach valley, south-west Germany, which basic geology consists of Loess and Keuper layers, the soil at the test site is a gleyic Colluvisol. The distance of the irrigation site to the Weiherbach brook is approximately 12 m, the field is drained with a tile-drain in about 1.2 m depth and shows discharge over the entire year. Three hours before the irrigation started, the farmer applied a pesticide solution consisting of Isoproturon (80 g) and Flufenacet (20 g) (IPU and FLU) according to conventional agricultural practice on the field plot. The irrigation took place in three time blocks (80 min, 60 min, 80 min) with in total 33.6 mm of precipitation. During the first block 1600 g of Bromide were mixed in the irrigation water. The drainage outlet was instrumented with a pressure probe. About 50 water samples ware taken during the experimental day, and several samples more the days after the experiment. They were analysed for the pesticides, bromide and water isotopes. In the two days after the experiment three soil profiles were excavated and soil samples were taken on a 10x10 cm² scheme. One week after the experiment two additional profiles were excavated. The soil was analysed for IPU, FLU and bromide. The tile drain water showed traces of bromide and both pesticides within a few minutes. IPU showed highest concentration before the hydrograph started to increase, while bromide and FLU are strongly correlated to the hydrograph. Although IPU is less sorptive than FLU the concentrations and total transported mass of FLU were significantly higher then for IPU. The hydrograph reacted with two peaks on the three block irrigation; the two peaks can be attributed to the second and third irrigation block. Analysis of the water isotopes showed that during the experiment the event water mainly consisted of soil water. While the tile drain showed significant reaction in pesticides transport the picture deriving from soil profiles were different. Especially FLU was found mainly in the upper soil parts, so the bypassing might occurred so fast that it was only marginally absorbed in deeper soil party, but transported to the drain or shallow groundwater. As preferential flow paths earthworm burrows of different species could be identified, although the area density and species number of anecic earthworms was quite low compared to other field sites.
Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century
He, Yujie; Trumbore, Susan E.; Torn, Margaret S.; Harden, Jennifer W.; Vaughn, Lydia J.S.; Allison, Steven D.; Randerson, J.T.
2016-01-01
Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle-climate feedbacks. Many Earth system models (ESMs) estimate a significant soil carbon sink by 2100, yet the underlying carbon dynamics determining this response have not been systematically tested against observations. We used 14C data from 157 globally distributed soil profiles sampled to 1 m depth to show that ESMs underestimated the mean age of soil carbon by more than six-fold (430±50 years vs. 3100±1800 years). Consequently, ESMs overestimated the carbon sequestration potential of soils by nearly two-fold (40±27%). These biases suggest that ESMs must better represent carbon stabilization processes and the turnover time of slow and passive reservoirs when simulating future atmospheric CO2 dynamics.
Tillage system affects microbiological properties of soil
NASA Astrophysics Data System (ADS)
Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.
2012-04-01
Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the Shannon (H') and Gini (1-G) diversity index of microbial communities were determined in soil samples (0-10 cm depth) taken in autumn 2009. All the enzymatic activities and the biomass estimated by viable cell counting were significantly higher under no-till than under conventional tillage. However, only fluorescents pseudomonas population was increased under no-till, meanwhile oligotrophic bacteria and actinomycetes populations were higher with conventional tillage than with no-till. Overall, there was a higher use all the group of carbon sources used in the BiologR test with conventional tillage than with no-till, by except amines and phenols which showed non-significant differences. This reveals different physiological profiles in the microbial communities under both tillage systems. The Gini diversity was significantly lower with no-till than with conventional tillage. It can be concluded that no-till increases microbial biomass in soil and subsequently enzymatic activities likely ascribed to an increased organic matter content. Under low availability of hydrocarbon sources in soil due to conventional tillage, which promotes a decrease in the organic matter content of the soil, populations of oligotrophods and the diversity of microbial communities are increased. Under these conditions, there must not be dominant carbon sources promoting the selection of microorganisms with a given physiological profile. The reduced hydrocarbon availability and the higher diversity contribute to explain the increased use of carbon sources used in Biolog with conventional tillage than with no-till.
Specifics of soil temperature under winter oilseed rape canopy
NASA Astrophysics Data System (ADS)
Krčmářová, Jana; Středa, Tomáš; Pokorný, Radovan
2014-09-01
The aim of this study was to evaluate the course of soil temperature under the winter oilseed rape canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for pests and pathogens prediction, crop development, and yields models. The measurement of soil and near the ground air temperatures was performed at the experimental field Žabiče (South Moravia, the Czech Republic). The course of temperature was determined under or in the winter oilseed rape canopy during spring growth season in the course of four years (2010 - 2012 and 2014). In all years, the standard varieties (Petrol, Sherpa) were grown, in 2014 the semi-dwarf variety PX104 was added. Automatic soil sensors were positioned at three depths (0.05, 0.10 and 0.20 m) under soil surface, air temperature sensors in 0.05 m above soil surfaces. The course of soil temperature differs significantly between standard (Sherpa and Petrol) and semi-dwarf (PX104) varieties. Results of the cross correlation analysis showed, that the best interrelationships between air and soil temperature were achieved in 2 hours delay for the soil temperature in 0.05 m, 4 hour delay for 0.10 m and 7 hour delay for 0.20 m for standard varieties. For semi-dwarf variety, this delay reached 6 hour for the soil temperature in 0.05 m, 7 hour delay for 0.10 m and 11 hour for 0.20 m. After the time correction, the determination coefficient (R2) reached values from 0.67 to 0.95 for 0.05 m, 0.50 to 0.84 for 0.10 m in variety Sherpa during all experimental years. For variety PX104 this coefficient reached values from 0.51 to 0.72 in 0.05 m depth and from 0.39 to 0.67 in 0.10 m depth in the year 2014. The determination coefficient in the 0.20 m depth was lower for both varieties; its values were from 0.15 to 0.65 in variety Sherpa. In variety PX104 the values of R2 from 0.23 to 0.57 were determined. When using multiple regressions with quadratic spacing (modelling of hourly soil temperature based on the hourly near surface air temperature and hourly soil moisture in the 0.10-0.40 m profile), the difference between the measured and modelled soil temperatures in the depth of 0.05 m was -3.92 to 3.99°C. The regression equation paired with alternative agrometeorological instruments enables relatively accurate modelling of soil temperatures (R2 = 0.95).
Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Lorenz, K.
2010-12-01
Urban lands comprise the most intensively transformed lands on earth. Urban land cover changed from 0.01% of the global ice-free land area in 1700 to 0.5% in 2002. Globally, urbanization is now the primary process of land cover transformation. Urbanization accentuates conversion of natural or agricultural lands to urban soils with altered biological, chemical and physical properties. Soil functions particularly important in urban ecosystems are the protection against damages by intense precipitation and flooding, retention and immobilization of contaminants, production of clean water, and buffering of climate extremes, mainly through evaporative cooling. Because of their disturbance by human activities, urban soils have distinct properties. In contrast to natural soils, human-made materials dominate or strongly influence urban soils as human activities constitute important soil-forming factors in urban ecosystems. Soils whose properties and pedogenesis are dominated by their technical origin are classified as Technosols in the World Reference Base (WRB) for Soil Resources. They contain large proportions of artifacts, or are sealed by technic hard rock. Technosols include soils from wastes (e.g., landfills, sludge, cinders, mine spoils and ashes), pavements with their underlying unconsolidated materials, soils with geomembranes and constructed soils in human-made materials. However, Technosols and their properties have not yet been studied extensively. Yet, a greater understanding of urban soil properties is urgently needed to assess their biogeochemical cycles and role in the global carbon (C) cycle, and to manage their ecosystem services for the well-being of the urban population. Studies of biogeochemical cycles in urban soils of Stuttgart, Germany, have shown that soils from as deep as 1.9-m depth contain significant amounts of microbial biomass and are metabolically active. Buried organic matter (OM) rich artifacts where frequently observed originating from a long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.
Koarashi, Jun; Iida, Takao; Asano, Tomohiro
2005-01-01
To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ((14)C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of (14)C abundances showed that (1) bomb-derived (14)C has penetrated the first 16cm mineral soil at least; (2) Delta(14)C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived (14)C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived (14)C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales.
Water movement in stony soils: The influence of stoniness on soil water content profiles
NASA Astrophysics Data System (ADS)
Novak, Viliam; Knava, Karol
2010-05-01
WATER MOVEMENT IN STONY SOILS: THE INFLUENCE OF STONINESS ON SOIL WATER CONTENT PROFILES Viliam Novák, Karol Kňava Institute of Hydrology, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovakia, e-mail: novak@uh.savba.sk Soils containing rock fragments are widespread over the world, on Europe such soil account for 30%, 60% in Mediterranean region. In comparison to fine earth soils (soil particles are less then 2 mm) stony soils contain rock fragments characterized by the low retention capacity and hydraulic conductivity. So, for stony soils -in comparison to the fine-earth soils - is typical lower hydraulic conductivity and retention capacity, which lead to the decrease decrease of infiltration rate and low water retention. So, water movement and its modeling in stony soil would differ from fine earth (usually agricultural) soil. The aim of this contribution is to demonstrate the differences in water movement in homogeneous soil (fine earth) and stony soil. The influence of different stoniness on soil water content and soil water dynamics was studied too. Windthrow at High Tatra mountains in Slovakia (November 2004) cleared nearly 12 000 ha of 80 year conifers and this event initiated complex research of windthrow impact on the ecosystem. The important part of this study was water movement in impacted area. Specific feature of the soil in this area was moraine soil consisting of fine earth, characterized as silty sand, with the relative stone content up to 0.49, increasing with depth. Associated phenomenon to the forest clearing is the decrease of rain interception and higher undercanopy precipitation. Conifers interception capacity can be three times higher than low canopy interception, and can reach up to 40% of annual precipitation in Central Europe. Stones in the soil are decreasing infiltration rate, but paradoxically increased understorey precipitation and followingly the increased cumulative infiltration led to the increase of the soil water content of the upper 1 meter soil layer up to 53 mm at the end of vegetation period in comparison to the afforested area. Finally, soil water content profiles of stony soil differ from homogeneous ones and contain less water comparing to soil without stones.
Plamboeck, A H; Grip, H; Nygren, U
1999-05-01
Little is known about the vertical distribution of water uptake by trees under different water supply regimes, the subject of this study, conducted in a Scots pine stand on sandy loam in northern Sweden. The objective was to determine the water uptake distribution in pines under two different water regimes, desiccation (no precipitation) and irrigation (2 mm day -1 in July and 1 mm day -1 in August), and to relate the uptake to water content, root and soil texture distributions. The natural 18 O gradient in soil water was exploited, in combination with two added tracers, 2 H at 10 cm and 3 H at 20 cm depth. Extraction of xylem sap and water from the soil profile then enabled evaluation of relative water uptake from four different soil depths (humus layer, 0-10, 10-25 and 25-55 cm) in each of two 50-m 2 plots per treatment. In addition, water content, root biomass and soil texture were determined. There were differences in vertical water uptake distribution between treatments. In July, the pines at the irrigated and desiccated plots took up 50% and 30%, respectively, of their water from the upper layers, down to 25 cm depth. In August, the pines on the irrigated plots took up a greater proportion of their water from layers below 25 cm deep than they did in July. In a linear regression, the mean hydraulic conductivity for each mineral soil horizon explained a large part of the variation in relative water uptake. No systematic variation in the residual water uptake correlated to the root distribution. It was therefore concluded that the distribution of water uptake by the pines at Åheden was not a function of root density in the mineral soil, but was largely determined by the unsaturated hydraulic conductivity.
Bidar, Géraldine; Waterlot, Christophe; Verdin, Anthony; Proix, Nicolas; Courcot, Dominique; Détriché, Sébastien; Fourrier, Hervé; Richard, Antoine; Douay, Francis
2016-04-15
Aided phytostabilisation using trees and fly ashes is a promising technique which has shown its effectiveness in the management of highly metal-contaminated soils. However, this success is generally established based on topsoil physicochemical analysis and short-term experiments. This paper focuses on the long-term effects of the afforestation and two fly ashes (silico-aluminous and sulfo-calcic called FA1 and FA2, respectively) by assessing the integrity of fly ashes 10 years after their incorporation into the soil as well as the vertical distribution of the physicochemical parameters and trace elements (TEs) in the amended soils (F1 and F2) in comparison with a non-amended soil (R). Ten years after the soil treatment, the particle size distribution analysis between fly ashes and their corresponding masses (fly ash + soil particles) showed a loss or an agglomeration of finer particles. This evolution matches with the appearance of gypsum (CaSO4 2H2O) in FA2m instead of anhydrite (CaSO4), which is the major compound of FA2. This finding corresponds well with the dissolution and the lixiviation of Ca, S and P included in FA2 along the F2 soil profile, generating an accumulation of these elements at 30 cm depth. However, no variation of TE contamination was found between 0 and 25 cm depth in F2 soil except for Cd. Conversely, Cd, Pb, Zn and Hg enrichment was observed at 25 cm depth in the F1 soil, whereas no enrichment was observed for As. The fly ashes studied, and notably FA2, were able to reduce Cd, Pb and Zn availability in soil and this capacity persists over the time despite their structural and chemical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi
2018-03-01
The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.
Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.
2014-12-01
Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and Δ14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335-2014, doi:10.5194/gmd-7-1335-2014.
NASA Technical Reports Server (NTRS)
Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.
1994-01-01
The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given.
A global data set of soil particle size properties
NASA Technical Reports Server (NTRS)
Webb, Robert S.; Rosenzweig, Cynthia E.; Levine, Elissa R.
1991-01-01
A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodie, J.R.; Burke, V.J.; Smith, K.R.
1996-07-01
Diel nest temperature profiles were recorded form natural nests of eastern mud turtles (Kinosternon subrubrum) and Florida cooters (Pseudemys floridana) to determine whether nest microhabitat selection compensates for the effect of interspecific differences in nest depth on nest temperature. Kinosternon subrubrum nest depths were significantly shallower than those of P. floridana (t = 2.93, P < 0.01). We predicted that differences in nest depth would result in K. subrubrum nests being cooler at night and warmer during daylight than the deeper P. floridana nests. Diel temperature patterns agreed with out predictions at night, but P. floridana nest temperatures were notmore » lower than K. subrubrum nest temperatures during the day. Soil composition, slope and soil moisture were similar for the nest of both species. However, the amount of sunlight reaching the soil above K. subrubrum nest sites was substantially less than the amount above P. floridana nest sites. We suggest that these species select habitats for oviposition that differ in the amount and types of vegetative cover, which in turn affect exposure to sunlight and ultimately nest temperature. 27 refs., 2 figs.« less
Soil water dynamics during precipitation in genetic horizons of Retisol
NASA Astrophysics Data System (ADS)
Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej
2017-04-01
Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume of the precipitation and soil moisture before the precipitation. The following changes of moisture in the soil profile during precipitation were distinguished: if soil moisture in upper zone horizons oscillates around field capacity (higher than 0.30 m3ṡm-3) there is an evident increase in soil moisture also in the lower zone horizons. If soil moisture in the upper zone horizons is much lower than the field capacity (less than 0.20 m3ṡm-3), the soil moisture in the lower zone has very little fluctuations. The range of wetting front in the soil profile depends on the volume of the precipitation and soil moisture. The heavier precipitation, the wetting front in soil profile reaches deeper horizons. The wetter the soil is, the faster soil moisture in the deeper genetic horizons increase. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, DS No. 3138/KGiOG/2016.
NASA Astrophysics Data System (ADS)
Dettmann, Ullrich; Bechtold, Michel
2016-04-01
Water level depth is one of the crucial state variables controlling the biogeochemical processes in peatlands. For flat soil surfaces, water level depth dynamics as response to boundary fluxes are primarily controlled by the water retention characteristics of the soil in and above the range of the water level fluctuations. For changing water levels, the difference of the integrals of two soil moisture profiles (ΔAsoil), of a lower and a upper water level, is equal to the amount of water received or released by the soil. Dividing ΔAsoil by the water level change, results into a variable that is known as specific yield (Sy). For water level changes approaching the soil surface, changes in soil water storage are small due to the thin unsaturated zone that remains. Consequentially, Sy values approach zero with an abrupt transition to 1 in case of inundation. However, on contrary, observed water level rises due to precipitation events at various locations showed increasing Sy values for water level changes at shallow depths (Sy = precipitation/water level change; Logsdon et al., 2010). The increase of Sy values can be attributed in large parts to the influence of the microrelief on water level changes in these wet landscapes that are characterized by a mosaic of inundated and non-inundated areas. Consequentially, water level changes are dampened by partial inundation. In this situation, total Sy is composed of a spatially-integrated below ground and above ground contribution. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total Sy. The one-dimensional expression can be applied for any soil hydraulic parameterizations and soil surface elevation frequency distributions. We demonstrate that Sy is influenced by the microrelief not only when surface storage directly contributes to Sy by (partial) inundation but also when water levels are lower than the minimum surface elevation. With the derived one-dimensional expression we developed a novel approach for the in situ determination of soil water retention characteristics that is applicable to shallow groundwater systems. Our approach is built on two assumptions: i) for shallow groundwater systems with medium- to high conductive soils the soil moisture profile is always close to hydrostatic equilibrium and ii) over short time periods differences in total water storage due to lateral fluxes are negligible. Given these assumptions, the height of a water level rise due to a precipitation event mainly depends on the soil water retention characteristics, the precipitation amount, the initial water level depth and, if present, the microrelief. We use this dependency to determine water retention characteristics (van Genuchten parameter) by Bayesian inversion. Our results demonstrate that observations of water level rises, caused by precipitation events, contain sufficient information to constrain the water retention characteristics around two dip wells in a Sphagnum bog to plausible ranges. We discuss the possible biases that come along with our approach and point out the research that is needed to quantify their significance.
Source identification and apportionment of heavy metals in urban soil profiles.
Luo, Xiao-San; Xue, Yan; Wang, Yan-Ling; Cang, Long; Xu, Bo; Ding, Jing
2015-05-01
Because heavy metals (HMs) occurring naturally in soils accumulate continuously due to human activities, identifying and apportioning their sources becomes a challenging task for pollution prevention in urban environments. Besides the enrichment factors (EFs) and principal component analysis (PCA) for source classification, the receptor model (Absolute Principal Component Scores-Multiple Linear Regression, APCS-MLR) and Pb isotopic mixing model were also developed to quantify the source contribution for typical HMs (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in urban park soils of Xiamen, a representative megacity in southeast China. Furthermore, distribution patterns of their concentrations and sources in 13 soil profiles (top 20 cm) were investigated by different depths (0-5, 5-10, 10-20 cm). Currently the principal anthropogenic source for HMs in urban soil of China is atmospheric deposition from coal combustion rather than vehicle exhaust. Specifically for Pb source by isotopic model ((206)Pb/(207)Pb and (208)Pb/(207)Pb), the average contributions were natural (49%)>coal combustion (45%)≫traffic emissions (6%). Although the urban surface soils are usually more contaminated owing to recent and current human sources, leaching effects and historic vehicle emissions can also make deep soil layer contaminated by HMs. Copyright © 2015 Elsevier Ltd. All rights reserved.
A comparison of radiative transfer models for predicting the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Choudhury, B. J.
1981-01-01
Noncoherent and coherent numerical models for predicting emission from soils are compared. Coherent models use the boundary conditions on the electric fields across the layer boundaries to calculate the radiation intensity, and noncoherent models consider radiation intensities directly. Interference may cause different results in the two approaches when coupling between soil layers in coherent models causes greater soil moisture sampling depths. Calculations performed at frequencies of 1.4 and 19.4 GHz show little difference between the models at 19.4 GHz, although differences are apparent at the lower frequency. A definition for an effective emissivity is also given for when a nonuniform temperature profile is present, and measurements made from a tower show good agreement with calculations from the coherent model.
Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars
NASA Technical Reports Server (NTRS)
Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.
2010-01-01
The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.
Ammonia transformations and abundance of ammonia oxidizers in a clay soil underlying a manure pond.
Sher, Yonatan; Baram, Shahar; Dahan, Ofer; Ronen, Zeev; Nejidat, Ali
2012-07-01
Unlined manure ponds are constructed on clay soil worldwide to manage farm waste. Seepage of ammonia-rich liquor into underlying soil layers contributes to groundwater contamination by nitrate. To identify the possible processes that lead to the production of nitrate from ammonia in this oxygen-limited environment, we studied the diversity and abundance of ammonia-transforming microorganisms under an unlined manure pond. The numbers of ammonia-oxidizing bacteria and anammox bacteria were most abundant in the top of the soil profile and decreased significantly with depth (0.5 m), correlating with soil pore-water ammonia concentrations and soil ammonia concentrations, respectively. On the other hand, the numbers of ammonia-oxidizing archaea were relatively constant throughout the soil profile (10(7) amoA copies per g(soil)). Nitrite-oxidizing bacteria were detected mainly in the top 0.2 m. The results suggest that nitrate accumulation in the vadose zone under the manure pond could be the result of complete aerobic nitrification (ammonia oxidation to nitrate) and could exist as a byproduct of anammox activity. While the majority of the nitrogen was removed within the 0.5-m soil section, possibly by combined anammox and heterotrophic denitrification, a fraction of the produced nitrate leached into the groundwater. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
NASA Astrophysics Data System (ADS)
Schelker, J.; Grabs, T. J.; Bishop, K. H.; Laudon, H.
2012-12-01
Concentrations of dissolved organic carbon (DOC) in stream water show large variations as a response to disturbances such as forestry operations. We used a paired catchment experiment in northern Sweden which shows well quantified increases of DOC concentrations and C-exports as a result of forest harvesting. To identify the drivers of these increases, a physically-based process model (Riparian Flow Integration Model, RIM) was used to inversely simulate the DOC availability in the peat-rich riparian soils of the catchments. DOC availability in soils followed a seasonal signal paralleling the seasonality of soil-temperatures (min: February; max: August) during 2005-2011. Further, high-frequency event sampling of DOC during spring and summer seasons of 2007, 2008 and 2009, respectively, revealed that event size acted as a secondary control of DOC in streams: Spring snowmelt events (as well as one major event in 2009) showed clockwise hysteresis, whereas minor runoff episodes during summer (when DOC availability in soils was highest) were characterized by a counterclockwise behavior. The higher hydro-meteorological forcing consisting of increases of soil temperature and soil moisture after the forest removal governed additional increases in DOC availability in soils. The higher DOC concentrations observed in streams after forest harvesting can therefore be ascribed to i) the increased climatic forcing comprising higher water flows through riparian soils, ii) increased soil temperatures and soil moisture, respectively, favoring an increased production of DOC, and iii) additional variation by event size. Overall these results underline the large impact of forestry operations on stream water quality as well as DOC exports leaving managed boreal forests. Simulated and measured soil water TOC concentration profiles within the three Balsjö catchments (CC-4 = clear-cut with 67% harvest; NO-5 = 35% harvest; NR-7 = northern reference). The simulated curves represent the inversely modeled soil profiles using the average f-parameter calculated for August 2009 for each catchment. Measured values represent TOC concentrations of soil water sampled in mid August 2009. Sample numbers (soil depth in bracket) are given as: n (-0.2m) = 16; n (-0.6m) = 17; n (-0.9m) = 15. Horizontal whiskers indicate the standard deviation of measured values for each soil depth.
Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.
Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou
2015-07-01
The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.
Blaustein, Ryan A; Hill, Robert L; Micallef, Shirley A; Shelton, Daniel R; Pachepsky, Yakov A
2016-01-01
The rainfall-induced release of pathogens and microbial indicators from land-applied manure and their subsequent removal with runoff and infiltration precedes the impairment of surface and groundwater resources. It has been assumed that rainfall intensity and changes in intensity during rainfall do not affect microbial removal when expressed as a function of rainfall depth. The objective of this work was to test this assumption by measuring the removal of Escherichia coli, enterococci, total coliforms, and chloride ion from dairy manure applied in soil boxes containing fescue, under 3, 6, and 9cmh(-1) of rainfall. Runoff and leachate were collected at increasing time intervals during rainfall, and post-rainfall soil samples were taken at 0, 2, 5, and 10cm depths. Three kinetic-based models were fitted to the data on manure-constituent removal with runoff. Rainfall intensity appeared to have positive effects on rainwater partitioning to runoff, and removal with this effluent type occurred in two stages. While rainfall intensity generally did not impact the parameters of runoff-removal models, it had significant, inverse effects on the numbers of bacteria remaining in soil after rainfall. As rainfall intensity and soil profile depth increased, the numbers of indicator bacteria tended to decrease. The cumulative removal of E. coli from manure exceeded that of enterococci, especially in the form of removal with infiltration. This work may be used to improve the parameterization of models for bacteria removal with runoff and to advance estimations of depths of bacteria removal with infiltration, both of which are critical to risk assessment of microbial fate and transport in the environment. Published by Elsevier B.V.
Energy value of soil organic matter and costs of its restoration
NASA Astrophysics Data System (ADS)
Kuczuk, Anna
2017-10-01
From the point of view of the sustainable soil management, the most important characteristic of soil organic matter (SOM) is associated with the energy content in it. This paper reports the results of an estimation of SOM resources and its energy value for the arable land in a selected farm. For this purpose, soil samples were taken in two fields from a soil depth profile of 30 cm. The testing regarding humus content were conducted at District Chemical and Agricultural Station in Opole. The study involved the assessment of organic matter content at a depth of 30 cm converted per 1 ha, energy value of the SOM resources and the theoretical energy potential was determined. In addition, an example of crop rotation was provided for the analyzed soils, which could be applicable in the process of restoring SOM resources. The cost of restoring the SOM resource was estimated and this value was compared with the energy value of fuel. The total cost of SOM restoration over the period of five years was equal to 3122.26-7845.86 PLN·ha-1 depending on the value of the lost revenue of commercial production, and simultaneously equal to the value of 6.2-16 Mg thermal coal.
Schütz, Kirsten; Kandeler, Ellen; Nagel, Peter; Scheu, Stefan; Ruess, Liliane
2010-06-01
Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.
Borba, Ricardo Perobelli; Ribeirinho, Victor Sanches; de Camargo, Otávio Antonio; de Andrade, Cristiano Alberto; Kira, Carmen Silvia; Coscione, Aline Reneé
2018-02-01
In this study, we performed monitoring of the soil solution (SS) over 10 years on a loamy/clayey-textured Dark Red Dystroferric Oxisol that received sewage sludge for agricultural purposes. The SS was obtained by lysimeters installed along the walls of a well at 1 m, 2 m, 3 m, 4 m and 5 m in depth. The major ions found in the SS were NO 3 - , SO 4 2- , Cl - , Ca 2+ , Mg 2+ , Al 3+ , Pb 2+ , Cd 2+ and Zn 2+ , and the pH level ranged from 4 to 6.5 along the profile. Throughout the first three years of monitoring, the pH to a 3-m depth became more acidic, and in the last year, this trend reached 5 m. At the 5-m depth, the pH decreased from 6.5 to 4.5 from the first to the last monitoring. The SS acidification was provoked by both nitrite oxidation and ion leaching. The leaching of H + or the possible ion exchange/desorption of H + due to the leached cations (Ca 2+ and Mg 2+ ) at the 4-m and 5-m depth caused the pH decrease. The ionic strength (IS) of the solution controlled the ion leaching. The sludge application increased the IS to 3 m, increasing the density of the soil charges and its ability to absorb ions. After the sludge application was completed, there was a decrease in IS of the SS as well as a decrease in ion absorption and retention abilities, which promoted leaching to greater depths. During the entire monitoring process, NO 3 - , Cd and Pb remained above the potability limit. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald
2015-04-01
The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine growing region. According to the soil map of Belgium (scale 1:20,000), the soils are characterized by variable depth, texture, internal drainage and profile development. As such, the 23 vineyards in Heuvelland are found on 21 different soil types; of which 12 different soil types are included within our sampling strategy. Our sampling furthermore revealed an even greater variability in physico-chemical soil properties than reflected by the soil map. This leads to a 'tentative' conclusion that Heuvelland cannot be considered as one natural terroir as such and that the wine growers can potentially improve their production by adapting their management to local soil properties using the improved knowledge on the vineyard soils.
The Effects of Different Tillage Systems on Soil Hydrology and Erosion in Southeastern Brazil
NASA Astrophysics Data System (ADS)
Bertolino, A. V. F. A.; Fernandes, N. F.; Souza, A. P.; Miranda, J. P.; Rocha, M. L.
2009-04-01
Conventional tillage usually imposes a variety of modifications on soil properties that can lead to important changes in the type and magnitude of the hydrological processes that take place at the upper portion of the soil profile. Plough pan formation, for example, is considered to be an important consequence of conventional tillage practices in southeastern Brazil, decreasing infiltration rates and contributing to soil erosion, especially in steep slopes. In order to characterize the changes in soil properties and soil hydrology due to the plough pan formation we carried out detailed investigations in two experimental plots in Paty do Alferes region, located in the hilly landscape of Serra do Mar in southeastern Brazil, close to Rio de Janeiro city. Farming activities are very important in this area, in particular the ones related to the tomato production. The local hilly topography with short and steep hillslopes, as well as an average annual rainfall of almost 2000 mm, favor surface runoff and the evolution of rill and gully erosion. The two runoff plots are 22m long by 4m wide and were installed side by side along a representative hillslope, both in terms of soil (Oxisol) and steepness. At the lower portion of each plot there is a collecting trough connected by a PVC pipe to a 500 and 1000 liters sediment storage boxes. Soil tillage treatments used in the two plots were: Conventional Tillage (CT), with one plowing using disc-type plow (about 18 cm depth) and one downhill tractor leveling, in addition to burning residues from previous planting; and Minimum Tillage (MT), which did not allow burning residues from previous planting and preserved a vegetative cover between plantation lines. Runoff and soil erosion measurements were carried out in both plots immediately after each rainfall event. In order to characterize soil water movements under the two tillage systems (CT and MT), 06 nests of tensiometers and 04 nests of Watermark sensors were installed in each plot. Based on previous studies in this area, suggesting that the plough pan develop at about 20cm depth, the soil water potential (SWP) sensors were installed, in each nest, at 15, 30 and 80 cm depths. Continuously readings in the 30 SWP sensors were made both at a daily and event basis (during some rainfall events) for 25 months. Rainfall was continuously measured in the area by an automatic rain-gauge (tipping bucket) installed close to the plots. In order to characterize changes is soil porosity, both total pore space and pore inter-connections, undisturbed soil blocks were collected for micromorphological analyses (0-10cm, 12-22cm and 25-35cm depths) at small trenches located at the upper parts of each plot. The results attested that soil under CT developed a plough pan layer at about 20 cm depth, showing a 44% decrease in total pore space from 0-10cm to 12-22cm depths, with a predominant network of isolated pores. In the MT plot, soil porosity is more homogeneous with depth, with a predominant network of larger and better connected pores. The results related to soil hydrology show that in many moments, both CT and MT, stay very close to saturation, both at 15 and 30 cm depth. Above the plough pan under CT, soils tend to saturate faster and to have a slower drainage rate than the ones under MT. Detailed SWP analyses made during rain events suggest that CT may favors lateral flows while soils under MT are draining. Soil erosion rates measured for individual events at CT are about four times greater than the ones observed at MT. The results observed in this study attest that conventional tillage (CT) in this area imposed important changes in soil structure, pore-size distribution and connectivity, as well as in soil infiltration, drainage and erosion.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, H. J.; McDonnell, J. J.
2009-04-01
SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.
Yang, Wenrui; Wang, Rusong; Zhou, Chuanbin; Li, Feng
2009-01-01
Abstract A field survey was conducted in a contaminated industrial site of southern Beijing, China to investigate the contents and distribution of the organochlorine pesticides (alpha-, beta-, gamma-, delta-HCH, p,p'-DDT, p,p'-DDE, p,p'-DDD and o,p'-DDT) in the profiles of soil, and a health risk assessment was carried out with CalTOX multimedia exposure model. Results showed that mean concentrations of total hexachlorocyclohexane isomers (HCHs) and total dichlorodiphenyltrichloroethane isomers (DDXs) in soils were in the range of 13.20-148.71 mg/kg, and 3.02-67.43 mg/kg, respectively. Organochlorine pesticides (OCPs) content peaked in the surface and declined in soil profile with depth. The amounts of HCHs in three profiles of soil were larger than DDXs. Composition analysis indicated that there was a trend of degradation of OCPs in the site, but the mean of HCHs and DDXs concentration were over the state warning standard limit (HCHs, 0.50 mg/kg; DDXs, 0.50 mg/kg). According to current land use development, health risk assessment with CalTOX and Monte Carlo analysis showed that health risks mainly came from two exposure pathways: dermal uptake and inhalation, and the total risk values all exceeded the general acceptable health risk value (10-6). The sensitivity analysis indicated that five parameters significantly contributed to total risk.
Representation of Stormflow and a More Responsive Water Table in a TOPMODEL-Based Hydrology Model
NASA Technical Reports Server (NTRS)
Shaman, Jeffrey; Stieglitz, Marc; Engel, Victor; Koster, Randal; Stark, Colin; Houser, Paul R. (Technical Monitor)
2001-01-01
This study presents two new modeling strategies. First, a methodology for representing the physical process of stormflow within a TOPMODEL framework is developed. In using this approach, discharge at quickflow time scales is simulated and a fuller depiction of hydrologic activity is brought about. Discharge of water from the vadose zone is permitted in a physically realistic manner without a priori assumption of the level within the soil column at which stormflow saturation can take place. Determination of the stormflow contribution to discharge is made using the equation for groundwater flow. No new parameters are needed. Instead, regions of near saturation that develop during storm events, producing vertical recharge, are allowed to contribute to soil column discharge. These stormflow contributions to river runoff, as for groundwater flow contributions, are a function of catchment topography and local hydraulic conductivity at the depth of these regions of near saturation. The second approach improves groundwater flow response through a reduction of porosity and field capacity with depth in the soil column. Large storm events are better captured and a more dynamic water table develops with application of this modified soil column profile (MSCP). The MSCP predominantly reflects soil depth differences in upland and lowland regions of a watershed. Combined, these two approaches - stormflow and the MSCP - provide a more accurate representation of the time scales at which soil column discharge responds and a more complete depiction of hydrologic activity. Storm events large and small are better simulated, and some of the biases previously evident in TOPMODEL simulations are reduced.
Effect of land-use change on soil organic carbon stocks in the Eastern Usambara Mountain (Tanzania)
NASA Astrophysics Data System (ADS)
Kirsten, Maximilian; Kaaya, Abel; Klinger, Thomas; Feger, Karl-Heinz
2014-05-01
A soil organic carbon (SOC) inventory, covering 10 sites with 5 different land-use systems (primary forest, secondary forest, tea plantation, home garden, and cropland) was conducted in the tropical monsoonal Eastern Usambara Mountains (EUM), NE Tanzania. At all sites the environmental factors such as climate and parent material, for soil formation (gneiss), as well as elevation and slope position are highly comparable. The evergreen submontane primary rain forest, which still exists in vast areas in the EUM and the well-known land-use history there provide nearly optimal conditions for the assessment of land-use change effects on soil properties, notably the SOC stocks. We collected horizon-wise samples from soil pit profiles. In addition, samples from fixed depth-intervals were taken from 8 augering points located systematically around each soil pit. The sampling scheme yielded a unique set of soil information (pedological, chemical, and physical) that favours a reliable assessment of SOC stocks and future analytical work on SOM quality and binding mechanisms. The investigated soils are characterized by high clay contents, which increase with depth. Soil pH varies between 3.5 and 5.4 over all land-use systems and horizons, higher pH values could be detected for the agricultural systems in the topsoil, the differences between agricultural and forest systems decrease in the subsoil. The potential cation exchange capacity is in most cases < 24 cmolc kg-1, furthermore the base saturation is always < 50 % in the subsoil. Thus, based on that analytical data all soils can be classified as Acrisols revealing the high comparability of the investigated sites. This is an excellent prerequisite for the 'false chronosequence' approach applied. Organic carbon (C) stocks in the soils from the investigated land-use systems cover a wide range between 17.1 and 24.2 kg m-2 (0-100 cm). Variability is even high in the subset of the 3 primary forests. Statistically significant differences between the forest and cropland systems occur in the uppermost depth interval 0-10 cm. Furthermore, the primary forests have higher, but not significantly different SOC stocks in the topsoil (0-40 cm) compared with the cropland systems. In all investigated soils the SOC stocks for the entire soil profiles (0-100 cm) are in a narrow range. This may give a hint on SOC relocation from the topsoil to the subsoil when forests were converted to cropland systems. Our results reveal that this land-use change has led to a shift in above- and belowground litter distribution and amount. Also slash and burn practises as well as burning of plant residues in arable farming are common in the EUM. Both phenomena may control SOC relocation as they are associated with a changed C input and/or the formation of C compounds that can be relocated in the profile. In all investigated soils high concentrations of dithionite- and oxalate- extractable iron and aluminum were analyzed. Hence, interaction of SOC with oxides formed by the two metals is here probably one of the main stabilization mechanisms of SOC. The relocation and stabilization processes of SOC are the key functions for the implementation of sustainable agriculture in the EUM, and the conducted study provide a suitable basis for our ongoing research in this region of the wet tropics of Africa.
NASA Astrophysics Data System (ADS)
Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz
2016-09-01
A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.